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Abstract: In this article, we study a continuous time optimal filter and its
various numerical approximations. This filter arises in an optimal allocation
problem in the particular context of a non-stationary economy. We analyse
the rates of convergence of the approximations of the filter when the model is
misspecified and when the observations can only be made at discrete times. We
give bounds that are uniform in time. Numerical results are presented.

Keywords: Applications in optimization; Filtering; Portfolios.

Received July 26, 2006; Accepted September 5, 2008
Financial support by the National Centre of Competence in Research

“Financial Valuation and Risk Management” (NCCR FINRISK) is gratefully
acknowledged. NCCR-FINRISK is a research program supported by the Swiss
National Science Foundation.

A part of this work was done during visits of Etienne Tanré in Chile
(supported by CONICYT and INRIA).

The authors would like to thank Pr. Rajna Gibson and Pr. Denis Talay
for their support and their the numerous fruitful discussions. They also wish
to thank the anonymous referee for his useful suggestions, which contributed
greatly to this article.

Address correspondence to Etienne Tanré, INRIA, Project TOSCA, 2004
route des Lucioles, BP93, Sophia-Antipolis Cedex 06902, France; E-mail:
Etienne.Tanre@inria.fr

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
a
n
r
é
,
 
E
t
i
e
n
n
e
]
 
A
t
:
 
0
5
:
2
3
 
2
6
 
F
e
b
r
u
a
r
y
 
2
0
0
9



Approximations of a Continuous Time Filter 271

AMS Classification: 60G35; 91B28; 46N10.

1. INTRODUCTION: DESCRIPTION OF THE MODEL
AND ORGANIZATION OF THE ARTICLE

1.1. Introduction

In this article, we analyse the performances of various approximations
of the continuous time filter

Ft �= ����t� = �1 �� X
t � (1.1)

where ���t��t≥0 is a Markov process which takes only two real values �1

and �2. Here, �X �= �� X
t �t≥0 denotes the natural filtration generated by

the process

Xt = x +
∫ t

0
��s�ds + �Bt� (1.2)

where �Bt�t≥0 is a one-dimensional Brownian motion independent of the
process ���t��t≥0. In this model, the main point is that we observe only
the process �Xt�t≥0; ���t��t≥0 is not observed and we want to estimate
it. Thanks to [11, 21], the continuous time filter satisfies a stochastic
differential equation (see Lemma 2.2). In our case, we can write this SDE
as an SDE driven by �Xt�t≥0 (see (3.1)).

We study numerical approximations of �Ft�t≥0 in misspecified
situations:

a) the process �Xt�t≥0 is observed at discrete times and all the parameters
of the model (�1, �2 and the jump rates 	1 and 	2) are known;

b) the process �Xt�t≥0 is also observed at discrete times but the
parameters (�1, �2, 	1 and 	2) are unknown (we have only access to
estimations of these parameters).

First, we use the Euler Scheme associated to (3.1), and we give
the rate of convergence of this method. Second, we construct a
discrete time approximation for the continuous time filter by using an
updating/prediction procedure (see [15] for example). The main result
of this article is Theorem 3.4, in which we give the rate of convergence
of the second approach, which is better than the Euler Scheme.

As to the applications of our results, we show that these questions
are of special interest for the study of allocation problems in finance in
the context of a non-stationary economy. Suppose that �St = exp�Xt��t≥0

defines the evolution of the price of a risky asset which is traded
continuously on the market together with some riskless bank account
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272 Martinez et al.

�S0
t �t≥0. At each time t a trader has to invest a part 
tW



t of his/her

wealth W

t in S and the other part �1− 
t�W



t in S0. His/her aim is

to find the strategy �
t�0≤t≤T which maximizes ��U�W

T �� (where U is

a given function called Utility Function). For the Logarithm Utility
Function, we can prove that there exists an optimal strategy written
in terms of the continuous time filter. Thus, we want to find an
approximation of this continuous time filter in a setting where the data
is observed at discrete times and the moves (buying and selling assets)
can only be made at discrete times. This justifies the study of the case (a).
Moreover, optimality is reached under the assumption that the market is
perfectly described by our prescribed model: since the parameters of the
model are very difficult to know, we study the case (b).

We give numerical results concerning:

• An optimal allocation procedure when the parameters of our
mathematical model are perfectly specified and calibrated;

• An allocation procedure in misspecified situations: in this case we
have to deal with a mathematical object that corresponds intuitively
to some kind of misspecified filter.

Our problem is in relation with the rupture detection and can be
viewed as a generalization of the one studied in [2–4]. One can quote
the reference book [1] on this particular subject. Somehow, the following
differences can be found between our work and [1]:

• We work in continuous time and [1] is entirely written for discrete time
models;

• We want to detect the changes in the return rate with the objective
to maximize our wealth whereas [1] deals with another maximization
problem;

• We suppose that the dynamic of the return rate is completely known
which is not the case in [1].

We also mention the work of [18] in which numerous interesting
theoretical financial results and numerical schemes based on E.M.
algorithms are presented in a similar framework. Still:

• The results of [18] are stated in the case where all the parameters of
the problem are well specified;

• The numerical schemes are presented without consideration of the
discretization error;

• The results are given for the unconstrained problem �
t ∈ �� whereas
we work with constrained strategies �
t ∈ �0� 1��.

