
U N I V E R S I T É D E N I C E S O P H I A A N T I P O L I S

Specification, Model Generation, and

Verification

of Distributed Applications

Mémoire de Synthèse présenté à l’Université de Nice Sophia Antipolis

pour l’obtention d’une

HABILITATION À DIRIGER LES RECHERCHES

Spécialité Informatique

par

Eric Madelaine

Soutenue le 29 septembre 2011

devant la commission d’examen composée de MM. :

Président : Pr. Gérard Berry INRIA Sophia Antipolis - Méditérranée

Rapporteurs : Pr. Frantisek Plasil Charles University, Prague

Pr. Christian Attiogbé Université de Nantes

M. Radu Mateescu INRIA Grenoble - Rhônes-Alpes

Examinateurs : Pr. Denis Caromel Université de Nice Sophia-Antipolis

Pr. Elie Najm Télécom ParisTech, Paris

Mes remerciements vont naturellement à mes collègues, au sein de l’équipe
Oasis, de l’INRIA à Sophia-Antipolis, mais aussi de bien plus loin. Un travail de
recherche de ce type est avant tout un travail d’équipe, et le soutien de tous, au
quotidien dans les affres d’une soumission d’article ou de proposition de projet,
ou au hasard des rencontres dans une conférence à l’autre bout du monde, fait de
nous un peu plus qu’un chercheur solitaire en tête à tête avec son ordinateur. J’ai
aujourd’hui une pensée particulière pour Isabelle Attali qui avait créé notre équipe,
avait su lui insuffler une dynamique remarquable, et nous a quitté tragiquement en
décembre 2004.

Mes remerciements vont aussi aux doctorants, qui ont eu une place centrale
dans ce travail, Didier, Valérie chez Meije, Tomás, Rabéa, Antonio chez Oasis,
mais aussi à tous les étudiants qui ont apporté leur brique à notre édifice, leur
enthousiasme et leur convivialité.

C’est avec grand plaisir que je remercie très sincèrement mes rapporteurs et
tous les membres de mon jury d’Habilitation, pour ce temps précieux qu’ils ont
bien voulu consacrer à l’évaluation de mes travaux.

Enfin ma tendresse à Cathy et à mes enfants, qui supportent mes heures de
travail irrégulières comme mes voyages occasionnels depuis toujours, et m’ écoutent
patiemment raconter des trucs incompréhensibles. Peut-être, qui sait, l’un d’eux se
retrouvera-t’il un jour devant un manuscrit semblable, que je ne comprendrai pas
mieux, et aura-t-il une pensée pour son père...

TABLE DES MATIÈRES

Table des matières

1 Introduction - français 2
1.1 Résumé . 2
1.2 Structure du Document . 7

2 Introduction - english 8
2.1 Summary . 8
2.2 Document Structure . 12

3 Related Work 14

4 Behavioural Models 19
4.1 Summary . 19
4.2 Paper from Annals of Telecommunications, Jan. 2009 22

5 Tool platform 42
5.1 Summary . 42
5.2 Paper from FMCO Symposium, Sep. 2008 46

6 Specification Languages 71
6.1 Summary . 71
6.2 Paper from FACS Workshop, June 2008 73

7 Case-studies 95
7.1 Summary . 95
7.2 Paper from WCSI Workshop, June 2010 97
7.3 Extended Abstract from SAFA Workshop, Sept. 2010 97

8 Conclusion and Perspectives 116

9 Annexes 120
9.1 Diplomas . 120
9.2 Professional activities . 120
9.3 Research community responsibilities 120
9.4 Scientific collaboration, projects, contracts 121
9.5 Participation to PhD juries . 123
9.6 Activities as Students Adviser/Director 123

10 Personal Bibliography 128

11 General Bibliography 133

Eric Madelaine -- HDR 1 Sept. 2011

1. Introduction - français

Chapitre 1

Introduction - français

1.1 Résumé

Ce mémoire marque une étape importante dans une carrière de chercheur longue
déjà de 28 ans, depuis l’obtention de ma thèse en 1983 et mon arrivée la même
année dans l’équipe Meije à l’INRIA Sophia-Antipolis jusqu’à mes travaux dans
l’équipe Oasis depuis l’année 2000.

Les chapitres qui suivent concernent essentiellement ces dix dernières années
d’activités, même si on pourra y trouver, au détour des pages, un certain nombre de
références à mes travaux antérieurs. Je souhaite cependant, dans cette introduction,
donner quelques éléments mettant en perspective les différents thèmes de ces années
de recherche, et, peut-être, en souligner la cohérence et l’évolution.

Pendant ma thèse [T-83] 1, je me suis intéressé à la sémantique des langages
de programmation, sous l’éclairage de leur sémantique axiomatique, dans le but
d’établir une méthode pour prouver la correction de l’ensemble des composants
d’un compilateur. Ce travail a donné lieu à une implantation prototype, utilisant
le système de preuve de théorèmes LCF (Logic for Computable Functions [71, 76]).

Mon arrivée dans l’équipe Meije en 1983 (avec G. Berry et G. Boudol), à Sophia-
Antipolis, a marqué un changement significatif de mes thèmes de recherches. Si le
domaine général restait celui de la sémantique des langages et des programmes, avec
un focus marqué sur les preuves de programmes, les méthodes changeaient tant sur
les fondements théoriques que sur les techniques et les domaines d’application. Au
plan théorique, mes travaux de thèse s’appuyaient sur des modèles sémantiques
équationnels, et des techniques de réécriture. Ils portaient sur la preuve de pro-
gramme, mais dans le cas très particulier de la preuve de correction de compilateurs,
et à l’aide d’un logiciel de preuve de théorèmes interactif (LCF) [R-82,T-83,C-84].
A partir de 1983, mes travaux se sont orientés vers des sémantiques opérationnelles,
et plus particulièrement comportementales, et j’ai participé au développement ma-
jeur, pendant les années 80 et 90, des travaux sur les algèbres de processus. En
même temps, sur le plan des outils logiciels, j’ai participé au développement d’ou-
tils automatiques, de moteurs de vérification de modèles (model-checkers) fondés
sur la théorie de la bisimulation, d’éditeurs pour des langages de spécification gra-
phiques, mais aussi plus en amont, d’outils génériques pour l’étude des sémantiques
comportementales.

1Les références bibliographiques de mes publications personnelles sont indiquées par catégorie
de publication, avec le code suivant : E=Éditions, J=Journaux, C=Conférences internationales,
W=Workshops, T=Thèses, R=Rapports, S=Standards et Logiciels. Les références générales, pour
leur part, sont référencées par un simple numéro.

Eric Madelaine -- HDR 2 Sept. 2011

1. Introduction - français

Dans la deuxième moitié des années 80, les recherches sur les algèbres de pro-
cessus battaient leur plein, avec un foisonnement de travaux étendant les calculs
(ou langages) originels CCS, CSP, ou ACP. Dans l’équipe Meije, nous étions par-
ticulièrement focalisés sur une famille de calculs asynchrones présentant des primi-
tives de synchronisation très expressives : Meije-SCCS. Dans ce contexte, mais aussi
dans les projets européens Concur et Concur2, j’ai participé à des recherches sur la
forme des spécifications de sémantique opérationnelle, dans le but de caractériser
syntaxiquement des calculs pour lesquels on savait donner des conditions suffisantes
syntaxiques pour la terminaison des algorithmes de génération de modèle, donc uti-
liser des model-checkers. Ces travaux ont donné lieu à publication [C-90], mais aussi
à la réalisation d’un outil nommé PAC (Process Algebra Compiler), dans le cadre
d’une collaboration NSF-INRIA avec le Pr R. Cleaveland à N.C. State University
(Raleigh, USA) [C-95].

Une application directe de ces résultats a permis la construction des outils de
vérification AUTO [C-89], puis MAUTO [C-91b,C-92] et FC2Tools [24, 25], dans le
cadre de la thèse de doctorat de Didier Vergamini [87]. AUTO était un vérificateur
de propriétés et d’équivalences utilisant une représentation explicite des états, et
des algorithmes de construction hiérarchique et de minimisation utilisant des bisi-
mulations fortes ou observationnelles. Il était programmé en LeLisp. Les défis prin-
cipaux, à l’issue de la thèse de Didier Vergamini, concernaient d’une part en amont,
les passerelles entre différents langages de spécification ou de programmation et les
formats d’entrée du système, d’autre part les performances des algorithmes de bi-
simulation. Nous avons répondu au premier point avec le système MAUTO, dans
lequel les parties amont d’analyse syntaxique et de génération des modèles compor-
tementaux étaient générés à partir des descriptions syntaxiques et sémantiques du
langage (par le système ECRINS, précurseur du PAC), puis quelques années plus
tard avec la conception du format intermédiaire FC2, format pivot de la plate-
forme de vérification de notre équipe. Le deuxième point, toujours en collaboration
avec Didier Vergamini, a été implanté dans les outils FC2Tools, en C++, qui com-
portent des algorithmes de minimisation par bisimulation très efficaces, tant sur
des représentations explicites qu’implicites (BDDs).

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTask EndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTask

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTask EndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTask

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTask

EndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTask

?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn

!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut

?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok

BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1 EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1

BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3 EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3

BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2

EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2

!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut

!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut

?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTask

EndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTask

TokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOut

TokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenIn

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTask

!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok

TokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOut

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenIn

EndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTask

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTask

Fig. 1.1 – Dessin ATG de la spécification hiérarchique d’un Ordonanceur

Le compagnon indispensable de ces outils fut le système Autograph [80], conçu
et implanté par Valérie Roy sous la direction de Robert de Simone, qui fournit
aussi bien des éditeurs graphiques pour les automates comportementaux (systèmes
de transition étiquetés) et les processus communicants, leur traduction en FC2,
mais aussi la visualisation des résultats des outils de vérification, et en particulier
des contre-exemples, lorsqu’une vérification échoue. Il est remarquable de noter
que le système Autograph, dont le développement s’est arrêté en 1997, est encore

Eric Madelaine -- HDR 3 Sept. 2011

1. Introduction - français

régulièrement téléchargé aujourd’hui et utilisé pour des besoins de recherche et
d’enseignement. Le format FC2 a également été utilisé à cette époque par plu-
sieurs systèmes de vérification de nos partenaires (CWB, CADP, UPAAL, Este-
rel, RTL, ...), et a ainsi permis des travaux de comparaison intéressants entre nos
différentes techniques.

Un domaine d’application important de ces techniques était le langage de
spécification LOTOS, pour lequel nous avons réalisé dans le cadre du projet Es-
prit Lotosphere une instanciation spécifique de MAUTO, destinée aux preuves de
propriétés comportementales de programmes Basic Lotos [C-91A]. J’ai publié un
article de synthèse présentant nos outils de vérification, et ceux de nos partenaires
du projet CONCUR, dans la revue EATCS Bulletin [J-92]. La problématique d’ap-
plication des outils de vérification en grandeur nature à de vrais langages de pro-
grammation restera une préoccupation et un défi important dans mes thèmes de
recherche, et sous-tendra une partie importante de mes activités futures.

En 2000 j’ai rejoint Isabelle Attali et Denis Caromel au sein de la jeune équipe
OASIS, toujours à l’INRIA Sophia-Antipolis. L’idée était de confronter les méthodes
plutôt génériques que j’avais développées précédemment à un vrai langage de pro-
grammation, de définir les bases sémantiques permettant d’adapter nos méthodes
génériques aux modèles de programmation créés par Oasis, de développer une plate-
forme logicielle intégrant des outils spécifiques de génération de modèles sémantiques
avec des moteurs génériques de vérification, enfin de nous confronter à des cas
d’étude réalistes dont la complexité dépassait de loin, nous le savions, les possibi-
lités brutes des outils de l’époque.

Les défis étaient nombreux. Parmi les traits indispensables au traitement de
langages et de cas d’étude réalistes, la prise en compte des types de données, d’ap-
pels de méthodes (mutuellement) récursives, de traitement des exceptions, étaient
autant de problèmes critiques pour la définition de critères de finitude, ou de bonnes
abstractions, de nos modèles. D’autres traits, plus spécifiques aux modèles de pro-
grammation Oasis, s’ajoutaient aux besoins de définition de modèles sémantiques :
la prise en compte des appels asynchrones de méthodes entre objets actifs, avec
leurs queues de requêtes et leurs futurs ; le support pour les futurs de première
classe et leurs stratégies de mise à jour ; les communications de groupe ; les compo-
sants distribués enfin, formalisés dans le modèle GCM (Grid Component Model),
avec leur structure d’encapsulation hiérarchique, leurs possibilités de reconfigura-
tion dynamique, leurs contrôleurs non-fonctionnels [C-07b].

Dans un premier temps, dans le cadre des travaux de doctorat de Rabéa Boulifa
[27], puis de Tomás Barros [14], nous avons défini un modèle sémantique compor-
temental étendant les modèles existants dans le monde des algèbres de processus,
pour :

– prendre en compte la composition hiérarchique des processus, à un niveau
sémantique très expressif : nous avons conçu pour cela une extension des
vecteurs de synchronisation d’Arnold et Nivat (l’héritage de nos travaux sur
le format FC2 est évident), permettant un codage sémantique flexible de
modes de synchronisation très variés, plutôt que de nous limiter à un choix
restreint d’opérateurs de parallélisme,

– incorporer un codage explicite des données, tant sous forme de communica-
tion “value-passing”, que pour la description de topologies paramétrées de
processus.

Ce modèle, baptisé pNets (pour parameterized Networks of automata), a été
publié d’abord dans [C-04a] en 2004, puis dans ses formes les plus évoluées, dans
[J-08,J-09]. Il nous a permis de définir des procédures de génération de modèles

Eric Madelaine -- HDR 4 Sept. 2011

1. Introduction - français

comportementaux pour la plupart des “défis” listés ci-dessus, et en particulier : les
objets actifs du modèle de programmation ASP [34] et de la bibliothèque ProActive,
avec leurs queues de requêtes asynchrones et leurs futurs [C-03a,C-03b,C-04a], les
composants distribués Proactive/GCM [C-05a,C-05b,C-06], les futurs de première
classe [C-08a] et les communications de groupe [C-10].

Queue

LF

?Serve
start/stop

?Serve
M,fut,args

?Serve
bind/unbind, args

!ServeFirstNF
NF,args

!ServeFirst
M or NF,fut,args

!Request
M,fut2,args

?Response
M,fut2,args

!Response
M,fut,args

?Response
M,fut2,args

!Request
M,fut2,args

!Response
M,fut,args

?Request
M or NF,fut,args

ProxyBody

!bind/unbind,args

Composite

! start/stop

RunActive

!fut.call(M,args)

! bind/unbind (args)

Membrane (Interceptors + LF)!started

!start/stop

!stopped

fut

?call(M,args)

Fig. 1.2 – Structure pNets de la membrane d’un composant composite, FACS’05

En amont de la génération de modèles comportementaux, se pose le problème
de l’abstraction : les programmes concrets sont trop complexes, trop détaillés pour
être directement modélisés, il faut déterminer le juste niveau d’abstraction pour
obtenir un modèle gérable (e.g. fini ou régulier), tout en capturant les propriétés
que l’on veut garantir. Il y a essentiellement deux approches à ce problème : soit on
utilise des mécanismes d’analyse statique de code source (éventuellement complétés
par des annotations), soit on se base sur une modélisation préalable (langage de
spécification ou formalismes à la UML), à partir de laquelle on générera du code
“correct par construction”. Dans les deux cas on pourra aussi être amené à appli-
quer des techniques d’interprétation abstraite pour réduire encore la complexité du
modèle sur lequel travaillent les moteurs de vérification.

Dans nos premiers travaux [C-03a,C-03b,C-04a], nous avons défini une méthodo-
logie basée sur la première approche : extraction par analyse statique d’un graphe
d’appel de méthodes et abstraction des domaines de données, aboutissant à la
construction d’un modèle pNets codant la structure et la dynamique des objets
actifs. Cette approche se heurte à de sérieux problèmes de précision de l’analyse
statique d’une part, mais aussi de complexité, les techniques d’analyse se prêtant
mal à des approches compositionnelles. Le passage aux composants distribués, par
opposition aux objets actifs simples, permet de gagner de manière significative sur
la précision de l’analyse, en particulier parce que la définition des composants im-
pose de définir localement les besoins d’interactions avec le reste du système ou
de l’environnement : ce sont les interfaces dites requises (ou client) du composant
qui relaient les appels de méthodes distantes, et ces interfaces sont connues loca-
lement et statiquement. En même temps, nous avons exploré plusieurs voies pour
la spécification du comportement et de l’architecture des systèmes de composants
distribués, soit graphiques [C-07a,J-08], soit textuels [C-08c], dans le cadre de la
thèse d’Antonio Cansado [32].

