Abelian group G_P  

from P. Olver, On generating Differential Invariants, in preparation. 

> coord_frame([x,y],[u],fr):
 

fr > P := [1,x,y,2*x*y-x^2,2*x*y-y^2,2*(x^3+y^3)-3*x*y*(x+y)];
 

(Typesetting:-mprintslash)([P := [1, x, y, 2*x*y-x^2, 2*x*y-y^2, 2*x^3+2*y^3-3*x*y*(x+y)]], [[1, x, y, 2*x*y-x^2, 2*x*y-y^2, 2*x^3+2*y^3-3*x*y*(x+y)]]) 

fr > LieAlg:=[[1,0,0],[0,1,0], seq([0,0,p],p=P)]:    
LieAlg:=map( V-> v_zip(V,frameJetVariables(fr,0)[1..3],plus, vect), LieAlg); nops(LieAlg);
 

(Typesetting:-mprintslash)([LieAlg := [D_x[``], D_y[``], D_u[[0, 0]][``], x*D_u[[0, 0]][``], y*D_u[[0, 0]][``], (2*x*y-x^2)*D_u[[0, 0]][``], (2*x*y-y^2)*D_u[[0, 0]][``], (2*x^3+2*y^3-3*x^2*y-3*x*y^2)*...
(Typesetting:-mprintslash)([LieAlg := [D_x[``], D_y[``], D_u[[0, 0]][``], x*D_u[[0, 0]][``], y*D_u[[0, 0]][``], (2*x*y-x^2)*D_u[[0, 0]][``], (2*x*y-y^2)*D_u[[0, 0]][``], (2*x^3+2*y^3-3*x^2*y-3*x*y^2)*...
(Typesetting:-mprintslash)([LieAlg := [D_x[``], D_y[``], D_u[[0, 0]][``], x*D_u[[0, 0]][``], y*D_u[[0, 0]][``], (2*x*y-x^2)*D_u[[0, 0]][``], (2*x*y-y^2)*D_u[[0, 0]][``], (2*x^3+2*y^3-3*x^2*y-3*x*y^2)*...
 

8 

fr > Section:=[x=0,y=0,u[0,0]=0,u[1,0]=0,u[0,1]=0,u[2,0]=0,u[0,2]=0,u[3,0]=0]: stair(Section);
C, Morphism :=dmf(LieAlg,Section, fr, [op(Section), u[1,1]=a,u[3,0]=b,u[0,4]=c]):
 

Plot 

"Section :" 

[u[3, 0] = 0, u[0, 2] = 0, u[2, 0] = 0, u[0, 1] = 0, u[1, 0] = 0, u[0, 0] = 0, y = 0, x = 0] 

"Transversality condition :"   1
"Invariantizations:"
 

x = 0, y = 0, u[0, 0] = 0, u[1, 0] = 0, u[0, 1] = 0, u[2, 0] = 0, u[0, 2] = 0, u[3, 0] = 0, u[1, 1] = a, u[3, 0] = b, u[0, 4] = c, u[2, 1] = y1, u[1, 2] = y2, u[0, 3] = y3, u[4, 0] = y4, u[3, 1] = y5,...
x = 0, y = 0, u[0, 0] = 0, u[1, 0] = 0, u[0, 1] = 0, u[2, 0] = 0, u[0, 2] = 0, u[3, 0] = 0, u[1, 1] = a, u[3, 0] = b, u[0, 4] = c, u[2, 1] = y1, u[1, 2] = y2, u[0, 3] = y3, u[4, 0] = y4, u[3, 1] = y5,...
x = 0, y = 0, u[0, 0] = 0, u[1, 0] = 0, u[0, 1] = 0, u[2, 0] = 0, u[0, 2] = 0, u[3, 0] = 0, u[1, 1] = a, u[3, 0] = b, u[0, 4] = c, u[2, 1] = y1, u[1, 2] = y2, u[0, 3] = y3, u[4, 0] = y4, u[3, 1] = y5,...
 