Concerning the disorder problem in continuous time, we refer among
others to Shiryaev [19, 20]. To our knowledge, the models presented there
have only one rupture: a situation which is different from our model.
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Approximations of a Continuous Time Filter 273

1.2. Description of the Model and Definition
of the Continuous Time Filter

Consider the stochastic process �Xt�, solution of the SDE (1.2), where
��t� is a continuous-time Markov chain with two states �1 and �2. The
infinitesimal generator matrix G of ��t� is:

G =
(−	1 	1

	2 −	2

)
�

The law of the initial condition ��0� is supposed to be known:

����0� = �1� = p0 = 1− ����0� = �2� (1.3)

For any process Y , we denote by �Y = �� Y
t �t≥0 the filtration generated

by Y , that is

� Y
t = ��Ys� 0 ≤ s ≤ t��

We define the filter �Ft�t≥0 to be the optional projection of ����t�=�1
�t≥0

on �X . This means that �Ft�t≥0 is the unique optional process such that
(see Revuz and Yor [17], Theorem 5.6, p. 173)

������=�1
�<� �� X

 � = F�<� a.s. for every stopping time �

In particular, Ft = ����t� = �1 �� X
t � a.s. for all t ∈ �0� T�.

Remark 1.1. The classical definition of the filter is the conditional law
����t� �� X

t �. In our case, the state space has only two elements; our
definition is an abuse of notation.

1.3. Organization of the Article

The organization of the article is the following:
In Section 2, we recall some results concerning classical filtering

theory and present them in our particular setting. We define the
innovation process and present the Kushner–Stratonovich equation
satisfied by the filter (see Kurtz and Ocone [11]).

In Section 3, we introduce two approximations of the filter: the
Euler Scheme and the Prediction Filter. In Theorem 3.4, which represents
the main result of this article, we give new results concerning the rate
of convergence (in L2) toward the continuous time filter. The kind
of approximation used for the construction of our Prediction Filter
has been investigated in many articles (see, for example, Kushner [12],
Di Masi and Runggaldier [7], Picard [16], Florchinger and Le Gland [8],
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274 Martinez et al.

Körezlioğlu and Runggaldier [10], and the references therein). However,
to our knowledge, no result can be applied to our model.

In Section 4, we construct Misspecified Filters in continuous and
discrete time. These filters take into account the errors concerning a
bad specification of the parameters �1� �2� 	1� 	2 that appear in the
description of the model. In particular, the Misspecified Prediction Filter
takes into account all sources of errors (errors on the parameters and
errors of discretization). A classical control is given.

In Section 5, we present results concerning the uniform control of
the errors of these filters in comparison with the continuous time filter.
The main ingredient is the stability of �Ft�t≥0.

Finally, in Section 6, we present an application of our results
in the financial context of an Optimal Allocation Strategy in a non-
stationary setting. We present the model and give a formula for
the (constrained) optimal allocation policy for the Logarithm Utility
function in the continuous time context (see Karatzas and Shreve [9]). In
particular, we prove that the constrained optimal strategies depend on
the continuous time filter and we show numerical results concerning the
asymptotic behavior of the expected wealths.

2. CLASSICAL FILTERING THEORY: THE INNOVATION
PROCESS AND THE CONTINUOUS TIME FILTER

2.1. The Innovation Process

Proposition 2.1. The optional projection of ���t��t≥0 on �X is:

�opt�t� = �1Ft + �2�1− Ft��

The following process

Bt �=
1
�

(
Xt −

∫ t

0
�opt�s�ds

)
(2.1)

is an �X-Brownian motion. It is called the innovation process.

Proof. From Levy’s characterization theorem, it is sufficient to show
that �Bt�t≥0 is a continuous local �X-martingale with

�B�t = t� t ≥ 0� a.s.

Note that B is �X adapted (see (2.1)) and continuous because X is. It is
also easy to check that

�B�t =
1
�2

�X�t = �B�t = t�

Thus, it remains only to prove that B is an �X-martingale.
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Approximations of a Continuous Time Filter 275

It is easily seen that ��opt�t��t≥0 is the optional projection of ���t��t≥0

on �X . For all 0 ≤ s ≤ t,

��Bt − Bs �� X
s � =

1
�
�
[ ∫ t

s
���u�− �opt�u��du �� X

s

]
+��Bt − Bs �� X

s �

= 1
�

∫ t

s
����u�− �opt�u� �� X

s �du

+����Bt − Bs �� B
s ∨ � �

s � �� X
s �

and from the definition of �opt and the independence of the �-algebras
� B

s and � �
s , we see that

��Bt − Bs �� X
s �

= 1
�

∫ t

s
�����u�−����u� �� X

u � �� X
s �du+����Bt − Bs �� B

s � �� X
s � = 0�

From the previous equations, we can conclude that �Bt�t≥0 is an
�X-Brownian motion. �

2.2. The Continuous Time Filter

In 1965, Wonham [21] showed that �Ft�t≥0 satisfies a stochastic
differential equation. In our case, due to the definition of ���t��t≥0 and
Kurtz and Ocone [11, p. 90], we have the following lemma.

Lemma 2.2. The filter satisfies the following Kushner–Stratonovich SDE:

Ft = p0 +
∫ t

0
�−	1Fs + 	2�1− Fs��ds +

∫ t

0

�1 − �2

�
Fs�1− Fs�dBs� (2.2)

where p0 is defined in (1.3).

We precise here the properties of the SDE (2.2).

Lemma 2.3. The equation (2.2) admits a unique strong solution �Ft�t≥0.
Moreover, the boundary points 0 and 1 are entrance-not-exit, that is: ∀p0 ∈
�0� 1�, ∀t > 0, Ft ∈ �0� 1�.

The proof is based on the Feller test for explosions. See Borodin and
Salminen [5, p. 15] for the classification of boundary points.

Remark 2.4.

a. Equation (2.1) gives the decomposition of X in its own filtration �X

dXt = ��1Ft + �2�1− Ft��dt + �dBt� (2.3)

b. The filtrations �B and �X coincide.
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276 Martinez et al.

3. FILTER APPROXIMATIONS

We set a time step � > 0 and we denote the increments of X by �Xk =
X�k+1�� − Xk�.

