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Abstract

In this study, we compare the performance of trading strategies based on possibly mis-specified
mathematical models with a trading strategy based on a technical trading rule. In both cases, the trader
attempts to predict a change in the drift of the stock return occurring at an unknown time. We explicitly
compute the trader’s expected logarithmic utility of wealth for the various trading strategies. We next
rely on Monte Carlo numerical experiments to compare their performance. The simulations show that
under parameter mis-specification, the technical analysis technique out-performs the optimal alloca-
tion strategy but not the Model and Detect strategies. The latter strategies dominance is confirmed
under parameter mis-specification as long as the two stock returns’ drifts are high in absolute terms.
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1. Introduction

The financial services industry typically relies on three main approaches to make invest-
ment decisions: the fundamental approach that uses fundamental economic principles to
form portfolios, the technical analysis approach that uses price and/or volume histories
and the mathematical approach that is based on mathematical models. Technical analysis
has been used by professional investors for more than a century. The academic community
has looked at its foundations and its performance with a rather skeptical frame of mind.
Indeed, technical analysis techniques have limited theoretical justification, and they stand
in contradiction to the conclusions of the efficient market hypothesis. More recently, there
has been a renewal of academic interest in the performance of technical analysis based
methods. Indeed, the pioneering study by Brock et al. (1992) applied 26 trading rules to
the Dow Jones Industrial Average and found that they significantly out-perform a bench-
mark of holding cash. In their impressive study, Sullivan et al. (1999) examine close to
8000 technical trading rules and repeat Brock et al. study while correcting it for data
snooping problems. They find that the trading rules examined by Brock et al. do not
generate superior performance out-of-sample. Lo et al. (2000) propose to use a non-para-
metric kernel regressions pattern recognition method in order to automate the evaluation
of technical analysis trading techniques. In their comprehensive study they compare the
unconditional and the conditional – on technical analysis indicators – distribution of a
large number of stocks traded on the NYSE/AMEX and on the NASDAQ. They conclude
that ‘‘several technical indicators do provide some incremental information and may have
some practical value’’. However, as pointed out by Jegadeesh, 2000 in his comment of the
Lo et al. (2000) paper, none of the technical analysis indicators examined by the authors is
able to identify profitable investment opportunities. Thus, it seems that the debate about
the effectiveness of technical analysis usefulness is still very much alive.

The purpose of our study is to examine chartist and mathematical models based trading
strategies by providing a conceptual framework where their performance can be com-
pared. If one considers a non-stationary economy, it is impossible to specify and calibrate
mathematical models that can capture all the sources of parameter instability during a
long time interval. In such an environment, one can only attempt to divide any long invest-
ment period into sub-periods such that, in each of these sub-periods, the financial assets
prices can reasonably be supposed to follow some particular distribution (e.g., a stochastic
differential system with a fixed volatility function). Due to the investment opportunity set’s
instability, each sub-period must be short. Therefore, one can only use small amounts of
data during each sub-period to calibrate the model, and the calibration errors can be sub-
stantial. Yet, any investment strategy’s performance depends on the underlying model
characterizing the evolution of the investment opportunity set and also on the parameters
involved in the model. Thus, in a non-stationary economy, one can use strategies which
have been optimally designed under the assumption that the market is well described by
a prescribed model, but these strategies can be extremely misleading in practice because
the prescribed model does not fit the actual evolution of the investment opportunity set.
In such a situation, is one better of using a technical analysis based trading rule which
is free of any model dependency? In order to answer that question one should compare
the performance obtained by using erroneously calibrated mathematical models with
the one associated with technical analysis techniques. To our knowledge, this question
has not yet been investigated in the academic literature.
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More specifically, we here consider the following test case: the agent in a frictionless
continuous-time economy can invest in a riskless asset and in a stock. The instantaneous
expected rate of return of the stock changes once at an unknown random time. We com-
pare the performance of traders who respectively use:

• A technical analysis technique, namely the simple moving average technique in order to
predict the change in the stock returns’ drift.

• A portfolio allocation strategy which is optimal when the mathematical model is per-
fectly specified and calibrated.

• Two mathematical strategies called ‘‘Model and Detect’’ strategies aimed at detecting
the time of the drift change.

• The three previous strategies under mis-specified parameters (due to the error on
calibration).

The study is divided into two parts: a mathematical part which, whenever possible, pro-
vides analytical formulae for portfolios managed by means of mathematical and technical
analysis strategies and a numerical part which provides comparisons between the various
strategies’ performance. Based on the numerical simulations, we find that the chartist
strategy can out-perform optimal portfolio allocation models when there is parameter
mis-specification. However, the ‘‘Model and Detect mathematical strategies’’ clearly dom-
inate the chartist trading rule even when they are subject to parameter mis-specification.

The paper is organized as follows: In Section 2, we describe the basic setting underlying
our mathematical modeling. In Sections 3 and 4, we examine the performance of a trader
whose strategy is based on mathematical models. In Section 3, we examine the optimal
portfolio allocation strategy. We give explicit formulas for the optimal wealth and the
portfolio strategy of a trader who perfectly knows all the parameters characterizing the
investment opportunity set and thus fully describe the best financial performance that
one can expect within our model. In Section 4, we consider a trader who uses mathemat-
ical models in order to detect the change time s in the drift of the stock price process as
early and reliably as possible: he/she selects a stopping time H* adapted to the filtration
generated by (St), which serves as an ‘‘alarm signal’’ (this strategy is called ‘‘Model and
Detect’’). In Section 5, we consider the performances of the optimal portfolio allocation
strategy and of the Model and Detect strategy when the trader mis-specifies the parameters
of the model. In Section 6, we focus on a technical analyst who uses a simple moving aver-
age indicator to detect the time at which the drift of the stock return switches. We char-
acterize his/her expected utility of wealth in the logarithmic case. We also numerically
illustrate the properties of his/her strategy’s performance. Finally, in Section 7, we com-
pare the performances of the mis-specified mathematical strategies to those of the technical
analysis technique.1
2. Description of the setting

We consider a frictionless continuous-time economy with two assets that are
traded continuously. The first one is an asset without systematic risk, typically a
1 A short version of this paper has been published in Blanchet-Scalliet et al. (2006).
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risk-less bond (or bank account), whose price at time t evolves according to the following
equation

dS0
t ¼ S0

t r dt;

S0
0 ¼ 1:

(

The second asset is a stock subject to systematic risk. We model the evolution of its price at
time t by the linear stochastic differential equation

dSt ¼ St l2 þ ðl1 � l2Þ1ðt6sÞ
� �

dt þ rSt dBt;

S0 ¼ S0;

(
ð2:1Þ

where (Bt)06t6T is a one-dimensional Brownian motion on a given probability space
ðX;F;PÞ. The random time of the stock return drift change s is independent of B and
has an exponential distribution with parameter k:

Pðs > tÞ ¼ e�kt; t P 0: ð2:2Þ

At time s, which is neither known, nor directly observable, the instantaneous expected rate
of return changes from l1 to l2.

