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Some new simulations schemes for the evaluation

of Feynman–Kac representations

Sylvain Maire and Etienne Tanré

Abstract. We describe new variants of the Euler scheme and of the walk on spheres method
for the Monte Carlo computation of Feynman–Kac representations. We optimize these variants
using quantization for both source and boundary terms. Numerical tests are given on basic
examples and on Monte Carlo versions of spectral methods for the Poisson equation. We
especially introduce a new stochastic spectral formulation with very good properties in terms
of conditioning.
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1. Introduction

The Feynman–Kac formula is a well-known tool to achieve stochastic representations
of the pointwise solution of numerous partial differential equations like diffusion or
transport equations [9, 10, 17]. If we consider for example the Dirichlet boundary
value problem in a domain D ⊂ R

d with a sufficiently smooth boundary ∂D

−Au = f

and boundary conditions
u = g

on ∂D, we have ∀x ∈ D

u(x) = Ex

[

g(XτD
) +

∫ τD

0
f(Xs)ds

]

,

where (Xt)t≥0 is a stochastic process solution of the stochastic differential equation
relative to the operator A and where τD is the exit time of this process from the domain
D. The Monte Carlo computation of this pointwise solution leads to two kinds of
numerical errors. The first one comes from the discretization error of the stochastic
differential equation, which is due to the simulation of the stochastic process (Xt)t≥0.
If we call ∆t the discretization step, the relative error on the approximate solution
in the whole space using the Euler scheme is a O(∆t) [2]. In [11, 12], it is proved
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that one can keep an error of a O(∆t) for this Euler scheme in a bounded domain
with either Dirichlet or Neumann boundary conditions by using a more sophisticated
version based on a Brownian bridge. The second kind of error is the standard Monte
Carlo error using N simulations, that is σ√

N
, where σ2 is the variance of

g(Xx
τD

) +

∫ τD

0
f(Xx

s )ds.

The numerical approximation of the source term
∫ τD

0 f(Xx
s )ds is usually done by the

rectangle method so that it requires as many evaluations of the function f as they are
steps until the absorption by the boundary. On the contrary, the function g is only eval-
uated once, so there is not a good balance between the evaluations of the source term
and of the boundary one. This is even more true when f has a complex expression,
when the step size is small and when the variance of g(Xx

τD
) is greater than the vari-

ance of
∫ τD

0 f(Xx
s )ds. In the case of the Laplace operator, the process to simulate is

the Brownian motion and the walk on spheres method [23] can be used instead of the
Euler scheme in order to reduce the number of simulation steps and hence the number
of evaluations of f . The modified walk on spheres method introduced in [7] and used
numerically for two dimensional problems in [16] requires only few evaluations of
the function f namely as many as the number of spheres until the process reaches an
ε-boundary layer.

In Section 2, we introduce one random step schemes based on either the Euler
scheme or on the walk on spheres method where the function f is only evaluated
once after the end of the trajectory. The idea is to store the discretization points of the
trajectory and to approximate

∫ τD

0 f(Xx
s )ds by the product of its length τD and of the

function f at a random point of this trajectory. We can also use the same scheme for
the approximation of

∫ T
0 f(Xx

s )ds in the whole space. In a simple one dimensional
case, we give some theoretical reasons to explain why this kind of approach can work.
We make some numerical tests to compare these new schemes with the standard ones
on different situations depending on the complexity of f and g and of the variance of
the source and boundary terms.

In some specific problems like domain decomposition methods [1, 8] or spectral
methods [4, 5], the domain and the points where the solution is computed are fixed. In
such situations it is possible to optimize our schemes by using quantization techniques
[20, 21, 22]. We will do this for the computation of both source and boundary terms.
This enables to replace the simulation schemes by quadrature formulae respectively in
the domain and on the boundary which have moreover an increased convergence rate
than the Monte Carlo method. In Section 3, we describe how to build these formulae
numerically for square domains using the Kohonen algorithm and we test them on the
numerical examples of the previous sections.

We have introduced sequential Monte Carlo algorithms to compute the solution of
the Poisson equation with a great accuracy using either spectral methods [13, 14] or
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domain decomposition methods [15]. In Section 4, we use the formulae of Section 3
to reduce the simulation times and also the number of steps until convergence of these
algorithms on two dimensional problems. Finally in Section 5, we give a new inter-
pretation of the algorithm which leads to direct spectral formulations. We study these
new formulations theoretically and numerically and show that they have very good
properties in terms of conditioning.

2. Description of the global one random point method

2.1. Simulations based on the Euler scheme

The Euler scheme for the simulation of the Brownian motion starting at x ∈ D(⊂ R
d)

with discretization parameter △t writes

B0 = x, Bn+1 = Bn +
√

△tYn

where the Yn are independent standard Gaussian random variables N (0, Id). The
crude version in a bounded domain D makes the simulation stops once Bn+1 ∈ DC .
For example, the approximation of τD is either n△ t , (n+ 1

2 )△ t or a slightly refined
approximation based on the distances dn = d(Bn, ∂D) and dn+1 = d(Bn+1, ∂D). In
any case, these approximations are of weak order

√△t . The main simulation error
comes from the possibility for the Brownian motion to leave the domain between step
n and n + 1 and be back into it at time (n + 1) △ t. We can take into account this
possibility to obtain a scheme of weak order △t using the half-space approximation
[11, 12]. An additional random test is required based on dn and dn+1. Taking a uniform
random variable Un, the motion stops if

exp

(

−2dndn+1

△t

)

> Un.