3.1. The Euler Scheme

We present here a simple method to estimate the filter F . Thanks to (2.3)
and (2.2), we write the dynamics of F as:

dFt = �−	1Ft + 	2�1− Ft��dt −
�1 − �2

�2
Ft�1− Ft���1Ft + �2�1− Ft��dt

+ �1 − �2

�2
Ft�1− Ft�dXt� (3.1)

To simplify the notation, we write this SDE in the following way:

dFt = �1�Ft�dt + �2�Ft�dXt�

A naive approach to estimate F is to use a Euler scheme:{
F

e

0 = F0 �=p0��

F
e

k+1 − F
e

k = �1�F
e

k��+ �2�F
e

k��Xk�

The following is a classical result:

�
[
sup
k�≤t

�Fk� − F
e

k�
2
]
≤ Ct�� (3.2)

Remark 3.1.

a. As in Theorem 5.2, we can prove that (3.2) is still available with C

independent of t.
b. This procedure does not ensure that F

e

t remains in �0� 1�. In practice,
we project this scheme on �0� 1�.

c. Note that �Ft� remains “naturally” in �0� 1�, it is not a reflected process
and one cannot use the literature on reflected processes to build a
Euler scheme staying in �0� 1�.

In the following, we describe another approximation filter (of higher
order) based on the filtering theory.
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Approximations of a Continuous Time Filter 277

3.2. The Prediction Filter

3.2.1. A Discrete Time Model

We take a Markov chain ��̃k�k≥0 taking values in ��1� �2� such that
�̃0 = ��0� and with transition matrix:[

Q��1� �1� Q��1� �2�

Q��2� �1� Q��2� �2�

]
=

[
e−	1� 1− e−	1�

1− e−	2� e−	2�

]
We take �X̃k�k≥0 such as

X̃0 = x�

X̃k+1 = X̃k + �̃k�+ �
√
�Uk

where �Uk�k≥0 are i.i.d. variables with law � �0� 1�. The chain ��̃k� X̃k�k≥0

may be viewed as an approximation of ���k��� Xk��k≥0 where �̃ is only
allowed to jump at the discrete times k� (with probabilities near the
probabilities that ��t� may jump between k� and �k+ 1��). We set

g�y� u� = 1

�
√
2
�

exp
(
− �y − u��2

2�2�

)
�

(3.3)
�X̃k = X̃k+1 − X̃k�

Usually, the law ���̃n � X̃0� � � � � X̃n� is called the prediction filter for this
discrete time model.

Lemma 3.2. For any function f � ��1� �2� → �, for all n ≥ 0,

��f��̃n� � X̃0� � � � � X̃n�

=
∑

i0�����in∈�1�2� f��in
����̃0 = �i0

�
∏n−1

k=0 g��X̃k� �ik
�Q��ik

� �ik+1
�∑

i0�����in∈�1�2� ���̃0 = �i0
�
∏n−1

k=0 g��X̃k� �ik
�Q��ik

� �ik+1
�

� (3.4)

If we set

F̃n = ���̃n = �1 � X̃0� � � � � X̃n��

F̃ ′
n = g��X̃n� �1�F̃n

g��X̃n� �1�F̃n + �1− F̃n�g��X̃n� �2�

we then have:

F̃n+1 = F̃ ′
nQ��1� �1�+ �1− F̃ ′

n�Q��2� �1��

We denote by �n the function such that

F̃n = �n�X̃0� � � � � X̃n�� (3.5)
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278 Martinez et al.

3.2.2. Construction of the Prediction Filter

Let us now describe in details the evolution of a classical discrete
approximation �Fk�k≥0 of �Fk��k≥0. We will call this approximation the
prediction filter in the rest of the article. We set F 0 = F0 �=p0� and for
all k, Gk = 1− Fk. We define our approximation recursively by:

First Step: Updating(
Fk

Gk

)
−→

F
′
k = Fk

1
�
√
2
�

exp− ��Xk−�1��
2

2�2�

G
′
k = Gk

1
�
√
2
�

exp− ��Xk−�2��
2

2�2�

 −→
F

′′
k = F

′
k

F
′
k+G

′
k

G
′′
k = G

′
k

F
′
k+G

′
k


Second Step: Prediction(

F
′′
k

G
′′
k = 1− Fk

)
−→

(
Fk+1 = F

′′
ke

−	1� +G
′′
k�1− e−	2��

Gk+1 = G
′′
ke

−	2� + F
′′
k�1− e−	1��

)

Remark 3.3.

1) Note that ∀n, Fn ∈ �0� 1�
2) We have Fn = �n�X0� � � � � Xn�. Note that Fn is constructed exactly in

the same way as F̃n (see (3.5), F̃n = �n�X̃0� � � � � X̃n�). We will prove
later that this discrete filter approximates Fn�.

3.2.3. Convergence of the Prediction Filter

Theorem 3.4. For all N ∈ 	, there exists a constant CN� (depending conti-
nuously on N� and the parameters of the problem) such that for any X0� F0:

�
[
sup

0≤k≤N

�Fk� − Fk�
2
]
≤ CN��

2� (3.6)

There exists a continuous-time extension �F t�t≥0 of �Fk�k∈	 (such that

∀k� Fk� = Fk) defined below in Equation (A.7) and for all t0:

�
[
sup
0≤t≤t0

�F t − Ft�
2
]
≤ Ct0

�2

where Ct0
depends only on t0 and the parameters of the problem.

The complete proof can be found in Appendix A. The idea is the
following. We write:

F
′′
k =

Fk

Fk + �1− Fk� exp
��2−�1��2�Xk−��1+�2���

2�2

�

We introduce a class of “negligible” processes.
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Approximations of a Continuous Time Filter 279

We denote by

• 
 the set of sequences of random variables �Rk�k≥0 such that:

sup
k

���Rk�2� ≤ C�4� (3.7)

• � the set of sequences of r.v. �Dk�k≥0 such that:
Dk is � X

�k+1�� measurable;

��Dk �� X
k�� = 0�

��D2
k� ≤ C�3�

(3.8)

Then a careful limited development shows that:

Fk+1 + 	2�+ Rk = Fk − Fk�	1 + 	2��+ 	2�

− Fk�1− Fk�

[
��+ ��Xk +

�2

2
�X2

k + ����Xk

+ �3

6
�X3

k − ��	1 + 	2���Xk

]
+ Fk�1− Fk�

2��2�X2
k + 2����Xk + �3�X3

k�

− Fk�1− Fk�
3�3�X3

k + Rk (3.9)

with �Rk�k∈	 ∈ 
. And we then show that this is equivalent to a Milstein
scheme.

