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Abstract. By continuing the probabilistic approach of Deaconu et al. (2001), we derive a stochastic particle
approximation for the Smoluchowski coagulation equations. A convergence result for this model is obtained.

Under quite stringent hypothesis we obtain a central limit theorem associated with our convergence. In spite of
these restrictive technical assumptions, the rate of convergence result is interesting because it is the first obtained
in this direction and seems to hold numerically under weaker hypothesis. This result answers a question closely
connected to the Open Problem 16 formulated by Aldous (1999).
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1. Introduction

In its famous review, Aldous (1999) presents the Marcus-Lushnikov particle system
(Marcus, 1968; Lushnikov, 1978) as an approximation for the solution of the
Smoluchowski equation. Convergence results for this scheme have been obtained by
Jeon (1998) (for the discrete coagulation-fragmentation model approached by Markov
chains), Norris (1999, 2000) (for the continuous coagulation equation).

In its Open Problem 16, Aldous wonders about the existence of a central limit theorem
associated with this approximation.

More recently, Eibeck and Wagner (2001) have introduced a new class of stochastic
algorithms in which the number of particles is constant in time. This approach has been
extended to the discrete coagulation-fragmentation case by Jourdain (2001).

In Deaconu et al. (2001), we introduced a nonlinear process X = {X,}, such that
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{Z(X,)}, is solution to the Smoluchowski equation. The nonlinear process X is a richer
structure than the Smoluchowski equation, since it provides historical information on the
particle behavior. This process is ‘‘physically correct’’, since it can be obtained as a weak
limit of the size of the cluster containing a ‘‘marked’’ particle in the Marcus-Lushnikov
process.

Linearizing the nonlinear process built in Deaconu et al. (2001) leads to a particle
system, which is the same as that introduced in Eibeck and Wagner (2001).

In the present paper, we prove:

(1) A new convergence result for the particle system (Theorem 3.3 and Corollary 3.5),
which excludes the case of gelation (treated in Eibeck and Wagner, 2001). Our
result, however, applies to the case of additive coagulation kernels, which is one of
the most important examples. We furthermore allow the initial total concentration
to be infinite. Finally, our convergence holds in a strong sense: we replace the
“‘vague’’ topology of Eibeck and Wagner (2001) by a weak topology, and the
convergence holds in terms of laws of stochastic processes, instead of families of
laws of random variables.

(2) This convergence result leads to a new existence result (Corollary 3.4) for the
Smoluchowski equation, allowing the initial total concentration to be infinite in the
case of any continuous subadditive coagulation kernel.

(3) We prove a propagation of chaos result (Proposition 3.7), in the strong variation
norm: any k-uple of particles become independent as the total number of particles
tends to infinity.

(4) In the discrete case, for a bounded coagulation kernel, we prove a central limit
theorem (Theorem 4.4) associated with our convergence result. The result is not
completely satisfying, since the assumptions are strong. It is, however, the first one
in that direction, concerning any Monte-Carlo scheme for the Smoluchowski
equation, and seems important. To prove this fluctuation result, we follow the proof
scheme of Méléard (1998), who was concerned with a similar problem on the
Boltzmann equation. We, however, cannot apply directly the result of Méléard
(1998) because she works in functional spaces adapted to the Boltzmann equation
(weighted Sobolev spaces on R?), which can clearly not be used for the
Smoluchowski equation.

Let us finally mention that the methods used in Deaconu et al. (2001) and also in the
present paper are inspired by probabilistic works on Boltzmann equation. We refer to
Tanaka (1979), Graham and Méléard (1997) and Méléard (1998).

The present paper is structured as follows. In Section 2, we recall the Smoluchowski
equation, define its weak solutions, and introduce a related nonlinear stochastic differential
equation. Section 3 ‘‘linearizes’’ the nonlinear SDE. After linearization we obtain a
particle system, easily simulable, which is the same as the one in Eibeck and Wagner
(2001). We prove a convergence result and a propagation of chaos property for this particle
system. In Section 4, we prove a central limit theorem associated to our Monte Carlo
method. We consider only the discrete case, because the arguments are very technical. We
obtain a very precise result, under the quite stringent assumption that the coagulation
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kernel K is bounded. Section 5 gives numerical results, which illustrate the results of the
present paper, and show that the central limit theorem seems to apply also in cases of
unbounded kernels. An Appendix lies at the end of the paper.

2. Notations and Previous Results

The Smoluchowski equation describes the time evolution of the average number of
particles having certain mass, in a dynamic particle system where coagulation phenomena
in pairs occur. The equation writes in the form of the following infinite dimensional
system: for all x > 1

x—1 o0
%uf(X) = % () (x = K (3, x = y) = 1 (0) > (0K (x,y), (2.1)

where g, (x) notes the densities of particles of mass xeN"* at time #, and K marks the
coagulation kernel, supposed to be symmetric and positive. A continuous version of this
equation also exists, in which the particles’ sizes may take their values in the whole
(0, 00). We consider here a weak form of the Equation (2.1), which gather together discrete
and continuous versions of the Smoluchowski equation (we refer to Norris, 1999, for more
details on this approach). More precisely, let K : R} x R [0, c0), be a symmetric
coagulation kernel (i.e., K(x,y) = K(y, x)). Let also C} (R, ) stand for the set of bounded
C' functions on R, with a bounded derivative.

DEFINITION 2.1 Let Ty < o0 be fixed. A family {p,},c o 1) of nonnegative measures on R’
is said to be a weak solution to the Smoluchowski equation if

e forallte|0,T,), fR+ xp,(dx) =1,

e forall te(0,Ty),sup,c o fR‘ Jr XK (x,y) py(dx) pg(dy) < o0,
e forall te[0,T,) and all test function ¢ on R, such that ¢(x)/xeC}(R,),

/R Pl = | elmlan

R+
o L ot — 0 oK (@I )ds. 22)

With this definition, for an N*-supported initial condition, we recover the discrete case. For
measures which are absolutely continuous with respect to the Lebesgue measure, we
recover the continuous case. We refer to Norris (1999) and Deaconu et al. (2001), for more
details on this topic.

Let us recall the main notations and results for the probabilistic interpretation
introduced in Deaconu et al. (2001). The main property which allows us a probabilistic
approach is that we have conservation of mass in the system. This means that for some
Ty >0 and {,u,},E[O,TD) a weak solution to the Smoluchowski equation, the quantity
0,(dx) = xp,(dx), 1s a probability measure on R, for all 1€[0,7T), and has to be
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understood as the distribution of particles’ mass at some time ¢. Let 2, denote the set of
probability measure on R’ having finite first order moment. Rt

For Qye#,, we denote by #o = {d>_/_, x;x;€SuppQy,neN"} , the smallest
closed subset of R in which the sizes of the particles will always take their values. Notice
that in the discrete case o is contained in N*, while in the continuous case, 00 is
contained in the whole R . Notice also that in any case, any ‘‘physical’” solution {4, }, to
the Smoluchowski equation satisfies, for each ¢, Supp p, C Ay, .

We introduce now the weak form corresponding to Q,(dx). As in Eibeck and Wagner
(2001), we call it the mass flow equation.