La mise en pratique de ces principes est une activité exigeante en terme de
développement logiciel, surtout que notre ambition est de pouvoir mettre ces outils
dans les mains de non-spécialistes, donc de mettre en place des interfaces utilisateur

Eric Madelaine -- HDR 5 Sept. 2011

1. Introduction - français

de haut niveau, suffisamment intuitives pour cacher la complexité des modèles sous-
jacents et des outils de vérification utilisés. Par ailleurs, notre vocation n’était pas
de travailler sur les algorithmes et sur les moteurs de vérification eux-mêmes ; nous
avons naturellement choisi des outils basés sur les équivalences de bisimulation, et
utilisé des moteurs très performants, en particulier ceux de la plateforme CADP.

Fig. 1.3 – Editeur graphique de composants de la plateforme Vercors

Notre plateforme VerCors [W-06,C-05b,C-06,C-09] réunit notre éditeur gra-
phique pour la spécification des architectures de composants, nos outils d’abstrac-
tion et de génération de modèles, et les passerelles vers les outils de minimisation
et de model-checking de CADP. Le format pivot entre notre modèle pNets et les
outils de CADP est le format Fiacre, que nous avons défini avec nos partenaires du
projet (ACI Sécurité) Fiacre.

Bien sûr nous avons pu traiter, au fur et à mesure des progrès de ces tra-
vaux, un certain nombre de cas d’étude de complexité grandissante, depuis une
modélisation du système de taxes électroniques chilien [C-04b] premier exemple de
grande taille d’un modèle pNets ; du “Common Component Modeling Example”
(CoCoME [J-08]), système de composants distribués hiérarchiques avec communi-
cation par messages synchrones ; au dernier en date [C-10] sur la vérification d’un
protocole de vote avec queues de requêtes asynchrones et communication de groupe.

La prochaine étape, centrale en l’état actuel des travaux de l’équipe, consiste
à prendre en compte les aspects dynamiques de nos systèmes. Le modèle GCM
permet d’inclure dans les composants des contrôleurs gérant la plupart des aspects
non-fonctionnels, y compris la reconfiguration (dynamique) des liaisons entre inter-
faces, le remplacement de composants, des protocoles résistants aux pannes, voire
des stratégies complexes de type équilibrage de charge, optimisation de la consom-
mation énergétique, ou adaptation à la demande. Les modèles comportementaux
de ces applications seront de plusieurs ordres de grandeur plus complexes que ceux
actuellement traités, et les propriétés à prouver dépendront de paramètres plus
dynamiques.

Les pistes pour relever ces nouveaux défis passent vraisemblablement par des
techniques de modélisation innovantes (nous avons par exemple mené quelques
expérimentations dans le domaine des systèmes infinis), mais aussi par des in-
teractions avec des techniques de preuve interactives, permettant de prouver des

Eric Madelaine -- HDR 6 Sept. 2011

1. Introduction - français

propriétés génériques des modèles, et de réduire la complexité de la partie model-
checking.

1.2 Structure du Document

Le chapitre 3 rassemble des éléments de comparaison avec d’autres travaux de
recherche directement liés ‘a notre sujet : systèmes distribués et modèles à base
de composants ; sémantiques comportementales ; model-checking et plateformes de
vérification.

Le chapitre 4 décrit notre développement du modèle sémantique pNets (para-
meterized networks of synchronized automata), et notre codage dans ce modèle
de la sémantique du comportement des applications distribuées, en commençant
par les objets actifs, et en intégrant progressivement toutes les fonctionnalités du
modèle GCM. L’article principal sur le modèle pNets a été publié dans la revue
Annals of Telecommunications [J-09] et est inclus ici.

Puis le chapitre 5 présente le développement de notre plate-forme de spécification
et de vérification, depuis nos premiers développements de traducteurs de pro-
grammes ProActive vers les formats d’entrée des outils de vérification CADP, à
travers les étapes successives de nos formalismes de spécification, jusqu’à la plate-
forme actuelle VerCors et nos plus récents développements. Cette partie est illustrée
par le document présenté au symposium FMCO’08 [C-09].

Le chapitre 6 décrit nos recherches en termes de formalismes de spécification,
aussi bien graphiques (déjà inclus dans la plate-forme Vercors), que textuels, avec
le langage de spécification JDC (Java Distributed Component). Ce dernier langage
a été décrit dans un article à la conférence FACS’08 [C-08c], qui est inclus ici.

Le chapitre 7 est la dernière section technique de cette thèse, et présente trois
importantes études de cas qui ont marqué notre travail. Dans chaque cas, nous sou-
lignons les techniques utilisées pour modéliser le système, mâıtriser la génération
d’états, et prouver les propriétés requises. Ce chapitre est illustré par les publica-
tions décrivant le plus récent de ces cas d’utilisation [C-10, R-10].

Le chapitre 8 contient une analyse de l’état actuel de ce travail, et en expose
les perspectives pour les années à venir.

Enfin, le chapitre 9 assemble les différents éléments de ma carrière en tant
que chercheur, y compris mes activités de recherche et d’enseignement, principales
collaborations, participations à des contrats de recherche, directions des étudiants
(au doctorat, postdoc, mastère), et bibliographie.

Eric Madelaine -- HDR 7 Sept. 2011

2. Introduction - english

Chapitre 2

Introduction - english

2.1 Summary

This dissertation marks an important step in a researcher career already 28
years long, since my PhD in 1983 and my arrival in the same year in the Meije
team at INRIA Sophia-Antipolis, until my work in Oasis Team since 2000.

The following chapters mainly concern these last ten years of activity, even if
we can find, along the pages, a number of references to my previous work. However
I wish, in this introduction, to give some elements making perspectives on the dif-
ferent themes of these years of research, and perhaps, to highlight their consistency
and their evolution.

During my thesis [T-83] 1, I was interested in the semantics of programming
languages, from the point of view of their axiomatic semantics, in order to establish
a method to prove the end-to-end correctness of a compiler. This work gives rise to
a prototype implementation, using the theorem-prover LCF (Logic for Computable
Functions [71, 76]).

My arrival in the team Meije in 1983 (with G. Berry and G. Boudol), in Sophia-
Antipolis, marked a significant change in my research. If the overall domain was
still the general semantics of languages and programs, with a focus on brand and
program proofs, we changed both the theoretical grounds and on techniques and
application domains. On the theory side, my thesis work was based on equational
semantic models and rewriting techniques. My thesis focused on proofs of pro-
grams, but in the very particular case of the proof of correctness of compilers, and
using a software interactive theorem proving [R-82,T-83,C-84]. In 1983, my work
moved towards operational semantics, and more particularly behavioural seman-
tics, and I contributed during years 80 and 90, to major developments on process
algebras. At the same time, in terms of software tools, I participated in the deve-
lopment of automated tools, model verification engines (model-checkers) based on
the theory of bisimulation, editors for graphical specification languages, but also of
generic tools for the study of behavioural semantic.

In the second half of year 80, research on process algebras were in full swing,
with an abundance of work extending the original process calculi (or languages)
CCS, CSP or ACP. In the team Meije, we were particularly focused on a family
of asynchronous calculi offering very expressive synchronization primitives : Meije-
SCCS. In this context, but also in European projects Concur and Concur2, I par-

1The bibliographic references of my personal publications are referred by category, with the fol-
lowing code : E=Editions, J=Journals, C=Conferences (international), W=Workshops, T=Thesis
(PhD), R=Reports, S=Standards and Software. The general references are referred by simple
numbers.

Eric Madelaine -- HDR 8 Sept. 2011

2. Introduction - english

ticipated in research on the form of operational semantics specifications, in order
to characterize syntactically calculi for which we could give sufficient conditions
for the termination of model generation algorithms, then use model-checkers. This
work has was subject to publication [C-90], but also to the realization of a tool
called PAC (Process Algebra Compiler), as part of an NSF-INRIA collaboration
with Prof. R. Cleaveland at NC State University (Raleigh, USA) [C-95].

A direct application of these results allowed the construction of the verification
tools AUTO [C-89], then Mauto [C-91b,C-92] and Fc2Tools, as part of the doctoral
thesis of Didier Vergamini [87]. AUTO was a verifier for properties and equivalences
using an explicit representation of states, and hierarchical construction and mini-
mization algorithms using strong or observational bisimulation equivalences. He
was programmed in LeLisp. The main challenges, at the end of the Didier’s thesis,
concerned first upstream bridges between different specification or programming
languages and the input formats of the system, secondly the performance of bisi-
mulation algorithms. We answered the first point with the Mauto system, wherein
the front-end parsing and construction of behavioural models were generated from
syntactic and semantic descriptions of languages (by the ECRINS software, precur-
sor of the PAC), then a few years later with the design of the intermediate format
FC2, central formalism of the verification platform of our team. The second point,
again in collaboration with Didier Vergamini, was implanted in Fc2Tools tools,
built in C++, which include very efficient bisimulation minimization algorithms,
using both explicit and implicit (BDDs) representations.

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTask EndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTask

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTask EndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTask

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTask

EndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTask

?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn

!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut

?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok

BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1BeginTask1 EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1EndTask1

BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3BeginTask3 EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3EndTask3

BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2BeginTask2

EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2EndTask2

!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut

!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut!TokenOut

?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn?TokenIn

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTask

EndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTask

TokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOut

TokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenIn

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTask

!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok!InitTok

TokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOutTokenOut

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenInTokenIn

EndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTaskEndTask

BeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTaskBeginTask

Fig. 2.1 – ATG drawing for a Scheduler hierarchical architecture

The companion of these tools was the Autograph system [80], designed and im-
plemented by Valerie Roy under the direction of Robert de Simone, who provides
both a graphical editor for behavioural automata (labeled transition systems) and
communicating processes, a translator to the FC2 format, but also a visualization
tool for the results of verification tools, in particular counter-examples, when the
verification fails. It is remarkable to note that the Autograph system, whose de-
velopment was stopped in 1997, is today still regularly downloaded and used for
purposes of research and teaching. FC2 format has also been used at that time
by several verification systems of our partners (CWB, CADP, UPAAL, Esterel,
RTL, ...), and thus allowed an interesting comparison work between our different
techniques.

An important application area of these techniques was the specification lan-
guage LOTOS, for which we implemented within the Esprit project Lotosphere a
specific instantiation of Mauto, intended for proofs of behavioural properties of Ba-

Eric Madelaine -- HDR 9 Sept. 2011

2. Introduction - english

sic Lotos programs [C-91A]. I published a review paper presenting our verification
tools, and those of our partners in the project CONCUR in the journal EATCS
Bulletin [J-92]. The problem of using verification tools for real-size applications,
and real programming languages, will remain a major concern and challenge in my
research topics, and will underpin a significant part of my future activities.

In 2000, I joined the young team of Isabelle Attali, also at INRIA Sophia-
Antipolis. The idea was to check the applicability of the generic methods I had pre-
viously developed to a real programming language, to define the semantic grounds
for adapting our generic methods to the programming models created by Oasis,
to develop a software platform integrating specific tools for generation of semantic
models with generic verification engines, finally, to address case studies of realistic
complexity which far exceeded the crude possibilities of state-of-the-art tools of
that time.

The challenges were numerous. Among the features essential for realistic lan-
guage and case-study processing, taking into account the data types, (mutually)
recursive method calls, exceptions handling, were all critical problems for the defi-
nition of finiteness criteria, and of good abstractions, of our models. Other features,
more specific to Oasis programming models, also required a precise definition of
their behavioural semantics, in terms of pNets generation : management of asyn-
chronous methods calls between active objects, with their future and their request
queues, support for first class futures and their update strategies, group communi-
cations ; and finally distributed components as formalized in the Grid Component
Model (GCM), with their hierarchical structure, encapsulation, their possibilities
for dynamic reconfiguration, their non-functional controllers [C-07b].

Initially, as part of doctoral work of Rabea Boulifa [27] and Tomas Barros [14],
we defined a behavioural semantic model extending the existing models in the world
of process algebras, to take into account :

– hierarchical composition of processes, hat a very expressive semantic level :
we developed to this aim an extension of synchronization vector technique of
Arnold and Nivat (the heritage from our work on the FC2 format is obvious),
allowing a flexible semantic coding of various synchronization modes, rather
than limiting ourselves to a limited choice of parallel operators,

– explicit management of data, both for “value-passing communication”, and
for the description of parameterized process topologies.

This model, called pNets (for Parameterized Networks of Automata), was first
published in [C-04a] in 2004, and later in its most developed form, in [J-08,J-09]. It
allowed us to define procedures for generation of behavioural models for most of the
“challenges”lists above, and specifically : active objects of ProActive programming
model, with their asynchronous request queues and their futures [C-03a,C-03b,C-
04a], distributed components ProActive/GCM [C-05a,C-05b,C-06], first class fu-
tures [C-08a], and group communications [C-10].

Ahead of the generation of behavioural models, is the problem of abstraction :
concrete programs are too complex, too detailed to be modeled directly, and we
must determine the right level of abstraction to obtain a manageable model (ed
finite or regular), while capturing the properties we want to guarantee. There are
basically two approaches to this problem : either we use static analysis methods
on the source code (possibly supplemented by annotations), or we start with an
early modeling phase (using a specification language or a modeling formalism a
la UML), from which we generate code “correct by construction”. In both cases
we may also have to apply abstract interpretation techniques to further reduce the
complexity of the model on which the verification engines will work.

Eric Madelaine -- HDR 10 Sept. 2011

2. Introduction - english

Queue

LF

?Serve
start/stop

?Serve
M,fut,args

?Serve
bind/unbind, args

!ServeFirstNF
NF,args

!ServeFirst
M or NF,fut,args

!Request
M,fut2,args

?Response
M,fut2,args

!Response
M,fut,args

?Response
M,fut2,args

!Request
M,fut2,args

!Response
M,fut,args

?Request
M or NF,fut,args

ProxyBody

!bind/unbind,args

Composite

! start/stop

RunActive

!fut.call(M,args)

! bind/unbind (args)

Membrane (Interceptors + LF)!started

!start/stop

!stopped

fut

?call(M,args)

Fig. 2.2 – pNets structure of a composite component membrane, FACS’05

In our early work [C-03a C-03b, C-04a], we defined a methodology based on
the first approach : extraction by static analysis of a method call graph and abs-
traction of data domains, resulting in the construction of a pNets model coding the
structure and dynamics of active objects. This approach faces serious problems of
accuracy of the static analysis on the one hand, but also of complexity, because
analysis techniques are ill-suited for compositional approaches. The move to distri-
buted components, as opposed to simple active objects, saving significantly on the
accuracy of the analysis, especially because the definition of components requires
a precise definition of interactions with the rest of the system or the environment
(through required interfaces). At the same time, we explored several avenues for
the specification of the behaviour and architecture of distributed component sys-
tems, either graphical [C-07a, J-08] or textual [C-08c], in the context of Antonio
Cansado PhD thesis [32].

The implementation of these principles is a demanding activity in terms of soft-
ware development, especially since our ambition is to put these tools in the hands
of non-specialists, thus establishing high-level user interfaces, intuitive enough to
hide the complexity of the underlying models and verification tools. Besides, our
aim was not to work on algorithms and verification engines themselves ; we use
existing state-of-the-art engines from the area of bisimulation-based verification, in
particular those from the CADP toolset.

Our Vercors platform [W-06,C-05b,C-06,C-09] associates our graphical editor
for the specification of component architectures, our tools for abstraction and model
generation, and bridges to the minimization and model checking tools of CADP.
The pivot format between our pNets model and the CADP tools is the Fiacre
language, that we defined with our partners in the Fiacre project (ACI Safety).