4. THE MISSPECIFIED FILTERS: DEFINITION
AND CONTROL OF THE ERROR

4.1. Introduction

In this section we consider the case where the coefficients �1� �2� 	1� 	2
are unknown. As to applications, it seems not reasonable to assume that
the parameters of the underlying model are perfectly known. In [6], the
authors construct consistent estimators via an E.M. algorithm in order
to estimate the coefficients that lead the dynamics of �Xt�t≥0. We also
mention the work of Sass and Haussmann [18], here the authors use
an E.M. algorithm and calibrate their model with a pre-computation
procedure.

In this article, we adopt the following point of view: let �̄1� �̄2� 	̄1� 	̄2
denote the results of an estimating procedure (that we do not detail here)
for �1� �2� 	1� 	2.

We will focus on the consequences of taking misspecified parameters
when these are plugged in our algorithm to approximate the continuous
time filter.
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4.2. Definition

As in (3.1), we may define the misspecified continuous filter, solution of:

F̂t = F0 +
∫ t

0

�̄1 − �̄2

�2
F̂s�1− F̂s�dXs +

∫ t

0
�−	̄1F̂s + 	̄2�1− F̂s��ds

−
∫ t

0

�̄1 − �̄2

�2
��̄1F̂s + �̄2�1− F̂s��F̂s�1− F̂s�ds

+
∫ t

0

�̄1 − �̄2

2
F̂s�1− F̂s�ds� (4.1)

It is the filter one can compute with the available observations �Xt�t≥0

and with the wrong coefficients.
Using (2.3), we can rewrite (4.1) in another form:

F̂t = F0 +
∫ t

0

�̄1 − �̄2

�
F̂s�1− F̂s�dBs +

∫ t

0
�−	̄1F̂s + 	̄2�1− F̂s��ds

+
∫ t

0

�̄1 − �̄2

�2
���1Fs + �2�1− Fs��− ��̄1F̂s + �̄2�1− F̂s���F̂s�1− F̂s�ds�

Like in Section 2.2, we prove that the previous equation has a unique
strong solution. Furthermore, this solution takes values in �0� 1�.

Remark 4.1 (Parameter �). In the above computations we assume that
we know the exact value of �. In fact � can be well estimated in a short
period of time (provided we have enough data). This is not the case for
the other parameters.

Nevertheless, we could write an erroneous �̄ in the definition of the
misspecified prediction filter and produce estimations in the same way
as above. Here we made the choice not to do so in order to have more
readable computations.

4.3. Control of the Error

Lemma 4.2. We have, for all X0, F0 ∈ �0� 1� and t0 ≥ 0:

�
[
sup
0≤t≤t0

�F̂t − Ft�2
]

≤ C�t0 + 1� exp�C�t0 + 1�t0� sup
i=1�2

��	i − 	̄i�2 + ��i − �̄i�2��

where C depends (continuously) only on the parameters 	1, 	2, �1, �2 and �.

The proof can be found in Appendix B. It is based on classical
estimates.
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4.4. The Misspecified Prediction Filter

We define the misspecified prediction filter �F̂ k�k≥0 by induction, taking

F̂ 0 = F0 and ∀k, Ĝk = 1− F̂ k:

First Step: UpdatingF̂ k

Ĝk

 −→
 F̂

′
k = F̂ k

1
�
√
2
�

exp− ��Xk−�̄1��
2

2�2�

Ĝ
′
k = Ĝk

1
�
√
2
�

exp− ��Xk−�̄2��
2

2�2�

 −→
F̂

′′
k = F̂

′
k

F̂
′
k+Ĝ

′
k

Ĝ
′′
k = Ĝ

′
k

F̂
′
k+Ĝ

′
k


Second Step: Prediction F̂

′′
k

Ĝ
′′
k = 1− F̂ k

 −→
F̂ k+1 = F̂

′′
ke

−	̄1� + Ĝ
′′
k�1− e−	̄2��

Ĝk+1 = Ĝ
′′
ke

−	̄2� + F̂
′′
k�1− e−	̄1��


Note that ∀k, F̂ k ∈ �0� 1�.
The following lemma can be proved exactly like the Theorem 3.4 and

so we do not write its proof.

Lemma 4.3. For all N ∈ 	, there exists a constant CN� (depending conti-
nuously on N�, 	1, 	2, �1, �2, 	̄1, 	̄2, �̄1, �̄2 and �) such that for any X0� F0:

�
[

sup
0≤k≤N

�F̂k� − F̂ k�
2

]
≤ CN��

2�

5. UNIFORM CONVERGENCE OF THE FILTERS

5.1. A General Result of Approximation

For all 0 ≤ s ≤ t and y ∈ �0� 1�, we denote by Ps�ty the value, at time t,
of the solution of (2.2) whose value in s is equal to y. The operator P is
a stochastic flow. For all t, we have P0�tF0 = Ft.

For any stochastic flow P̃, we will use the following conventions:

• ∀t, P̃t�t = Id

• if s > t, P̃s�t = Id.

We have the following classical uniform control in time.