DEFINITION 2.2 Let Q, belong to # and Ty < o0. A family {0, }te o1,) of probability
measures on R, is a weak solution to (MS) if:
e forall te[0,T,), Supp O, C # ¢,

e forallt€[0,Ty),supc(o fqu Jr, K(x,9)0,(dx)Q,(dy) < oo
® for all test function (peCh(lR ) and all te0,Ty),

A}mmmmzéfmmwm

+ /OZ/R+2[€D(X+)’) — @ (x)] K();’y) Q,(dy)Q,(dx)ds. (MS)

Clearly, if {Q,},¢ o7, is @ weak solution to (MS), then, by setting 4, (dx) = x~ 10,(dx),
we get a ‘‘physical’” weak solution to the Smoluchowski equation, and reversely.

Equation (MS) can be interpreted as the evolution equation of the time marginals of a
pure jump Markov process. In order to exploit this remark, we associate to (MS) a
martingale problem. We introduce first some notations.

NOTATION 2.3 Let Ty < o0 and Qy € P, be fixed. We denote by D' ([0,T,), # o,) the set of
positive non-decreasing cadlagfunctzonsﬁom [0,Ty) into H o . Let Z1([0,T), # o,) be
the set of probability measures Q on D' ([0, T,), H o,) such that Q(x(0 ) >0)=1and

vt < TO,/ x(1)Q(dx) < o0. (2.3)
veD((0,75),#g,)

DEFINITION 2.4 Let Ty < o0, and 0, €2, be fixed. Consider Q € 2 1([0,Ty), # ). Let Z
be the canonical process of D' ([0,Ty), # g,)- Denote by Q, the law Ost under Q. We say
that Q is a solution to the martingale problem (MP) on [0,T,) if

o for all te[0,Ty), sup,c o, fR Jr K(x,9)0,(dx)Q(dy) < oo,
o forall peCy(R,) and all te [0, TO),
K(Z,y)
0(Z) — 0(2y) - // (2 +9) = 9(Z)] = 0l (MP)

is a Q-L'-martingale.

Thus, by taking expectations in (MP), we obtain that, if Q is a solution to the martingale
problem (MP) on [0, T,), then {Q[}te[07T0> is a weak solution of (MS).
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We are now seeking for a pathwise representation of (MP). To this aim, let us introduce
some notations. The main ideas of the following notations and definitions are taken from
Tanaka (1979).

NOTATION 2.5 We consider two probability spaces: (Q, 7 ,P) is an abstract space and
([0,1], [0, 1], do) is an auxiliary space (here do. denotes the Lebesgue measure). In order
to avoid confusions, the elements on [0, 1] will be called o-elements.

Let To < oo and QyeP; be fixed. A non-decreasing positive cadldg process
{Xi(®)}cpor,) is said to belong to L{”’T(%Qo) if its law belongs to 2}([0,T,), H,)-

In the same way, a non-decreasing positive cadlag o-process {X,(o)},c o1, is said to
belong to L{O’T(%QO)-a if its a-law belongs to @1([0, Ty), # o,)-

DEFINITION 2.6 Let Ty < oo and Q€ P, be fixed. We say that (Xy,X,X,N) is a solution
to the problem (SDE) on [0,T,) if:

Xo : Q = R is a random variable whose law is Q.

- X (@) 10, T)) xQ—->R, isa L{“’T(%Qn)—process.

. X(2) 1 [0,Ty) x[0,1] >R isa LT”’T(%QO)-oc-process.

. N(w,dt,do, dz) is a Poisson measure on [0,T,) x [0, 1] x R with intensity measure
dt do. dz and independent of X,,.

. X and X have same law: £(X) = JOCQ?) (this equality holds in 9’1([0, Ty), # o,))-

. For all t€[0,Ty), sup, o4 EE,[K (X, X,)] < o0.

7. Finally, the following S.D.E. is satisfied on [0, T,):

.l;w[\)f

AN W

t 1 0
X, =X,+ A /0 /0 X, _ (O()U{ZS K<Xv7»)?x7<«>>}N(dS’ do, dz). (SDE)

%@

We recall the following result (see Deaconu et al., 2001): if (X, X, X,N) is a solution to
(SDE) on [0,T,), then the law . (X) = %, (X) satisfies the martingale problem (MP) on
[0, T,) with initial condition Qy = £ (X,). Hence {-Z(X,)}, o1, is a weak solution to the
mass flow equation (MS) with initial condition Q.

In the sequel, we will assume the following hypothesis.

Assumption (Hy): Q, belongs to 2, [ x*Qy(dx) < o0, and the symmetric kernel
K : R, xR, — R, is continuous on (# g )?, and satisfies, for some constant Cx < oo and
some Be[0,1],K(x,y) < Cr(1 + x +y + xPyh).

Let us recall the main results of Deaconu et al. (2001)

THEOREM 2.7 Assume (Hy) and that K is locally Lipschitz continuous on (%Qn)z. If
B <1/2,set Ty = 0, else set Ty = 1/Ci(1 + [ xQq(dx)). Then there holds existence
for (SDE) and (MP) on [0,T,).

If, furthermore, Supp Q, C N* and B < 1/2, then uniqueness holds for (MP), and
uniqueness in law holds for (SDE).

It is also proved in Deaconu et al. (2001) that the solution X to (SDE) can be obtained as a
weak limit of the size of the cluster containing a ‘‘marked’’ particle, in a Marcus-
Lushnikov process. The solution of (2.1) has naturally different behaviors according to the
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value of f. In the case f €0, 1/2], the solution is defined on the time interval [0, c0). For
B>1/2, we may have gelation in finite time. This means that T,, =
inf{r >0, [, x°Q,(dx) = o0} is finite. For physical reasons we consider here only

solutions that preserve mass, so they are defined up to T,

3. An Associated Particle System

The aim of this section is to solve numerically the Smoluchowski coagulation equation, by
constructing an approximation scheme for £ (X) = ,(X), where (X,,X,X,N) is a
solution to (SDE). Due to X, the system is nonlinear so we cannot approach directly X. The
natural way to get rid of this nonlinearity is to construct an interacting particle system. For
technical (but rather serious) reasons, we restrict our study, for the moment, to the case
(Hp) with f = 1/2. We explain at the end of this section how to treat # = 1. Let us define
the ‘‘linearized’’ version of the nonlinear stochastic differential equation (SDE).

DEFINITION 3.1 Let K: R, xR, >R, be a symmetric kernel. Let Qy€?, and neN"
be fixed. Consider a famlly {X ’"}le{l 777 of ii.d. Qy-distributed random variables.
Consider also a family {N'(ds, dj,dz)ie{l ‘‘‘‘ np Of iid. Poisson measures on
[0,00) x{1,...,n} %[0, 00) with intensity measures ds (1/n> = 11§ (df))dz-

A process X" = (X' ..., X""), with values in [D'(]0, ©0), HQ,)]", is said to solve
(PS), if forall ie{1,...,n} and all te |0, )

X" = X5+ / / / Xf”l] K X,”.X{,n)}N"(ds,dj,dz). (PS),

XIm

For X" a solution to (PS),, we will denote by W' =1/n>_, dxis, the empirical

distribution (it is a random probability measure on IDT([O ©), #g,))-
(PS),, is well-defined. Indeed we have the following proposition.