We suppose that the parameters l1, l2, r > 0 and r P 0 satisfy

l1 �
r2

2
< r < l2 �

r2

2
:

The main purpose of this study will be to use this setting in order to examine if math-
ematical models used to detect the time change in the drift of the stock price process lead
to better predictions and thus to superior performance than a very popular technical anal-
ysis method based on a simple moving average signal.
3. The optimal portfolio allocation strategy under a change of drift

3.1. Introduction

We start by characterizing the optimal wealth and portfolio allocation of a trader who
perfectly knows all the parameters l1, l2, k, r and r. Of course, this situation is unrealistic.
However, it is worth computing the best performance that one can expect within our set-
ting. This performance represents an optimal benchmark for mis-specified allocation strat-
egies relying either on a mathematical model or on technical analysis.

Let pt be the proportion of the trader’s wealth invested in the stock at time t; the
remaining proportion 1 � pt is invested in the bond. For a given, non random, initial cap-
ital x > 0, let W x;p

� denote the wealth process corresponding to the portfolio (pÆ). We have

dW x;p
t ¼ W x;p

t ðr dt þ pt½ðl1 � r þ ðl2 � l1Þ1ðs6tÞÞdt þ rdBt�Þ: ð3:1Þ

Now, let U(Æ) denote a utility function. We suppose that U is strictly increasing, concave, of
class C2(0,1) and satisfies

U 0ð0þÞ ¼ lim
x#0

U 0ðxÞ ¼ 1; U 0ð1Þ ¼ lim
x"1

U 0ðxÞ ¼ 0:
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Let AðxÞ denote the set of admissible strategies, that is, the set of processes p which take
values in [0,1] and are progressively measurable with respect to the filtration FS generated
by the observed prices St.

It is easy to see that, for all process p in AðxÞ, W x;p
t > 0 for all t.

The investor’s objective is to maximize his/her expected utility of wealth at the terminal
date T. He/she solves the following optimization problem:

V ðxÞ :¼ sup
p�2AðxÞ

E½UðW p
TÞjW p

0 ¼ x�: ð3:2Þ

In order to compare the performance of the optimal strategy defined by (3.2) to the one
pursued by a technical analyst, we impose constraints on the portfolio weights. Indeed, we
will below assume that the technical analyst invests all of his/her wealth either in the stock
or in the bond depending upon the moving average signal. We therefore assume that the
portfolio weights of the trader pursuing an optimal strategy are also constrained to lie
within the interval [0,1] in the absence of short selling.

3.2. The case of general utility functions

In order to compute the constrained optimal wealth of the trader, we use the martingale
approach to stochastic control problems as developed by Karatzas, Shreve, Cvitanić, etc.
More precisely, we follow and carefully adapt the martingale approach to the well known
optimal consumption-portfolio problem studied by Merton (1971). We emphasize that our
trader’s situation differs from the Merton problem for the following three reasons:

• The drift coefficient of the dynamics of the risky asset return is not constant over time
(since it changes at the random time s).

• We face some subtle measurability issues since the trader’s strategy needs to be adapted
with respect to the filtration generated by (St). As already mentioned, the drift change
at the random time s makes this filtration different from the filtration generated by the
Brownian motion (Bt).

• The portfolio weight p is constrained to lie in a finite interval ([0,1]).

These three features of our problem make it hard to construct optimal strategies.
Indeed, in the case of a general utility function, we need an additional hypothesis described
below to prove the existence of an optimal constrained allocation strategy p*, and to exhi-
bit an abstract representation for the corresponding optimal portfolio process.

As in Karatzas and Shreve (1998), we introduce an auxiliary unconstrained market Mm

defined as follows: Let D be the subset of fFS
t g – progressively measurable processes

m : ½0; T � � X! R such that

E

Z T

0

mðtÞ� dt <1; where mðtÞ� :¼ � infð0; mðtÞÞ:

The bond price process S0(m) and the stock price S(m) satisfy

dS0
t ðmÞ

S0
t ðmÞ

¼ dS0
t

S0
t

þ m�ðtÞdt;

dStðmÞ
StðmÞ

¼ dSt

St
þ ðmðtÞ þ m�ðtÞÞdt:
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We compute the optimal allocation strategy for each auxiliary unconstrained market dri-
ven by a process m (see Proposition 3.1). We conclude with Proposition 3.2 which links the
optimal strategy for the constrained problem with the set of optimal strategies for auxil-
iary unconstrained markets.

For each auxiliary unconstrained market, let Aðx; mÞ denote the set of admissible strat-
egies, that is,

Aðx; mÞ :¼ fp� –FS
t –progressively measurable process s:t:

W m;p
0 ¼ x; W m;p

t > 0 for all t > 0g:
We have to solve the following problem Pm:

V ðm; xÞ :¼ sup
p�2Aðm;xÞ

E½UðW m;p
T ÞjW

m;p
0 ¼ x�;

where

dW m;p
t

W m;p
t

¼ pt
dStðmÞ
StðmÞ

þ ð1� ptÞ
dS0

t ðmÞ
S0

t ðmÞ
¼ dW p

t

W p
t

þ ðm�ðtÞ þ ptmðtÞÞdt: ð3:3Þ

To characterize optimal allocation strategies and their associated wealth level, we need to
introduce four processes which are adapted to the filtration FS generated by the observed
price process.