"Commutation rules" 

[D1, D2] = 0 

"Syzygies" 

[-y6[0, 1]+y7[1, 0], -y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], y3[1, 0]+y4[0, 0]-y7[0, 0], 2*y2[1, 0]-y4[0, 0]-2*y6[0, 0], 2*y1[1, 0]-y4[0, 0]-2*y5[0, 0], a[1, 0]-y2[0, 0]-y1[0, 0], -y7[0, 1]+c[1, 0], y...
[-y6[0, 1]+y7[1, 0], -y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], y3[1, 0]+y4[0, 0]-y7[0, 0], 2*y2[1, 0]-y4[0, 0]-2*y6[0, 0], 2*y1[1, 0]-y4[0, 0]-2*y5[0, 0], a[1, 0]-y2[0, 0]-y1[0, 0], -y7[0, 1]+c[1, 0], y...
[-y6[0, 1]+y7[1, 0], -y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], y3[1, 0]+y4[0, 0]-y7[0, 0], 2*y2[1, 0]-y4[0, 0]-2*y6[0, 0], 2*y1[1, 0]-y4[0, 0]-2*y5[0, 0], a[1, 0]-y2[0, 0]-y1[0, 0], -y7[0, 1]+c[1, 0], y...
[-y6[0, 1]+y7[1, 0], -y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], y3[1, 0]+y4[0, 0]-y7[0, 0], 2*y2[1, 0]-y4[0, 0]-2*y6[0, 0], 2*y1[1, 0]-y4[0, 0]-2*y5[0, 0], a[1, 0]-y2[0, 0]-y1[0, 0], -y7[0, 1]+c[1, 0], y...
[-y6[0, 1]+y7[1, 0], -y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], y3[1, 0]+y4[0, 0]-y7[0, 0], 2*y2[1, 0]-y4[0, 0]-2*y6[0, 0], 2*y1[1, 0]-y4[0, 0]-2*y5[0, 0], a[1, 0]-y2[0, 0]-y1[0, 0], -y7[0, 1]+c[1, 0], y...
 

"Syzygies with attempt to eliminate the y's" 

y0[0, 0] = 1 

y4[1, 0] = a[0, 3]-c[0, 1]+a[3, 0]-a[2, 1]-c[1, 0] 

y1[1, 0] = a[1, 1]+1/2*y4[0, 0]-a[0, 2]+c[0, 0] 

y4[0, 1] = a[2, 1]-a[1, 2]+c[1, 0] 

y1[0, 1] = -1/2*a[1, 1]+1/2*a[0, 2]-1/2*c[0, 0]+a[2, 0]-y4[0, 0] 

y7[0, 0] = -a[2, 0]+a[1, 1]+y4[0, 0] 

y6[0, 0] = a[2, 0]-a[1, 1]-y4[0, 0]+a[0, 2]-c[0, 0] 

y5[0, 0] = a[1, 1]-a[0, 2]+c[0, 0] 

y3[0, 0] = a[0, 1]-a[1, 0] 

y2[0, 0] = a[1, 0]-y1[0, 0] 

a[0, 4] = c[0, 2]+c[1, 1]+c[2, 0] 

fr > Section:=[x=0,y=0,u[0,0]=0,u[1,0]=0,u[0,1]=0,u[2,0]=0,u[1,1]=0,u[2,1]=0]: stair(Section);
C, Morphism :=dmf(LieAlg,Section, fr, [op(Section), u[2,0]=a,u[3,0]=b]):
 

Plot 

"Section :" 

[u[2, 1] = 0, u[1, 1] = 0, u[2, 0] = 0, u[0, 1] = 0, u[1, 0] = 0, u[0, 0] = 0, y = 0, x = 0] 

"Transversality condition :"   1
"Invariantizations:"
 

x = 0, y = 0, u[0, 0] = 0, u[1, 0] = 0, u[0, 1] = 0, u[2, 0] = 0, u[1, 1] = 0, u[2, 1] = 0, u[2, 0] = a, u[3, 0] = b, u[0, 2] = y1, u[1, 2] = y2, u[0, 3] = y3, u[4, 0] = y4, u[3, 1] = y5, u[2, 2] = y6...
x = 0, y = 0, u[0, 0] = 0, u[1, 0] = 0, u[0, 1] = 0, u[2, 0] = 0, u[1, 1] = 0, u[2, 1] = 0, u[2, 0] = a, u[3, 0] = b, u[0, 2] = y1, u[1, 2] = y2, u[0, 3] = y3, u[4, 0] = y4, u[3, 1] = y5, u[2, 2] = y6...
x = 0, y = 0, u[0, 0] = 0, u[1, 0] = 0, u[0, 1] = 0, u[2, 0] = 0, u[1, 1] = 0, u[2, 1] = 0, u[2, 0] = a, u[3, 0] = b, u[0, 2] = y1, u[1, 2] = y2, u[0, 3] = y3, u[4, 0] = y4, u[3, 1] = y5, u[2, 2] = y6...
 