PROPOSITION 3.2 Let Qg€ 2. Assume (Hy) with f = 1/2 and let neN" be fixed. Then
there exists an unique solution X" = (X', ..., X"") to (PS),. This solution is exactly
simulable.

The proof is classical, since the R"-valued Markov process X" is clearly piecewise
constant, so that (PS), is “‘self-solved’’. We will omit it.

We have also a tightness (weak relative compactness) and a convergence result of this
system. More precisely:

THEOREM 3.3 Let Qg€ #,. Assume (Hg) with § = 1/2. Consider, for each n, the solution
X" to (PS),, and its associated empirical measure y".

1. The sequence (L (W")),~, is tight in 2(2(D'([0, 0), Ho,))) (the set

2(D'([0, ), # 0,) being endowed with the weak convergence topology
associated with the Skorokhod topology on D' ([0, o0), Ho,))-

2. Any limiting point m of (£ (")), satisfies Supp n C {solutions to (MP)}. This

implies that there exists a subsequgnce {u"}, which converges in law, for the weak
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topology of Q’(IDT([O ®),#p,)) (associated with the Skorokhod topology on
D'([0, o), Hp,))s to some random probability measure y, and that w is a.s. a
solution to (MP).

Let us first notice that this result implies a new existence theorem for the Smoluchowski
equation, allowing the initial total concentration fR U (dx) to be infinite. This is only a
remark, our main aim not being here to obtain new ‘existence results.

COROLLARY 3.4 Let u, be a nonnegative measure on R’ such that fR xuy(dx) = 1. Let
Qo (dx) = xpy(dx), and assume (Hy) with = 1/2. Then there exists a weak solution to
the Smoluchowski equation in the sense of the Definition 2.1.

The following corollary deals with the case where uniqueness holds for (MP). Notice that
since the projections x — x(z) are not continuous on D' ([0, o0 ), #° 0,)» We cannot a priori
conclude, only by Theorem 3.3, that for each ¢ fixed, u converges to y,.

COROLLARY 3.5 Let Q€. Assume (Hp) with = 1/2. Assume also that uniqueness
holds for (MP) (see Theorem 2.7 and also Corollary 5.5 in Deaconu et al., 2001). Then we
know from Theorem 3.3 that the empirical measure u" goes to the unique solution Q of
(MP) in probability. (Recall that the convergence in law to some deterministic object
implies the convergence in probability.) Then the 2(R_)-valued process {u'},~o =
{1/nY27_ 1 Oxin}i =g, converges in probability to {Q,},- in D([0,0),2(R,)). Here
D([0,0), 2(R.)) is endowed with the topology of the uniform convergence on every
compact associated with the weak topology of P(R.).

Let us now point out the link between the particle system and the classical Marcus-
Lushnikov process: it is proved in Deaconu et al. (2001) that under suitable assumptions,
the law of the process defined as the size of the cluster containing a marked particle,
converges weakly to the solution Q of the martingale problem (MP).

In our particle system, the process X!” has to be understood as the size of a cluster
containing a marked particle, in a sort of ‘‘asymmetric’” Marcus Lushnikov process. This
asymmetry allows to have always n particles, and furnish a good representation of the
whole system, while it is well known that the Marcus-Lushnikov is reduced to one particle
in finite (large) time.

Let us finally compare our convergence result with the one in Eibeck and Wagner
(2001).

REMARK 3.6 Since they are interested in gelation, Eibeck and Wagner (2001) do not
consider exactly the same particle system as we do: they introduce a cutoff procedure in
the coagulation kernel. They assume that K(x,y) < h(x)h(y) for some positive function h
such that lim, ., K(x,y)/h(x)h(y) = 0 and h(x)/x is non-increasing, and that the
initial condition Q, satisfies [p . x~'h(x)Qy(dx) < co. It seems that the standard
additive kernel K(x,y) = x +y does not satisfy these assumptions. Our assumptions are
not better nor less good, but different. They prove the weak convergence (up to
extraction) of the process {i}, < , to some {y},~ o in 2([0, 00), (M ., d)). {1}, is a.s.
solution to (MS) ((M .,d) is the set of finite nonnegative measures on [0, o) endowed
with the vague topology). This is a less strong convergence than ours (see e.g.,
Corollary 3.5).
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We now give the proof of Theorem 3.3. Since it is quite standard, we just present the main
steps.

Proof of Theorem 3.3: Notice that for obvious reasons of symmetry, £ (X"") is
independent of ie{1,...,n}, # (X" X/") is independent of {(i,j)e{1,...,n}>;i #j},
etc.

We break the proof in several steps.

Step 1: Using (Hy) with § = 1/2, the fact that fR+ x?Qy(dx) < oo, Gronwall’s Lemma,
the symmetry of the system and the fact that the processes X' are a.s. non-decreasing, it is
easily checked that for all T < o0,

= sup [E[(X}’")z} < . (3.1)

n

sup sup E| sup (X"’
nie{l,.,n} |[se[0,T]

Step 2: It is known (see Méléard, 1996, Lemma 4.5), that the tightness of u" is equivalent
to that of X", Using the Aldous criterion (see Jacod and Shiryaev, 1987) and Step 1, the
tightness of {y"},., is easily obtained.

Step 3: Let us consider a convergent subsequence of u”, that we still denote by u”, whose
weak limit is u, a random probability measure on D' ([0, o0), #° 0,)-

We want to prove that u satisfies a.s. the martingale problem (MP). To this aim, we
consider peC} (R, ), g1,...,8:€C,(R,) and 0 <5y < -+ <5, <s<t<Ty Let F be
the map from D' ([0, ©), #g,) % D'([o, ®), # p,) into R defined by

F(x,y) = g1(x(s1)) - - 8 (x(s1))

We have to prove that a.s., {(u ® u,F) = 0. The map Q— (Q ® O, F) is not continuous
nor bounded from 9’1([0, Ty), # o,) into R. However, classical arguments (using the fact
that the limiting point u is a.s. the law of a process with quasi-left limit, and the uniform
integrability obtain in Step 1) show that E((x ® u, F)?) = lim, E((" ® ", F)). It thus
only remains to prove that E(a,) goes to 0, where o, = (Q" ® Q", F?). Setting for i fixed,

)= [ /] Tl +xi7) — i {ng(xan.xz-">}N”<d~“df’ ),

i
X

(3.3)

where  N'(ds, dj,dz) = N'(ds,dj,dz) —ds(1/n_;_, 6;(dj))dz is the compensated
Poisson measure associated with N, an easy computation shows that
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{ Zgl (X5 - (X3 My (¢)—M§’"(¢)]}

i=1

i=1

=%ﬂ§1&aw>smrmM%@—Mwwmﬂ

Zzgl (X5 - (XM () — M (9)]

i=1j#i

x g1 (X5") .. g (O [MI " (9) — M’Q”((ﬁ)}]

= E(a}) 4 E(o2), (34)

with obvious notations for o} and o By using (3.3) and (H) with = 1/2, we see that for
some constant A, depending only on the test function ¢ and on ¢,

Eod) < ol o el E[0M(9) - M (0)F] <2 (3)

On the other hand, the bracket (M""(¢), M’"(¢)) vanishes identically for all i # j, since
the Poisson measures N’ and N/ are independent. It is easily deduced that E(e2) = 0 for all
n. Hence E(x,,) goes to 0, which concludes the proof. |

We now give the proof of Corollary 3.5, which relies on the use of Lemma 6.1 of the
Appendix (due to Méléard, 1996).