• The exponential likelihood-ratio process Lt is defined by

Lt ¼
St

S0

� �l2�l1
r2

exp � 1

2r2
ðl2 � l1Þ

2 þ 2ðl2 � l1Þ l1 �
r2

2

� �� �
t

� �
: ð3:4Þ

• The conditional a posteriori probability Ft that the change point has appeared before
time t is F t :¼ Pðs 6 tjFS

t Þ:

F t ¼
kektLt

R t
0

e�ksL�1
s ds

1þ kektLt

R t
0

e�ksL�1
s ds

ð3:5Þ

• The innovation process B is defined by

Bt ¼
1

r
logðStÞ � l1 �

r2

2

� �
t � ðl2 � l1Þ

Z t

0

F s ds
� �

; t P 0: ð3:6Þ

The process B is a Brownian motion for the filtration FS .
• The exponential process H m

t :

H m
t ¼ exp �

Z t

0

l1� rþ mðsÞ
r

þðl2�l1ÞF s

r

� �
dBs�

1

2

Z t

0

l1� rþ mðsÞ
r

þðl2�l1ÞF s

r

� �2

ds

 !
:

Proposition 3.1. For each m 2 D, the optimal wealth is

W m;�
T ¼ ðU 0Þ

�1 yH m
Te
�rT�

R T

0
m�ðtÞ dt

� �

W m;�
t ¼

e
rtþ
R t

0
m�ðsÞ ds

H m
t

E H m
Te
�rT�

R T

0
m�ðsÞ dsðU 0Þ�1 yH m

Te
�rT�

R T

0
m�ðsÞ ds

� �
jFS

t

� �
:
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Moreover, the optimal strategy satisfies

pm;�
t ¼ r�1 l1 � r þ ðl2 � l1ÞF t þ mðtÞ

r
þ /t

H m
t W

m;�
t e
�rt�
R t

0
m�ðsÞ ds

0@ 1A; ð3:7Þ

where Ft is defined as in (3.5), y stands for the Lagrange multiplier, that is, such that

E H m
T exp �rT �

Z T

0

m�ðtÞdt
� �

ðU 0Þ�1 yH m
T exp �rT�

Z T

0

m�ðtÞdt
� �� �� 	

¼ x:

and / is a FS
t adapted process which satisfies

E H m
Te
�rT�

R T

0
m�ðtÞ dtðU 0Þ�1 yH m

Te
�rT�

R T

0
m�ðtÞ dt

� �
FS

t



 �
¼ xþ

Z t

0

/sdBs:

�
The proof is postponed to Appendix.

In view of (3.3), we observe that for each constrained strategy p, m�(t) + ptm(t) P 0, and
therefore W m;p

t P W p
t and V(m, x) P V(x). So, V ðxÞ 6 inf m2DV ðm; xÞ. The following propo-

sition tells us that, if the minimum is attained, then the minimizing auxiliary strategy em
provides the optimal constrained strategy p*.

Proposition 3.2. If there exists em in D such that

V ðem; xÞ ¼ inf
m2D

V ðm; xÞ; ð3:8Þ

then an optimal portfolio p�;~m for the unconstrained problem P~m is also an optimal portfolio for

the constrained original problem P, such that

W �
t ¼ W p�;~m;em

t and V ðxÞ ¼ V ðem; xÞ: ð3:9Þ
An optimal portfolio allocation strategy is

p�t :¼ r�1 l1 � r þ ðl2 � l1ÞF t þ emðtÞ
r

þ /t

Hemt W �
t e
�rt�
R t

0
em�ðsÞ ds

0@ 1A; ð3:10Þ

where Ft is defined as in (3.5).
Proof. See the proof in Karatzas and Shreve (1998, p. 275). h
3.3. The case of the logarithmic utility function

When the agent has a logarithmic utility function, we can verify the existence of a em sat-
isfying (3.8) and explicit the optimal allocation strategy p* and its associated wealth W*,x.

Proposition 3.3. If U(Æ) = log(Æ) and the initial endowment is x, then the optimal wealth

process and strategy are

W �;x
t ¼

x expðrt þ
R t

0
em�ðsÞdsÞ

Hemt ; ð3:11Þ



1358 C. Blanchet-Scalliet et al. / Journal of Banking & Finance 31 (2007) 1351–1373
where

emðtÞ ¼
�ðl1 � r þ ðl2 � l1ÞF tÞ if

l1 � r þ ðl2 � l1ÞF t

r2
< 0;

0 if
l1 � r þ ðl2 � l1ÞF t

r2
2 ½0; 1�;

r2 � ðl1 � r þ ðl2 � l1ÞF tÞ otherwise;

8>>>><>>>>: ð3:12Þ

and, as above,em�ðtÞ ¼ � infð0;emðtÞÞ:
In addition,

p�t ¼ proj½0; 1�
l1 � r þ ðl2 � l1ÞF t

r2

� �
: ð3:13Þ
Proof. If U(x) = log(x) for each m 2 D, the solution of the unconstrained problem is

pm;�
t ¼

l1 � r þ ðl2 � l1ÞF t þ mðtÞ
r2

;

W m;�
t ¼

x exp rt þ
R t

0 m�ðsÞds
� �

H m
t

;

V ðm; xÞ ¼ log xþ rT þ E

Z T

0

mðtÞ� dt
� 	

þ E

Z T

0

1

2

l1 � r þ ðl2 � l1ÞF t þ mðtÞ
r

� �2

dt

" #
:

ð3:14Þ

Then the process em defined by (3.12) satisfies

emðtÞ� þ 1

2

l1� rþðl2�l1ÞF tþemðtÞ
r

� �2

¼ inf
m2D

mðtÞ� þ 1

2

l1� rþðl2�l1ÞF tþ mðtÞ
r

� �2
 !

: �
Remark 3.4. Optimal strategies for the constrained problem are projections on [0,1] of
optimal strategies for the unconstrained problem.
Remark 3.5. In the case of the logarithmic utility function, when t is small and thus smal-
ler than the change time s with high probability, Ft is close to 0; since, by hypothesis, one
also has l1�r

r2 6 0, the optimal risky asset portfolio weight is close to 0 ; after the change
time s, Ft is close to 1, and the optimal risky asset portfolio weight is close to
minð1; l2�r

r2 Þ. In both cases, we approximately recover the optimal strategies of the con-
strained Merton problem with drift parameters equal to l1 or l2 respectively.
Remark 3.6. Notice that, in view of (3.4), (3.5) and (3.13), p�t can be expressed in terms of
the prices (Su, 0 6 u 6 t).
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Using the explicit value (3.12) of emðtÞ, one can obtain an explicit formula for the value

function VemðxÞ corresponding to the optimal strategy.
The derivations of the optimal portfolio weights and of the expected utility of wealth
for the logarithmic investor will serve as benchmarks to compare the performances
obtained by the Model and Detect strategy and the strategy pursued by a technical ana-
lyst. Indeed, we can write (see Appendix A.3) a lengthy formula for the value function
V(x) by using a result due to Yor (see Yor, 1992 or Borodin and Salminen, 2002, formula
1.20.8 p.618). See Blanchet-Scalliet et al., 2005 for further details.