Proposition 5.1. Suppose we have a stochastic flow �P̃s�t�0≤s≤t and � > 0
such that ∀k ∈ 	, ∀y ∈ �0� 1�

• ∀s� �P̃s�ty�t≥s is a Markov process
• �P̃s�ty�t≥s is ��

X
t �t≥s adapted
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• ∀t� ����sups∈�0�1� �Pt�t+sy − P̃t�t+sy� ��X
t � ≤ �

then

sup
t≥0

���Ft − P̃0�tF0�� ≤
2�

1− e−	1−	2
�

Sketch of the Proof. We begin by showing that P is a contracting flow
in some sense. We have, ∀x� x′ ∈ �0� 1� and 0 ≤ s ≤ t:

���Ps�tx − Ps�tx
′�� ≤ e−�	1+	2��t−s��x − x′�� (5.1)

And the following decomposition will give the result:

Ft − P̃0�tF0 =
t�−1∑
k=0

�Pk+1�tPk�k+1P̃0�kF0 − Pk+1�tP̃k�k+1P̃0�kF0�

+ Pt��tP̃0�t�F0 − P̃0�tF0� �

5.2. Convergence of Our Filters

As a corollary of Theorem 3.4, Lemmas 4.2, 4.3, and Proposition 5.1,
we can state the following theorem:

Theorem 5.2. We have the following uniform bounds

sup
t≥0

���Ft/��� − F t/���� ≤ C�� (5.2)

sup
t≥0

���Ft − F̂t�� ≤ C

(
sup
i=1�2

��	i − 	̄i� + ��i − �̄i��
)
� (5.3)

sup
t≥0

���Ft/��� − F̂ t/���� ≤ C

(
�+ sup

i=1�2
��	i − 	̄i� + ��i − �̄i��

)
� (5.4)

where C depends continuously on the parameters.

Proof. Equation (5.3) is a direct corollary of Lemma 4.2 and
Proposition 5.1. By Theorem 3.4 and Proposition 5.1: ∀t, ���Ft − Ft�� ≤
C�. For all k, Fk� = Fk and so, by (A.7), we have (5.2).

By Lemma 4.3, we have for all k ≤ 2/�,

���F̂k� − F̂ k�� ≤ C��

So, by Lemma 4.2, we have for all k ≤ 2/�,

���Fk� − F̂ k�� ≤ C

(
�+ sup

i=1�2
��	i − 	̄i� + ��i − �̄i��

)
�
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Then, by (2.2), for all t ≤ 1,

���Ft − F̂t�� ≤ C

(
sup
i=1�2

��	i − 	̄i� + ��i − �̄i��
)
�

And so (5.4) comes from Proposition 5.1. �

Remark 5.3. In fact, we can define F and F̂ in continuous time in the
same way as in Subsection 3.2.2 (just replace � by �t − t/���� in the last
updating and prediction steps): this construction ensures that the results
of Theorem 5.2 remain valid in continuous time.

6. APPLICATION: OPTIMAL PORTFOLIO
ALLOCATION STRATEGY

6.1. Presentation of the Problem

In this section, we describe an application of our method to a problem
arising in financial mathematics. Consider two assets (a bank account
and a risky asset) that are traded continuously. The price of the bank
account evolves according to:

dS0
t

S0
t

= r dt� (6.1)

The price of the risky asset evolves according to the following SDE:

dSt
St

=
(
��t�+ �2

2

)
dt + � dBt� (6.2)

where ��t� is defined in Subsection 1.2.

Remark 6.1. The process Xt = log�St� satisfies equation (1.2).

Our aim is to compute the optimal strategy of a trader who perfectly
knows all the parameters �1, �2, 	1, 	2, and �.

Let 
t denote the proportion of the trader’s wealth invested in the
stock S at time t; the remaining proportion 1− 
t is invested in the bond
S0. For a given non random initial capital x > 0, let Wx�


� denote the
wealth process corresponding to the portfolio 
�. This wealth process is
the solution of the following equation:

dWx�

t

Wx�

t

= 
t

dSt
St

+ �1− 
t�
dS0

t

S0
t

0 ≤ t ≤ T�

Wx�

0 = x�
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The set of admissible portfolios is defined by:

��x� �= �
� �
X − progressively measurable process

with values in �0� 1� s.t. Wx�

0 = x�

Remark 6.2. The constraint 
 ∈ �0� 1� means that the investor is not
allowed to borrow.

The investor’s objective is to maximize the expectation of the
wealth utility function at the terminal time T (we will consider only
the Logarithm Utility); he/she has to solve the following constrained
optimization problem:

 � V ∗�x� �= sup
�
t�0≤t≤T∈��x�

��log�Wx�

T ���

We denote by proj�0�1� the projection on the interval �0� 1�, that is
proj�0�1��x� = x if 0 ≤ x ≤ 1, proj�0�1��x� = 0 if x ≤ 0 and proj�0�1��x� = 1 if
x ≥ 1.

In this particular context, we can write the optimal allocation
strategy:


∗
t = proj�0�1�

{
�opt�t�− r

�2

}
�

See for instance [9] for a general proof and [13] for more details in this
particular example and for some extensions. Sass and Haussmann [18]
studied the same model without the constraint for the portfolio to stay
in �0� 1�.

6.2. Implementable Strategy

The optimal allocation strategy is of the form 
∗
t = q∗�Ft�. In practice,

we are only able to act on the allocation of our wealth at discrete times
and we may not know exactly 	1� 	2� �1� �2.

Suppose we approximate �Ft�t≥0 by a misspecified prediction filter

�F̂ k�k≥0 based on a time discretization interval �1 > 0 and on “wrong”
coefficients 	̄1� 	̄2� �̄1� �̄2 (see Remark 4.1 concerning the reasons that
allow us to assume that we perfectly know the value of the parameter �).