Proof of Corollary 3.5: Thanks to Lemma 6.1, we just have to prove that for Q the
unique solution to (MP) and any T < oo we have

sup / sup  (JAX(s)[ A 1) Q(dx)—> 0. (3.6)
1e[0,T) JxeD! (07, #,) selt—ri+1] r—0

To this end, we use the fact that Q is the law of X, (XO,X,)Z ,N) denoting a solution to
(SDE). We thus have to show that

sup E sup  (JAX | A1) | —0. (3.7)
tel0,1] \selt—ri+r] r—0
Since X is a.s. non-decreasing, we obtain, by using (Hy) with f = 1/2,

swE< M)<M&MU>Spr&H—xH>
se|

te(0,7T] t—rit+r] t€(0.7]

ftt+r
< sup / EE, [K(X,,X,)|ds <2rCx sup [E(1+3X,)
te(0.7) r s€(0,T+1]

which clearly goes to O as r goes to 0, thanks to the fact that for all
T < o0, sup,. (7 E(X,) < 00. The corollary is now proved. |
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We would also like to mention that propagation of chaos, in the total variation norm,
holds for the particle system, under suitable assumptions. The propagation of chaos
yields a sort of asymptotical independence of the particles. For T > 0 fixed, ke N*,
we denote by |v|, the total variation norm, of a measure on D([0, c0), R*), restricted
to [0,T].

PROPOSITION 3.7 Let Q, belong to 2, and assume (Hg) with = 1/2. Assume
furthermore  that  there exists a constant By  such that for all
X,y€ (%QO)Z,K(x,y)/y < Bx(1+x) (this assumption is quite restrictive in the
continuous case, but always holds in the discrete case, i.e. for H , C N*). Consider,
for each n, a solution (X', ..., X"") to (PS),. Then there is propagation of chaos in the
sense that for each ke N” fixed, all T € [0, o0),

|2, X - (XM - @2(X5)| — 0. (3.8)

n— o0

Proof: Let us sketch the proof of this result. Graham and Méléard (1997) proved a
similar result for the case of a particle system associated with a non homogeneous
Boltzmann equation. Although we cannot apply their result directly, one can follow their
proof line by line in the case where the total rate of jump per particle is finite.

We consider first the particle system (X' ... X"") associated with the initial
conditions (Xé’"7 ..., Xy") and with the Poisson measures N, ... N"".

For each M < oo, we denote by KM the truncated coagulation kernel
KM(x,y) =K(xAM,y). Then we denote by (X'"M ... x""M) the particle system
associated with KM, the initial conditions {X;;"} and the Poisson measures {N""}. Since
the total rate of coagulation of each particle X" is bounded by A, = Bx(1 + M), one
can follow line by line the proof of Graham and Méléard (1997) and obtain that for each &

and each T,

AyT + (AMT)2

‘J(Xl*'“M’ L ,Xk"n’M) _ g(xl,nﬁM)® . ®$(Xkﬁn,M)|T S k(k _ 1) p

(3.9)

On the other hand, one may check that the particle system with coagulation kernel K does
not differ too much from the one with K, in the sense that for any /,

|2 (xteM XMy (xt X,
<2P([3re(0,7], (X", ... XM") £ (XM 7Xf’”’M)}

<2P[Fie{l,...,I}, X" > M|

2AEX)"] A
<2APXL > M) < 28T L 2T 3.10
— [ T = ] — M = Ma ( )

thanks to the symmetry of the system and to (3.1). Indeed, one may check that for each i,
{s>0,Xxt"" £ X"} = {s > 0,X:" > M}. Combining (3.9) and (3.10) yields (3.8). M

In order to conclude this section, we present the approximation scheme for the solution of
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the Smoluchowski equation in the case of (H;) with f = 1 (by making use of previous
results).

As a matter of fact, we are not able (and this might be false) to prove that the particle
system is well-defined when f§ > 1/2, nor that it is simulable. That’s why we are led to
consider a double approximation.

REMARK 3.8 Assume (Hg) with = 1. Let Ty = 1/Cx(1 + [, xQy(dx)). Consider a
kernel with cutoff KM (x,y) = K(x AM,y AM). Then K™ satisfies (Hy) with § = 1/2, and
we may define the associated particle system: we obtain an empirical measure M. We
know from Theorem 3.3 that the sequence ¥ (uM") is tight, and that any limiting point ™
satisfies a.s. the martingale problem with cutoff (MP),,, obtained for (MP) by replacing K
with KM.

On the other hand, the following result holds (it can be proved by following line by line
the proofs of Lemmas 3.6, 3.7 and 3.8 of Deaconu et al., 2001): consider, for each M > 0
fixed, a solution Q" to (MP). Then the sequence Q" is tight in (D' ([0,T,), Ho,)), and
any limiting point Q is a solution to (MP).

Hence, if M and n are large enough, u™" approaches a solution Q of (MP).

4. A Central Limit Theorem in the Discrete Case

Our aim in this section is to prove a central limit type theorem, i.e. to show that the rate of
convergence associated with our approximation is of order 1/+/n, and that the limit of the
fluctuations is Gaussian, in a certain sense. We are inspired by the works of Ferland et al.
(1992) and Méléard (1998) for similar results concerning the Boltzmann equation and its
particle approximating system.

However, we cannot apply their results and we have to deal with other ‘‘functional”’
spaces. We consider only the discrete case for simplicity, but it seems reasonable that a
similar result may hold in the continuous case. However, the technical arguments are
clearly much more easy in the discrete case. We will assume the strong hypothesis:

Assumption (A): Q, has its support in N* and admits a second order moment. The
nonnegative symmetric coagulation kernel K is bounded.

This assumption is clearly not satisfying: K is in general unbounded. However, we are
not able to get rid of this stringent hypothesis.

Under (A), one knows (see Theorem 2.7) that uniqueness of a solution Q holds for (MP),
and that its marginal flow {Q,}, . , is the unique solution to (MS).

We recall here the notations of Definition 3.1 and explain the topologies we use in each
space. Consider, for each n, a solution X" = (X!,... . X"") to (PS),, lying a.s. in
(D'([0, o0),N*))", associated with the Poisson measures {N'(ds, dj, dz)},. (1,..ny and with
the initial particles (X");., - Denote by u" = 1/n Y7/ dyi,, which takes its values
in 2(D'([0, 0),N")). For each [0, ), denote by u" = 1/n S, Oy ins the time
marginal of u", which takes its values in 22(N").

We know from Theorem 3.3 and the uniqueness for (MP) that the empirical measures u”
converge in law to Q, the set 2(D'(]0, c0),N*)) being endowed with the weak topology
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associated with the Skorokhod topology on D'([0,00),N*). We also know from
Corollary 3.5 that the 2(N")-valued process {u!'},~, goes in probability to {Q,}, o,
in D([0, o0), 2(N*)) endowed with the topology of the uniform convergence on every
compact subset (of [0, 00)) for the weak topology of 22(N").