If the motion stops between steps n and n + 1, the approximation of BτD
and hence

the one of g(BτD
) is done using a projection based on Bn and Bn+1. The standard

approximation of
∫ τD

0 f(Xx
s )ds by the rectangle method is given by

A1 = △t
n

∑

i=1

f(Bi△t).

We replace this approximation by A2 = n△tf(BJ△t) where J is a discrete uniform
random variable on the set [1, . . . , n] and we obviously have

E(A2) = △t

n
∑

i=1

E(f(Bi△t))
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which proves that the two approximations have same mean value. If we now look at
the second order moment of the estimators, we have

E(A2
1) = (△t)2

E

(

n
∑

i=1

f(Bi△t)
)2

≤ n(△t)2
n

∑

i=1

E(f2(Bi△t)) = E(A2
2)

and the same inequality for their variances.

2.2. Simulations based on the modified walk on spheres

In order to be faster in the computation of

Ex

[

g(BτD
) +

∫ τD

0
f(Bs)ds

]

,

we can also use the modified walk on spheres method. In the original walk on spheres
method [23], the walk goes from x to the boundary ∂D from a sphere to another until
the motion reaches the ε-absorption layer. The spheres are built so that the jumps
are as large as possible. The radius of the next sphere Sn from a starting point xn is
d(xn, ∂D). The next point is chosen uniformly on this sphere because of the isotropy
of the Brownian motion. The mean number of steps until absorption is proportional to
|log(ε)| . To compute the contribution of the source term in this walk, one can compute
this contribution in each of the balls from the passage to their centers to the boundary,
conditioned by the exit point. This is achieved using the Green function conditioned
by the exit point z writing

Exn

[
∫ τSn

0
f(Bs)ds|BτSn

= z

]

=

∫

Sn

K(z, y)f(y)dy.

For the unit ball B1 in dimension 2 [16], the cumulative radial distribution is

fR(r) = r2(1 − 2 log(r))10≤r≤1

and the cumulative conditional angular distribution is

fθ/R=r(θ) =
1
2

+
1
π

arctan

(

1 + r

1 − r

tan(θ − θ0)

2

)1−π≤θ≤π

where exp(iθ0) = z. For a ball Bj of radius rj centered at (xj, yj), we write

∫

Bj

K(z, y)f(y)dy =
r2
j

2
E(f(Yj))

with Yj = (rjR cos(θ) + xj , rjR sin(θ) + yj). The Monte Carlo computation of

Ex

[

g(BτD
) +

∫ τD

0
f(Bs)ds

]
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is then achieved as
1
N

N
∑

i=1

Zi

where

Zi =

ni
∑

j=1

r2
j

2
f(Y

(i)
j ) + g(B(i)

τD
),

using the one random point method [6] to approximate E(f(Yj)). A crucial point [7]

is that E

(

∑ni

j=1 r2
j

)

< ∞. This means that only one evaluation of the function f is

done for each sphere of the walk. As we did for the Euler scheme, we can reduce this
number of evaluations to only one for the whole walk by using the approximation

f(Y
(i)
J )

ni
∑

j=1

r2
j

2

of the source term of trajectory i where J is a discrete random variable such that

P(J = k) =

r2
k

2
∑ni

j=1
r2
j

2

.

Both approximations of the source term have the same obviously mean value since

E

[

f(Y
(i)
J )

ni
∑

j=1

r2
j

2

]

=

ni
∑

j=1

r2
j

2
E

[

f(Y
(i)
j )

]

.

In practice, we store along with the walk the locations of the centers of the circles and
their radius. By doing this, not only we avoid the evaluation of the function f but also
the Monte Carlo simulations of all but one interior point. Hence this method reduces
also the simulation times of each walk.

2.3. Preliminary example

We intend to compare the variance of the new estimator and of the standard one based
on the Euler scheme in the simple situation of the Brownian motion on R. As many
functions are easily approximated by polynomials, we look at the respective variances
when f(x) = xk and △t → 0. We describe in detail how we can compute these
quantities for k odd even though similar computations are available for k even. The
second order moment of our estimator is

E(A2
2) =

T 2

n
E

(

n
∑

i=1

B2k
i△t

)

=
T 2

n
E(B2k

1 )

n
∑

i=1

(i△t)k
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which converges to

TE(B2k
1 )

∫ T

0
skds =

T k+2
E(B2k

1 )

k + 1
=

T k+2(2k)!
2k(k + 1)!

as n goes to infinity. The second order moment of the standard estimator is

(∆t)2
E

(

n
∑

i=1

n
∑

j=1

Bk
i△tB

k
j△t

)

= (∆t)2
n

∑

i=1

E(B2k
i△t) + 2(∆t)2

n
∑

i=1

n
∑

j=i+1

E(Bk
i△tB

k
j△t).