4. Two Model and Detect strategies

The optimal portfolio allocation strategy in the previous section supposes that the trader
is allowed to continuously change his/her portfolio allocation. In this section, the trader is
allowed to change his/her allocation only once. So, the trader uses an optimal detection
procedure to decide when to rebalance his/her portfolio. In order to facilitate the compar-
ison with the performance of the technical analyst’s strategy, we here assume that the trader
arbitrarily sets the stock weight to p = 0 before the drift change and subsequently to 1. We
continue to suppose that the trader perfectly knows all the parameters of the model.

We consider two detection methods: the first one has been proposed by Karatzas
(2003), and the other one has been proposed by Shiryaev (2002). The goal of these two
methods is to find a stopping rule H which detects the instant s at which the drift of
the stock return changes. We compute the wealth of the trader who uses one of the two
Model and Detect strategies. In both cases, the trader puts all of his/her money in the
bond until H, and in the stock after H, thus his wealth satisfies:

W T ¼
xS0

H

SH
ST1ðH6T Þ þ xS0

T1ðH>TÞ:

The time H is interpreted as the ‘‘alarm’’ time, it can occur before s (in this case, it corre-
sponds to a ‘‘false alarm’’), or after s. So, the amount of time by which the stopping rule H
misses the true change of drift point s is given by jH � sj.

The main mathematical tool used to obtain these two stopping rules is the process Ft,
the (conditional) probability that the (unknown) change point appeared before the run-
ning time t. For each procedure, the trader decides to invest his/her wealth in the stock
when Ft is bigger than a given quantity respectively equal to p* for the Karatzas’ method
(see (4.2)) and to A* for the Shiryaev method (see (4.3)). These two quantities will be
defined in Sections 4.1 and 4.2.

With the Karatzas’ method, the trader minimizes the expected miss EjH� sj. With Shir-
yayev’s one, the trader minimizes fPðH < sÞ þ cEðH� sÞþg, i.e., he/she does not give the
same weight to errors generated by false alarms (H < s) and errors generated by late
alarms (H P s ).

4.1. Karatzas’ method

We first adapt Karatzas’s detection method to compute the optimal stopping rule HK

that minimizes the expected miss

RðHÞ :¼ EjH� sj ð4:1Þ
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over all stopping rules H, when s is assumed to have the a priori exponential distribution
(2.2).

Proposition 4.1. The stopping rule HK which minimizes the expected miss EjH� sj over all

the stopping rules H with EðHÞ <1 is

HK ¼ infft P 0 F t P p�j g; ð4:2Þ
where Ft is defined as in (3.5) and p* is the unique solution in ð1

2
; 1Þ of the equationZ 1=2

0

ð1� 2sÞe�b=s

ð1� sÞ2þb s2�b ds ¼
Z p�

1=2

ð2s� 1Þe�b=s

ð1� sÞ2þb s2�b ds;

where b = 2kr2/(l2 � l1)2.
Proof. We adapt Karatzas’s method in Karatzas (2003) to our specific case. Denote by S
the collection of stopping rules H : X! [0,1) such that EðHÞ <1. Rewrite (4.1) as
follows:

RðHÞ ¼ E½ðH� sÞþ þ ðs�HÞþ� ¼ EðH� sÞþ þ EðsÞ � EðH ^ sÞ:
Then, using (2.2) and the notation (3.5), we get

RðHÞ ¼ 1

k
þ E

Z H

0

1ðs6sÞ ds�
Z H

0

1ðs>sÞ ds
� �

¼ 1

k
þ E

Z 1

0

ð21ðs6sÞ � 1Þ1ðs6HÞ ds
� �

¼ 1

k
þ 2E

Z H

0

F s �
1

2

� �
ds:

We thus obtain

inf
H2S

RðHÞ ¼ 1

k
þ 2 inf

H2S
E

Z H

0

F s �
1

2

� �
ds:

It now remains to follow Karatzas’ arguments (see Karatzas, 2003). h

The terminal wealth of a trader who uses Karatzas detection procedure satisfies

W T ¼ xerHK

exp rðBT � BHKÞ þ l1 �
r2

2

� �
ðT �HKÞ

�
þðl2 � l1Þ½ðT � sÞþ � ðHK � sÞþ�

�
1ðHK

6T Þ þ x expðrT Þ1ðHK>T Þ:
4.2. Shiryaev method

The detection method proposed by Shiryaev (namely the Variant B in Shiryaev (2002))
consists in computing

BðcÞ :¼ inf
H
fPðH < sÞ þ cEðH� sÞþg

and the corresponding optimal stopping time for a given c > 0.
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For all c > 0, this time is given by

HSðA�Þ :¼ infft P 0; F t P A�g ð4:3Þ
where F is the conditional a posteriori probability solution of (A.6) and the parameter A*

is defined as the root in (0,1) of the equationZ A�

0

exp � 2kr2

ðl2 � l1Þ
2

1

y

 !
1

yð1� yÞ2
y

1� y

� � 2kr2

ðl2�l1Þ2

dy

¼ ðl2 � l1Þ
2

2r2c
exp � 2kr2

ðl2 � l1Þ
2

1

A�

 !
A�

1� A�

� � 2kr2

ðl2�l1Þ2

:

For both Karatzas and Shiryaev’s detection procedures, we are able to write explicit
formulae for the expected utility of terminal wealth, EðlogðW TÞÞ (similar to the formula
in Proposition 6.1 below). Due to their complexity, these formulae do not allow us to com-
pare the expected utility of terminal wealth associated with the Model and Detect strate-
gies to the one obtained when pursuing the optimal strategy or the technical analysis based
strategy. In Section 7, we therefore rely on numerical simulations to make comparisons
between the various strategies’ performances.