Let us now consider the fluctuation process:

n"=vn(' —0Q), (4.1)

which, for each n, can be seen as a stochastic process with values in the set .#(N") of
signed measures on N*. The aim is to prove that " converges weakly to a Gaussian
process 7, as n goes to infinity. In order to obtain this convergence, we have to introduce a
““better’” space than ./ (N").

REMARK 4.1 Consider the space I* = {(u;);~ o, uy € R, > uz < o0}, endowed with its

natural norm ||u|l, = /> .~ 3. I* is an Hilbert space.

Notice that any bounded (signed) measure v = {v(k)},~ , can be seen as an element of
. Remark also that I* is not Polish when endowed with the weak topology.

Finally notice that for each n, each t, n} belongs a.s. to 2, and that, since w} and Q, are
probability measures, |||, < /2n.

We need to introduce some random objects in order to formulate properly the main result.
We will use these objects to define the limit law of 1".

DEFINITION 4.2 Assume (A) and let (Q,,t > 0) be the unique solution of (MS). Let
o = (Mo(k))g= o be an *-valued random variable, and consider an I*-valued stochastic
process, W = (W (k),keN* s > 0). We say that (n,, W) is of law (92) if:

1. The random infinite vector (n,(1),...,ny(k),...) is a centered Gaussian vector of
covariance: for all k, I in N*,
K —Q2(k), it k=1
Eno (o (1)) = 4 Qo olk), 1 42
(ot = { &5 Gk 8 H 2 @2)

2. The process W is strongly continuous from [0, c0) into I*. For all kye N*, the real-
valued process W. .y is an (7 ,,t > 0)-martingale starting from 0, where for each
t>0,

F,=0a{ny(k); keN"} va{W(k); 0 <s<rkeN"}. (4.3)

For all ky,ky in N*,W(k,) and W(k,) have the following (deterministic) Doob-
Meyer bracket

(W(ky),W(ky)), Z/O > 0N Wiy jmry = Ve ) Qi jmi) — Viziyy)
i>1j>1
X K—(i’j) ds.

J

3. The random objects y, and W are independent.
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Notice that (i7,, W) is a Gaussian object, and that the law (92) is uniquely and completely
defined. Let us carry on with the definition of a limit S.D.E.

PROPOSITION 4.3 Assume (A). Let (19, W) be a process of law (92P). Then existence and
uniqueness of a strongly continuous >-valued process n, satisfying the following S.D.E.,

M) = mo(+) + Wi(+) + / SO L)) 0Q,0) + 0imG) ds,  (44)

i>1j>1
holds. L(k) is, for each ke N*, a map on N* x N* defined by

LI = oy~ i) «5)

Let us now state the main result.

THEOREM 4.4 Assume (A). Then for each n, the process n" (see (4.1)) is a.s. strongly
cadlag from [0, o) into [>. Furthermore, n"* converges weakly to the solution n of (4.4) as n
goes to infinity.

By “‘n" converges weakly to n’’, we mean the convergence of the law of n" to that of n in
the weak topology of 2(D([0, ), ?)), the space D([0, c0), ?) being endowed here with
the Skorokhod topology associated with the weak topology of I*.

Let us now sketch briefly the main ideas of the proof. First, we will give an useful
characterization of the law (92). After a technical lemma we will be able to prove the
uniqueness result stated in Proposition 4.3.

As usual we split the process 1" into satisfying terms, study the tightness and weak
convergence of these terms. This technique allows to conclude the proof of Theorem 4.4.
We begin with a characterization of the law (4%). We now state a technical lemma. The
hypothesis K bounded appears to be useful in this statement only.

LEMMA 4.5 Assume (A). There exists a constant A such that for every couple of
probability measures q, p in ?(N*) and all o€ 2, we have the inequalities

SN L) )gl) + pi)e()| < Allallp and (4.6)

i>1j>1 2
SN L) @D al) — ()| < Allellellg = ule- (4.7)
izlj>1 2
Proof: Let us check (4.6). First notice that
2
D> L) )a(j) + u@a()]|| <20, +1y), (4.8)
i>1j>1 2

where
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I = {ZZ(H{H, 0=l k}>K(j’f)a<i>q<j>} (4.9)
k=1 liz1j>1

I = { (- k}>K(j’”u<f)a<J’>}. (4.10)
k>1i>1j>1

i>1

I < qu(j){Z(ﬂ{i+j—k} - [l{i—k})K(;»?j) Of(i)}

< Al (4.11)

since K is bounded and since ¢ is a probability measure. On the other hand, using twice the
Cauchy-Schwartz inequality, one obtains

. 2
I < ZZMU){Z(”&H—/«} - U{i—k})K(Jl.J) “(1)}

k>1i>1 i>1
a (520 LY
<AY > u@ (D0 | D Miyjmiy +Limg)
k>1i>1 i>1 i>1
P uli Z, > (ijmiy +liogy)
i>1 =17 k>1
< Allallp. (4.12)

Let us now check (4.7). Since K is bounded, we obtain, using the Cauchy-Schwartz
inequality, that for some constant A, the square of the left hand side member of (4.7) is
smaller than

AZ(ZZ = ” bivson +hu-u ), <>||q<j>—u<j>>

k>1\i>1,j>1

SAZ<Z}2>Z<Z(HM o+ Vi)l (i) - u(j)l>
k>1\j>1 i>1\i>1

<A S lal) — w2 = Dy + 2 (0)]

k>1j>1

< Allg = pllz 12017, (4.13)
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the last inequality being obvious when exchanging the order of the sums. The lemma is
proved. |

The uniqueness for (4.4) is now straightforward.

Proof of Proposition 4.3 Let us, for example, prove uniqueness. Consider two solutions
n and i’ of the Equation (4.4), and let T > 0 be fixed. Then one gets immediately the
existence of a constant A, such that

2
sup [, — ngll»

s€[0,]
t 2
<ar [ X 20060 [0 - noe.+ 2000 ]| as
i>1j>1 2
t
<ar [ n -l as (4.14)
thanks to Lemma 4.5. Gronwall’s Lemma allows to conclude. |

In order to prove Theorem 4.4, we have to split #" into satisfying terms.

NOTATION 4.6 Thanks to Definition 3.1 and the fact that (Q,,t > 0) satisfies (MS), we can
split v} in 3 terms:

i (k) = g (k) + M (k) + Fi(k), (4.15)
where
(k) = %é(ﬂ{xgnk} ~0)®). (4.16)
, 1 n t [e 0]
M; (k) = 7%;/0 /, /0 (”{X{;’L i —iy U :k}) H{ng(xlﬁ-?xl(*ﬁ)}
x N'(ds, dj, dz), (4.17)
and
Fi (k) =/0 DD LRI D ) + QD ()] ds, (4.18)
i>1j>1

N' denotes the Poisson compensated measure associated with N'.
Let us study first the asymptotic behavior of the initial condition.