The first term of the right hand side is equal to

(∆t)2
E(B2k

1 )
n

∑

i=1

(i∆t)k

and the second one to

2(∆t)2+k

2k

n
∑

i=1

n
∑

j=i+1

(k−1)/2
∑

l=0

(

2l + 1
k

)

ik+l(j − i)k−l (k + 2l + 1)!(k − 2l − 1)!

(k+2l+1
2 )!(k−2l−1

2 )!
.

We now study in Table 1 the coefficients of the leading terms (T k+2) of each of the
variances of the two estimators as ∆t goes to 0.

Table 1. Comparison of variances

k 1 2 3 5 10 20

V1 = lim Var(A1) 1/3 1/3 9/5 785/14 1.27 × 107 1.81 × 1021

V2 = lim Var(A2) 1/2 3/4 15/4 315/2 5.95 × 107 1.52 × 1022

V2/V1 1.5 2.25 2.1 2.8 4.7 8.4

We observe that the ratio of the variances is increasing from 1.5 when k = 1 to
8.4 when k = 20. For small values of k, say less than 5, the variance of the new
estimator is not more than 3 times bigger than the one of the standard one. Hence,
this preliminary example shows that the new estimator does not increase too much the
variance in the case of polynomial approximations of small degree.

2.4. Numerical results

We now compare the new estimators and the standard ones on the numerical resolution
of the Poisson equation

−1
2
△ um = fm
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in the domain D =]− 1, 1[ 2 with boundary conditions

um = gm

on ∂D where

gm(x, y) =

m
∑

i=1

exp((1 +
i

m
)(x + y))

and

fm(x, y) = −
m

∑

i=1

(1 +
i

m
)2 exp((1 +

i

m
)(x + y))

are chosen so that we have ∀(x, y) ∈ D

um(x, y) = Ex,y

[

gm(XτD
) +

∫ τD

0
fm(Xs)ds

]

=
m

∑

i=1

exp((1 +
i

m
)(x + y)).

The parameter m enables to build solutions with different complexities and variances.
We focus for the moment on the source term and so we give the variance of this term
and the global CPU times at two reference points, one away from the boundary and
one close to it, as a function of m. All the computations are done on a standard laptop
with a 1.66 GHz processor. We begin in the following table by the computation of the
solution at the origin using 10000 trajectories of the Euler scheme with step size 10−3

and of the modified walk on spheres method with ε-absorption layer 10−4. The value
of the exact solution at this point is m.

Table 2. Comparison of methods (x0, y0) = (0, 0)

Euler 1 Point Euler Wos 1 Point Wos

m CPU σ2 CPU σ2 CPU σ2 CPU σ2

1 6 22 5.4 58 0.4 24 0.18 51

10 16 486 5.6 1100 0.8 480 0.2 910

100 98 4.1E4 6 8.9E4 2.7 3.9E4 0.5 7.5E4

1000 940 4.3E6 9 8.8E6 23 3.8E6 3.4 7.1E6

If we want to compare numerical methods, the most efficient is the one for which
the product σ2CPU is the smallest. If we look at the variances of the one random step
methods compared to the standard ones, we observe that they are only about twice
greater. This means that the one random step methods are more efficient than the
standard ones if their CPU times are twice smaller. This is always the case when m is
greater than 10 in all the numerical examples. The Table 2 shows that the one random
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step methods are getting more and more competitive when m increases. For example,
when m = 1000, the standard Euler scheme is about 100 times slower than the new
one and the standard walk on spheres is about 7 times slower than the new one. This
one random sphere method appears as the best one in all cases (even when m = 1).
We can also add that the variance of the boundary term is about twice greater than the
variance of the source term computed by the modified methods, which is also the case
in the next example. We now compute the solution at the point (−0.9, 0.9), which is
also equal to m, to see what happens if the starting point is close to the boundary.

Table 3. Comparison of methods (x0, y0) = (−0.9, 0.9)

Euler 1 Point Euler Wos 1 Point Wos

m CPU σ2 CPU σ2 CPU σ2 CPU σ2

1 0.5 0.6 0.6 1.5 0.4 0.5 0.17 0.9

10 1.1 15 0.7 34 0.7 14 0.2 23

100 6 1.4E3 1 2.9E3 3 1.2E3 0.5 1.9E3

1000 65 1.3E5 3.7 2.8E5 17 1.2E5 2.8 2.1E5

We observe that the one random step versions of the schemes are not so efficient
compared to the standard one in this case. Indeed the variances of these schemes
are still twice greater but the number of steps until absorption are a lot smaller. This is
especially true for the Euler scheme so that the new version is only really interesting for
values of m larger than 100. We can also notice that the variances of all the schemes
are a lot smaller for this starting point. This could be used to make a good balance
between the simulations if the solution has to be computed at different points ( far
or close to the boundary) with the same accuracy. The one random sphere method is
however more efficient than all the other methods for every value of m and we can
recommend it as it is furthermore less sensitive than the Euler scheme to the decay of
its discretization parameter.

