Abelian group G_P
from P. Olver, On generating Differential Invariants, in preparation.
> | coord_frame([x,y],[u],fr): |
fr > | P := [1,x,y,2*x*y-x^2,2*x*y-y^2,2*(x^3+y^3)-3*x*y*(x+y)]; |
fr > | LieAlg:=[[1,0,0],[0,1,0], seq([0,0,p],p=P)]:
LieAlg:=map( V-> v_zip(V,frameJetVariables(fr,0)[1..3],plus, vect), LieAlg); nops(LieAlg); |
fr > | Section:=[x=0,y=0,u[0,0]=0,u[1,0]=0,u[0,1]=0,u[2,0]=0,u[0,2]=0,u[3,0]=0]: stair(Section);
C, Morphism :=dmf(LieAlg,Section, fr, [op(Section), u[1,1]=a,u[3,0]=b,u[0,4]=c]): |
"Section :"
"Transversality condition :" 1
"Invariantizations:"
"Commutation rules"
"Syzygies"
"Syzygies with attempt to eliminate the y's"
fr > | Section:=[x=0,y=0,u[0,0]=0,u[1,0]=0,u[0,1]=0,u[2,0]=0,u[1,1]=0,u[2,1]=0]: stair(Section);
C, Morphism :=dmf(LieAlg,Section, fr, [op(Section), u[2,0]=a,u[3,0]=b]): |
"Section :"
"Transversality condition :" 1
"Invariantizations:"
"Commutation rules"
"Syzygies"
"Syzygies with attempt to eliminate the y's"
fr > | Section:=[x=0,y=0,u[0,0]=0,u[1,0]=0,u[0,1]=0,u[0,2]=0,u[1,1]=0,u[0,3]=0]: stair(Section);
C, Morphism :=dmf(LieAlg,Section, fr, [op(Section), u[2,0]=a,u[1,2]=b,u[0,4]=c]): |
"Section :"
"Transversality condition :" -1
"Invariantizations:"
"Commutation rules"
"Syzygies"
"Syzygies with attempt to eliminate the y's"