"Commutation rules" 

[D1, D2] = 0 

"Syzygies" 

[-y7[0, 1]+y8[1, 0], -y6[0, 1]+y7[1, 0], -y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], y3[1, 0]-2*y5[0, 0]-y7[0, 0], y2[1, 0]+y5[0, 0]-y6[0, 0], y1[1, 0]-b[0, 0]-y2[0, 0], b[1, 0]-2*y5[0, 0]-y4[0, 0], y3[0,...
[-y7[0, 1]+y8[1, 0], -y6[0, 1]+y7[1, 0], -y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], y3[1, 0]-2*y5[0, 0]-y7[0, 0], y2[1, 0]+y5[0, 0]-y6[0, 0], y1[1, 0]-b[0, 0]-y2[0, 0], b[1, 0]-2*y5[0, 0]-y4[0, 0], y3[0,...
[-y7[0, 1]+y8[1, 0], -y6[0, 1]+y7[1, 0], -y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], y3[1, 0]-2*y5[0, 0]-y7[0, 0], y2[1, 0]+y5[0, 0]-y6[0, 0], y1[1, 0]-b[0, 0]-y2[0, 0], b[1, 0]-2*y5[0, 0]-y4[0, 0], y3[0,...
[-y7[0, 1]+y8[1, 0], -y6[0, 1]+y7[1, 0], -y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], y3[1, 0]-2*y5[0, 0]-y7[0, 0], y2[1, 0]+y5[0, 0]-y6[0, 0], y1[1, 0]-b[0, 0]-y2[0, 0], b[1, 0]-2*y5[0, 0]-y4[0, 0], y3[0,...
[-y7[0, 1]+y8[1, 0], -y6[0, 1]+y7[1, 0], -y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], y3[1, 0]-2*y5[0, 0]-y7[0, 0], y2[1, 0]+y5[0, 0]-y6[0, 0], y1[1, 0]-b[0, 0]-y2[0, 0], b[1, 0]-2*y5[0, 0]-y4[0, 0], y3[0,...
[-y7[0, 1]+y8[1, 0], -y6[0, 1]+y7[1, 0], -y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], y3[1, 0]-2*y5[0, 0]-y7[0, 0], y2[1, 0]+y5[0, 0]-y6[0, 0], y1[1, 0]-b[0, 0]-y2[0, 0], b[1, 0]-2*y5[0, 0]-y4[0, 0], y3[0,...
 

"Syzygies with attempt to eliminate the y's" 

y0[0, 0] = 1 

y8[1, 0] = y7[0, 1] 

y7[1, 0] = 1/2*b[0, 2]+1/4*y4[0, 1]-1/4*b[1, 1] 

y4[1, 0] = -2*y4[0, 1]+b[2, 0] 

y3[1, 0] = b[1, 0]-y4[0, 0]+y7[0, 0] 

y2[1, 0] = -3/4*b[1, 0]+3/4*y4[0, 0]+1/2*b[0, 1] 

y1[1, 0] = b[0, 0]+y2[0, 0] 

y3[0, 1] = b[0, 1]-1/2*b[1, 0]+1/2*y4[0, 0]+y8[0, 0] 

y2[0, 1] = y7[0, 0]-1/2*b[0, 1]+1/4*b[1, 0]-1/4*y4[0, 0] 

y1[0, 1] = y2[0, 0]+y3[0, 0] 

y6[0, 0] = 1/2*b[0, 1]-1/4*b[1, 0]+1/4*y4[0, 0] 

y5[0, 0] = 1/2*b[1, 0]-1/2*y4[0, 0] 

fr > Section:=[x=0,y=0,u[0,0]=0,u[1,0]=0,u[0,1]=0,u[0,2]=0,u[1,1]=0,u[0,3]=0]: stair(Section);
C, Morphism :=dmf(LieAlg,Section, fr, [op(Section), u[2,0]=a,u[1,2]=b,u[0,4]=c]):
 

Plot 

"Section :" 

[u[0, 3] = 0, u[0, 2] = 0, u[1, 1] = 0, u[0, 1] = 0, u[1, 0] = 0, u[0, 0] = 0, y = 0, x = 0] 