Remark 4.2. Beibel and Lerche (1997) have considered the model (2.1) with l1 � r2

2 P
r P l2 � r2

2 . They have studied the problem of maximizing Eðe�rHSH1ðH<1ÞÞ over all
stopping times H adapted to the filtration generated by (St). We do not examine their
detection procedure in our study.
5. Mis-specified trading models

In reality, it is extremely difficult to know the parameters characterizing the investment
opportunity set exactly. It may be possible to calibrate the first drift coefficient l1 and the
volatility coefficient r relatively well owing to historical data, but the value of l2 cannot be
determined a priori (i.e. before the occurrence of the drift change), and the law of s cannot
be calibrated accurately because of the lack of data associated with s. It is thus reasonable
to assess the impact of estimation risk on the performance of the various model-based
detection strategies.

5.1. Mis-specification of the parameters

We consider the case where each parameter is estimated with error. In other words, the
trader believes that the stock price satisfies the following stochastic differential equation:

dSt ¼ Stð�l2 þ ð�l1 � �l2Þ1ðt6�sÞÞdt þ �rSt dBt; ð5:1Þ

where the law of �s is exponential with parameter �k, while the true stock price is still given
by (2.1). Our aim is to study the mis-specified optimal allocation strategy and the mis-spec-
ified Model and Detect strategy.

Notation. As in the previous developments without estimation error, St denotes the
current stock price. We need to compute Lt and Ft (see (3.4) and (3.5)) to apply the optimal
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allocation strategy and the Model and Detect strategies. We define the approximated
quantities computed when the model is mis-specified Lt and F t as follows:

Lt ¼ exp
1

�r2
ð�l2 � �l1Þ logðStÞ �

1

2�r2
ð�l2 � �l1Þ2 þ 2ð �l2 � �l1Þ �l1 �

�r2

2

� �� �
t

� �
;

F t ¼
�ke

�ktLt

R t
0

e�
�ksL�1

s ds

1þ �ke�ktLt

R t
0

e��ksL�1
s ds

:

5.2. On the mis-specified optimal allocation strategy

Observing the stock price St, the trader computes a ‘‘pseudo optimal’’ portfolio alloca-
tion by using the erroneous parameters �l1 , �l2, �r and �k. Thus, the stock proportion of his/
her mis-specified optimal allocation strategy satisfies

�p�t ¼ proj½0; 1�
�l1 � r þ ð�l2 � �l1ÞF t

�r2
;

and the corresponding wealth satisfies

W �
t ¼ ert exp

Z t

0

�p�udðe�ruSuÞ
� �

:

5.3. On mis-specified Model and Detect strategies

The erroneous stopping rule for the Karatzas detection time rule satisfies

HK ¼ infft P 0; F t P p�g
where �p� is the unique solution in ð1

2
; 1Þ of the equationZ 1=2

0

ð1� 2sÞe��b=s

ð1� sÞ2þ�b
s2��b ds ¼

Z �p�

1=2

ð2s� 1Þe��b=s

ð1� sÞ2þ�b
s2��b ds

with �b ¼ 2�k�r2=ð�l2 � �l1Þ2.
The wealth of the Model and Detect trading strategy satisfies

W T ¼ xS0
HK

ST

SHK

1ðHK6T Þ þ xS0
T1ðHK>T Þ:

A similar approach based on the results obtained in Section 4.2 can be followed to
compute the erroneous stopping rule and its associated wealth for the Shiryaev detection
rule.

6. The chartist investment strategy

6.1. Introduction

Technical analysis makes predictions about the evolution of an asset’s price and
defines trading rules using only the asset’s price (or/and volume) history. Thus, technical
analysts compute indicators based on the asset’s past transaction prices and volumes.
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These indicators are used as trading signals assuming that (see, e.g., the book by Achelis,
2000):

• The price of a stock is governed by the law of supply and demand.
• The stock price evolves according to trends during discernible periods.
• These discernible tendencies repeat themselves in a regular fashion.

A very large number of technical analysis indicators are used by practitioners. In
their impressive study, Sullivan et al. (1999) provide a parameterization for 7846 distinct
trading rules. Here, we limit ourselves to the simple moving average indicator because it is
easy to compute and widely used to detect trend patterns in stock prices. In order to
compute its value, one averages the closing prices of the stock during the d most recent
time periods. When prices are trending, this indicator reacts quickly to recent price
changes.
6.2. Moving average indicator for the stock prices

Consider a chartist trader who takes decisions at discrete times during the interval [0,T]
with time increments Dt ¼ T

N:

0 ¼ t0 < t1 < . . . < tN ¼ T ; tk ¼ kDt:

We denote by pt 2 {0,1} the proportion of the agent’s wealth invested in the risky asset at
time t, and by Md

t the simple moving average indicator of the prices defined as

Md
t ¼

1

d

Z t

t�d
Su du: ð6:1Þ

The parameter d denotes the size of the time window used to compute the moving average.
At time 0, the agent knows the past prices of the stock and has enough data to com-

pute Md
0. At each tn, n 2 [1 � � � N], the chartist follows a very simple trading strategy: all

the wealth is invested into the risky asset if the price Stn is larger than the moving aver-
age Md

tn
. Otherwise, all the wealth is invested into the riskless asset. This portfolio

investment strategy is thus analogous to the one followed by the Model and Detect
trader.

Consequently,

ptn ¼ 1ðStn PMd
tn
Þ: ð6:2Þ

Denote by x the initial wealth of the trader. The wealth at time tn+1 is

W tnþ1
¼ W tn

Stnþ1

Stn

ptn þ
S0

tnþ1

S0
tn

ð1� ptnÞ
 !

;

and therefore, since S0
tnþ1
=S0

tn
¼ expðrDtÞ,

W T ¼ x
YN�1

n¼0

ptn

Stnþ1

Stn

� expðrDtÞ
� �

þ expðrDtÞ
� 	

: ð6:3Þ
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6.3. The particular case of the logarithmic utility function

We now assume that the chartist trader displays a logarithmic utility function. Then, his
expected utility of wealth can be explicitly characterized.