3. Quantization

3.1. General description

We have shown in the previous section that it is possible to reduce drastically the num-
ber of evaluations of the source term for only a small increase of the variance. In some
situations like spectral methods [4, 5] or in the sequential Monte Carlo methods devel-
oped in earlier works [13, 14, 15], the points where the solution is computed are fixed.
This means that we can simply replace the simulations by quadrature formulae at some
random points of the boundary and of the interior of the domain. In those situations,
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we can furthermore optimize the locations of the points of evaluations of both f and g
by using quantization techniques in order to increase the rate of convergence of these
formulae.

Optimal quantization in the quadratic case consists in finding the M points in a
domain D minimizing the functional

J(M) = min
(

∫

D
inf

1≤i≤M
d2(x, xi)w(x)dx : {x1, x2, . . . , xM ∈ D}

)

where w(x) is probability density function on D and d a distance in D. This kind
of problems is solved numerically using the competitive learning vector quantization
algorithm (see [3]) which can be described as follows. First draw M independent
points Xi according to the density w. Draw one more point Y1 from the same density
and find the closest point Xmin to Y1 among the Xi. Move a little Xmin towards Y1

such that its new location is defined by

Xmin + ε1(Y1 − Xmin)

where ε1 > 0 is a small parameter. The point Y1 is then removed, another point
Y2 is drawn, ε2 replace ε1 and so on. The sequence (εn)n≥0 is decreasing. A very
complete discussion on the numerical aspects of the algorithm is done in [21] in the
case of multidimensional Gaussian densities. For problems in the whole space, it is
also possible to use another approach based on functional quantization [22] to compute
the mean value of similar quantities than the ones computed in this paper.

It was first proposed in [20] to use the points xi corresponding to the optimal
quadratic quantization for numerical integration. For each point xi a tessel

Ci = {u ∈ D /d(xi, u) < d(xk, u), k 6= i}

is associated. Then the approximation of
∫

D f(x)w(x)dx is given by the quadrature
formula

n
∑

i=1

(

∫

Ci

w(x)dx
)

f(xi).

The weights can be computed either using Monte Carlo simulations after the end of the
algorithm or along with it. These quadrature formulae are more accurate than Monte
Carlo integration in rather low dimensions.

3.2. Brownian trajectories in a square

We shall now describe how to quantify the points used in our new schemes for the
source term and also for the boundary term for the evaluation of Feynman–Kac rep-
resentations at a given point (x, y) in a fixed bounded domain D in dimension two.
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Then we will give numerical results on the square domain [−1, 1]2. We first quantify
the boundary term

Ex,y(g(XτD
)) =

∫

∂D
g(s)wb

x,y(s)ds

using q points where wb
x,y(s) is the law of the exit position of the Brownian motion

starting at the point (x, y). For this, we only need to define a distance on ∂D which is
just in our case the geodesic distance on this set. For the source term, the quantization
problem consists in the minimization of

Jx,y,β(p) = min
(

∫ ∞

0

∫

D
inf

1≤i≤p
d2

β(z, zi)w
s
x,y(z)dz : {z1, z2, . . . , zp} ∈ D× ]0,∞[

)

where ws
x,y(z) is the joint law of (τx,y

D , BUτx,y
D

) (U is a uniform random variable on

[0, 1]) and d2
β(z, zi) = (x − xi)

2 + (y − yi)
2 + β(t − ti)

2. The parameter β > 0 is
a weight that can be used to focus on the position of the interior points. To compute
the quantization points, we have used the Euler scheme with a discretization parameter
∆t = 10−3 and the additional test for each of the two optimization problems. We have
chosen in all the numerical examples presented here β = 0.5, p = q. The sequence
(εn)n≥0 is defined in two parts in order to allow the points to move from a side of the
square to the closer one in the beginning of the iterations. We first choose a very slow
decay εn = C

log(log(5+n)) for half of the iterations and then a faster one εn = C1
n for the

second half. After convergence, we obtain an approximation of the solution at a given
point (x, y)

u(x, y) ≃
q

∑

i=1

(

∫

Cb
i

wb
x,y(s)ds

)

g(xb
i , y

b
i ) +

p
∑

j=1

(

∫

Cs
j

ws
x,y(z)dz

)

tjf(xs
j , y

s
j )

which can be written as a quadrature formula of the form

u(x, y) ≃
q

∑

i=1

aig(xb
i , y

b
i ) +

p
∑

j=1

bjf(xs
j , y

s
j ).

We plot on the next figures the quantization points for the boundary and source terms
for respectively (x0, y0) = (0, 0) and (−0.9, 0.9).

We see on Figure 1 that we have not obtained the optimal quantization points: the
symmetry of the problem is not kept by our points. However, the numerical results
obtained with these points have a good accuracy.

3.3. Numerical results

The aim of this section is to compare these quadrature formulae with the one random
sphere method on the previous example and on a slightly different one. We begin with
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Figure 1. Quantization points (x0, y0) = (0, 0)
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Figure 2. Quantization points (x0, y0) = (−0.9, 0.9)

the application of the one random sphere method with N simulations and ε = 10−6 at
the two reference points of the example of Section 2. We obtain the Table 4.