"Transversality condition :"   -1
"Invariantizations:"
 

x = 0, y = 0, u[0, 0] = 0, u[1, 0] = 0, u[0, 1] = 0, u[0, 2] = 0, u[1, 1] = 0, u[0, 3] = 0, u[2, 0] = a, u[1, 2] = b, u[0, 4] = c, u[3, 0] = y1, u[2, 1] = y2, u[4, 0] = y3, u[3, 1] = y4, u[2, 2] = y5,...
x = 0, y = 0, u[0, 0] = 0, u[1, 0] = 0, u[0, 1] = 0, u[0, 2] = 0, u[1, 1] = 0, u[0, 3] = 0, u[2, 0] = a, u[1, 2] = b, u[0, 4] = c, u[3, 0] = y1, u[2, 1] = y2, u[4, 0] = y3, u[3, 1] = y4, u[2, 2] = y5,...
x = 0, y = 0, u[0, 0] = 0, u[1, 0] = 0, u[0, 1] = 0, u[0, 2] = 0, u[1, 1] = 0, u[0, 3] = 0, u[2, 0] = a, u[1, 2] = b, u[0, 4] = c, u[3, 0] = y1, u[2, 1] = y2, u[4, 0] = y3, u[3, 1] = y4, u[2, 2] = y5,...
 

"Commutation rules" 

[D1, D2] = 0 

"Syzygies" 

[-y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], -y3[0, 1]+y4[1, 0], 2*y2[1, 0]-y6[0, 0]-2*y4[0, 0], y1[1, 0]+y6[0, 0]-y3[0, 0], a[1, 0]-b[0, 0]-y2[0, 0]-y1[0, 0], -y6[0, 1]+c[1, 0], 2*b[1, 0]-y6[0, 0]-2*y5[0...
[-y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], -y3[0, 1]+y4[1, 0], 2*y2[1, 0]-y6[0, 0]-2*y4[0, 0], y1[1, 0]+y6[0, 0]-y3[0, 0], a[1, 0]-b[0, 0]-y2[0, 0]-y1[0, 0], -y6[0, 1]+c[1, 0], 2*b[1, 0]-y6[0, 0]-2*y5[0...
[-y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], -y3[0, 1]+y4[1, 0], 2*y2[1, 0]-y6[0, 0]-2*y4[0, 0], y1[1, 0]+y6[0, 0]-y3[0, 0], a[1, 0]-b[0, 0]-y2[0, 0]-y1[0, 0], -y6[0, 1]+c[1, 0], 2*b[1, 0]-y6[0, 0]-2*y5[0...
[-y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], -y3[0, 1]+y4[1, 0], 2*y2[1, 0]-y6[0, 0]-2*y4[0, 0], y1[1, 0]+y6[0, 0]-y3[0, 0], a[1, 0]-b[0, 0]-y2[0, 0]-y1[0, 0], -y6[0, 1]+c[1, 0], 2*b[1, 0]-y6[0, 0]-2*y5[0...
[-y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], -y3[0, 1]+y4[1, 0], 2*y2[1, 0]-y6[0, 0]-2*y4[0, 0], y1[1, 0]+y6[0, 0]-y3[0, 0], a[1, 0]-b[0, 0]-y2[0, 0]-y1[0, 0], -y6[0, 1]+c[1, 0], 2*b[1, 0]-y6[0, 0]-2*y5[0...
[-y5[0, 1]+y6[1, 0], -y4[0, 1]+y5[1, 0], -y3[0, 1]+y4[1, 0], 2*y2[1, 0]-y6[0, 0]-2*y4[0, 0], y1[1, 0]+y6[0, 0]-y3[0, 0], a[1, 0]-b[0, 0]-y2[0, 0]-y1[0, 0], -y6[0, 1]+c[1, 0], 2*b[1, 0]-y6[0, 0]-2*y5[0...
 

"Syzygies with attempt to eliminate the y's" 

y0[0, 0] = -1 

y6[0, 0] = b[0, 1]-1/2*c[0, 0] 

y5[0, 0] = -1/2*b[0, 1]+1/4*c[0, 0]+b[1, 0] 

y4[0, 0] = a[1, 1]-1/2*b[0, 1]+1/4*c[0, 0]-b[1, 0] 

y3[0, 0] = -a[1, 1]+b[0, 1]-1/2*c[0, 0]+a[2, 0] 

y2[0, 0] = a[0, 1]-b[0, 0] 

y1[0, 0] = -a[0, 1]+a[1, 0] 

a[0, 2] = 1/2*b[0, 1]+3/4*c[0, 0]+b[1, 0] 

b[0, 2] = 1/2*c[0, 1]+c[1, 0]