LEMMA 4.7 Assume (A). Then, for all n, [E[||178H,22] < 1. Furthermore, uj; converges

weakly (for the weak topology on I*) to a random variable 3, with the law defined in
Definition 4.2 1.

Proof: The proof is completely standard, since it concerns the sequence X', ..., X"" of
i.i.d. Qy-distributed random variables. It requires only the use of the standard central limit
theorem. |
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We now state some easy moment calculus and trajectorial estimates for M" and #".
LEMMA 4.8 Assume (A).

1. For all T > 0, there exists a constant Ay, such that for any n

E[ sup IIM?Ifz] < [E[Z sup (Mf(k))zl <Ar (4.19)

1e[0,7] k>1 t€[0.7]

[E[ sup IHZ’IIZz} < Ar. (4.20)
te[0,T]

2. For all n, M" and n" are a.s. strongly cadlag from [0, o) into I%.
3. For each T > 0, there exists a constant Ay, such that for any n and ke N*

<Aj. (4.21)

EE[ sup (M} (k)"
te[0,T]

Proof:

1 A simple computation using Doob’s inequality and the expression of M" shows that

) [E[ sup (M (k»z]
k>1

te[0.T]
2K (X", X0

<Ayt [E[Z Z/ e~ V) s

k>l i=1"j=1 s

1

7 Z pxin xin =gy T Dn k}) ds

ij=1 0 k>1

< AT (4.22)

since K is bounded, and since X" > 1. (4.19) is now proved.
We deduce from (4.15), Lemmas 4.5 and 4.7 that for any n and r < T,

t
sup ||ng ||121 <Ar +AT/O [E[||17’Y’H,22}ds (4.23)

ve[Ot]

Gronwall’s Lemma allows to conclude.

2 Recall that #} = yg + M} + F7. Let us first notice that thanks to the Cauchy-Schwartz
inequality and (4.6), we obtain, for all s < ¢

t
IFr— P < (- s) / I du (4.24)

and it is clear from 1 that F” is strongly continuous.
We thus just have to check that M" is cadlag. Let us, for example, show that it is
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right continuous. Let ¢,, be a sequence decreasing to ¢ and ¢ > 0 be fixed. Then for

all geN,
5 q ) 0 5
My, — My <> (M7 (k) =My (k) +2 > sup (M(k)) (4.25)
k=1 k=q+1 uel0,0+1]

(at least if m is large enough, which ensures that ¢,, < ¢ + 1). Now, choosing ¢ large
enough will imply that the second term of the right hand side member is smaller
than ¢/2, thanks to 1. It is also clear that for each & fixed M" (k) is cadlag, since it is a
finite sum of integrals against Poisson measures. We can now conclude: it is
sufficient to choose m large enough, in order to obtain that for all k£ in

{1,...,q}, (M} (k) — M (k)" < &/(2q).

3 The proof is not difficult. Since k is fixed, (4.21) relies on the use of the standard
Burkholder-Davis-Gundy inequality. Notice that computing the quadratic variation
of M"(ky) is easy since the Poisson measures N' are independent.

The Lemma 4.8 is proved. |

It remains to prove tightness results. Recall that /2, endowed with the weak topology, is not
Polish. We thus have to use a specific Lemma which is due to Fernique (1991) (see Lemma
6.2 in the Appendix). This lemma allows us to state and prove the following result.

LEMMA 4.9 Assume (A).

1. The sequences of processes " and M" are tight in D([0, o), I?) (endowed with the
Skorokhod topology associated with the weak topology of ).
2. Any limit point n (resp. M) of the sequence n" (resp. M" ) is a.s. strongly continuous
from [0, ) into I%.
Proof:

1 We apply Lemma 6.2 to the sequences #" and M". Condition (i) is satisfied thanks to
Lemma 4.8, 1.

To prove the second condition, we fix k, and apply the Aldous criterion (Jacod and
Shiryaev (1987)). We just have to show, for example, that there exists a
constant A; such that for all n, all 6 >0, all couple of stopping times
0<S<S <(S+I)AT,

E[(M5 (k) — M§(k))*] + E[(n (k) — 15(K))"] < Ago. (4.26)

We obtain it easily in the same spirit as Lemma 4.8, 1.

2 To prove the continuity results, it suffices to check that

E[ sup |AM{’||IZ] — 0 (4.27)

te(0,00)

and that the same limit result holds for #". First notice that for any w,n and
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t,AM} = An’, so that it suffices to prove (4.27). Remark also that as the Poisson
measures N are independent, it is obvious, using (4.17), that any jump of M" is such
that there exist i and j such that

1

AM;(-) = 7 [”{x;’-ﬁ wxr =y~ e :A}} (4.28)
from which we deduce that
a2 1 2 1
1AM <=5 [ saon 2y = Bpe =] <0 (4.29)
k>1
which implies (4.27). The Lemma is now proved. |

Let us study now the law of the limiting points.

LEMMA 4.10 Assume (A). Consider a subsequence n'* of n", weakly convergent to a
strongly continuous 1>-valued process n, in D([0, ), %) (endowed with the Skorokhod
topology associated with the weak topology on I?). Consider the processes

M=y — it — F" (4.30)
W) =) =n0() = [ S L0, + Q.m (i} ds @43)
i>1j>1
Finally set, for t > 0,
7, = o{ny(k); keN"} v o{W,(k);0 <s < t,keN"}. (4.32)
We have:

1. (ng',M™) converges weakly to (1o, W) in > xD([0,0),?) (endowed with the
product topology, I° being endowed with the weak topology and ([0, c0), I?) with
the associated Skorokhod topology).

2. The process W is a.s. strongly continuous from [0, o) into I*. For each kyeN", the
real-valued process W (k) is an (F ,,t > 0)-martingale.

3. For each q,,q, in N*, the Doob-Meyer bracket of W(q,) and W(q,) is given by

W)W = [ 330000 (tssmay ~limay)

i>1j>1

K(i.Jj)
(”{"H ©y T l]{l flz}) j ds. (433)

Proof:

1 We split the proof of 1 in two steps. Consider the process

Gi(+) =mn () —mo(- /ZZL LD () + Qs (s ()} ds. (4.34)

i>1j>1
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i. We will first prove that for any T > 0, the process M" — G” goes to 0, as n tends to
infinity, in L' (and thus in probability), for the uniform norm on [0, T] and the strong
norm of /2.

ii. Then we will check that (17g", G™) goes in law, as k tends to infinity, to (1, W) in
2 xD([0, 0), ?), the space I being endowed (twice) with the weak topology. Once
the two points are proved, 1 is straightforward.

ds] .
12

Let us check i. We deduce from the expression of F” (see (4.18)) that

SOSTLCO) AT OEG) — 0,00

i>1j>1

£| swp 14—l [/
_te[O,T]

By Lemma 4.5, we get the existence of a constant A; such that

T
E| sup M7 G SAT[E[/O el = 4l ds}

L1€[0.T]

1
< —AT[E[ sup ||nf:|,%] (4.35)
n s€[0,T]

which goes to 0 as n tends to infinity thanks to Lemma 4.8.
To prove that (17", M™) goes in law to (17y, W), it suffices to prove that the map % from
D([0, o[, 2) into 1> x D([0, c0), ?), defined by

G(2) = (9"(2), 9% ()

= <°‘o»0€ / Z ()42 ()Q;5 () + Qs (1)ats (/) } dS) (4.36)

i>1j>1

is continuous at any point « that is strongly continuous. Indeed, we know that #" goes to 5
and that 7 is strongly continuous.