We can see that the computation of the solution at the point (0, 0) is very hard. At
least 10000 simulations are required to obtain an acceptable relative error of about
10 percent and 106 simulations lead to a relative error of about one percent. The
computations are more accurate at the point (−0.9, 0.9) and the relative error is 0.03
using 1000 simulations. We now compare with the quantization points (Table 5).

We remark that we obtain with no more than 100 points the same accuracy than with
10000 random points on the computation at the point (0, 0). For the point (−0.9, 0.9),
30 or 40 points are sufficient to obtain a relative error of 0.02. This confirms the
theoretical speed of convergence of the two methods. Nevertheless, we can notice that
the accuracy obtained with 100 quantization points is not clearly better than the one
obtained with fewer points (40 for example). This first example was quite hard to solve
numerically because the variances were large. We would like to see the accuracy of
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Table 4. Monte Carlo procedure

(x0, y0) N 100 400 1000 10000 100000 1000000

(0, 0)
m = 1 0.101 -0.1 0.48 0.867 0.998 1.012

m = 10 6.11 4.89 7.55 9.29 9.996 10.046

(−0.9, 0.9)
m = 1 1.029 0.939 0.963 0.996 0.998 0.9996

m = 10 10.22 9.65 9.746 9.95 9.995 10.001

Table 5. Quantization method

(x0, y0) N 20 30 40 60 80 100

(0, 0)
m = 1 1.52 1.13 1.16 1.35 1.12 1.20

m = 10 11.95 10.47 10.57 11.28 10.51 10.78

(−0.9, 0.9)
m = 1 1.01 1.02 1.004 1.002 1.008 1.007

m = 10 10.04 10.08 10.01 10.005 10.04 10.03

Table 6. Monte Carlo procedure

(x0, y0) N 100 400 1000 10000 100000 1000000

(0, 0)
m = 1 0.899 0.863 0.939 0.977 1.0004 1.0004

m = 10 9.453 9.437 9.753 9.901 10.006 10.004

(−0.9, 0.9)
m = 1 1.016 0.986 0.987 0.996 1.0002 1.0003

m = 10 10.10 9.941 9.923 9.976 10.002 10.002

Table 7. Quantization method

(x0, y0) N 20 30 40 60 80 100

(0, 0)
m = 1 1.02 1.001 1.002 1.01 1.007 1.008

m = 10 10.04 0.995 0.994 10.02 10.02 10.02

(−0.9, 0.9)
m = 1 0.9997 1.001 0.9996 0.9998 1.0006 1.0001

m = 10 9.998 10.003 9.998 9.999 10.002 9.9999
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the estimators on an example with a smaller variance. To do this, we just choose

vm(x, y) =

m
∑

i=1

exp(
i

m
(x + y))

as the solution of our Poisson equation. We first use the random points (Table 6).
We now obtain a relative error of 2 digits with 10000 simulations for the point (0, 0)

and with 1000 simulations for the point (−0.9, 0, 9). If we compare to the quantization
points of the Table 7, we obtain the same accuracies with only 30 quantization points.

We can conclude that the quantization techniques are really efficient in the computa-
tion of the Feynman–Kac representations. This is especially true when the variance is
small: we can obtain an accuracy of 4 digits using only 100 points in the last example.
Nevertheless, the search of the optimal points is costly and not always reliable as it
depends of many parameters. Quantization is hence recommendable when the points
where the solution has to be computed are fixed and when there are not too many
quantization points. We give in the next two sections examples of such situations.

4. Sequential Monte Carlo applications

4.1. Description of the algorithm

We describe briefly on the Poisson equation in a domain D an iterative Monte Carlo
method introduced in [13, 14] which can be used to compute a global approximate
solution of many linear elliptic or parabolic partial differential equations. The idea is
to use the approximation of the solution at a given step as a control variate for the next
step. We first compute approximate values u

(1)
i of the solution of this equation at N

points xi using a Monte Carlo method to approximate the Feynman–Kac representa-
tion. We denote by M the number of drawings and by ∆t the discretization parameter
of the simulation scheme of the Brownian motion. Using this information, we can then
build a global and regular linear approximation u(1)(x) of the Poisson equation by for
instance a simple interpolation. We now use the control variate method with u(1) as an
approximation of u. We let ∀x ∈ D

r(x) = u(x) − u(1)(x)

and we now have to solve ∀x ∈ D the Poisson equation

−1
2
△r = −1

2
△(u − u(1)) = f +

1
2
△u(1)

with boundary conditions

r = g − u(1).
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A global solution r(1) is computed using the same method that we have used to com-
pute u(1). Then, we approximate the solution of the initial equation by

u(2)(x) = u(1)(x) + r(1)(x)

and we can expect that this solution is more accurate than the previous one. We iterate
this method to achieve an approximation u(n)(x) at the nth step of the algorithm. We
are really in a situation where it is important to have an efficient Monte Carlo scheme
to approximate the Feynman–Kac representations: both boundary and source terms
have a complex expression and the solution has to be computed many times at many
points of the domain D. We now recall the main hypotheses and convergence results
of the algorithm which are described with more details in [14]. We assume that the
approximation of the solution u can be written in a linear form