Suppose also that we change the allocation of our wealth at instants

0� �2� 2�2� � � � with �2 = m�1. We denote by Ŵ
x

t the wealth at time
t (starting from x) obtained when we replace the optimal strategy


∗
t = q∗�Ft� by 
̂∗

k�2
= q∗�F̂ k�2

� in the dynamics.
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In [13], we control the error generated by this scheme, for all T ≥ 1

�
(∣∣∣∣ 1T log�W ∗�x

T �− 1
T
log�Ŵ

x

t �

∣∣∣∣)
≤ C

(
�1 + �2 + sup

i=1�2
���i − �̄i� + �	i − 	̄i��

)
�

The above inequality is obtained as follows. The function q∗ is Lipschitz
and the process �opt is bounded. By Theorem 5.2, we obtain:

�
(∣∣∣∣ 1T log�W ∗�x

T �− 1
T
log�Ŵ

x

t �

∣∣∣∣)
≤ C

T

∫ T

0
���F̂ t/�2� − Ft��dt

≤ C

T

∫ T

0
���F̂ t/�2� − Ft/�2���+���Ft/�2 − Ft��dt

≤ C

(
�1 + �2 + sup

i=1�2
���i − �̄i� + �	i − 	̄i��

)
�

6.3. Numerical Experiments

6.3.1. Introduction

In this numerical section, we illustrate the performances of the previous
strategies. We also compare them to a strategy which does not need any
mathematical model: a technical analysis strategy based on the moving
average indicator (see [4] for more details).

6.3.2. The Moving Average

At each discrete time, the trader computes the moving average of the
prices:

M
���
t = 1

�

∫ t

t−�
Sudu� (6.3)

• If the price is larger than the moving average, the trader estimates that
the price is in an increasing period: He/she buys the risky asset.

• If the price is smaller than the moving average, the trader estimates
that the price is in a decreasing period: He/she sells the risky asset.

His/her strategy can be summed up as:


MA
t = �

�St>M
���
t �

�

In this section, the values of the parameters are given in Table 1.
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Table 1. Values of the parameters

�1 �2 	1 	2 � r

−0�1 0.1 1.0 1.0 0.15 0.0

6.3.3. A Nominal Trajectory

In Figure 1, we display a typical trajectory with the parameters given in
Table 1.

6.3.4. Comparison of Performances

In Figure 2, we present the performances of traders that use

1) The optimal allocation strategy;
2) The allocation strategy using our estimation of the filter;
3) The allocation strategy using Euler’s approximation of the filter;
4) The moving average indicator with a window of 0.5 year.

We can remark that it is difficult to differentiate between the
performances of the second and the third traders.

Figure 1. A nominal trajectory. (a) prices and moving averages; (b) exact filter,
our estimation, estimation with Euler scheme; and (c) wealths with optimal
strategy, with our estimation, with Euler scheme.
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Figure 2. Comparison of performances.

6.3.5. Comparison of Performances with Errors on the Parameters

In Figure 3, we present the performances of traders that use

1) The optimal allocation strategy;
2) The allocation strategy using our estimation of the filter with errors

on the parameters;
3) The allocation strategy using the Euler’s approximation of the filter

with errors on the parameters;
4) The moving average indicator with a window of 0.5 year.

The misspecified parameters are given in Table 2. In this study,
we do not use any estimation procedure. We suppose that the trader has
his/her own estimation procedure that we do not describe here.

We can observe that, for this particular choice of parameters,
the performances of the trader using the moving average indicator is
between the performances of the trader using our estimation of the filter
(with the calibration errors) and those using a Euler scheme. In other
words, our estimation of the filter is more robust to calibration than the
Euler scheme.

Figure 3. Comparison of performances with errors on the parameters.
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Table 2. Estimated values of the parameters

�̄1 �̄2 	̄1 	̄2

−0�2 0.2 2.0 2.0

APPENDIX A: PROOF OF THEOREM 3.4

In the following, we will write C in the place of some constant depending
on the parameters �1� �2� �� 	1� 	2. This constant may change from line to
line. We suppose also that � ≤ 1. We set, for all integer k ≥ 0 Fk� = Fk

and ��t� = � t
�
�.

We have the following properties:

(P1) If �Rk�k≥0 ∈ 
 and �R′
k�k≥0 ∈ 
 then �Rk + R′

k�k≥0 ∈ 
.
(P2) If �Rk�k≥0 ∈ 
 and �R′

k�k≥0 are such that supk �R′
k� ≤ C a.s. then

�RkR
′
k�k≥0 ∈ 
.

By (2.3), we have:

�Xk =
∫ �k+1��

k�
�opt�s�ds + ��Bk (A.4)

where

�Bk = B�k+1�� − Bk�� (A.5)

From (A.4), we can easily note that the following sequences are in 
:
��2�k≥0, ���X

2
k�k≥0, ��

2�Xk�k≥0, ��
3�k≥0, ��X

4
k�k≥0.

In the following, we will write �Rk�k≥0 for a sequence in
 and �Dk�k≥0

for a sequence in �. These sequences may change from line to line.
Here is now a technical lemma:

Lemma A.1. We have the following decomposition:

�X2
k = �2�B

2
k +Dk + Rk�

Proof.

�X2
k = 2

∫ �k+1��

k�

( ∫ s

k�
�1Fu + �2�1− Fu�du

)
��1Fs + �2�1− Fs��ds

+ 2�
∫ �k+1��

k�
�Bs − Bk����1Fs + �2�1− Fs��ds

+ �2�B�k+1�� − Bk��
2 + 2�

∫ �k+1��

k�

∫ s

k�
�1Fu + �2�1− Fu�du dBs

Obviously, the first term is in 
.
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By integration by part, the sum of the second and the last term is
equal to:

A = 2��Bk

∫ �k+1��

k�
�1Fu + �2�1− Fu�du

= 2��Bk���1Fk� + �2�1− Fk���+ 2��Bk��1 − �2�
∫ �k+1��

k�
�Fs − Fk��ds

= Dk + Rk�
�

Proof of Theorem 3.4.