Of course we have handled, along the progress of these work, a number of case
studies of increasing complexity, a modeling of the emerging Chilean electronic tax
system [C-04b], which was a first example of large a pNets model ; the “Common
Component Modeling Example”(CoCoME [J-08]), hierarchical distributed com-
ponent system with synchronous message passing ; and the latest to-date [C-10] a
voting protocol with asynchronous requests queues and group communication.

The next step, essential in the current state of our team work, is to take into
account the dynamic aspects of our systems. The GCM can include component
controllers managing most non-functional aspects, including the (dynamic) recon-
figuration of bindings between interfaces, replacements of components, failure re-

Eric Madelaine -- HDR 11 Sept. 2011

2. Introduction - english

Fig. 2.3 – Vercors Graphical Component Editor

sistant protocols, or even complex strategies like load balancing, optimizing the
energy consumption or adaptation to external demands. Behavioural models for
these applications will be several orders of magnitude more complex than those
currently treated, and properties to prove will depend on more dynamic parame-
ters.

Tracks to address these new challenges are likely to pass through innovative
semantic representation techniques (for example, we conducted some experiments
in the field of infinite systems), but also by interactions with interactive proof
techniques, for proving the properties of generic models, and reduce the complexity
of the model-checking activity itself.

2.2 Document Structure

Chapter 3 gathers elements of comparison with related work : Distributed
systems and Component Models, Behavioural Models and Abstract Models, Model-
checking and Verification Platforms.

Chapter 4 will describe our development of a semantic model pNets (parame-
terized networks of synchronized automata), and our encoding in this model of the
behavioural semantics of distributed applications, starting with active objects, and
incorporating progressively all features of the GCM model. The main article on
the pNets model was published in the Annals of Telecommunication journal [J-09],
and is included here.

Then, chapter 5 presents the development of our specification and verification
platform, from the early development of translators from ProActive programs to
the input formats of the CADP verification toolset, through the successive steps of
our specification formalisms, to the current VerCors platform and our most recent
developments. This part is illustrated by the paper presented at the FMCO’08
symposium [C-09].

Chapter 6 describes our research in terms of specification formalisms, both
graphical (as included in the VerCors platform), and textual, with the Java Distri-
buted Component specification language (JDC). This last language was described
a paper at the FACS’08 conference [C-08c], which is included here.

Eric Madelaine -- HDR 12 Sept. 2011

2. Introduction - english

Chapter 7 is the last technical section of this thesis, and presents three impor-
tant case-studies that have marked our work. In each case, we emphasize the tech-
niques used for modeling the application, mastering the state-generation process,
and proving the required properties. The chapter is illustrated by the publications
describing the most recent of these use-cases [C-10,R-10].

Chapter 8 contains an analysis of the current state of this work, and exposes
perspectives for the forthcoming years.

Finally, chapter 9 assembles the various elements of my career as a researcher,
including my research and teaching activities, main collaborations, involvement
in research contracts, students direction (at PhD, postdoc, master levels), and
bibliography.

Eric Madelaine -- HDR 13 Sept. 2011

3. Related Work

Chapitre 3

Related Work

In this chapter we give an overview of research related to our subject, com-
menting the relations and differences when possible. We start with (distributed)
component models, then describe various (low-level) formalisms used to model dis-
tributed systems, and list a number of existing verification tool-sets, dedicated to
various programming languages, or based on different model-checking methods.
Finally we mention shortly a number of more recent approaches, that are not yet
fully integrated in available platforms, but that are worth considering for experi-
mentation and further work.

Distributed systems and Component Models

Our focus in this work is not the design of (software) components models, but
our starting point was necessarily the choice of a programming model for distributed
applications on which we could build our semantic definitions and our verification
methodology. So we start our related work section by a short panorama of models
for distributed programming and distributed component systems.

In this section, we review some software component models that are targeted
at the programming of distributed applications, and development of middleware,
taking into account constraints raised by distribution. We start with some of the
most commonly known models for a component-oriented approach [75] to distri-
buted computing : the Common Component Architecture (CCA), the CORBA
Component Model (CCM), and the Service Component Architecture (SCA) after
which we will describe the main features of Fractal and GCM, and motivate their
choice for our work.

CCA has been defined by a group of researchers from laboratories and academic
institutions committed to specifying standard component architectures for (Grid)
high performance computing [10, 35]. In CCA a component “is a software object,
meant to interact with other components, encapsulating certain functionality or a
set of functionalities. A component has a clearly defined interface and conforms to
a prescribed behaviour common to all components within an architecture.” Cur-
rently the CCA Forum (www.cca-forum.org) gathers documents, projects and other
CCA-related work including the definition of a CCA-specific format of component
interfaces (Babel/SIDL - SRPC Interface Description Language) and framework
implementations (Ccaffeine, Xcat).

However, the CCA model is non-hierarchical, thereby making it difficult to
handle the distributed and possibly large set of components forming a Grid or Cloud
application in a structured way. Indeed, hierarchical organization of a compound
application can prove very useful in getting scalable solutions for management

Eric Madelaine -- HDR 14 Sept. 2011

3. Related Work

operations pertaining to monitoring, life-cycle, reconfiguration, physical mapping
on infrastructure resources, load-balancing, etc. Unfortunately, the CCA model is
rather poor with regards to managing components at runtime. It means a CCA
component per se does not have to expose standard interfaces dedicated to non-
functional aspects as it is the case for Fractal components. This makes it hard to
realize certain features, for instance, dynamic reconfiguration based on observed
performance or failures, or elastic adaptation to ”business” requirements. However,
some implementations of the model, like e.g. XCAT, can provide some additional
components (like an Application Manager) dedicated to manage the non-functional
aspects of a CCA-based application.

CCM is a component model defined by the Object Management Group (OMG).
The CCM specifications include a Component Implementation Definition Lan-
guage (CIDL) ; the semantics of the CORBA Component Model (CCM) ; a Com-
ponent Implementation Framework (CIF), which defines the programming model
for constructing component implementations and a container programming model.
Important work has been performed to turn the CCM in a Grid component model,
like GridCCM [44].

In CCM, the ADL is able to deal with distributed resources but it is outside the
scope of the specifications to describe how such a description has been generated.
However, this task requires a high level of knowledge of the application structure
as well as the resource properties. This approach is not satisfactory for Grids or
Clouds where resources are provided dynamically.

Even if CCA and CCM components can fit into a distributed infrastructure,
they are not designed as being per se distributed. Consequently, it is quite unna-
tural to use them to build parallel entities to be mapped onto a set of distribu-
ted resources, or having the capability to self-adapt to the changing context. By
contrast, the Enterprise Grid Alliance effort [85] is an attempt to derive a common
model adopting Grid technologies for enhancing the enterprise and business appli-
cations. The model, which is aligned with industry-strength requirements, strongly
relies on component technology along with necessary associations with component-
specific attributes, dependencies, constraints, service-level agreements, service-level
objectives and configuration information. One of the key features that the EGA
reference model suggests is the life-cycle management of components which could
be governed by policies and other management aspects. The level of this specifica-
tion, however, is very coarse-grain focusing on system integration support rather
than providing an abstract model and specification for Grid programming which is
the main goal of GCM.

University of Kansas has developed the verification environment Cadena [56,
36], and its meta-modeling language CALM [61], for the specification, verification,
and development of CCM applications.

SCA is a set of specifications proposed by the OASIS standard body [4], which
describe a hierarchical model for building applications and systems using a Service-
Oriented Architecture (SOA). The SCA specifications were first published in Nov.
2005, including the Assembly Specification, the Client and Implementation Speci-
fication for Java and the Client and Implementation Specification for C++. Imple-
mentations include open-source tools developed by the Tuscany project [1] of the
Apache Software Foundation, or the SCOrWare french project [2].

Eric Madelaine -- HDR 15 Sept. 2011

3. Related Work

Fractal and GCM Fractal [29] is a general component model which is intended
to implement, deploy and manage (i.e. monitor, control and dynamically configure)
complex software systems, including in particular operating systems and middle-
ware. The Grid Component Model (GCM) [11, 15] is a Fractal extension providing
specific features for programming distributed systems, typically on Grid, P2P, or
Cloud infrastructures.

Among Fractal’s peculiar features, below are those that motivated us to select
it as the basis for the GCM.

– Hierarchy (composite components can contain sub-components), to have a
uniform view of applications at various levels of abstraction.

– Introspection capabilities, to monitor and control the execution of a running
system.

– Reconfiguration capabilities, to dynamically configure a system.

To allow programmers to tune the control of reflective features of components to
the requirements of their applications, Fractal is defined as an extensible system.
In addition, the Fractal specification is a multi-level specification, where depending
on the level some of the specified features are optional. That means that the model
allows for a continuum of reflective features or levels of control, ranging from no
control (black-boxes, standard objects) to full-fledged introspection and interces-
sion capabilities (including e.g. access and manipulation of component contents,
control over components life-cycle and behaviour, etc). Fractal does not constrain
the way(s) the GCM can be implemented, but it provides a basis for its formal
specification, allowing us to focus only on the Grid-specific features. Eventually,
platforms implementing the GCM should constitute suitable grid programming and
execution environments. ProActive offers one such implementation [10].

Behavioural Models, Abstract Models

Historically, models of behaviours were defined in terms of semantic-level re-
presentations, ranging from core Labelled Transition Systems (LTS), from the very
beginning of the process algebra era (see [72, 19]), and the synchronization vectors
of Arnold and Nivat [8], to Milner’s π-calculus [73]. LTS is, without contest, the
most often used model for the representing behaviours in analysis and verification
toolsets. At the other end of the spectrum, the π-calculus has only been used in
a few research prototypes, because its high expressiveness comes with a very high
complexity of the related representations and algorithms.

Most established approaches, on the other side, are using intermediate formats
with data, that can be unfolded to finite-state structures. This is the case e.g.
for the CADP toolbox [47], or for the SPIN model-checker [58]. These systems
have a usual input language (Lotos and Promela, respectively) that can be used
directly to model the systems to be analyzed. But many users are implemen-
ting translators from their source language into Lotos or Promela. Both of these
modeling languages have very expressive constructs, high-level process definition
and communication mechanisms (with gate negotiation in Lotos, or more classical
channels in Promela), and typed data manipulation. Naturally, Lotos and Pro-
mela programs have infinite behaviours, due to unbounded data on one hand, and
to recursive process definition on the other hand. The state exploration engines of
the model-checkers have mechanisms to specify bound domains for data, or bound
expansion of the behaviours.

When model-checking software systems written in usual programming lan-
guages, there is an inescapable step dedicated to build an abstract, smaller and

Eric Madelaine -- HDR 16 Sept. 2011

3. Related Work

more manageable, version of the original program.

Quoting Patrick Cousot : Model-checking exhaustively verifies temporal
properties on a finite model of hardware or software computer systems
[38]. This abstraction of a system into a model is often left impli-
cit. Abstract model checking, as formalized by abstract interpretation,
makes this abstraction explicit [39], [42]. Model-checking is reputed to
be terminating, sound, and complete on the model. From an abstract
interpretation point of view, relating the system to its model, it may
be sound on the model but unsound on the system (e.g. the model
is correct for safety properties but wrong for liveness properties), it is
often incomplete (no finite model can cover the specified behaviors of
the system [78]) and, in practice, may explode combinatorially. In all
cases abstract interpretations of the system into a model have to be
considered.

There is one early work from Cleaveland & Riely [40], that defines a conve-
nient mechanism for building abstract (finite) behavioural models of distributed
applications, starting from the specification of abstract interpretations of the data
domains, while respecting safety and liveness properties of the original concrete
(infinite) programs.

Finding the right compromise between very abstract (and small) models, and
more precise (but larger) models may be a difficult task. Part of the solution relies
on program slicing (keeping only the segments of the program that influences the
property or the set of properties to be proved) (see e.g. [21, 45]). Some authors
have proposed iterative methods, where failures of the model-checking engine are
analyzed and are used to refine the abstraction, until the model is precise enough
to prove the goals [37, 55, 54].

Model-checking and Verification Platforms

Many works have been done based on process algebra foundations, starting in
the eighties with research tools implementing the CCS, CSP, or ACP algebras [J-
92]. Some of these tools have given birth to systems with a more developer-oriented
specification language :

The FDR2 tool [28] offers a high-level language for expressing CSP models,
and an internal machine-readable dialect of CSP [84] using a specific expression
language, more adapted to generate the models needed by the verification engines.
Strictly speaking, FDR2 is a refinement checker rather than a model-checker, in
the sense that it compares two LTSs,the system and its specification, with respect
to some specified refinement relation (trace, failures or failure/divergence).

The µCRL tool, and its successor mCRL2 [52, 51],
based on the ACP process algebra, are offering
an expressive language with data manipulation,
and rich analysis tools for linearization, simula-
tion, state-space exploration and generation and
tools to optimize and analyze specifications. Mo-
reover, state spaces can be manipulated, visualized
and analyzed.

A colorful transition system
visualization with the mCRL2

toolset

Eric Madelaine -- HDR 17 Sept. 2011

3. Related Work

The UPAAL system [18, 63, 16] was born also in the process algebra era, and
implements a number of extensions of the original “pure” calculi, including data,
timed and probabilistic calculi. It is still one of the extensively used system in
research and education, and also offers a commercial version.

The CADP toolset [48] is one of the proeminent platforms for the specification,
verification, and testing of distributed systems in the European academic landscape.
Initially built as an environment dedicated to LOTOS programs, it was progressi-
vely open to handle a number of different input formalisms, through several input
formats, together with an extensible API. The toolset includes engines for building
the state-space of systems in a hierarchical way, building and manipulating LTSs
on distributed infrastructures, minimizing LTSs along several behavioural equiva-
lences, model-checking properties, checking equivalences between systems, building
test suites, evaluating performances, etc.

In parallel with all these “process algebra” based tools, most of them from Eu-
ropean research labs, there were a very important family of tools born on the other
side of the Atlantic, mostly based on trace semantics and linear time logics, rather
than bisimulation semantics and branching time logics. The most renowned of these
are certainly SPIN [59, 58] (linear time), SMV [30] (branching time, state-based)
and its real-time/hybrid extensions [31, 64], or SLAM [13, 12] (linear-time, with
focus on C-code abstraction). These tools have been extensively used for hardware
and embedded system verification, but they also have been used (by translation to
their respective input formalisms), in the area of protocols and distributed systems.

There are also a small number of researches dedicated more specifically to com-
ponent oriented verification. This is the case e.g. of SOFA, STSlib, and Kmelia... :

The SOFA system [77, 3, 60] is dedicated to the development of large, dis-
tributed software systems, based on hierarchical components. It uses a model of
”behavior protocols” for the specification of possible interactions between compo-
nents, and notions of compatibility for safe component assembly, and of hierarchical
refinement.

The STSLib library [46] provides a formal component framework that synthe-
sizes components from symbolic protocols in terms of Symbolic Transition Systems
(STS). Just as pNets, STS concisely represents infinite systems, however, STS rely
on Abstract Data Types (ADT) which are more expressive than the Simple Types
used in pNets but less intuitive for software engineers. Both formalisms rely on
(N-ary) synchronization vectors, but in STS they are static whereas in pNets they
are dynamic. STSLib synthesizes components based on their STS protocols ; a
controller interprets the STS protocol and data from the ADT is implemented
(and generated) in Java. The communication in STS components is rather low-
level ; both emitter and receiver must agree exchange a message, although there is
no explicit notion of required nor provided services.

Kmelia [9, 6, 5] is a component specification model based on the description of
complex services. Kmelia and its toolbox COSTO can be used to model software
architectures and their properties, these models being later refined to execution
platforms. It can also be used as a common model for studying component or ser-
vice model properties (abstraction, interoperability, composability), using various
verifications toolsets, including CADP, MEC5, and Atelier-B.

Eric Madelaine -- HDR 18 Sept. 2011

4. Behavioural Models

Chapitre 4

Behavioural Models

4.1 Summary

The paper included in this chapter has been published in January 2009 in the
Annals of Telecommunications journal, issue entitled “Component-based architec-
ture : the Fractal initiative”. This article is the outcome of a series of workshop and
conference papers presenting our efforts for building a semantic model dedicated
to the analysis of distributed software.