Pu(x) =
N

∑

j=1

u(xj)Ψj(x)

for some functions Ψj(x). Some weak assumptions are also required on the simulation
scheme of the Brownian motion with a discretization parameter ∆t. The algorithm is
stochastic and biased due to the simulation scheme. Hence we define the quantities

mn = max
1≤i≤N

∣

∣

∣
E(u(n)(xi) − u(xi))

∣

∣

∣
, vn = max

1≤i≤N
Var(u(n)(xi))

to study its convergence. To study the influence of the simulation scheme, we consider
the difference of the solution of the Poisson equations, with g as both source term
and boundary condition, between respectively the discretized and the continuous one.
Then e(g, ∆t, x) and V (g, ∆t, x) are respectively the mean value and the variance of
the previous quantity. We first state the convergence result for the bias.

Theorem 4.1. For any n ≥ 1, we have

mn ≤ ρmmn−1 + max
1≤i≤N

|[P (u) − u](xi) + P [e(u − Pu, ∆t, .)](xi)|

where ρm = max1≤i≤N [
∑N

j=1 |P [e(Ψj(, ∆t, .)](xi)|]. If ∆t is small enough, then

ρm < 1 and mn converges at a geometric rate up to a threshold equal to

lim sup mn ≤ 1
1 − ρm

max
1≤i≤N

|[P (u)− u](xi) + P [e(u − Pu, ∆t, .)](xi)| .

This theorem shows that even if the simulations are biased the upper limit on the
bias depends mainly of the quality of the approximation P (u) − u. We now state the
convergence of the variance vn.
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Theorem 4.2. Setting

C(∆t,N) = 2 max
1≤i≤N

N
∑

j=1

Ψ
2
j(xi)

[

N
∑

k=1

√

V (Ψk, ∆t, xj)
]2

,

ρv = max
1≤i≤N

(

N
∑

j=1

|P [e(Ψj(, ∆t, .)](xi)|
)2

+
C(∆t,N)

M
,

then one has for any n ≥ 1

vn ≤ ρvvn−1 +
1
M

2 max
1≤i≤N

N
∑

j=1

Ψ
2
j(xi)V (u − Pu, ∆t, xj) + C(△,N)mn−1.

If ∆t is small enough and M large enough, then ρv < 1 and vn converges at a geo-

metric rate up to a threshold equal to

lim sup mn ≤

1
(1 − ρv)M

(

2 max
1≤i≤N

N
∑

j=1

Ψ
2
j(xi)V (u − Pu, ∆t, xj) + C(∆t,N) lim sup m2

n

)

.

Note that when ρv < 1 and ρm < 1 (which is always true for ∆t small enough and
M large enough) the convergence holds for both the bias and the variance. We now
describe a practical example of this algorithm based on spectral approximations on a
square domain.

4.2. The two dimensional test case

We consider the Poisson equation on the square domain D = [−1, 1]2

−1
2
△u = − exp(x + y)

with Dirichlet boundary conditions chosen so that the solution of this equation is
u(x, y) = exp(x + y). To approximate the solution, we use the interpolation poly-
nomial

PN (u) =
N

∑

n=0

N
∑

m=0

αn,mTn(x)Tm(y)

of the function u at the Tchebycheff grid, where the αn,m are defined by

αn,m =
π2

‖Tn‖2
L2

w
‖Tm‖2

L2
w

(N + 1)2

N
∑

k=0

N
∑

j=0

u(xk, yj)Tn(xk)Tm(yj)
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with

xk = cos

(

2k + 1
N + 1

π

2

)

, yj = cos

(

2j + 1
N + 1

π

2

)

, k, j = 0, 1, . . . ,N.

The quality of this approximation is studied very precisely in [4]. To build the source
terms which appear in the algorithm, we need to compute △PN (u). We have [5]

△PN (u) =
N

∑

n=0

N
∑

m=0

α(2)
n,mTn(x)Tm(y)

with

α(2)
n,m =

1
cn

N
∑

p=n+2, p+n even

p(p2 − n2)αp,m +
1

cm

N
∑

p=m+2, p+m even

p(p2 − m2)αn,p

where the normalization coefficient ck is such that c0 = 2 and ck = 1 if k 6= 0.

4.3. Numerical results

We first consider the modified walk on spheres method with an absorption boundary
layer ε = 10−2 which leads to the following results. As shown in [13], the numerical
accuracy on the solution would be exactly the same with a smaller ε. The number M
is chosen large enough so that the convergence happens. We define L as the number
of steps until convergence and err(L) as the maximum of the absolute errors at each of
the grid points.

Table 8. Modified walk on spheres

N M L err(L) CPU

5 200 8 5 × 10−5 1.1

7 600 13 3 × 10−7 9

9 1500 15 8 × 10−10 47

The results are already very accurate and the method quite fast (see Table 8). We
now use the one random sphere method with the same boundary-layer.