Proposition 6.1. Consider a technical analyst whose strategy is defined as in (6.2). Then his

expected logarithmic utility of wealth satisfies

E log
W Te�rT

x

� �� 	
¼ l2 �

r2

2
� r

� �
Tpð1Þd

þ Dt l2 �
r2

2
� r

� �
1� e�kT

1� e�kDt
ðpð2Þd � pð1Þd Þekd þ pð3Þd

� �
� Dtðl2 � l1Þðe�kDt � kDtÞ 1� e�kT

1� e�kDt
pð3Þd ;

where we have set

pð1Þd ¼
Z 1

0

Z 1

y

zl2�3=2

2y
e
� l2=r�r=2ð Þ2d

2 �ð1þz2Þ
2r2y ir2d=2

z
r2y

� �
dzdy;

pð2Þd ¼
Z d

0

Z
R4

1
dy2P

z1
y1
þz2

n o zl2�3=2
2

2y2

e
� l2=r�r=2ð Þ2ðd�vÞ

2 �
ð1þz2

2
Þ

2r2y2 ir2ðd�vÞ=2

z2

r2y2

� �

� zl1�3=2
1

2y1

e
� l1=r�r=2ð Þ2v

2 �
ð1þz2

1
Þ

2r2y1 ir2v=2

z1

r2y1

� �
e�kv dy1 dz1 dy2 dz2 dv;

pð3Þd ¼
Z 1

0

Z 1

y

zl1�3=2

2y
e
� l1=r�r=2ð Þ2d

2 �ð1þz2Þ
2r2y ir2d=2

z
r2y

� �
dzdy;

the function i being defined as in (A.11).
Proof. In view of

Stjþ1

Stj

¼ exp l1 �
r2

2

� �
Dt þ ðl2 � l1Þ tjþ1 �maxðs; tjÞ

� �þ þ rðBtjþ1
� BtjÞ

� �
; ð6:4Þ

and (6.2), we have

E log
W T

x

� �
¼ l1 �

r2

2
� r

� �
Dt
XN�1

j¼0

P Stj P Md
tj

� �

þ ðl2 � l1Þ
XN�1

j¼0

E 1ðStj PMd
tj
Þ tjþ1 �maxðs; tjÞ
� �þn o

þ rT þ r
XN�1

j¼0

E 1ðStj PMd
tj
ÞðBtjþ1

� BtjÞ
n o

:

From here, one obtains the result by lengthy calculations using independence and identity
in law arguments, and Lemma A.3 in the Appendix. h
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Remark 6.2. Relying on Proposition 6.1, one can use numerical optimization procedures
to optimize the choice of d, the moving average window size. As we will see in the next
section, inadequate choices of d may negatively affect the performance of the technical
analyst strategy.
7. A numerical comparison of the various strategies

7.1. Empirical determination of a good windowing

Before turning to a comparison between the various trading strategies, we first show
how to optimize the choice of the moving average window size d by using Proposition
6.1 and deterministic numerical optimization procedures, or by means of Monte Carlo
simulations. In this subsection, we present results obtained from Monte Carlo simulations
to show that inadequate choices of d may indeed alter the performance of the technical
analyst strategy. For each value of d we have simulated 500,000 trajectories of the asset
price and computed the expected utility of terminal wealth, E log ðW TÞ by a Monte Carlo
method. In all our simulations the empirical variance of log(WT) is set at 0.04. Thus, the
Monte Carlo error on E logðW TÞ is of the order 5.10�4 with probability 0.99. At first, the
number of price trajectories used for these simulations may seem too large; however, con-
sidered as a function of d, the quantity E logðW TÞ varies very slowly, so that we really need
a large number of simulations to obtain smooth curves (cf. Fig. 1).

Fig. 1a and b illustrates the relationship between E logðW TÞ and d for two different val-
ues of the stock returns’ volatility. It is clear from these figures that the optimal choice of d
varies with the volatility of the stock returns. When the volatility reaches 0.05, the optimal
choice of d is around 0.3 whereas, when the volatility increases to 0.15, the optimal choice
of d is around 0.8.

On the basis of a comprehensive numerical study performed in Blanchet-Scalliet et al.
(2005), we can make the following statements:

• When the volatility decreases, the choice of d becomes more important: the curve is flat
for large volatility levels only.
– When the volatility is high, the losses decrease when choosing a large window size.
– In all cases, a too small window length is sub-optimal,
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Fig. 1. Expected values of the logarithm of the terminal wealth (EðlogðW TÞÞ) for a trader using the moving
average indicator of order d as a function of d. (a) l1 = �0.2; k = 2; r = 0.0; l2 = 0.2; r = 0.15; T = 2.0.
(b) l1 = �0.2; k = 2; r = 0.0; l2 = 0.2; r = 0.05; T = 2.0.
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– As jl1j or l2 decreases (respectively, increases), the choice of d becomes less (respec-
tively, more) important.
• The choice of d depends on the arrival rate k.
• The parameter l2 has a strong effect on the importance of the window length. In Blan-

chet-Scalliet et al. (2005), it is shown that the curves become flatter when l2 increases.
This observation confirms the intuition; if the future drift is not large enough, the detec-
tion of s will be more difficult.

Fig. 2 shows that, when k = 2.0, the time horizon has a significant effect on the optimal
choice of d. When the time horizon is small, for example when T = 1, one has better to
underestimate d than to overestimate it. When T is large, one has better to overestimate
d. Of course, the specific values for T highly depend on the chosen level of k.
7.2. Mis-specified mathematical strategies vs technical analysis

We can now address our main question: Is it better to invest according to a mathemat-
ical Model and Detect strategy based on a mis-specified model, or according to a strategy
which is model – free? Due to the analytical complexity of all the explicit formulae that we
have obtained for the various expected utilities of terminal wealth, we have not yet suc-
ceeded to find a mathematical answer to this question (even in asymptotic cases, when
l2�l1

r2 is large, e.g.). We therefore present numerical results obtained from Monte Carlo sim-
ulations to illustrate our comparisons.2

Fig. 3 shows that, despite a large degree of parameter mis-specification, the two model
and detect strategies represented in panels (a) and (b) yield a good performance and clearly
out-perform the technical analyst. However, it can be seen from Fig. 3c that the optimal
trading strategy with mis-specified parameters is out-performed by the technical analysis
strategy. This result suggests that statistical detection techniques or technical analysis
approaches could be more attractive when the parameters are mis-specified.