In the Introduction chapter we have motivated the need for such a behavioural
model, that would be :

– flexible enough to address a large set of distributed programming concepts,
– compact enough to be the basis for a manageable intermediate format,
– and defined with the idea of opening the possibilities for convenient “abstrac-

tions” towards specific classes of decidable models (finite, regular, etc.).

This story started in years 2002-2003. The original question was :

Can we use existing formalisms and existing semantic models
to lift verification methods from “academic” calculi (process
algebras and their natural LTS-based behavioural semantics),
to real languages, to support the analysis of Java/ProActive
applications ?

The challenge was to address the kernel features and paradigms of ProActive,
including Java object/method basic structure, asynchronous communication using
ASP/ProActive remote procedure calls, programmable request selection policies,
and a small subset of data and data-types manipulation, sufficient to build realistic
small examples. This was quite different from the work we developed previously in
the Meije team : instead of defining a kernel formalism (a calculus or an algebra) as
small and expressive as possible, dedicated to our specific interest of the moment,
we had to tackle existing languages, with their large set of constructs,

Among the formalisms mentioned in the state of the art (Section 3), Lotos was
certainly the closest to our goals, inherited from the process algebra decades, it
had good capabilities for process definition, parallelism construction, and commu-
nication expression. I had worked a lot with Lotos, in particular in the context of
the Lotosphere Esprit project, and developed specific behaviour model construc-
tion tools, and successful verification case-studies, for a sub-language without data
called Basic Lotos. There were at least three important reasons why Lotos was not
a good candidate to define the behavioural models of ProActive : its (algebraic)
data type descriptions are very far from object oriented types of Java, so the enco-
ding would have been complex ; the parallel constructs of Lotos, with their original

Eric Madelaine -- HDR 19 Sept. 2011

4. Behavioural Models

“offer negotiation” are very different from the more pragmatic remote method call
of ProActive, and totally unable to encode the multicast communication of our
programming models ; and, last but not least, the recursive definition of processes
in Lotos is too powerful for deciding conveniently of the finiteness of process ar-
chitectures. So it failed to meet most of the items listed at the beginning of this
chapter.

In the context of Rabéa Boulifa’s PhD doctoral thesis (2002-2004), we explored
the idea of building by code analysis an “extended method call graph” (XMCG),
encoding : 1) the dynamic structure of (possibly recursive) method calls, 2) the
special structure for managing remote method calls, with their future proxies and
their request queues, 3) an abstraction of data-types and data-variables. From
these XMCGs, a behavioural semantics defined by Structural Operational Semantic
(SOS) rules was able to produce pNets semantic models.

The pNets model is a tree-like structure which leaves are Labelled Transition
Systems with data values (similar to the “Symbolic Transition Systems” of Lin and
Ingolfsdir [65]), and nodes (Networks) have the role of synchronizing the commu-
nication events of subsystems (similar to the “Synchronization Vectors” of Arnold
and Nivat [8]). See the formal definition in [J-09, pages 30-31]. The main originality
of this model is the idea that Networks themselves are parameterized, i.e. indexed
by data-variables, that allows us to model directly the parameterized architectures
(pipelines, rings, vectors or matrices of processes, etc.), and also dynamic message
routing or dynamic architecture configuration. This was first published in work-
shops at [C-03a], [C-03b], [W-04], and at the FORTE conference in September 2004
[C-04a], where the denomination pNets first appeared.

In the Forte’04 version, we used pNets solely for encoding the behaviour of Java
method calls (potentially recursive), and ProActive mechanisms for active objects,
including asynchronous communication, management of request queues, and of
future values. This encoding uses heavily the parameterized Network structure of
the pNets, where e.g. the set of invocations of a given method in an active object
is encoded by an unbounded family of processes in the pNets, indexed by a natural
number representing the successive calls of the method [C-03b]. In the same paper,
we described the method for static analysis of Java/ProActive code, building the
extended method call graph, and for building safe abstraction of data domains.
In Rabéa Boulifa PhD thesis [27], we proved that this construction terminates.
But there were strong open questions at this point, the most important being
the imprecision of static analysis. In particular, consider the case of a piece of
code containing a loop structure over an indexed structure (pipe-line, ring, vector,
matrice, etc...) containing active objects ; a statement addressing these objects by
an indexed reference in the structure will refer both to the local and to remote
objects, so it is impossible to determine statically which calls correspond to the
local object, and which calls correspond to remote objects. This fact has serious
consequences in terms of the kind of properties that the model can prove, for such
parameterized topologies.

The next step was to consider distributed components, as a mean to answer this
problem. One of the main feature of components is that dependencies upon exter-
nal (= remote) components are explicit, through the use of required interfaces. A
number of component models also feature hierarchical structures, that fit naturally
well with our semantic models (hierarchical networks + bisimulation). We conside-
red Fractal components [29], as a flexible and extensible model offering the desired
properties, and also the Grid Component Model [15] (GCM), that is the distributed
extension of Fractal compatible with ProActive active objects. In [C-05a,C-05b],

Eric Madelaine -- HDR 20 Sept. 2011

4. Behavioural Models

we published the description of pNets model generation for 1) hierarchical compo-
nents, 2) Fractal hierarchical components with life-cycle and binding controllers,
3) GCM components, i.e. Fractal components encapsulating active objects at both
primitive and composite levels.

Naturally, it took us a couple years before publishing a journal version summa-
rizing this work [J-09]. The contributions of this article are :

– a formal definition of the pNets model, together with its instantiation opera-
tor, and a product operator defined on instantiated nets,

– Four different application cases of increasing complexity, defining the mo-
del generation for ProActive active objects, hierarchical components, Fractal
components, GCM components.

The version described in the Annals paper did not cover some advanced features
of GCM that are very useful for our distributed application area, in particular first
class futures and group communication, that we developed in the same period than
the journal paper, and presented at FACS [C-08a] and at FMCO’2008 [C-09].

First class futures allow components to pass references to futures within requests
arguments. In the ProActive library, futures are managed by proxy mechanisms,
which act as relays between the request caller and the remote service. This is
an important feature for GCM applications, permitting more asynchrony between
components. But it also raises new questions for verification, because of depen-
dencies introduced between the futures passing and update occurrences. There are
a number of strategies for future updates, that require different kinds of future
handling mechanisms in the implementation, and naturally different kind of future
proxies in our models. We have published some of these variants in [C-08a], and
have described the basis of this proxy model in [C-09, page17].

Fig. 4.1 – Example of Multicast and Gathercast communication

Collective interfaces, in the GCM model, introduce a new structuring feature
in component architectures : Multicast interfaces are managing 1 to N communica-
tions, delivering their messages in a broadcast manner, and collecting results asyn-
chronously. Gathercast interfaces is the dual mechanism, gathering requests along
a number of connected “client” components, assembling them in a single request
transmitted to the service interface, then distributing the result of the computation
along some specific policy (that could be duplicating, scattering, or others). Here
again we model this mechanism using Group proxies, that encode the policies and
the API methods of both multicast and gathercast interfaces. The synchroniza-
tion variants make use of the flexibility of pNets parameterized synchronization
vectors to encode directly point to point (interleaved) or multi-point (multicast)
communication. We shall give more feedback on this part in the Use-cases chapter
7.1.

Eric Madelaine -- HDR 21 Sept. 2011

4. Behavioural Models

Evaluation Our pNets model is a low-level semantic model similar in spirit to
label transition systems, and not a process algebra or a calculus defining specific
operators and concurrency structures. Still it includes a powerful mechanism for
encoding various kinds of parallel composition and inter-process communication ;
this hierarchical structure has two essential benefits : 1) it is close to program
structure, easier to generate, and producing smaller models, than bare transition
systems ; 2) it leads naturally to bisimulation-based semantics, and hierarchical
approaches to verification, using compositional minimization. Moreover it encodes
explicitly data types and variables, again producing smaller encodings, and opening
the way to different types of verification methods (infinite systems, logics with
counters, etc...).

One could argue that Lotos[23] or µ-CRL [53, 52], for example, twenty years
ago, were already attempts to build such highly structured formalisms with rich
data manipulation. And indeed full verification methodologies and toolsets were
built for these languages [47, 51]. But our goals are quite different : Lotos and µ-
CRL are languages with a specific set of operators, and a fixed communication and
concurrency semantics, whereas pNets, having a lower-level synchronization mecha-
nism, support a large variety of parallel operators and communication mechanisms
(we shall use this flexibility when modeling group communication in section 7.1).
We choose not to include any mechanism for recursivity (as in Lotos) nor high-order
process construction as in the pi-calculus [73] : this would leave more difficulties
in later steps of our methodology, when translating pNets models to the various
input formalisms of model-checking and verification engines.

So the final compromise is a model flexible enough and expressive enough to
encode a variety of programming structures, parallel constructions, and communi-
cation modes. It is also restricted in such a way that translation to finite/regular
models remains simple.

At this point, we have set up the basic framework defining our semantic model,
but we are still quite far from being able to apply it to the analysis of practical
applications. In particular, experimentation was mandatory, for proving that the
approach was indeed useful. Even for small experiments, some significant tooling
was unavoidable. This will be the object of the next chapter.

4.2 Paper from Annals of Telecommunications, Jan.

2009

Eric Madelaine -- HDR 22 Sept. 2011

Ann. Telecommun. (2009) 64:25–43
DOI 10.1007/s12243-008-0069-7

Behavioural models for distributed Fractal components

Tomás Barros · Rabéa Ameur-Boulifa ·
Antonio Cansado · Ludovic Henrio · Eric Madelaine

Received: 30 July 2007 / Accepted: 16 July 2008 / Published online: 10 January 2009
© Institut TELECOM and Springer-Verlag France 2008

Abstract This paper presents a formal behavioural
specification framework for specifying and verifying the
correct behaviour of distributed Fractal components.
The first contribution is a parameterised and hierarchi-
cal behavioural model called pNets that serves as a low-
level semantic framework for expressing the behaviour
of various classes of distributed languages and as a
common internal format for our tools. Then, we use this
model to define the generation of behavioural models
for applications ranging from sequential Fractal compo-
nents, to distributed objects, and finally to distributed
components. Our models are able to characterise both
functional and non-functional behaviours and the in-
teraction between the two concerns. Finally, this work
has resulted in the development of tools allowing the
non-expert programmer to specify the behaviour of his
components and (semi)automatically verify properties
of his application.

T. Barros
Universidad de Chili, Ejército 441, Santiago, Chile
e-mail: tomas.barros@niclabs.cl

R. Ameur-Boulifa
GET/ENST/LabSoC, Telecom Paristech, BP 193,
06904 Sophia-Antipolis Cedex, France
e-mail: Rabea.Ameur-Boulifa@telecom-paristech.fr

A. Cansado · L. Henrio · E. Madelaine (B)
INRIA Sophia-Antipolis, CNRS, UNSA,
INRIA, Oasis. 2004, Route des Lucioles, BP 93,
06902 Sophia-Antipolis Cedex, France
e-mail: Eric.Madelaine@sophia.inria.fr

A. Cansado
e-mail: Antonio.Cansado@sophia.inria.fr

L. Henrio
e-mail: Ludovic.Henrio@sophia.inria.fr

Keywords Hierarchical components ·
Distributed asynchronous components ·
Formal verification · Behavioural specification ·
Model-Checking

1 Introduction

Component models provide a structured programming
paradigm allowing a better reusability of programs by
the fact that both provided/required services and appli-
cation structure are expressed statically in the composi-
tion. This takes even more importance as the structure
of distributed components acts as an abstraction for
the component distribution. However, this architec-
tural description is not always sufficient. Indeed, in
order to be able to safely compose “off-the-shelf” or
even dynamically discovered components, a form of
specification language is required. Such a specification
can only rely on the existence of some well defined
semantics for the underlying programming language or
middleware.

Among the existing component models, Fractal [1]
provides the following crucial features: the explicit
definition of provided/required interfaces for express-
ing dependencies between components; a hierarchical
structure allowing to build components by compo-
sition of smaller components and the definition of
non-functional features through specific interfaces, pro-
viding a clear separation of concerns between func-
tional and non-functional aspects.

Globally, our work is placed in the context of large-
scale distributed applications. This work is strongly
related to programming models that aim at easing the
programming of distributed applications by providing

Eric Madelaine -- HDR 23 Sept. 2011

26 Ann. Telecommun. (2009) 64:25–43

high-level abstractions of distributed features together
with an efficient implementation of these features.
More precisely, we rely on the Grid Component Model
(GCM) [2], which extends Fractal by addressing large-
scale distributed aspects of components.

Moreover, in a distributed context, adaptive compo-
nents are necessary in order to adapt the application to
constantly evolving environments and evolving require-
ments in terms of quality of services. Our work is in-
tended to be adapted to the verification of autonomous
systems adapting and reconfiguring themselves in or-
der to better match dynamic requirements of the
application.

Our main objective is to provide tools to the pro-
grammer of distributed components in order to verify
the correct behaviour of his program. We require those
tools to be intuitive and user-friendly for them to be
usable by non-experts of formal methods. To this end,
we build an analysis toolset, including state-of-the-art
model-checking tools; at the heart of this platform
lie the model generation tools that are the subject of
this article. In this context, the choice of the behav-
ioural model is crucial: it has to be compact, expressive
enough represent the behavioural semantics, but not
too much, to allow an easy mapping to the model-
checker input format.

Related work Historically, models of behaviours were
defined in terms of semantic-level calculi, ranging from
core Labelled Transition Systems (LTS), from the very
beginning of the process algebra era (see [3, 4]), and the
synchronisation vectors of [5], to Milner’s π -calculus
[6]. LTS is also, without contest, the most often used
model for the representing behaviours in analysis and
verification toolsets. At the other end of the spectrum,
the π -calculus has only been used in a few research
prototypes, because its high expressivity comes with a
very high complexity of most related algorithms.

Early verification tools were using internal formats
with a very simple structure, featuring no data para-
meters; even intermediate formats used to interface
different tools were kept at a very low level. However,
introducing data in those languages appeared quickly
as being very beneficial both for compactness and for
expressiveness.

For example, in the CADP toolbox [7], the internal
model is a version of Petri nets with data that can be
later unfolded (eventually on-the-fly) into LTSs suit-
able for model-checking. Recently, a new semantic-
level format named NTIF [8], resembling our pLTS, has
been devised as a more structured and compact inter-

mediate form between LOTOS or ELOTOS programs
and the CADP engines.

In a similar way, the SPIN model-checker is using
PROMELA, a high-level language with data, but data
values are instantiated (on bound domains) by the state
exploration engines.

Many works have been done based on process alge-
bra foundations, and have led to systems with a more
developer-oriented specification language. The FDR2
tool [9] offers a high-level language for expressing CSP
models, and an internal machine-readable dialect of
CSP [10] using a specific expression language, more
adapted to generate the models needed by the verifi-
cation engines. The LTSA tool [11] uses Finite State
Processes as an intermediate language (with processes
and data parameters) for modelling concurrent Java
programs. Another example of research showing
goals close to ours makes use of Symbolic Transition
Systems (STS) [12, 13], which are structures akin to
our pNets. In the STSLib toolset, there is a dedicat-
ed specification language (with algebraic data types)
for distributed components that are modelled by STS,
themselves mapped to LOTOS programs that can be
model-checked with CADP.

In all these cases, two important questions are:
(1) how do you relate the programming language
(or specification language) semantics with the inter-
nal model, and what properties are preserved by this
mapping? (2) how do you transform your (parame-
terised) internal models into finite structures suitable
for analysis (internal data structures of the verifica-
tion engines, typically LTS, BDD, or various classes of
automata. . .)?

Our proposal is different from previous approaches
in the sense that we want a low-level model able to
express various mechanisms for distributed systems,
and that we do not limit ourselves to finite systems: we
shall be able to define mappings to various classes of
systems, finite or not. At the same time, the structure
of our parameterised model is closer to the program-
ming or specification language structure. Consequently,
parameterised models are more compact, and easier to
produce, than classical internal models.

Typically, our pNets model is lower-level than Lotos
and Promela and more flexible for expressing different
synchronisation mechanisms. On the other hand, it has
no recursive constructs, in order to better control the
finiteness of encodings.