We thus consider a sequence o" of D([0,0), %), converging (for the Skorokhod
topology associated with the weak topology of /?) to a strongly continuous />-valued
function o. It is well-known that since the limit o is continuous, the convergence holds also
for the topology of the uniform convergence on compacts, i.e., that for any 7 > 0, any y in
2,

sup
te[0,T]

—0. (4.37)

n—-0

> 2(R) (o (k) — o, (k)

k>1

We first deduce that %V (x,) tends to ") («) for the weak topology of /2. It remains to
prove that for any fin > and any T > 0

d, = sup
te[0,T]

— 0. (4.38)

n— oo

> 8097 (@) - 97 ()

k>1

First, it is clear that
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5, <2 sup /f(k)[oci’(k)—oc,(k)]’
te[0.T] k>1
T
+ /0 > Blk) <ZZL(/<)(LJ)[0<?(I')—fxs(i)]Qs(j)> ds
k>1 i>1j>1
T
+ /0 > Blk) (Z ZL(k)(i,j)Qs(i)[a?(j)—%(j)]> ds
k>1 i>1j>1
— 260 4 6@ 4 50 (4.39)

with obvious notations in the last equality. First, 52” tends to O thanks to (4.37) applied
with y = 5. On the other hand,

5 = /OT ]; B(k) ;;(”{wk} - ”{f:k}) K(;’j) (o2 (i) — o, ()]0, (j) | ds
-/ ' R %(i)]{;ﬁ(iﬂ)@gm - ﬂ(i)j;@gso)} ds.
(4.40)
For each s, the integrand tends to O, thanks to (4.37) applied with
10 = Y 80+ L0,() - i ;@Qm, (4.41)

jz1

which belongs to /2. On the other hand, the Cauchy-Schwartz inequality and Lemma 4.5
allow to obtain that the integrand in (4.40) is smaller than A||f]|.|jo — o]l . which is
clearly bounded (uniformly in ) on [0, T]. By Lebesgue theorem we get that (559 tends to
0. One proves in the same way that (3,(13) tends to 0. This ends the proof of 1.

2 From Lemma 4.9 the process W is strongly continuous since it is a limit point of
M". To check that W (k) is a (% ,,t > 0)-martingale, let us consider 0 < s; < --- <5, <,

kiy... kymy, ... ,m, in N*, and a family ¢,,..., ¢, 0, ..., Y, of continuous bounded

functions from R into itself. We have to check that

E{W, (ko) — Wy, (ko) oy (g (my)) - - -, (1o (m,) )by (Mg (Ky)) - . . by (M (Ky))] = O.
(4.42)

By Notation 4.6, we see that for each n,

E{M] (ko) — M, (ko) 3y (o (my) -, (116 (my,)) 1 (M, (Ky)) - .- (M (Ky))] = O,
(4.43)
so that we ‘‘just’ have to take the limit. We know from 1 that (5,‘,M") converges

weakly to (#y,W), and that W is strongly continuous. Furthermore, the map
F: P xD([0, ), ) >R, defined by
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F(G o) = {a (ko) — ot (ko) by (E0my)) -, (L(my, )) o (o1, (K1) - - by (Ky)) - (4.44)

is continuous at any point ({, o), when o is strongly continuous. We deduce that for each
0<B< o,

E[(F(ng',M"™) AB) v (= B)] — E[(F (g, W) AB) v (= B)]. (4.45)

k— o0

Finally, F({,a)| < B sup,. g |o;(ko)| and the
uniform integrability (concerning M") obtained in Lemma 4.8, we can make B go to
infinity, and obtain that

E[F (" M™)] — E[F (119, W)]. (4.46)

By using (4.43), we get E[F (575, W)] = 0, which was our aim.
3 To prove (4.33) it suffices to check that, for Y the process denoting the right hand side

member of (4.33), W(q,)W(gq,) — Y is a (#,,t > 0)-martingale. To this aim, we proceed
exactly as in 2. We have to prove, with the same notations as in 2, that

E{W,(q)W.(q2) =Y, — W, ()W, (q2) + ¥y, } x
¥y (no(my)) - .. ¢p<n0(mp))¢l(Mxl (k) - - ¢1(Ms,(k/)) =0. (4.47)

This equality holds when replacing everywhere W by M"Y by (M"(q,),M"(q,)), and 1,
by 1. We just have to make k tend to infinity. Using (4.17) we obtain for each n

(M"(q,),M / DD iy =gy = izgyy)
0 i>1j

K(i,j)
X (Migjmgy = Nizgyy) —ds. (4.48)

A simple computation shows that, for any 7 > 0, there exists a constant A such that
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[E[ sup [(M"(q,),M"(92)), — Yt|]
te[0,T]

T ..
K(i,j)
=< [E[/O DD Wimgy = Yimg W m gy = Yim gyl —

i>1j>1 J

DN, (7) — 1) + 10D, — D)) ds]

T 1
SAEM Z_‘Z{H{iﬂ:ql}+”{i:ql}+”{i+j:qz}+H{i:qz}}

=1/ iz

X {10, () — 1 (DI + 105 (NNNQs (1) — 15 ()} dS]

< AE| / S L4 supllo,)10.0) — 1 ()] + 2, (DIey(D) — ()]} ds}
LJ0 j>1 izl

L
<AE| [ 310,00 = (I + Qi — O} ds}

j=1

r T
<ae| [ ||u§—Qs||,zds}
LJ O
1

< AT—=E| sup ||} ,
v LM| Il

which tends to O thanks to Lemma 4.8. Finally notice that for any 7 > 0,

sup[E[ sup M!(¢,)M! (q2) — <M"<q1>,M"<qz>>,|2]

n t€[0,T]
<2 sup[E[ sup <M:1<q,>>“][E[ sup <M:*<q2>>4} 2 sup E[IM? (q,)M!(g2)*)
n t€[0,T] te(0,7] n
< o0, (4.49)

thanks to Lemma 4.8, 3, and since one obviously deduces from (4.48) (recall that u” is a
probability measure) that for all z€ [0, T],

|<M]1(Q1)7MH(Q2)>I| < AT,

since K is bounded. Using the convergence in L' of (M"(q,),M"(q,)) to Y, the
convergence in law of (i7g", M™) to (1, W), the uniform integrability obtained in (4.49)
and the equality

E[{M7" ()M (42) = (" (41). M" (42)), = M3 (@M1 (42) + (M" (1), M™ (02)), |
XU O () 0, O (m,) )by (2 (K1) - (M2 ()| = 0, (4.50)
we obtain (4.47) by letting k go to infinity. This concludes the proof of the lemma. M

We finally are able to provide the following:
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Proof of Theorem 4.4: Recall the Notation 4.6. We know from Lemma 4.9 that the
sequence 1" is tight, and that any limit point is strongly continuous. Let us consider a
converging subsequence 1", going to some process 1. From Lemma 4.10 we know that
nt — ot — Fi* goes to the process