We have run, a number of other simulations which all confirm that the technical analyst
may out-perform the mis-specified optimal allocation strategy but not the mis-specified
A more complete set of simulations on the performance of the mathematical and the chartist strategies can be
nd in Blanchet-Scalliet et al. (2005).
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Model and Detect strategies. These simulations also show that when l2/l1 decreases, the
performances of well specified and mis-specified Model and Detect strategies decrease.3

In conclusion, our numerical study suggests that there is no universal solution to the
problem of parameter mis-specification. It seems that when the drifts are high in absolute
terms and, in particular, when the upward drift is high, the performance of the Model and
Detect strategies can be quite robust and superior to the one of the chartist trading strat-
egy. However, their performance deteriorates rapidly when k is strongly mis-specified and/
or when the upward drift is not very high. Since the second drift is in fact the hardest to
estimate due to the fact that we lack a priori information, we recommend caution before
asserting that Model and Detect strategies are superior to the technical trading rule.4

Indeed, the Model and Detect strategies only offer a clear comparative advantage over
the chartist trading rule in the presence of strong expected future trends.
3 The results are available from the authors upon request.
4 In reality, the technical analyst does not know the length of the optimal window, thus his/her strategy is not

free of mis-specification either. However, as we show in Fig. 2, the performance of the technical analyst has only
weak sensitivity with respect to the window length.



1368 C. Blanchet-Scalliet et al. / Journal of Banking & Finance 31 (2007) 1351–1373
8. Conclusion and perspectives

In this study, we have compared the performance of trading strategies based on possi-
bly mis-specified mathematical models used to detect the time of the change in the drift
of the stock return with a trading strategy based on the simple moving average rule.
We have explicitly computed the trader’s expected logarithmic utility of wealth for the
various trading strategies. Unfortunately, these explicit formulae were not propitious
to mathematical comparisons. We have therefore relied on Monte Carlo numerical
experiments, and observed from these experiments that under parameter mis-specification,
the technical analysis technique out-performs the optimal allocation strategy but not
the model and detect strategies. The latter strategies dominance is confirmed under
parameter mis-specification as long as the two stock returns’ drifts are high in absolute
terms.

This study provides a first step towards building a rigorous mathematical framework in
which chartist and mathematical model based trading strategies can be compared. We are
extending this research along several dimensions. First, we examine and model the perfor-
mance of other chartist based trading rules (such as filter rules, point and figure charts,
etc.). Second, we consider modeling the more realistic case where there are multiple
changes in the drift of the stock returns: we examine the case where the instantaneous
expected rate of return of the stock changes at the jump times of a Poisson’s process,
and the value of this rate after each time change is unknown. We follow two new direc-
tions to tackle these questions: jointly with B. de Saporta (INRIA), we use stochastic con-
trol techniques for switching models and, jointly with M. Martinez (INRIA) and
S. Rubenthaler (University of Nice Sophia Antipolis), we use filtering techniques (Marti-
nez et al., 2006). Finally, it would be worth extending our conceptual framework to the
more realistic case where the mathematical and the chartist strategies’ performances
account for market frictions.
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Appendix A

A.1. An explicit expression for the process Ft

Lemma A.1. The conditional a posteriori probability Ft that the change point has appeared
before time t, that is, F t :¼ Pðs 6 tjFS

t Þ, is
F t ¼
kektLt

R t
0

e�ksL�1
s ds

1þ kektLt

R t
0

e�ksL�1
s ds

ðA:1Þ
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where

Lt ¼
St

S0

� �l2�l1
r2

exp � 1

2r2
ðl2 � l1Þ

2 þ 2ðl2 � l1Þ l1 �
r2

2

� �� �
t

� �
: ðA:2Þ
Proof. In order to compute Ft, we start with a probability space ðX;F;QÞ that can sup-
port both a standard Brownian motion eB and independent random variable s: X! [0,1)
with distribution Q½s > t� ¼ e�kt for t P 0; we denote by ðGtÞtP0 the filtration generated by
s and ~B, which means that Gt :¼ rðs; eBs; 0 6 s 6 tÞ. In view of Girsanov’s theorem, the
process

Bt ¼ eBt �
ðl2 � l1Þ

r

Z t

0

1ðs6sÞ ds

is a ðGtÞtP0-Brownian motion under the measure of probability P such that

dP

dQ






Gt

¼ exp

Z t

0

1

r
ðl2 � l1Þ1ðs6sÞ deBs �

1

2r2

Z t

0

ðl2 � l1Þ
2
1ðs6sÞ ds

� �
¼ exp

1

r
ðl2 � l1ÞðeBt � eBsÞ1ðs6tÞ �

1

2r2
ðl2 � l1Þ

2ðt � sÞþ
� �

¼ exp
1

r
ðl2 � l1ÞðeBt � eBsÞ �

1

2r2
ðl2 � l1Þ

2ðt � sÞ
� �

1ðs6tÞ þ 1ðs>tÞ:

We observe that

eBt ¼
1

r
log

St

S0

� �
� l1 �

r2

2

� �
t

� �
: ðA:3Þ

Observe that under Q, the random variable s is independent of the ðGt; t P 0Þ-Brownian
motion eB and thus of R. Thus, the above expression of dP=dQ can be written as follows:

dP

dQ






Gt

¼ Lt

Ls
1ðs6tÞ þ 1ðs>tÞ :¼ Zt; ðA:4Þ

where Lt is defined as in (3.4). We now check that, on the probability space ðX;F;PÞ, we
have the same model as the one presented in the introduction. Indeed, the random variable
s is G0 -measurable; then, under P, s is independent of the ðGtÞtP0-Brownian motion B and
we have P½s > t� ¼ EQ½Z01s>t� ¼ Q½s > t�. Using the Bayes rule, one gets

F t ¼ P½s 6 tjFS
t � ¼

EQ Zt1ðs6tÞjFS
t

 �
EQ ZtjFS

t

 � : ðA:5Þ

Using now the independence of eB and s under Q, one gets

EQ ZtjFS
t

 �
¼ EQ

Lt

Ls
1ðs6tÞ þ 1ðs>tÞjFS

t

� 	
¼
Z t

0

Lt

Ls
ke�ks dsþ e�kt:

On the other hand, we get

EQ Zt1ðs6tÞjFS
t

 �
¼
Z t

0

Lt

Ls
ke�ks ds:

Then, going back to (A.5), we get (3.5).
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Moreover, we can show that the process (Ft)tP0 satisfies the following stochastic
differential equation

dF t ¼ kð1� F tÞdt þ ðl2 � l1Þ
r

F tð1� F tÞdBt; ðA:6Þ

where

Bt ¼
1

r
logðStÞ � l1 �

r2

2

� �
t � ðl2 � l1Þ

Z t

0

F s ds
� �

; t P 0; ðA:7Þ

is the innovation process. Indeed, set V t :¼ F t
1�F t

; an easy computation leads to

V t ¼
Z t

0

k
Lt

Ls
ekðt�sÞ ds:

From

dLt ¼ Lt
1

r2
ðl2 � l1Þdðlog StÞ �

1

r2
ðl2 � l1Þ l1 �

r2

2

� �
dt

� �
we deduce

dV t ¼ kþ V t k� 1

r2
ðl2 � l1Þ l1 �

r2

2

� �� �� �
dt þ 1

r2
ðl2 � l1ÞV t dðlog StÞ;

V 0 ¼ 0:

We finally apply Itô’s formula to the process F t ¼ V t
1þV t

, and get the stochastic differential

Eq. (A.6). Notice that Bt defined as in (3.6) is a ðFS
t ÞtP0-Brownian motion. h

We conclude with a result useful to apply the martingale representation theorem in the
next subsection.