Contribution This paper tries to answer these ques-
tions in the framework of distributed component
systems. Toward this challenging perspective, we

Eric Madelaine -- HDR 24 Sept. 2011

Ann. Telecommun. (2009) 64:25–43 27

develop a formal and parameterised behavioural model
called pNets. We use this formalism to express models
for ProActive distributed applications, Fractal com-
ponents, and GCM distributed components. All our
distributed models feature asynchronous calls with fu-
tures, which lowers latency while preserving a natural,
data-flow oriented synchronisation.

One of the strong original aspects of this work is the
focus put on non-functional properties, and the results
we provide on the interleaving between functional and
non-functional concerns. Thus, the programmer should
be able to prove the correct behaviour of his distributed
component system in the presence of evolution (or
reconfiguration) of the system.

Structure of the paper In the next section, we recall
the features of Fractal that are the most relevant to
this study, describe the extensions proposed by the
GCM model, and sketch the informal semantics of
the GCM/ProActive implementation. In Section 3, we
define formally our basic model, named pNets (this
formalisation unifies and extends our previous publi-
cations in [14–17]) and recall the main properties of
this model. In Section 4, we describe the model con-
struction principles for four successive kinds of applica-
tions, namely active objects, hierarchical components,
Fractal components with synchronous controllers and
asynchronous GCM components with controllers. In
Section 5, we describe the Vercors verification plat-
form, and its application to a simple example, start-
ing from the input specifications, through the model
generation phase, to the verification of properties. We
conclude with an analysis of perspectives of this work.

2 Context

2.1 Fractal, GCM and ProActive

The GCM [2] is a novel component model being
defined by the European Network of Excellence Core-
Grid and implemented by the EU project GridCOMP.
The GCM is based on the Fractal Component Model
[1] and extends it to address Grid concerns.

From Fractal, GCM inherits a hierarchical structure
with strong separation of concerns between functional
and non-functional behaviours, including, for example,
life-cycle and binding management. GCM also inherits
from Fractal introspection of components and reconfig-
uration capabilities.

Grids consider thousands of computers all over the
world; for that, GCM extends Fractal using asynchro-

nous method calls for dealing with latency. Grid appli-
cations usually have numerous similar components, so
the GCM defines collective interfaces which ease de-
sign and implementation of such parallel components
by providing synchronisation and distribution capaci-
ties. There are two kinds of collective interfaces in the
GCM: multicast (client) and gathercast (server). Typi-
cally, a multicast interface is bound to the service inter-
faces of a number of parallel components, and a method
call toward this interface is distributed, as well as its
parameters, to several or all of them. GCM provides
various policies for the request parameters that can be
broadcast, or scattered, or distributed in a round-robin
fashion; additional policies can be specified by the user.
Symmetrically, gathercast interfaces are bound to a
number of client components, and various synchronisa-
tion policies are provided. This treatment of collective
communications provides a clear separation of concern
between the programming of each component and the
management of the application topology: within a com-
ponent code, method calls are addressed simply to the
component local interfaces. The management of bind-
ings of clients (on a gathercast interface) or services (on
a multicast interface) is separated from the functional
code.

The GCM also allows the component controllers to
be designed in the form of components, and benefit
from such a design; moreover, the GCM specifies inter-
faces for the autonomic management and adaptation of
components.

The Architecture Description Language (ADL) of
both Fractal and the GCM is an XML-based format
that contains both the structural definition of the system
components (subcomponents, interfaces and bindings)
and some deployment concerns. Deployment relies on
virtual nodes that are an abstraction of the physical in-
frastructure on which the application will be deployed.
The ADL only refers to an abstract architecture, and
the mapping between the abstract architecture and a
real one is given separately as a deployment descriptor.

2.2 A GCM reference implementation:
GCM/ProActive

A GCM reference implementation is based on ProAc-
tive [18], an Open Source middleware implementing
the ASP calculus [19, 20]. In this implementation,
an active object is used to implement each primitive
component and each composite membrane. Although
composite components do not have functional code
themselves, they have a membrane that encapsulates
controllers and dispatches functional calls to inner

Eric Madelaine -- HDR 25 Sept. 2011

28 Ann. Telecommun. (2009) 64:25–43

subcomponents. As a consequence, this implementa-
tion also inherits some constraints and properties with
respect to the programming model:

– Components communicate through asynchronous
method calls with transparent futures (place-
holders for promised replies): a method call on
a server interface adds a request in the server’s
request queue.

– Communication semantics uses a “rendezvous”,
ensuring the causal ordering of communications.

– Synchronisation between components is ensured
with a data-flow synchronisation called wait-by-
necessity: futures are first order objects that can
be forwarded to any component in a non-blocking
manner, execution is only blocked if the concrete
value of the result is needed (accessed), and the
result is still unavailable.

– There is no shared memory between components,
and a single thread is available for each component.

Each primitive component is associated to an active ob-
ject written by the programmer. Some methods of this
active object are exported as the method of the com-
ponent’s interfaces. The active object managing a com-
posite is generic and provided by the GCM/ProActive
platform; it forwards the functional requests it receives
to its subcomponents. Primitive component functional-
ities are addressed by the encapsulated active object.
For primitive components, it is possible to define the
order in which requests are served by writing a specific
method called runActivity(); we call this the service
policy. If no runActivity() is given, a default one
implements a FIFO policy. Composite components al-
ways use a FIFO policy. Note that futures create some
kinds of implicit return channels, which are only used
to return one value to a component that might need
it. One particularity of this approach is that it unifies
the concept of component with the unit of distribution
and parallelism: each primitive component represents
the unit of distribution and is managed by a single
thread. Composite components are also managed by
their own thread and allocated separately, but there
is no link between the location of a composite and
the location of its subcomponents. One essential prop-
erty of GCM/ProActive is that the global behaviour
of a component system is totally independent of the
physical localisation of components on a distributed
architecture.

2.2.1 Life-cycle of GCM/ProActive components

GCM/ProActive implements the membrane of a com-
posite as an active object; thus, it contains a unique

Fig. 1 ProActive composite component

request queue and a single service thread. The re-
quests to its external server interfaces (including con-
trol requests) and from its internal client interfaces are
dropped to its request queue. A graphical view of a
composite is shown in Fig. 1.

Like in Fractal, when a component is stopped, only
control requests are served. A component is started by
invoking the non-functional request: start(). Because
threads are non-interruptible in Java, a component nec-
essarily finishes the request it is treating before being
stopped. If a runActivity() method is specified by the
programmer, the stop signal must be taken into account
in this method. Note that a stopped component will not
emit functional calls on its required interfaces, even if
its subcomponents are active and send requests to its
internal interfaces.

3 Theoretical model

In this section, we give the formal definition of
our intermediate language that we call parameterised
Networks of Synchronised Automata (pNets). This lan-
guage is not a new calculus in the tradition of theo-
retical computer science that gave birth to λ-calculus,
π -calculus or σ -calculus, on which we would build new
theories or new languages, nor is it a new process alge-
bra endowed with syntax, semantics, and equivalences,
that could be used to study new constructs for distrib-
uted computing. Rather, pNets give an intermediate
and generic formalism intended to specify and synchro-
nise the behaviour of a set of automata. We built this
model with two goals: give a formal foundation to the
model generation principles that we developed for vari-
ous families of (distributed) component framework and
build a model that would be more machine-oriented
and serve as a versatile internal format for software
tools, meaning it must be both expressive (from the

Eric Madelaine -- HDR 26 Sept. 2011

Ann. Telecommun. (2009) 64:25–43 29

universality of synchronised LTSs) and compact (from
the conciseness of symbolic graphs).

The synchronisation product introduced by Arnold
and Nivat [5] is both simple and powerful because it
directly addresses the core of the problem. One of the
main advantages of using its high abstraction level is
that almost all parallel operators (or interaction mech-
anisms) encountered so far in the process algebra litera-
ture become particular cases of a very general concept:
synchronisation vectors. We structure the synchroni-
sation vectors as parts of a synchronisation network.
Contrary to synchronisation constraints, the network
allows dynamic reconfigurations between different sets
of synchronisation vectors through a transducer LTS.
Our definition of the synchronisation product is seman-
tically equivalent to the one given by Arnold and Nivat.

In the next step, we use Lin’s [21] approach for
adding parameters in the communications events of
both transition systems and synchronisation networks.
These communication events can be guarded with con-
ditions on their parameters. Our agents can also be
parameterised to encode sets of equivalent agents run-
ning in parallel. This leads us to the definition of pNets,
that will later appear as a natural model of software
systems. Indeed they correspond to the way developers
specify or program these systems: the system structure
is parameterised and described in a finite way (the code
is finite), but a specific instance is determined at each
execution, or even varies dynamically.

We now give the formal definitions of the model
in two steps. In order for this article to be self-
contained and with uniform notations, we first define
LTSs, Nets and synchronisation product; these defin-
itions are equivalent to those found in the literature.
Then, we give the definitions of our parameterised
structures (pLTS and pNet) and of their instantiations;
their semantics are in terms of standard (infinite) LTS.

Notations In the following definitions, we extensively
use indexed structures (maps or vectors) over some
countable indexed sets. The indexes will usually be
integers, bounded or not. When this is not ambiguous,
we shall use abusive vocabulary and notations for sets,
and typically write “indexed set over J” when formally
we should speak of multisets, and still better write
“mapping from J to the power set of A”.

We use uppercase letters A, B, I, J. . . to range over
sets and lowercase letters a, b , i, j. . . to range over ele-
ments of the sets. We write ÃJ for an indexed multiset
of sets (ÃJ = 〈A j〉 j∈J), and ãJ for an indexed multiset
of elements (ãJ = 〈a j〉 j∈J), where J can possibly be
infinite. For indexed sets of elements or sets, we
say ãJ = b̃ I ⇔ J = I ∧ ∀ j ∈ J, a j = bj (element-wise

equality). We write 〈a.ãJ〉 for the concatenation of an
element a at the beginning of an indexed set, x̃J = ẽJ for
an indexed set of equations (〈x j = e j〉 j∈J), e{x̃J ← ẽJ}
for the parallel substitution of variables x̃J by expres-
sions ẽJ within expression e.

As part of our abusive notation, we extensively, and
sometimes implicitly, use the following definition for
indexed set membership: ãJ ∈ ÃJ ⇔ ∀ j ∈ J, a j ∈ A j.
Cartesian product is naturally extended to indexed sets
so that the following is verified:

a0 ∈ A0 ∧ ãJ ∈ ÃJ ⇒ 〈a0.ãJ〉 ∈ ∏
j∈{0}∪J A j

We use the usual notions from (typed) term algebras:
operators, free variables, closed and open terms, etc.
Term algebras are endowed with a type system that
includes at least a distinguished Boolean type and an
Action type.

3.1 Networks of synchronised automata

We model the behaviour of a process as a LTS in
a classical way [3]. The LTS transitions encode the
actions that a process can perform in a given state.

Definition 1 LTS. A LTS is a tuple (S, s0, L, →) where
S (possibly infinite) is the set of states, s0 ∈ S is the
initial state, L is the set of labels and → is the
set of transitions →⊆ SxLxS. We write s

α−→ s′ for
(s, α, s′) ∈ →.

We define Nets in a form inspired by [5], that are
used to synchronise a (potentially infinite) number of
processes.

Definition 2 Net (Network of LTSs). Let Act be an
action set. A Net is a tuple 〈AG, J, ÕJ, T〉 where AG ⊆
Act is a set of global actions, J is a countable set of
argument indexes, each index j ∈ J is called a hole and
is associated with a sort O j ⊂ Act. The transducer T is
a LTS (ST , s0T , LT , →T), and LT = {−→v = 〈ag.α̃I〉. ag ∈
AG, I ⊆ J ∧ ∀i ∈ I, αi ∈ Oi}

Explanations Nets describe dynamic configurations
of processes, in which the possible synchronisations
change with the state of the Net. They are transducers
in a sense similar to the Lotomaton expressions [22, 23].
A transducer in the Net is encoded as a LTS which
labels are synchronisation vectors (−→v), each describing
one particular synchronisation between the actions (αI)
of different argument processes, generating a global
action ag. Each state of the transducer T corresponds
to a given configuration of the network in which a
given set of synchronisations is possible. Some of those

Eric Madelaine -- HDR 27 Sept. 2011

30 Ann. Telecommun. (2009) 64:25–43

synchronisations can trigger a change of state in the
transducer leading to a new configuration of the net-
work; that is, it encodes a dynamic change on the
configuration of the system.

We say that a Net is static when its transducer con-
tains only one state. Note that each synchronisation
vector can define a synchronisation between one, two
or more actions from different arguments of the Net.
When the synchronisation vector involves only one
argument, its action can occur freely.

Definition 3 A System is a tree-like structure in which
nodes are Nets and leaves are LTSs. At each node, a
partial function maps holes to corresponding subsys-
tems. A system is closed if all holes are mapped and
open otherwise.

Definition 4 The Sort of a system is the set of actions
that can be observed from outside the system. It is
determined by its top-level node, L for a LTS, and AG

for a Net:

Sort(S, s0, L, →) = L Sort(〈AG, J, ÕJ, T〉) = AG

As this is often the case in process algebras, sorts
here are determined statically and are upper approx-
imations of the set of actions that the system can ef-
fectively perform. The precision of this approximation
depends naturally on the specific model generation
procedure, but in most cases, an exact computation is
not possible.

Building hierarchical Nets A Net is a generalised par-
allel operator. Complex systems are built by combining
LTSs in a hierarchical manner using Nets at each level.
There is a natural typing compatibility constraint for
this construction, in terms of the sorts of the formal and
actual parameters. The standard compatibility relation
is Sort inclusion: a system Sys can be used as an actual
argument of a Net at position j only if it agrees with
the sort of the hole Oj (Sort(Sys) ⊆ Oj). Here, also, the
compatibility relation may depend on the language or
formalism that is modelled; for example, if actions rep-
resent Java-like method calls, the compatibility could
take into account sub-typing.

Our behavioural objects being LTSs, and Nets being
operators over LTSs, it is natural to give their seman-
tics in terms of products over LTSs. The definition
of the synchronisation product below defines the LTS
representing any closed Net expression, computed in a
bottom-up manner. It would be also possible to define a
symbolic product over Nets that would reduce any open

Net expression to a single Net, in the spirit of [22], but
this is not necessary for our goals here.

Definition 5 Synchronisation product. Given an in-
dexed set P̃J of LTSs P̃J = (S̃J, s̃0 J, L̃J, →̃J), and
a Net 〈AG, J, ÕJ, T = (ST , s0T , LT , →T)〉, such that
∀ j ∈ J, L j ⊆ Oj, we construct the product LTS (S, s0,

L, →) where S = ∏
j∈{T}∪J S j, s0 = 〈s0T .s̃0J 〉, L ⊆ AG,

and the transition relation is defined as:

s
lt−→ s′ ⇔

⎛

⎜
⎝

s = 〈st.s̃J〉 ∧ s′ = 〈s′
t.s̃

′
J〉 ∧

∃st
〈lt .α̃I〉−−−→ s′

t ∈ →T , ∃I ⊆ J, ∀i ∈ I,
si

αi−→ s′
i ∈ →i ∧ ∀ j ∈ J\I, s j = s′

j

⎞

⎟
⎠

3.2 Parameterised networks of synchronised automata

Next, we enrich the above definitions with parameters
in the spirit of Symbolic Transition Graphs [21]. We
start by giving the notion of parameterised actions. We
leave unspecified here the constructors and operators
of the action algebra; they will be defined together with
the mapping of some specific formalism to pNets.

Definition 6 Parameterised actions. Let V be a set of
names, LA,V a term algebra built over V, including the
constant action τ . We call v ∈ V a parameter, and a ∈
LA,V a parameterised action, B A,V the set of boolean
expressions (guards) over LA,V .

Example In Milner’s value-passing CCS [3], the
action algebra has constructors “tau”, “a” for input
actions, “’a” for output actions and “a(x)” for para-
meterised action. Then, “’out(3)” is a closed output
action term, “a(x,y)” an open input action term with
parameters x and y and “x+y=3” a guard.

Definition 7 pLTS. A parameterised LTS is a tuple
(V, S, s0, L, →) where:

• V is a finite set of parameters, from which we
construct the term algebra LA,V .