We can notice that there is not a really significant improvement between the new
method and the previous one. In the examples of Section 2.4, the variance of the source
term was lower than the one of the boundary term. In this problem, the source term is
obtained by the computation of second derivatives of an interpolation polynomial with
random coefficients. Hence the variance of the source term is a lot bigger than the one
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Table 9. One random sphere method

N M L err(L) CPU

5 200 15 7 × 10−5 0.7

7 600 27 7 × 10−7 6

9 1500 41 2 × 10−9 42

of the boundary term. We can nevertheless improve this new approach by replacing
the simulations by random quadrature formulae. For each of the grid points, the idea
is to store in a file 2M simulations of the boundary term, of the source term and of the
exit time. Then for each grid point, we pick at random either the first M elements or
the last M elements of the file to build the quadrature formulae.

Table 10. Random quadrature

N M L err(L) CPU

5 200 17 1 × 10−4 0.2

7 600 29 8 × 10−7 1.6

9 1500 38 2 × 10−9 12

The CPU times have been divided by 4 as now there are no more simulations. We
test the same method with quantization points using two files containing respectively
40 and 41 points for N = 5, 7 and respectively 120 and 122 points for N = 9. The
idea is to improve the accuracy of the corrections at each step of the algorithm by
using a method with an higher convergence rate than the Monte Carlo method. It has
been already tested successfully using quasi Monte Carlo sequences in [13] and also
for numerical integration in [18].

Table 11. Quantified quadrature

N M L err(L) CPU

5 40 6 2 × 10−4 0.02

7 40 27 1 × 10−6 0.21

9 120 47 5 × 10−9 1.8
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Very small numbers of quantization points are sufficient to ensure the convergence.
We observe that the CPU times have been divided by 8 compared to the previous
method and hence by a factor about 40 compared to the original one. The error at
convergence is nevertheless slightly bigger than the ones of the previous methods be-
cause the threshold in Theorem 4.2 is also slightly bigger. This sequential quantified
algorithm is hence a great improvement of the original sequential Monte Carlo one.

5. A direct stochastic spectral formulation

5.1. The stochastic spectral formulation

Instead of using randomized quantization grids at each step of the algorithm, we have
tried to use only one to see the impact on the algorithm, even though no more indepen-
dence properties remain. We have noticed that there is still a decay of the error but at
a lot more slow rate until a threshold which is also greater than the previous one. This
version of the algorithm is clearly worse than the other one for practical computations
but we can try to make its interpretation. The threshold does not change at convergence
and this means that the value of the residual at each of the interpolation points is equal
to zero. The approximation uN (x, y) of the solution of the Poisson equation writes

uN (x, y) =
N

∑

n=0

N
∑

m=0

αn,mTn(x)Tm(y)

where the coefficients must satisfy the previous property at each point of the inter-
polation grid. The approximation at a grid point (xi, yj) of the residual r(xi, yj) =
u(xi, yj) − uN (xi, yj) writes

p
∑

k=1

γi,j,k

(

f(xs
i,j,k, y

s
i,j,k)

+
1
2

N
∑

n=0

N
∑

m=0

(T
′′

n (xs
i,j,k)Tm(ys

i,j,k) + Tn(xs
i,j,k)T

′′

m(ys
i,j,k))αn,m

)

+

q
∑

l=1

βi,j,l(g(xb
i,j,l, y

b
i,j,l) −

N
∑

n=0

N
∑

m=0

Tn(xb
i,j,l)Tm(yb

i,j,l)αn,m)

where the quadrature points and the relative weights are built either using the one
random sphere method or the quantization method of the previous sections. The exit
points of the Brownian motion starting at (xi, yj) are for instance (xb

i,j,1, y
b
i,j,1), . . . ,

(xb
i,j,p, y

b
i,j,p). We are looking for the coefficients αn,m such that this approximation of
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the residual is equal to zero at each of the grid points. This leads to the linear system

N
∑

n=0

N
∑

m=0

an,mαn,m =

q
∑

l=1

βi,j,lg(xb
i,j,l, y

b
i,j,l) +

p
∑

k=1

γi,j,kf(xs
i,j,k, y

s
i,j,k)

where the coefficients an,m are equal to

− 1
2

p
∑

k=1

γi,j,k(T
′′

n (xs
i,j,k)Tm(ys

i,j,k) + Tn(xs
i,j,k)T

′′

m(ys
i,j,k))

+

q
∑

l=1

βi,j,lTn(xb
i,j,l)Tm(yb

i,j,l).

The quality of the resolution and the speed of convergence of iterative methods depend
of the condition number of the linear system. We can first look at the asymptotic
system that is when p and q go to +∞. Each limit term is the solution at the grid point
(xi, yj) of the Poisson equation with source term

−1
2
(T

′′

n (x)Tm(y) + Tn(x)T
′′

m(y))

and boundary term
Tn(x)Tm(y)

that is
Tn(xi)Tm(yj).

We have computed numerically the condition number of this asymptotic system which
seems to be a O(N2). We will give some more numerical results in Section 5.3 on a
more efficient formulation but we first need to compare our method to deterministic
ones.