First Step

We will show in this step that the sequence �Fk�k≥0 is the Euler–Milstein
scheme associated to �Ft�t≥0 up to negligible terms. We have:

F
′′
k =

Fk

Fk + �1− Fk� exp
��2 − �1��2�Xk − ��1 + �2���

2�2︸ ︷︷ ︸
=�A

�

Let us set: � �= ��1+�2���1−�2�

2�2 and � �= �2−�1
�2

� We have:

F
′′
k = Fk

1− �1− A��1− Fk�

= Fk�1+ �1− A��1− Fk�+ �1− A�2�1− Fk�
2

+ �1− A�3�1− Fk�
3 + R

�1�
k � (A.6)

with R
�1�
k =

∫ �1−A��1−Fk�

0
4��1− A��1− Fk�− s�3

1
�1− s�5

ds�

We will prove that �R�1�
k �k ∈ 
. First, we have

�R�1�
k � ≤


4�1− A�4�1− Fk�4 if 1− A < 0

4�1− A�4�1− Fk�4
�1− �1− A��1− Fk��

5
if 0 ≤ 1− A ≤ 1�

And thus,

�R�1�
k � ≤ 4�1− A�4 sup�1� A−5��

A = exp���Xk + ��� =� eU �
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Due to the classical inequality �eU − 1� ≤ �U �e�U �� the following inequality
is satisfied:

�A− 1� ≤ C���Xk� + ��eC���Xk�+���

���R�1�
k �2� ≤ ��C�1− A�8 sup�1� A−10�� ≤ ��C���Xk� + ��8eC���Xk�+���

≤ ��C���Bk� + ��8eC���Bk�+��� ≤ C���4 for � small enough�

We now develop A:

A = 1+ ��+ ��Xk +
1
2
���+ ��Xk�

2 + 1
3! ���+ ��Xk�

3 + R
�2�
k

with R
�2�
k =

∫ ��+��Xk

0

���+ ��Xk − s�3

3! esds�

We prove also that �R�2�
k �k ∈ 
.

���R�2�
k �2� ≤ ��C��+ ��Xk��8eC��+��Xk��� ≤ C���4�

Hence:

A− 1 = ��+ ��Xk +
�2

2
�X2

k + ����Xk +
�3

6
�X3

k + Rk�

�A− 1�2 = 2����Xk + �2��Xk�
2 + �3��Xk�

3 + Rk

�A− 1�3 = �3��Xk�
3 + Rk�

Getting back to (A.6), we have:

F
′′
k = Fk − Fk�1− Fk�

(
��+ ��Xk +

�2

2
�X2

k + ����Xk +
�3

6
�X3

k

)
+ Fk�1− Fk�

2��2�X2
k + 2����Xk + �3�X3

k�

− Fk�1− Fk�
3�3�X3

k + Rk�

Fk+1 = F
′′
ke

−	1� + �1− F
′′
k��1− e−	2��

= F
′′
k�1− 	1�− 	2��+ 	2�+ Rk

= Fk − Fk�	1 + 	2��+ 	2�− Fk�1− Fk�

×
[
��+ ��Xk +

�2

2
�X2

k + ����Xk +
�3

6
�X3

k − ��	1 + 	2���Xk

]
+ Fk�1− Fk�

2��2�X2
k + 2����Xk + �3�X3

k�

− Fk�1− Fk�
3�3�X3

k + Rk�

By (A.4), we have

��Xk = ���Bk + Rk� �X3
k = �3�B

3
k + Rk�
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Thanks to Lemma A.1, we have:

�X2
k = �2�B

2
k +Dk + Rk

where �Dk�k≥0 ∈ �.

Fk+1 = Fk − Fk�	1 + 	2��+ 	2�

+ �Fk�1− Fk�

[
−�− �2�2

2
+ �2�2�1− Fk�

]
− ��XkFk�1− Fk�

+ ��2�B
2
k − �2��Fk�1−Fk�

[
−�2

2
+ �2�1−Fk�

]
+ D̃k +Ak�B

3
k +Rk

where �D̃k�k≥0 ∈ � and �Ak�k≥0 is some bounded sequence such that Ak

is � X
k�-measurable. Thus:

Fk+1 = Fk − 	1Fk�+ 	2��1− Fk�

+ �Fk�1− Fk�
��2 − �1�

�2
��1Fk + �2�1− Fk��

+ ��1 − �2�

�2
Fk�1− Fk��Xk

+ ��B
2
k − ��Fk�1− Fk�

��2 − �1�
2

2�2
�1− 2Fk�+ D̃k + Ak�B

3
k + Rk�

Second Step

In this step, we reduce the problem to the Euler–Milstein method. We
set ∀x ∈ �:

u�x� �= �1x + �2�1− x��

v�x� �= −	1x + 	2�1− x�+ x�1− x�
�2 − �1

�2
��1x + �2�1− x���

w�x� �= �1 − �2

�2
x�1− x��

We extend �Fk�k∈	 to a continuous time process �F t�t≥0 such that ∀k,
Fk� = Fk:

Ft = F 0 +
∫ t

0
v�F��s��ds +

∫ t

0
w�F��s��dXs

+
∫ t

0
�2�ww′��F��s���Bs − B��s��dBs +

∑
0≤k≤t/��

�D̃k + Ak�B
3
k + Rk�
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= F 0 +
∫ t

0
v�F��s��+ w�F��s��u�Fs�ds +

∫ t

0
�w�F��s��dBs

+
∫ t

0
�2�ww′��F��s���Bs − B��s��dBs +

∑
0≤k≤t/��

�D̃k + Ak�B
3
k + Rk�

(A.7)

where we have used (2.3) in the second equality. For all t, we define

F
′
t �= F0 +

∫ t

0
v�F

′
��s��+ w�F

′
��s��u�Fs�ds

+
∫ t

0
�w�F

′
��s��dBs +

∫ t

0
�2�ww′��F

′
��s���Bs − B��s��dBs�

This is the Milstein scheme associated to (3.1). We have for all t0:

sup
0≤t≤t0

�F t − F
′
t�

2

≤ Ct0

∫ t0

0
�v�F��s��− v�F

′
��s��+ u�Fs��w�F��s��− w�F

′
��s����

2ds

+ C sup
0≤t≤t0

( ∫ t

0
�w�F��s��− w�F

′
��s����dBs

)2

+ C sup
0≤t≤t0

( ∫ t

0
��ww′��F��s��− �ww′��F

′
��s����

2�Bs − B��s��dBs

)2

+ C sup
0≤t≤t0

( ∑
0≤k≤t/��

D̃k + Ak�B
3
k + Rk

)2

� (A.8)