• S is a set of states; to each state s ∈ S is associated a
finite indexed set of free variables fv(s) = x̃Js ⊆ V.

• s0 ∈ S is the initial state.
• L is the set of labels, → the transition relation →⊂

S × L × S.
• Labels have the form l = 〈α, eb , x̃Js′:= ẽJs′ 〉 such

that if s
l−→ s′, then:

– α is a parameterised action, expressing a com-
bination of inputs iv(α) ⊆ V (defining new

Eric Madelaine -- HDR 28 Sept. 2011

Ann. Telecommun. (2009) 64:25–43 31

variables) and outputs oe(α) (using action
expressions).

– eb ∈ B A,V is the optional guard.
– The variables x̃Js′ are assigned during the tran-

sition by the optional expressions ẽJs′

with the constraints: fv(oe(α)) ⊆ iv(α) ∪ x̃Js and
fv(eb) ∪ fv(ẽJs′) ⊆ iv(α) ∪ x̃Js ∪ x̃Js′ .

Example Figure 2 is based on an implementation of
the philosopher problem in ProActive. It represents
the pLTS for the body behaviour of a Philo active
object (see how we generate active object behav-
iour models in Section 4.1). The action alphabet used
here reflects the active object communication schema:
each remote request sent by the body has the form
“!dest.request(f,M(˜arg))”, where dest is the remote
reference, M is the method name, with parameters ˜arg

and f is a future reference. More precisely, f is the
identifier of the future proxy instance. Requests that do
not require a response do not use a future proxy.

Definition 8 A pNet is a tuple 〈V, pAG, J, p̃J, ÕJ, T〉,
where: V is a set of parameters, pAG ⊂ LA,V is its set
of (parameterised) external actions and J is a finite set
of holes, each hole j being associated with (at most)
a parameter pj ∈ V and with a sort Oj ⊂ LA,V . The
transducer T is a LTS (ST , s0T , LT , TT), which tran-
sition labels (−→v ∈ LT) are synchronisation vectors of
the form: −→v = 〈ag, {αt}i∈I,t∈Bi〉 such that: I ⊆ J ∧ Bi ⊆
D om(pi) ∧ αi ∈ Oi ∧ fv(αi) ⊆ V.

Explanations Each hole in the pNet has a parame-
ter pj, expressing that this “parameterised hole” cor-
responds to as many actual arguments as necessary
in a given instantiation of its parameter (we could
have, without changing the expressivity, several para-
meters per hole). In other words, the parameterised
holes express parameterised topologies of processes
synchronised by a given Net. Each parameterised

synchronisation vector in the transducer expresses
a synchronisation between some instances ({t}t∈Bi) of
some of the pNet holes (I ⊆ J). The hole parameters
being part of the variables of the action algebra, they
can be used in communication and synchronisation
between the processes.

A static pNet has a unique state, but it has state
variables that encode some notion of internal memory
that can influence the synchronisation. Static pNets
have the nice property that they can be easily repre-
sented graphically. We have such graphics in previous
publications to represent parameterised processes in
the Autograph editor [24].

The sorts of our parameterised structures are sets
of parameterised actions. This definition extends the
simple sorts from Definition 4:

Definition 9 Parameterised sorts:

• The sort of a pLTS: Sort(V, S, s0, L, →) ={
α | ∃l ∈ L. l = 〈α, eb , x̃Js′ := ẽJs′ 〉

}

• The sort of a pNet: Sort〈V, pAG, J, p̃J, ÕJ, T〉 =
pAG

Example The drawing in Fig. 3 shows a (static) pNet
representing the classical philosophers problem, with
two parameterised holes (indexed by the same variable
k) for philosophers and forks. On the right-hand side
are the corresponding elements of the formal pNet, in
which we explicitly list the sort of the holes (Ophilo

and OFork), and where appear synchronisation vectors
parameterised over the index k and the future ids f1

and f2.

Building hierarchical pNets Except from the occur-
rence of parameters in the structure of labels, the rest
of the construction of complex systems as hierarchical
pNet expressions is similar to the previous section, with
the additional parameterisation of arguments: an actual
(parameterised) argument of a pNet at position j is a

Fig. 2 Example of pLTS PhiloRunActivityLTS V S s0 L
with:

V f1 f2

S si ,

L Ext Ext
FG f1 FG f1

FD f2 FD f2
FG FD

such that:
s0 Ext s1

s1 FG f1 s2

...Philo:runActivity

Eric Madelaine -- HDR 29 Sept. 2011

32 Ann. Telecommun. (2009) 64:25–43

Fig. 3 Example of pNet

Ext: {Think, Eat}

Ph: {take?, take!, drop?}

Fork [k]

FG: {take!, take?, drop!}

Philo [k]

FD: {take?, take!, drop!}

PhiloNet V pAG J pJ OJ T with:

V k f1 f2
pAG

J

pPhilo k pFork k

OPhilo Ext Ext
FG f1 FD f2
FG f1 FD f2

FG FD

OFork Ph f1 Ph f2

Ph f1 Ph f2

Ph

This pNet is static, T has a unique state, and transitions with the following labels:
LT

Ext
Ext

FG f1 Ph f1
FD f2 Ph f2
FG f1 Ph f1
FD f2 Ph f2

FG Ph
FD Ph

pair 〈Sys, D〉, where Sys is a pNet (or pLTS) that agrees
with the sort of the hole (Sort(Sys) ⊂ Oj), and D is the
actual domain for the hole parameter pj, i.e. denotes
the set of similar arguments inserted in this hole.

We do not define a synchronisation product for
pLTS that would give some kind of “early” or “sym-
bolic” semantics of our generalised pNets. Instead, we
define instantiations of the parameterised LTS and
Nets, based on a (possibly infinite) domain for each
variable.

Given a hierarchical pNet expression, and instan-
tiation domains for all parameters in this expression,
the definitions below allow us to construct a (non-
parameterised) Net expression, by applying instantia-
tion separately on each pLTS and each pNet in the
expression. This can be performed both for closed or
open pNet expressions, the result being, respectively,
closed or open Net expressions. In the former, closed
Net expressions can then be reduced to a single LTS
(expressing the global behaviour) using the synchro-
nous products in a bottom-up way.

Definition 10 pLTS Instantiation. Given a pLTS Pp =
〈V, Sp, s0p, Lp, →p〉, with V = x̃V and given a count-
able domain for each variable DV = {D(x)}x∈V , and
an initial assignment ρ0 for the variables of the initial

state s0p , the instantiation Φ(Pp, DV) is a LTS P =
〈S, s0, L, →〉 such that:

• S = ⋃
sp∈Sp

{
sp{x̃V ← ẽV} | ∀x ∈ V, ∀eV ∈ D(x)

}
,

• s0 = s0p{ fv(s0p) ← ρ0(fv(s0))},
• L is the set of ground actions (i.e. closed terms) of

the action algebra LA,V ,
• → (⊆ SxLxS) = ⋃

t ∈→p
Φ(t) is the union of in-

stantiations of the parameterised transitions, built
in the following way:

let t = s
lp=〈α,eb , x̃Js′ := ẽJs′ 〉−−−−−−−−−−−→ s′

p be a transition, let Vt =
fv(s) ∪ fv(α) ∪ fv(s′) the free variables of t, and DVt

their instantiation domains, then

Φ(t) =
⋃

ẽVt ∈DVt

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if
(
eb {x̃Vt ← ẽVt} = false

)
then ∅

otherwise
let ψ = {x̃Vt ← ẽVt}
and s′′ = if

(∃ j ∈ Js′ , x = x j
)

then s′ {x ← ψ(e j)

}

else s′ {x ← ex}
in

{

ψ(s)
ψ(α)−−→ s′′

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Apart from the proliferation of indexes, this defini-
tion is quite natural and straightforward; only the case
when variables of the target state are assigned during
the transition needs care (see
 in the equation) because

Eric Madelaine -- HDR 30 Sept. 2011

Ann. Telecommun. (2009) 64:25–43 33

the assigned open expressions ẽJs′ need themselves to
be instantiated.

This operation has an upper-bound complexity that
is exponential in the cardinality of the instantiation
domains, in number of states and transitions.

Definition 11 pNet Instantiation. Given a pNet Np =
〈V, pAG, J, p̃J, ÕJ, T〉, with the transducer T = (ST ,

s0T , LT , TT), and given domains DV for variables in
V, the instantiation Φ(Np, DV) is a Net N = 〈A′

G, J′,
Õ′

J′ , T ′〉, with T ′ = 〈ST ′, s0T ′ , LT ′, TT ′ 〉 constructed in
the following way:

1. Expand the parameterised holes: J′ = Φ(J) =
� j∈JD(pj) where � is a disjoint union (or
concatenation) of sets; let J′

j ⊂ J′ be the part of J′
corresponding to the expansion of hole number j.

2. Instantiate the sort of holes and the global sort:
for i ∈ J′

j, build Õ′
i = ⋃

a∈Oj
Φ(a)

A′
G = ⋃

a∈pAG
Φ(a)

3. Instantiate the transducer:
ST ′ = ST

s0T ′ = s0T

LT ′ = ⋃
−→v ∈LT

{Φ(
−→v)} the expansion of the syn-

chronisation vectors
TT ′ = ⋃

(s,−→v ,s′)∈TT
{(s, a, s′), a ∈ Φ(

−→v)} the expan-
sion of the transition relation
with Φ(

−→v) computed by :

let −→v = 〈ag, {αi,t}i∈I,t∈Bi〉,
let V = fv(

−→v),
and DV their instantiation domains,
for each possible valuation ẽV of x̃ ∈ V,
(let φ = {x̃V ← ẽV} be the corresponding
instantiation function,
expand each parameterised action by

Φ(α j,t) =
if j /∈ I then 〈∗, ..., ∗〉
else 〈x1, ..., x|J′

i |〉,
with xk = ∗ if k /∈ Bi, else φ(α j,t),

build Φ(φ,
−→v) as a vector of cardinality |J′|

as the concatenation of subvectors x ∈ Φ(α j,t)

for each hole j ∈ J),
return Φ(

−→v) = {Φ(φ,
−→v)}{ẽV }

Naturally, even if the above definition does not sup-
pose finiteness of the parameter domains, it will be used
in practice with finite instantiation domains and finite
vectors.

Example We give here a small instantiation of the
philosopher system from Fig. 3:

Φ
(
PhiloNet, D(k) = {1, 2}, D(f1) = {1}, D(f2) = {2})

=
〈A′

G, J′, Õ′
J′ , T ′〉 with:

A′
G = {Think(1), Think(2), Eat(1), !TakeG(1),...}

J′ = {Philo, Philo, Fork, Fork}
O′Philo(1) = {!Ext.request(Think), !Ext.request(Eat),

!FG.request(1,Take), ...}
O′Philo(2) = {!Ext.request(Think), !Ext.request(Eat),

!FG.request(1,Take), ...}
...
LT ′ = {
〈 Think(1), !Ext.request(Think), *, *, * 〉
〈 Think(2), *, !Ext.request(Think), *, * 〉
...
〈 !takeG(1), !FG.request(1,Take), *,
?Ph.request(1,Take), * 〉
〈 !takeD(1), !FD.request(2,Take), *, *,
?Ph.request(2,Take) 〉
... }

Expressivity In [14], we gave examples of pNets repre-
senting various kinds of recursive functions: the “data
flow” within an index family of pLTSs is expressed
by an adequate indexing within the synchronisation
vectors. However, one should note that this expressivity
is gained from the properties of the indexes domains
(here, integers with standard arithmetic): the pNets
formal definition is (on purpose) separated from the
data domain definition and does not provide by itself
any formal expressivity result.

Another aspect of expressivity is the representation
of classical patterns of distributed systems. We claim
that pNets, used with simple (first-order) parameter
domains, provide powerful and easy representations for
our needs, including two-way or multi-way synchro-
nisation, dynamic composition operators or dynamic
creation/activation/orchestration of indexed families
of processes, as will be exemplified in the following
sections.

3.3 Data abstraction

The main interest of the instantiation mechanism de-
fined so far is the ability to build specific domain in-
stantiations with specific properties. In particular, if the
instantiation domains are finite, and are built in such a
way that they constitute abstract interpretations of the
initial parameter domains, then the instantiated Net is
finite. Moreover, if parameters were only used as value-
passing variables in the original pNet (by contrast with
parameters of the system topology), then we can apply

Eric Madelaine -- HDR 31 Sept. 2011

34 Ann. Telecommun. (2009) 64:25–43

a result from Cleaveland and Riely [25] to justify the
use of finite model-checking on our instantiated model:

Property 1 Let Sys be a closed pNet system, with pa-
rameters in V, (concrete) parameter domains DV and
abstract parameter domains A V , with the following
hypothesis:

• Each Av is an abstract interpretation1 of the corre-
sponding concrete domain Dv .

• The domains of pNet holes parameters in Sys are
unchanged by the abstraction.

Then, the abstraction preserves the specification
preorder.

The specification preorder [25], or the better-known
testing preorder [26], is closely related to safety and
liveness properties. Given a system and a specification
(set of properties), one can build a “most abstract”
(finite) value interpretation relative to the specification,
and try to establish its satisfaction. If this succeeds, the
result is valid also for the concrete (potentially infi-
nite) system; if it fails, one can select a more concrete
(= more values) interpretation and repeat the analysis.

Unfortunately, the examples from this paper are too
simple for giving a significant example of abstraction.
Rather, let us use an example extracted from a previous
case-study of our team modelling the Chilean elec-
tronic tax systems [27]. There we were manipulating
invoice documents that could typically be described as
structures doct = 〈vendorid, invoiceid, date, content〉
that would be checked by government services against
〈vendorid, invoiceid〉 records. In the case-study, we
were using the abstract domain doct = 〈vendorid ∈
[0..2], invoiceid ∈ [0..2]〉 as an abstract interpretation
preserving all safety properties involving, at most, two
invoice documents.

In cases where the instantiated variables are para-
meters of the system topology, then the previous result
does not apply. However, the same procedure can be
used to build a finite model for one or more finite
abstractions of the value domains. Even if this does not
provide a proof of validity on the original system, it
is still a valuable debugging tool. As an example, one
could check safety properties involving Philo [1] and
Fork [2] in the philosopher system, using an abstract
domain for indexes defined as {{1}, {2}, {others}}. How-
ever, this will not prove that such a property holds for a
system with an arbitrary number of philosophers.

1Cleaveland and Riely [25] was using a slightly relaxed condition
called “galois insertions”.

4 Behavioural models for distributed applications

In this section, we apply the pNets model to four ex-
amples, starting with distributed active objects. Then,
we successively define a hierarchical component model
and enrich it with non-functional controllers. We finally
merge the previous concepts to get a modelisation of
GCM/ProActive distributed components.

4.1 Active objects

The first application of pNets that we have published
was for ProActive distributed applications, based on
active objects, before the introduction of components.
In [14, 15] we presented a methodology for generat-
ing behavioural models for ProActive, based on static
analysis of the Java/ProActive code. This method is
composed of two steps: first, the source code is analysed
by classical compilation techniques, with special atten-
tion paid to tracking references to remote objects in the
code and identifying remote method calls. This analysis
produces a graph including the method call graph and
some data-flow information. The second step consists in
applying a set of structured operational semantics rules
to the graph, computing the states and transitions of the
behavioural model. The pNets model fits well in this
context and allows us to build compact models, with a
natural relation to the code structure: we associate a hi-
erarchical pNet to each active object of the application
and build a synchronisation network to represent the
communication between them.

Figure 4 illustrates the structure of the pNets ex-
pressing an asynchronous communication between two
active objects. A method call to a remote activity goes
through a proxy that locally creates a “future” object,
while the request goes to the remote request queue.
The request arguments include the references to the
caller and callee objects, but also to the future. Later,
the request may eventually be served, and its result
value will be sent back and used to update the future
value.

The construction of the extended graphs by static
analysis is technically difficult and fundamentally im-
precise. Imprecision comes from classical reasons (hav-
ing only static information about variables, types, etc.),
but also from specific sources: it may not be decidable
statically whether a variable references a local or a
remote object. Furthermore, the middleware libraries
include a lot of dynamic code generation, and the analy-
sis would not be possible for code relying on reflexivity,
classically used to manage some types of “dynamic
topologies” in ProActive.