Lemma A.2. The filtration generated by the observations ðFS
� Þ is equal to the filtration

generated by the innovation process ðBt; t P 0Þ. In particular, each ðFS
� Þ martingale M

admits a representation as

Mt ¼ M0 þ
Z t

0

/s dBs;

where / is an ðFS
� Þ adapted process.
Proof. Thanks to (3.6), Bt is ðFS
� Þ adapted. Conversely, we write (3.6) as:

dðlog StÞ ¼ l1 �
r2

2

� �
þ ðl2 � l1ÞF t

� �
dt þ rdBt; ðA:8Þ

Thanks to (A.6), F is ðFB
� Þ adapted. and we conclude that the process SÆ(=exp(RÆ)) is also

ðFB
� Þ adapted. And so ðFB

� Þ ¼ ðFS
� Þ. h
A.2. Proof of proposition 3.1

We follow Karatzas’s method (see for example Karatzas, 1997). For p 2Aðx; mÞ,
remember that
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dW m;p
t

W m;p
t

¼ ðr þ m�ðtÞÞdt þ pt ðl1 � rÞ þ ðl2 � l1ÞF t þ mðtÞð Þdt þ ptrdBt:

Define

ct :¼ ðl1 � rÞ þ ðu2 � l1ÞF t þ mðtÞ

W m;p
t :¼ W m;p

t exp �rt �
Z t

0

m�ðsÞds
� �

:

We thus have

dW m;p
t

W m;p
t

¼ ptct dt þ ptrdBt;

W m;p
t ¼ x exp

Z t

0

pscs �
1

2
r2p2

s

� �
dsþ

Z t

0

rps dBs

� �
:

We now search an exponential martingale Mt (independent of p) such that eW m;p
t ¼ W m;p

t Mt

is an exponential martingale. Set

Mt ¼ exp

Z t

0

/sdBs �
1

2

Z t

0

/2
s ds

� �
:

Then / needs to satisfy

� 1

2
ð/s þ psrÞ2 ¼ pscs �

1

2
/2

s �
1

2
r2p2

s ;

from which /s ¼ � cs
r and Mt ¼ H m

t . Thus, for all p,

d eW m;p
teW m;p

t

¼ rpt �
ct

r

� �
dBt: ðA:9Þ

Therefore the process ð eW m;p
t ; 0 6 t 6 T Þ is a non-negative ðFS

t ;PÞ-local martingale and so
a supermartingale. Consequently,

E H m
TW m;p

T exp �rT �
Z T

0

m�ðtÞdt
� �� 	

6 x:

We now introduce the convex dual of U(Æ):eU ðyÞ :¼ max
0<x<1

½UðxÞ � xy�; y > 0:

Using a duality method, we obtain: for all m > 0, p 2Aðx; mÞ, y P 0,

E½UðW m;p
T Þ� 6 E eU yH m

T exp �rT �
Z T

0

m�ðtÞdt
� �� �� 	

þ yE H m
TW m;p

T exp �rT �
Z T

0

m�ðtÞdt
� �� �

6 E eU yH m
T exp �rT �

Z T

0

m�ðtÞdt
� �� �� 	

þ yx:
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This inequality is an equality if and only if

W m;p
T ¼ ðU 0Þ

�1 yH m
T expð�rT �

R T
0 m�ðtÞdtÞ

� �
;

E H m
TW m;p

T exp �rT �
R T

0
m�ðtÞdt

� �h i
¼ x:

8><>:
The coefficient y is introduced to satisfy the constraint.

Now, we need to verify that there exists a portfolio such that the process

X t :¼
E H m

T expð�rT �
R T

0
m�ðsÞdsÞðU 0Þ�1 yH m

T expð�rT �
R T

0
m�ðsÞdsÞ

� �
FS

t



 �h
H m

t expð�rt �
R t

0
m�ðsÞdsÞ

is its wealth process. We use the martingale representation property of the Brownian fil-
tration in order to find the optimal strategy p*. Indeed, there exists a predictable process
/ such that

E H m
Te
�rT�

R T

0
m�ðtÞ dtðU 0Þ�1 yH m

Te
�rT�

R T

0
m�ðtÞ dt

� �
=FS

t

� �
¼ xþ

Z t

0

/s dBs:

In particular, with the notation eX t ¼ X tH m
t expð�rt �

R t
0 m�ðsÞdsÞ, we obtain

deX t ¼ /t dBt:

Consider the strategy

p�t ¼ r�1 l1 � r þ ðl2 � l1ÞF t þ mðtÞ
r

þ /t

X tH m
t e
�rt�
R t

0
m�ðuÞdu

0@ 1A:
In view of (A.9), we have

d eW m;p�
teW m;p�

t

¼ /teX t

dBt ¼
deX teX t

:

By uniqueness arguments, we obtain X t ¼ W m;p�

t .

A.3. Joint law of geometric Brownian motion and its integral

Lemma A.3. Let B be a real Brownian motion. Let r > 0 and m be in R. Let G be a geometric

Brownian motion:

Gs ¼ expðr2msþ rBsÞ:
It holds that

P

Z t

0

Gs ds 2 dy; Gt 2 dz
� �

¼ zm�1

2y
e
�m2r2 t

2 �
ð1þz2Þ
2r2y ir2 t

2

z
r2y

� �
dy dz; ðA:10Þ

where

iyðzÞ :¼ zep2=4y

p
ffiffiffiffiffi
py
p

Z 1

0

exp �z cosh u� u2=4y
� �

sinh u sinðpu=2yÞdu: ðA:11Þ

Yor has obtained this last result in Yor (1992) (see also Borodin and Salminen, 2002).
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