We have:

�
(

sup
0≤t≤t0

( ∑
0≤k≤t/��

D̃k

)2)
≤ C�

(( ∑
0≤k≤t0/��

D̃k

)2)

= C�
( ∑

0≤k�q≤t0/��
D̃kD̃q

)
�

Note that we have for k > q,

��D̃kD̃q� = ����D̃kD̃q �� X
k��� = ��D̃q��D̃k �� X

k��� = 0�

So

�
(

sup
0≤t≤t0

( ∑
0≤k≤t/��

D̃k

)2)
≤ C�

( ∑
0≤k≤t0/��

�D̃k�
2

)
≤ Ct0�

2�
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In the same way:

�
(

sup
0≤t≤t0

( ∑
0≤k≤t/��

Ak�B
3
k

)2)
≤ t0�

2�

We also have:

�
(

sup
0≤t≤t0

( ∑
0≤k≤t/��

Rk

)2)
≤ �

( ∑
0≤k�q≤t0/��

�RkRq�
)
≤ Ct20�

2�

Using the Lipschitz properties of v� w�w′ and the Burkholder–Davis–
Gundy inequality, we have:

�
(

sup
0≤t≤t0

( ∫ t

0
��ww′��F��s��− �ww′��F

′
��s����

2�Bs − B��s��dBs

)2)

≤ C
∫ t0

0
�
((

��ww′��F��s��− �ww′��F
′
��s����

2�Bs − B��s��

)2)
ds

≤ C�
∫ t0

0
�
(

sup
0≤u≤s

�F��u� − F
′
��u��

2

)
ds�

Using again the Lipschitz properties of v� w�w′ and the fact that
�u�Ft��t≥0 is bounded in (A.8), we have:

�
(

sup
0≤t≤t0

�F t − F
′
t�

2

)
≤ C�t0 + 1�

∫ t0

0
�
(

sup
0≤v≤s

�F v − F
′
v�

2

)
ds + C�t0�

2 + t20�
2��

We are now in position to apply Gronwall’s Lemma and we obtain:

�
(

sup
0≤t≤t0

�F t − F
′
t�

2

)
≤ C�t0 + t20��

2 exp�C�t0 + 1�t0��

The process �F
′
t�t≥0 is the Euler–Milstein scheme associated to �Ft�t≥0,

so we know by [14] that:

�
(

sup
0≤t≤t0

�F t − Ft�
2

)
≤ Ct0

�2

where Ct0
is a constant depending only on t0 and on the parameters of

the problem. This implies that for all N :

�
(

sup
0≤k≤N

�Fk� − Fk�
2

)
≤ CN��

2

where CN� is a constant depending on N� and the parameters of the
problem. This finishes the proof. �
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APPENDIX B: PROOF OF LEMMA 4.2

Proof. From the previous equations we deduce that

Ft − F̂t =
∫ t

0

{
�1 − �2

�
Fs�1− Fs�−

�̄1 − �̄2

�
F̂s�1− F̂s�

}
dBs︸ ︷︷ ︸

�=Mt

+
∫ t

0
��−	1Fs + 	2�1− Fs�� − �−	̄1F̂s + 	̄2�1− F̂s���︸ ︷︷ ︸

�=err1�s�

ds

−
∫ t

0

�̄1 − �̄2

�2
���1Fs + �2�1− Fs��− ��̄1F̂s + �̄2�1− F̂s���F̂s�1− F̂s�︸ ︷︷ ︸

�=err2

�s�ds

In the following, we use C for a constant depending continuously on
the parameters and which may change from line to line.

Control of err1

err1�t� = −�	1 + 	2��Ft − F̂t�+ F̂t�	̄1 − 	1 + 	̄2 − 	2�

from which we deduce that

�err1�t�� ≤ C�Ft − F̂t� + �	2 − 	̄2� + �	1 − 	̄1�
because the filter F is bounded by 1 (since it is a conditional probability).

Control of err2

The same type of calculations yields

�err2�t�� ≤ C��Ft − F̂t� + ��2 − �̄2� + ��1 − �̄1��

Control of the Martingale Term M

Since F and F̂ are almost surely bounded processes, we find that

���Mt�2� = �
[∫ t

0

{
�1 − �2

�
Fs�1− Fs�−

�̄1 − �̄2

�
F̂s�1− F̂s�

}2

ds

]
≤ C�

[∫ t

0

{
�1 − �2

�
− �̄1 − �̄2

�

}2

ds

]
+ C�

[∫ t

0

{
�1 − �2

�
�Fs − F̂s�

}2

ds

]
≤ C���1 − �̄1�

2 + ��2 − �̄2�
2�+ C

∫ t

0
��Fs − F̂s�

2ds
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Conclusion

From all the previous, and by using the trivial inequality (i = 1� 2)
�
∫ t

0 erri�s�ds�
2 ≤ t

∫ t

0 err
2
i �s�ds� we find that for all t ≤ t0:

�
[
sup
0≤s≤t

�Fs − F̂s�
2

]
≤ C�t0 + 1�

( ∫ t

0
�
(

sup
0≤u≤s

�Fu − F̂u�
2

)
ds

+ sup
i=1�2

��	i − 	̄i�2 + ��i − �̄i�2�
)

We are now in position to apply Gronwall’s Lemma, for all t in �0� t0�,

�
[
sup
0≤t≤t0

�Ft − F̂t�
2

]
≤ C�t0 + 1� exp�C�t0 + 1�t0� sup

i=1�2
��	i − 	̄i�2 + ��i − �̄i�2��

�
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