Eric Madelaine -- HDR 32 Sept. 2011

Ann. Telecommun. (2009) 64:25–43 35

Fig. 4 Communication
between two active objects

Nevertheless, for a reasonable subset of ProActive
programs, we have the following result [15]:

Theorem 1 Finite pNet construction: The analysis ter-
minates, and (up to abstraction during analysis) each
active object is modelled by a finite pNet hierarchy.

More precisely, this result applies to most standard
ProActive programs, with either FIFO or user-defined
request selection policies, but with no usage of reflex-
ivity in the Java code. It does not handle first-class
futures, nor group communication, but extensions are
currently studied. The strongest limitations come from
the imprecision of the static analysis mentioned above,
and from some difficulties when dealing with some of
the Java constructs, like arrays of active objects.

4.2 Hierarchical components

Going from active objects to distributed and hierarchi-
cal components allows us to gain precision in the gen-
erated models. The most significant difference is that
required interfaces are explicitly declared, and active
objects are statically identified by components, so we
always know whether a method call is local or remote.
Moreover, the pNets’s formalism expresses naturally
the hierarchical structure of components.

To formalise the model generation for components,
we give a definition of the structural information that
is usually given through Architecture and Interface
definition languages (ADL and IDL, respectively). This
definition extends slightly those used in Fractal or in the
GCM.

Definition 12 Component structure:

• A component C is a tuple 〈V, �V, ẼI, ξξ〉, where V
is a set of parameters, �V a term algebra, ẼI is the
set of external interfaces of C, and ξ the content.

• An interface type Ity = 〈M̃〉 is a set of methods
M = 〈T, name, Ã〉 with T its return type, and each
A = 〈TA, name〉 a typed argument.

• An interface is a tuple Itf=〈name, Ity, κ, ν, ρ〉,
where Ity is its interface type, κ is the Fractal
contingency (mandatory or optional), ν is the in-
terface multiplicity, and ρ the interface role (either
required or provided).

• The content of a composite component is a tuple
ξ = 〈 ˜IItf, ˜SubC, B̃〉, where ˜IItf is the set of internal
interfaces, B̃ the set of bindings. ˜SubC is the set of
parameterised subcomponents SubC = 〈v, C〉, with
v ∈ V a parameter and C a component.

• A binding B is a pair 〈C1.cItf, C2.sItf〉 with
Ci = self | subC

[
expr ∈ �V

]
identifies either the

composite itself or one instance of a subcomponent,
and cItf is a client interface and sItf is a server
interface.

Note that we leave here undefined the content of
a primitive component. It will depend on the frame-
work and will be used to generate a pLTS representing
the primitive behaviour. We also leave undefined the
algebra �V , which is used to build expressions for
specifying indexes within the parameterised structure;
it will depend on the domains used for the parameter V
in a specific language.

From the information in a component structure, it
is straightforward to generate a pNet representing the
communication between the interfaces and the subcom-
ponents, from the following elements:

• The pNet has one hole for each (parametric) sub-
component.

• The global actions pAG and hole sorts ÕJ

of the pNets are sets of actions of the form
[!|?] Ci.Itf.M(˜arg) for invoking/serving a method
M with each argument arg ∈ �Targ,V .

• It has one parameterised synchronisation vector for
each binding in B̃.

We have shown examples of proofs using such mod-
els in [28]. From now on, we have achieved a nat-
ural model generation for (parametric) hierarchical

Eric Madelaine -- HDR 33 Sept. 2011

36 Ann. Telecommun. (2009) 64:25–43

systems, that can be compared with existing methods
of other verification frameworks, e.g. CADP, μCRL
or πADL. One important difference is that we have
explicitly limited ourselves to (countable) static systems
and use a property-preserving abstraction mechanism.
Now, we build on this result to introduce some man-
agement and reconfiguration mechanisms in such a way
that our verification methods still apply.

4.3 Hierarchical components + management
interfaces = fractal

In the Fractal model, and in Fractal implementations,
the ADL describes a static view of the architecture,
and non-functional (NF) interfaces are used to control
dynamically the evolution of the system. In this section,
we define models for the Life-Cycle Controller (LF)
and the Binding Controller (BC), in terms of pLTS gen-
erated from the component structure of the previous
section.

Stopping a component in Fractal means that its
functional activity is detained, while NF calls are still
allowed in order to allow reconfiguring the component.
This is modelled with an interceptor of all incoming
calls. Then, depending on the components life-cycle
(started or stopped), functional calls are allowed or not.
Similarly, we only allow rebinding interfaces when the
component is stopped.

A LF pLTS (see Fig. 5) is attached to each com-
ponent. Control actions (start/stop) are synchro-
nised with the parent component and with all of
its subcomponents (note that this will not be the
case for the asynchronous version), and status actions
(started/stopped) are synchronised with the compo-
nent’s functional behaviour and with the BC because
the BC may only allow rebinding of interfaces when
stopped.

A BC pLTS (see Fig. 5) is attached to each interface.
Control actions (bind/unbind) are synchronised up to
the higher level (Fractal defines a white-box definition
for NF actions) and with the affected interface; status

actions (bound/unbound) are used to allow method calls
M(˜arg), to forward the call to the appropriate bound
interface and to signal errors. The latter is a distin-
guished action E(unbound, C, It f), visible to the higher
level of hierarchy and triggered whenever a method call
is performed over an unbound interface.

Alternatively, this could have been encoded using
one state in the pNet transducer for each configuration
of the bindings. However, this would require many
transducer states, corresponding to all combinations of
states of all controllers. Our approach is equivalent and
more modular.

Note that we put external interface automata of a
component in the next level of the hierarchy. This
enables us to calculate the controller automaton of a
component before knowing its environment. Thus, all
the properties not involving external interfaces can be
verified in a fully compositional manner.

By lack of space, we do not give here the detailed
definition of the pNet expressing the synchronisation
of the LF/BC controllers of a component with its func-
tional behaviour, but we sketch its structure in Fig. 6.
For synchronous Fractal components, the role of the
interceptor is to synchronise incoming requests with
the life-cycle state (either started or stopped actions) in
order to restrict the allowed requests; allowed requests
are synchronised with the inner part of the component
(see Fig. 7).

In this drawing, the behaviour of subcomponents
is represented by the box named SubC k. For each
interface defined in the component’s ADL description,
a box encoding the behaviour of its internal (cI I and
sI I) and external (cEI and sEI) views is incorporated.
The dotted edges inside the boxes indicate a causality
relation induced by the data flow through the box.
Primitive components have a similar automaton with-
out subcomponents and internal interfaces.

Building and using variants of this model The model
construction is applied bottom-up through the hierar-
chy. The generated model is powerful enough to prove

Fig. 5 pLTS of fractal life
cycle and binding controllers

Eric Madelaine -- HDR 34 Sept. 2011

Ann. Telecommun. (2009) 64:25–43 37

Fig. 6 Synchronisation pNet
for a Fractal composite
component

properties about deployment, normal behaviour or re-
configuration of a whole system. For pragmatic reasons,
it is interesting to distinguish variants of this model in
which only selected management actions are visible or
authorised. We define the following variants:

• [Static automaton] This is the model in which all
controllers are initialised in a “started” state, and all
control actions are hidden. If the ADL was correct,
then it should be equivalent (up to weak bisimula-
tion) to the hierarchical component model (without
controllers) from the previous section; otherwise,
there will typically be reachable “unbound inter-
face errors”. It is used to check the normal behav-
iour of the system.

• [Deployment automaton] We define a deployment
sequence for each composite as a sequence of con-
trol operations, expressed by an automaton, ending
with a distinguished successful action

√
. We build

a non-deployed model similar to the static model,
but with controllers initialised in their unbound resp.
stopped states. Then, the deployment automaton
is the product of the non-deployed model with the
deployment sequences. It allows us to check for
correctness of deployment specifications, which is
characterised by reachability of

√
.

Fig. 7 Interceptor for synchronous Fractal components

• [Reconfiguration models] If we build the full
model, then we can check properties relative to
reconfiguration. This can be very costly because of
the size of the action alphabet, so it can be refined
by only keeping visible selected sets of control
actions.

4.4 Distributed components: GCM/ProActive

In the Section 4.1 above, we have shown how to build
the behaviour of ProActive activities; this corresponds
exactly to the functional part of the behaviour of prim-
itive components in our distributed implementation
of Fractal. We now extend the model of Section 4.3
with this communication protocol in order to model
GCM/ProActive components.

4.4.1 Primitive components

Let us recall the principle of asynchronous communi-
cation between two GCM/ProActive primitive compo-
nents, inherited from ProActive (see Fig. 4). There, a
method call on a client interface goes through a proxy
that locally creates a “future” object, while the request
goes to the request queue of the affected compo-
nent. The request arguments include a reference to the
future, together with a deep copy of the method’s argu-
ments; this is because there is no sharing between com-
ponents. Later, the request may eventually be served,
and its result value will be sent back to the future
reference.

The body box in Fig. 4 represents the compo-
nent’s functional behaviour, and is itself modelled by
a synchronisation network made from the synchronisa-
tion product of the runActivity() method’s pLTS—
ProActive’s service policy—with the behaviour of ser-
vice methods (methods defined by provided interfaces).

Eric Madelaine -- HDR 35 Sept. 2011

38 Ann. Telecommun. (2009) 64:25–43

Fig. 8 Behaviour model for a GCM/ProActive primitive

In the model of a GCM/ProActive primitive compo-
nent, we enrich the controller of the active object by
adding two extra boxes, LF and NewServe, which cor-
respond to the Interceptor in Fig. 6. The resulting pNet
is drawn in Fig. 8. The body box is the only part that
cannot be generated automatically from the ADL; it
comes from the user-provided behaviour specification
of the primitive (though its sort is fully specified).

NewServe implements the treatment of control re-
quests. The action “start” fires the process representing
the method runActivity() in the body. “Stop” triggers
the !stop synchronisation with body (Fig. 8). This syn-
chronisation should eventually lead to the termination
of the runActivity() method (!return synchronisa-
tion). In the GCM/ProActive implementation, this is
done through setting the state variable isActive to

false, which should eventually cause the runActivity()

method to finish, only then the component is consid-
ered to be stopped. Note that this may depend on the
programmer’s implementation of the runActivity()

method, so it is worth verifying in the generated model!
The queue box can perform three actions: (1) serve

the first functional method corresponding to the Serve

API primitive used in the body code, (2) serve a control
method only at the head of the queue and (3) serve
only control methods in FIFO order, bypassing the
functional ones.

4.4.2 Composites components

A composite membrane in GCM/ProActive is an active
object. When started, it serves functional or control
methods in FIFO order, forwarding method calls be-
tween internal and external functional interfaces. When
stopped, it serves only control requests.

Figure 9 shows the model of the membrane, that
is similar to the interceptor from Fig. 6, though more
complex. The membrane model is created from the
description of the composite (given by the ADL). The
proxy in Fig. 9 is the same as the one presented in
Fig. 4. In this case, the proxy is in charge of for-
warding the value of the future by receiving the value
in action ?response(..) and forwarding in action
!response(..). Since the method calls include the ref-
erence of the future in the arguments, future updates
can be addressed directly to the caller immediately
before in the chain. Consequently, like in the imple-
mentation, the future update would not be affected in
case of a rebinding or a change in the life-cycle status

Fig. 9 Behaviour of a
composite membrane

Eric Madelaine -- HDR 36 Sept. 2011

Ann. Telecommun. (2009) 64:25–43 39

Fig. 10 The VERCORS
architecture

of the components. Our model is expressive enough to
reflect this property.

The modelisation here does not handle the mecha-
nisms for first-class futures, which require specific con-
trollers for storing and updating chains of future proxies
through several components. We are working on this
extension. This is important both for reflecting realistic
applications that use this mechanism for efficiency and
because it has significant behavioural impact: deadlocks
may be different when you allow first class futures.

5 Platform overview

We present below a high-level view of the Vercors
platform and the properties we are able to verify; the
interested reader could refer to [17] for further details.
Our platform comprises several tools for assisting the
verification process. Rather than creating a new model-
checker, we implement our model-generation methods
in a way that they efficiently integrate with existing
state-of-the-art tools for checking component specifica-
tions based on the models of Section 4. The platform
is presented through the classical problem of a bound
buffer with one consumer and one producer.

Figure 10 gives a snapshot of the platform. In the
next subsections, we shall describe in detail its three
parts: the input from the user (Section 5.1), the behav-
ioural model (Section 5.2), and the verification of prop-
erties (Section 5.3). We illustrate our platform through

the formal verification of the previously outlined case-
study.

5.1 User input

For automatically building the behavioural model, we
take a two-fold approach: (1) the architecture and hi-
erarchy information are extracted from the ADL (and
IDL) and (2) each of the primitive component’s func-
tional behaviour is specified by the user in an automata-
based language which we call Behavioural Description
Language (BDL).

Figure 11 shows an example of a producer con-
sumer system. Both the producer and the consumer
produce/consume one element at a time. Additionally,
the buffer emits an alarm through its interface Ialarm,
when the buffer is full.

The XML description of the ADL of the producer–
consumer example is shown in Fig. 12. It specifies
that the system is composed of the composite Buffer-
System (line 6), itself described in a separate file
(components/BufferSystem.fractal), and the primi-
tive Alarm, the implementation of which is the Java
class components.Alarm (line 15). The BufferSystem
receives a paramater (three in our example, line 7) used
to initialise the component with the maximal size of
the buffer. The BufferSystem also requires an inter-
face named alarm of type components.AlarmInterface

(lines 8 and 9). Alarm provides an interface named
alarm of type components.AlarmInterface (lines 13

Fig. 11 Consumer–producer
example

Buffer

Producer

Consumer

System

BufferSystem Alarm

I lf

I alar m : A

Ibc
I put : P

Iget : C

I lf

I buf f er : P

Ibc

I lf I bc

I lf

I buf f er : C

Ibc

I lf I bc

I lf I bc

I alar m : A

Ialar m : A

Eric Madelaine -- HDR 37 Sept. 2011

40 Ann. Telecommun. (2009) 64:25–43

Fig. 12 System ADL

and 14). Then, interface signatures are given with the
Fractal Interface Definition Language (IDL). In the
implementations we consider, this definition is given by
Java interfaces describing the signatures of the methods
of each component interface. Analysing the ADL and
the IDL, we are able to build the behavioural model
with asynchronous and non-functional controllers of
Section 4.4.

Finally, the functional behaviour is given by a BDL,
in this case in pNets. An example of a behavioural
specification of the Buffer is given in Fig. 13. The
abstract specification does not consider the values of
the elements, but only the amount of elements stored.
Therefore, the parameterised automaton has a variable
N representing the number of elements stored in the
buffer, and the transitions have guards with expressions
related to this variable and to a constant Max. In the
example, the buffer is instantiated with Max = 3 as set
in line 7, Fig. 12. Other parameters are: caller, repre-
senting the reference to the activity (component) that
invoked the method call, and f , representing the identi-
fier of the future that is used to send back the response.
The buffer also invokes methods on its client interface
Ialarm in case the buffer is full (action !Ialarm.alarm()).

Although pNets can be used as a BDL, it is con-
venient to give a higher-level language to non-expert
users. In this vein, we also developed a tool called
CTTool [29], using UML2 statemachines diagrams to
express pLTSs, and a variant of UML2 component
structures to specify the system architecture (but only

Fig. 13 Buffer behaviour (provided by user)

in the static case). We also plan to provide a textual
specification language that would smoothly integrate
architecture and behaviour specifications for GCM ap-
plications, but this is still in progress.

5.2 Internal model

We first automatically build the behavioural model in
pNets seen in Section 4. This is done by ADL2N, which
is a tool written in Java for generating the behavioural
models of Fractal components by analysing the system’s
ADL and IDL (see Section 4.2).

We also specified a model for Fractal’s binding and
life-cycle controllers. Those two controllers allow us to
model the deployment and some basic reconfigurations
of the system. In our case, checking the safeness of
these can be done statically by building the Static, De-
ployment or Reconfiguration automata of Section 4.3.