W) = () — ol /ZZL ()0, ()0, () + 0, ()} ds.

i>1j>1

(4.51)

It is clear from Lemmas 4.7, 4.10 and Definition 4.2 that (#,,, W) has the law (42). Hence,
n can be written as a solution of the Equation (4.4). Since the uniqueness in law for this
S.D.E. holds (thanks to Proposition 4.3), we deduce that the whole sequence 7" goes, in
law, to the solution # of Equation (4.4), which concludes the proof of Theorem 4.4. W

5. Numerical Results

In this section we test numerically the present approximation scheme algorithm. We refer
to Eibeck and Wagner (2001) for further numerical results. We would like here to treat the
following points.

i. Is our algorithm better than the classical Marcus-Lushnikov procedure?
ii. We illustrate our theoretical results.

iii. Is the particle system still simulable when the coagulation kernel K does not satisfy
(Hy),) but only (H;)? Does the convergence result of Theorem 3.3 remain valid
under (H,)? Does the central limit type result, obtained in Theorem 4.4, hold when
the coagulation kernel does not any more satisfy assumption (A), but only (H, ;) or
even (H;)?

We begin with some notations. Let us recall that ! =1/n)>";_, 6Xj.r1 is defined in
Definition 3.1, and approaches the solution Q, to the equation (MS).

We cons1der the case where Q, = 0. We will essentially compare m(¢ fR L XO,(dx)
to m,(w,1) = [, xui(w,dx) = 1/n Z L X" This will give a *“global 1dea” of the rate
of convergence The function m(z) can be expllcltly computed in any case where K (x, y) is
of the form a 4+ b(x + y) + c¢xy, for a, b and ¢ given constants.

Let us also mention that in the sequel, we simulate exactly the particle system when
K(x,y) = xy: it seems that even in this (explosive) case, the particle system is directly
simulable (up to gelation).

We first compare the result obtained with the particle system to that obtained with a
Marcus-Lushnikov procedure. It is well known that the Marcus-Lushnikov algorithm is
not good for large times, since there are less and less particles. However, this problem can
be solved by using a standard trick, consisting in making a copy of the system as soon as
the number of particles is too small. We do not use this trick here.

On Figure 1, we plot m(z) for ¢ in [0, 3], for the additive kernel K(x,y) = x + y. This
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Figure 1. K(x,y) =x+y.

quantity is compared with mg () (obtained with one simulation of the particle system),
and with the approximation obtained with the Marcus-Lushnikov procedure (for a similar
time of computation, of order 0.800u). Note that the corresponding Marcus-Lushnikov
procedure starts with 10,000 particles and ends with 504 particles. We see that as soon as
time is slightly large, the present numerical scheme looks better.

We now treat points ii and iii. We first consider the case K(x,y) = 1. Figure 2(a)
represents m(¢) and m,(¢) (obtained with one simulation) for n = 10° particles, as
functions of 7€ [0, 10]. On 2(b), we draw the error m,(f, ®) — m(¢): it really looks like one
path of a continuous ‘‘Brownian kind’’ process, which illustrates Theorem 4.4.

In Figure 3, we study the multiplicative kernel K(x,y) = xy. In this case, one has an
explicit expression of the solution (u,),0 <t < 1,ke N*) to (2.1). The first part 3(a).
represents 1 Q,({2}) and its approximation 5- 3" (xin—) as functions of 7&(0,0.98],
for n =10 particles. The second part 3(b) représents the corresponding error

10,2 — &> I xin _y» which clearly also looks *‘Brownian’.
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Figure 2. K(x,y) = 1.
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Figure 3. K(x,y) = xy.

We study now the rate of convergence of our scheme, as the number of particles
increases. On Figure 4(a) each cross is obtained for one simulation, and represents the
normalized error \/n[m,(w,t) —m(r)], for =1 and K(x,y) = 1, as a function of the
number ne {10,...,10%} of particles. We remark that the obtained ‘‘cloud”’ is almost
surely contained in [— C, C], for some constant C. We remark also that the distribution of
the normalized error does not seem to depend on the number of particles. This illustrates
Theorem 4.4.

On Figure 4(b), we represent the (empirical) distribution of the preceding normalized
error when n = 103 and we observe a Gaussian distribution. This figure is obtained with
10° simulations.

Figure 5 treats the same problem as Figure 4 in the case where K (x,y) = x4y, = 1.0
and ne {10, ...,10°} (5(a)), n = 10° and 10° simulations (5(b)).

Figure 6 treats the same problem as Figure 4 in the case where K(x,y) = xy,7 = 0.5 and
ne{l0,...,10%} (6(a)), n = 10 and 10° simulations (6(b)).

The main conclusion of this numerical study is that our assumptions in Theorems 3.3
and 4.4 are too stringent, and that these results seem to hold true in a more general context.
Indeed, the particle system really seems to be simulable under (H;) up to gelation (we
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; y b no3f
ENE R MLt gl okl P on)
+ 1}; »*i 4+ 002
+
’~ oonf
1 1 1 1 1 1 1 1 1 +
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Figure 4. K(x,y) = 1.



156 DEACONU, FOURNIER AND TANRE

T T T T T T T T T 0035

(L]

0025

o2

0015

o

0.005

. L . L L | f . L
0
0 100,000 200,000 300,000 400,000 500,000 600.000 700,000 00,000 900,000 le+0 60 40 20 0 20 a0

@

(a) (b)

Figure 5. K(x,y) = x+y.
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Figure 6. K(x,y) = xy.

have not used any cutoff procedure to obtain Figures 3, 5, 6). The convergence result of
Theorem 3.3 seems to hold also under (H)).

Finally, Figures 2(b), 3(b), 5 and 6 show that the result of Theorem 4.4 may hold, at least
in the discrete case, under (H,).

Appendix

We begin with a Lemma which can be found in Mél€ard (1996).

LEMMA 6.1 Let T > 0 be fixed and let v" be a sequence of random probability measures
on D(]0,T],R), which converges in law to a deterministic probability measure
Re2(D([0,T],R)). Assume moreover that

sup / sup  (|Ax(s)| A 1)R(dx) — O. (A.1)
1e[0,7] JxeD(0,T),R) selr—rit+r] r—0
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Then {v{},c o7 converges in probability to {R},¢o 7 in D([0, T], Z(R)) endowed with the
topology of the uniform convergence.

We state here a Lemma due to Fernique (1991), which we restrict to the particular situation
of I>-valued processes.

LEMMA 6.2 Let o" be a sequence of strongly cadldg processes with values in [>. Then the
sequence o is tight in D([0, 00), ?) (endowed with the Skorokhod topology associated
with the weak topology of I? ) if the following conditions are satisfied.:

(i) For any T < oo, there exists a sequence of weakly compact subsets K, of I> such
that for any n, any m,

P(Vte[0,T],0) €K,,) > 1 —2"". (A.2)

In particular this condition is always satisfied if for all T,

supE| sup e']|% | < 0. (A.3)
n te[0,T]

(ii) For eachk > 1, the sequence of real-valued processes o' (k) is tight (for the usual
Skorokhod topology on D([0, ), R)).
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