5.2. Optimization and comparison with standard spectral methods.

This formulation is quite similar to a deterministic collocation method described for
example in [4] page 102. In this formulation, the bases functions are the Lagrange
polynomials instead of the Tchebycheff ones and the grid points are built using the
Tchebycheff–Gauss–Lobatto points, that is the zeros zj = cos( (N−j)π

N ), 0 ≤ j ≤ N

of (1 − x2)T
′

N (x). The solution is approximated by

VN (x, y) =

N
∑

n=0

N
∑

m=0

un,mln(x)lm(y)
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where ln is the Lagrange polynomial associated to zn and un,m is the value of the
solution at the point (zn, zm). This formulation writes

−1
2

N−1
∑

n=1

N−1
∑

m=1

bn,m(zs, zr)un,m = f(zs, zr) +
1
2

∑

(zn,zm)∈B

g(zn, zm)bn,m(zs, zr)

where B is the set of the boundary points and where

bn,m(zs, zr) = l
′′

n(zs)lm(zr) + ln(zs)l
′′

m(zr).

It is proved in [4] that the condition number of the system is a O(N4) in the slightly
different case of the Legendre–Gauss–Lobatto points. Moreover, this system is not
symmetric which may be an additional drawback with respect to the standard colloca-
tion system which is symmetric and whose condition number is a O(N3). The condi-
tion of our asymptotic system seems to be a O(N2) which is already better. But we
can still diminish this asymptotic condition number by just replacing in our formula-
tion the bases functions which are Tchebycheff polynomials by Lagrange interpolation
polynomials. Indeed, if we write that the approximation of the solution is

WN (x, y) =

N
∑

n=0

N
∑

m=0

vn,mln(x)lm(y),

then the coefficients cm,n of the relative linear system are equal to

−1
2

p
∑

k=1

γi,j,k(l
′′

n(xs
i,j,k)lm(ys

i,j,k) + ln(xs
i,j,k)l

′′

m(ys
i,j,k)) +

q
∑

l=1

βi,j,lln(xb
i,j,l)lm(yb

i,j,l)

which converge to
ln(xi)lm(yj) = δi,nδj,m

when p and q go to +∞. This means that the matrix of the spectral formulation con-
verges toward the identity matrix and hence its condition number to one. We have
observed the same phenomenon on a least square matrix when building quadrature
formulae for numerical integration [19]. Furthermore, we can easily use for the nu-
merical resolution of our non-symmetric system a very simple iterative method like
the Jacobi method.

5.3. Numerical results

We have first studied the properties of this last formulation obtained respectively with
the random points and the quantization points in the case N = 3. We compute the
solution at the 16 points of the Tchebycheff grid using either 1000 random simula-
tions or 40 quantization points for both the source term and the boundary one. The
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corresponding condition number κ(A) are respectively 1.31 and 1.11. Note that be-
cause of symmetries, we need to compute the quantization points at only few points of
the Tchebycheff grid. The spectral radius ρ(J) of the iteration matrices of the Jacobi
method are respectively 0.101 and 0.05. This confirms the expected properties of the
iteration matrices and the efficiency of the quantization techniques compared to Monte
Carlo simulations. We give some more detailed results on the example of the previous
section in particular the error err using only the quantization points.

Table 12. Properties of the spectral matrix

N M κ(A) ρ(J) err

5 40 1.8 0.23 2 × 10−4

7 40 16.7 0.77 1 × 10−6

9 120 15.4 0.5 6 × 10−9

These numerical results were obtained with Matlab. Most of the CPU time is spent
building the matrix A. The accuracy on the solution is the same than the one obtained
with the sequential method of the previous section. The condition numbers are very
small compared to N4. The only drawback compared to a deterministic method is that
the source term and the boundary term need to be evaluate at more points (not only at
the grid points). Hence one has to find a good balance in the choice of M between this
drawback and the big advantage of a small condition number.

6. Conclusion

We have developed new methods for the numerical computations of Feynman–Kac
representations of the solution of the Poisson equation in a bounded domain. First we
have introduced one random step schemes for the evaluation of the source term of these
representations. The one random sphere method has appeared very efficient compared
to the standard methods on all our numerical tests. We have then used quantizations
techniques to optimize the numerical computations of both source term and boundary
term. Even though this optimization was costly, the numerical results were really im-
pressive compared to those obtained using Monte Carlo estimators. In the case where
the domain and the points where the solution is computed are fixed, this optimization
can be anyhow considered as preprocessing. We have finally given some examples on
global resolution of Poisson equations using either sequential Monte Carlo methods or
a new stochastic spectral formulation. The sequential Monte Carlo algorithm has been
improved by a factor 40 in terms of CPU times by using the quantization points. The
stochastic spectral formulation introduced has very good properties in terms of both its
condition number and the spectral radius of its relative Jacobi iteration matrix. These
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two new hybrid methods are really promising to solve the Poisson equation compared
to fully deterministic methods. We should now make really comparisons in terms of
complexity between these methods and deterministic spectral methods and also make
the extension of our method to problems in higher dimensions and to more complex
domains or operators.
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