In practice, the user of ADL2N uses a GUI to specify
at the same time the methods that will be visible, the
arguments that are significant and their finite instan-
tiation. The visibility of methods and the abstraction
(see Section 3.3) depend on the formulas to be checked.
Although it should be possible to infer safe abstractions
given a set of formulas, for the moment, it is up to the
user to provide finite abstractions of the data domains.
The output of ADL2N is the pNets behavioural model
of Section 4.3 with the above abstractions and with the
selected actions hidden.

5.3 Verification

In the current toolset, we only interface with finite-state
model-checkers and, namely, with the evaluator model-
checker from the CADP toolset, that features a very
efficient check of branching-time logics, together with
on-the-fly generation, cluster-based distributed state-

Eric Madelaine -- HDR 38 Sept. 2011

Ann. Telecommun. (2009) 64:25–43 41

generation, tau-confluence reduction, etc. We give here
examples of verification for various usage scenarios.

Deployment In GCM/ProActive, method calls are
asynchronous, and there may be delays between the
request for a non-functional method and its treatment.
So checking the execution of a control operation must
be based on the observation of its application on the
component, rather than the arrival of the request.

One of the interesting properties is that the start
operation, which is hierarchical, occurs during the de-
ployment; i.e. that the component and all its sub-
components are at some point started. This property
can be expressed as the (inevitable) reachability of
the start signal in the static automaton of System, for
all the possible executions, where name = {System,
BufferSystem, Alarm, Buffer, Consumer, Producer}.
This can be translated into a μ-calculus formula and
verified in CADP.

Pure-functional properties The classical interesting
properties concern the behaviour of the system after
its deployment, at least while there are no reconfigu-
rations. For instance, in the example, we would like to
prove that a request for an element from the queue
is eventually served, i.e. that the element is eventually
obtained. This is proved to be true in CADP by model-
checking the global state-space.

Functional properties under reconfigurations Our ap-
proach enables the verification of properties not only
after a correct deployment, but also after and dur-
ing reconfigurations. For instance, the pure-functional
property above becomes false if we stop the producer
since, at some point, the buffer will be empty, and
the consumer will be blocked waiting for an element.
However, if the producer is restarted, the consumer
will eventually receive an element and the property
should become true again. In other words, we can check
that, if the consumer requests an element, and then the
producer is stopped, if the producer is started again, the
consumer will get the element requested.

For proving this kind of property, the static au-
tomaton is not sufficient; we need a behavioural model
containing the required reconfiguration operations. We
add to the component network a reconfiguration con-
troller (Fig. 14): its initial state corresponds to the

Fig. 14 Synchronisation
product supporting further
reconfigurations

deployment phase and the next state corresponds to
the rest of the life-cycle in which reconfigurations are
enabled. This state change is fired by the successful
termination of the deployment (

√
). For the property

stated above, the reconfigurations ?stop(Producer)

and ?start(Producer) are left visible.

Asynchronous behaviour properties Let us now focus
on a property specific to the asynchronous aspect of
the component model. The communication mechanism
in GCM/ProActive allows any future, once obtained,
to be updated with the associated value, provided that
the corresponding method is served and terminates cor-
rectly; binds, unbinds or stops operation cannot prevent
this. For example, if the consumer is unbound after a
request, it gets anyway the response, even if the link is
then unbound or the component stopped. We are able
to verify this in our behavioural models.

6 Conclusion and perspectives

This article defines the pNets formalism, a parame-
terised and hierarchical extension of LTSs. pNets have
a tree-structure in terms of networks of synchronisation
vectors, and a very high expressivity through the use
of parameters at both LTS and network levels. This
formalism is used to represent the behavioural seman-
tics of distributed systems. It provides a compact and
well-defined intermediate format for connecting code
analysers or code generators with model-checking or
equivalence engines.

In addition to the formal definition of pNets, our
contribution is:

– Four scenarios demonstrating the usage of pNets.
We generate behavioural models for active ob-
jects, hierarchical components, hierarchical com-
ponents with non-functional controllers and finally
asynchronous hierarchical components with non-
functional controllers.

– A short description of our verification platform
Vercors, in which we use pNets as the pivot for-
mat for analysis, abstraction, verification and code-
generation tools. We show the results of model
construction and analysis of temporal logic proper-
ties for a simple case-study.

The pNets format is lower-level, and more versa-
tile, than other models used in existing verification
toolsets. Many tools rely on specific synchronisation
and communication mechanisms, like the LOTOS-like
parallelism in the CADP toolset, channels in Promela
or Petri nets in other cases. In contrast, the low-level

Eric Madelaine -- HDR 39 Sept. 2011

42 Ann. Telecommun. (2009) 64:25–43

primitives of pNets (LTS + synchronisation vectors)
are able to represent many possible mechanisms, as
demonstrated by the four applications in this article.

Another important trade-off is between parame-
terised representations (close to developers code) and
lower-level explicit-state encodings that are required
by model-checkers. We argue that the pNets model
allows for finite and compact representation of sys-
tems, expressive enough to capture a large family of
behavioural properties of both synchronous and asyn-
chronous applications.

The Vercors platform (editor, generation, instantia-
tion and conversion tools) and a large-scale case-study
are available at our website.2 These tools currently al-
low to build behavioural models for synchronous Frac-
tal components with partial support for non-functional
controllers. They are interfaced with the explicit-state
verification toolset CADP.

We are currently working on the controller gener-
ation for the GCM/ProActive asynchronous compo-
nents, including the handling of multicast/gathercast
communications, of transparent futures and of com-
ponent reconfiguration. A specific concern is the en-
coding of request queues; a direct representation with
pNets is possible but would be very expensive in term
of state/transition complexity. We are looking for a
specific parametric representation coupled with a spe-
cialised “infinite-state” engine.

Our main application context is the GCM compo-
nent model and its reference implementation within
the Java/ProActive library. However, static analysis of
Java/ProActive code is intrinsically imprecise, making
the generation of pNet models difficult. We are working
on a specification language integrating architectural
and behavioural views, with high-level constructs for
system reconfiguration, and for Grid specific features
like collective interface policies and parameterised
component topologies. This language will be used as an
input for the Vercors platform, but also for tools that
will generate “correct by construction” Java code.

References

1. Bruneton E, Coupaye T, Leclercp M, Quema V, Stefani J
(2004) An open component model and its support in java.
In: 7th int symp on component-based software engineering
(CBSE-7), LNCS, vol 3054. Springer

2. CoreGRID, Programming Model Institute (2006) Basic feat-
ures of the grid component model (assessed). Technical rep-

2http://www-sop.inria.fr/oasis/Vercors.

ort, Deliverable D.PM.04. http://www.coregrid.net/mambo/
images/stories/Deliverables/d.pm.04.pdf

3. Milner R (1989) Communication and concurrency. Prentice
Hall, Englewood Cliffs ISBN 0-13-114984-9

4. Bergstra J, Pose A, Smolka S (2001) Handbook of process
algebra. North-Holland, Amsterdam

5. Arnold A (1994) Finite transition systems. Semantics of com-
municating sytems. Prentice-Hall, Englewood Cliffs

6. Milner R, Parrow J, Walker D (1992) A calculus of mobile
processes. Inf Comput 100(1):1–77

7. Garavel H, Lang F, Mateescu R, Serve W (2007) CADP
2006: a toolbox for the construction and analysis of distrbuted
processes. In: CAV 2007 conference. Berlin, Germany

8. Garavel H, Lang F (2002) NTIF: a general symbolic model
for communicating sequential processes with data. In: Pro-
ceedings of FORTE’02 (Houston), LNCS, vol 2529. Springer

9. Roscoe A (1994) Model-checking CSP. In: A classical mind,
essays in honour of C.A.R. Hoare. Prentice-Hall, Englewood
Cliffs

10. Scattergood J (1998) The semantics and implementation of
machine-readable CSP. PhD thesis, Oxford Un. Computing
Laboratory

11. Magee J, Kramer J (2006) Concurrency: state models and
java programs, 2nd edn. Wiley, New York

12. Poizat P, Royer J, Salaun G (2006) Bounded analysis and
decomposition for behavioural descriptions of components.
In: FMOODS, LNCS, vol 4037. Springer

13. Poizat P, Royer J (2006) A formal architectural descrip-
tion language based on transition systems and modal logic.
J Univers Comput Sci 12(12):1741–1782

14. Barros T, Boulifa R, Madelaine E (2004) Parameterized
models for distributed Java objects. In: Forte’04 conference.
LNCS, vol 3235. Springer, Madrid

15. Boulifa R (2004) Génération de modèles comportementaux
des applications réparties. PhD thesis, University of Nice -
Sophia Antipolis – UFR Sciences

16. Barros T, Henrio L, Madelaine E (2005) Behavioural mod-
els for hierarchical components. In: Godefroid P (ed) Model
checking software, 12th int SPIN workshop, LNCS, vol 3639.
Springer, San Francisco

17. Barros T (2005) Formal specification and verification of dis-
tributed component systems. PhD thesis, University of Nice -
Sophia Antipolis

18. Caromel D, Delbé C, di Costanzo A, Leyton M (2006)
ProActive: an integrated platform for programming and run-
ning applications on grids and P2P systems. Comput Methods
Sci Technol 12(1):69–77

19. Caromel D, Henrio L, Serpette B (2004) Asynchronous
and deterministic objects. In: Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on principles of program-
ming languages. ACM, New York, pp 123–134

20. Caromel D, Henrio L (2005) A theory of distributed object.
Springer, Heidelberg

21. Lin H (1996) Symbolic transition graph with assignment. In:
Montanari U, Sassone V (eds) CONCUR ’96, LNCS, vol
1119. Pisa, Italy

22. Lakas A (1996) Les Transformations Lotomaton: une con-
tribution à la pré-implémentation des systèmes Lotos. Ph.D.
thesis, Univ. Paris VI

23. Najm E, Lakas A, Serouchni A, Madelaine E, de Simone R
(1992) ALTO: an interactive transformation tool for LOTOS
and LOTOMATON. In: Bolognesi T, Brinksma E, Vissers C
(eds) Third lotosphere workshop and seminar, Pisa

24. Madelaine E (1992) Verification tools from the CONCUR
project. In: Rozenberg G (ed) EATCS Bull, vol 47. B. Rovan,
Bratislava

Eric Madelaine -- HDR 40 Sept. 2011

http://www-sop.inria.fr/oasis/Vercors
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf

Ann. Telecommun. (2009) 64:25–43 43

25. Cleaveland R, Riely J (1994) Testing-based abstractions for
value-passing systems. In: CONCUR’94, LNCS, vol 836.
Springer, Heidelberg

26. Cleaveland R, Hennessy M (1993) Testing equivalence as a
bisimulation equivalence. Form Asp Comput 5:1–20

27. Attali I, Barros T, Madelaine E (2004) Formalisation and
proofs of the chilean electronic invoices system. In: Proc. of
the XXIV international conference of the Chilean computer
science society (SCCC’04). IEEE, Arica

28. Barros T, Cansado A, Madelaine E, Rivera M (2006) Model
checking distributed components: the Vercors platform. In:
3rd workshop on formal aspects of component systems.
ENTCS, Prague

29. Ahumada S, Apvrille L, Barros T, Cansado A, Madelaine E,
Salageanu E (2007) Specifying fractal and GCM components
With UML. In: Proc of the XXVI international conference
of the Chilean computer science society (SCCC’07). IEEE,
Iquique

Eric Madelaine -- HDR 41 Sept. 2011

5. Tool platform

Chapitre 5

Tool platform

5.1 Summary

The paper included in this chapter [C-09] was presented in September 2008
at the FMCO symposium. Based on the formal model presented in the previous
chapter, it recalls the construction of pNets models for distributed hierarchical com-
ponents, and extends it for two important features of GCM components, namely
first-class futures and collective communication interfaces (we have summarized
these contributions in the previous chapter, section 4.1). It also gives a synthetic
view on our tool platform Vercors, with a focus on the Component Architecture
Editor, and the tools for generation and manipulation of pNets. This work was
developed between 2005 and 2008 in collaboration with Tomás Barros, Antonio
Cansado and Ludovic Henrio, but also with the internships of Alejandro Vera,
Marcela Rivera, Emil Salageanu [83, 82], Pablo Valenzuela [33], and Krzysztof
Nirski.

As mentioned in the conclusion of the previous chapter, it quickly became man-
datory to run significant experiments, starting with proof-of-concept prototypes,
and progressively assembling them, together with external tools when available, in
a coherent platform.

We started with Tomás Barros, developing tools to support the heart of the
pNets model, using the FC2 format inherited from my previous work in the Meije
team. FC2 provided us with a concrete syntax to express hierarchical process
structures, and more importantly, parameterized synchronization vectors. Tomás
developed the tools FC2instantiate and FC2toExp for instantiating paramete-
rized FC2 structures into finite FC2, and for translating finite FC2 structures into
Exp files, that is the format for synchronization vectors of the CADP toolset. At
that point, we had no tool for automatically translating pNets models into FC2
syntax, and we had to write parameterized FC2 format by hand, that was somew-
hat difficult. But this was enough to run our first large-scale use-case, based on
a specification of the Chilean Electronic Invoices System (see section 7.1), that we
published at SCCC’04 [C-04b,R-04].

At this point we had a good support for state-space generation and for model-
checking, using CADP [47], and a usable syntax for encoding pNets models in FC2
syntax. But writing these by hand was not reasonable, and we started to look
for tools that would be convenient for system specification (both behaviours and
parallel structure), and from which we could generate FC2 code. The requirements
in this quest were manifolded. We wanted :

– a formalism expressive enough to cover all aspects of pNets, from simple
data manipulation within transition systems, to hierarchical parallel pro-

Eric Madelaine -- HDR 42 Sept. 2011

5. Tool platform

cesses with various communication and synchronization artifacts,
– a formalism intuitive and accessible to non specialists,
– an easy expression of our distributed objects and components semantics.

Our first ideas, and early experiments, were based on UML2.0, in which the
existing Activity, State-Machine, and Component Structure diagrams were not too
far from our needs. We developed CTTool [81] from these ideas, based on the
TTool environment of Ludovic Aprville [7], and defined a custom version of the
Component Structure meta model adapted to our needs. We published this work in
[C-06,C-07a] and [82], and the tool was used extensively in the CoCome Case-study
[J-08], as illustrated in Figure 5.1.

Fig. 5.1 – A CTTool drawing from the CoCoME case-study

CTTool was directly producing Lotos code suitable for verification in the CADP
toolset, but this was not a good idea, because we had no direct control on the
semantics of the graphical constructions, and indeed, we were not able to implement
correctly all pNets constructs. Another serious drawback was that the structure
of UML component structures are significantly different from GCM components
(see [C-07a,W-06]) ; defining a GCM “profile” based on UML2.0 would have been
possible, but the differences from original component structures would have been
more significant than the similarities.

CADP

State−Space

Model−checker

generator

(mu−calculus)
formulas

pNet models

Pivot Format:

EXP + SVL

Component Editor
(Architecture)

FC2

ADL

description

VerCors

A
bs

tr
ac

tio
n

de
fin

iti
on

 to
ol

A
D

L2
N

Fig. 5.2 – Initial architecture of VerCors tool set

At this point, it became clear that it would be much more convenient to have
our own graphical language for specifying GCM component architectures. At the
same time, several platforms were available for developing well integrated Eclipse-
based environments, and we started to build what is now the VerCors platform,
in particular with support from our ACI collaborative project FIACRE (see section
9.4). The distributed version of VerCors, as described in the FMCO paper (pages
FMCO :18-22), now includes the graphical editor for GCM components VCE, able
to read and write GCM ADL descriptions ; the ADL2N tool, that builds pNets
structures from component drawings, including (abstract) data parameters ; and

Eric Madelaine -- HDR 43 Sept. 2011

5. Tool platform

connexion to the CADP toolset through the FC2 and EXP formats.

Figure 5.2 illustrates the architecture of the first version of the VerCors plat-
form. On the left is the VerCors Component Editor VCE, which is able to read
and write component architecture descriptions (Fractal ADL). On the right is the
CADP toolset ; in the current state of VerCors, running the verification tools is
left to the user, and the formulas have to be written directly in the model-checker
language.

Since this publication at FMCO, we have concentrated our efforts on : 1) the
replacement of FC2 by the Fiacre format, 2) experimentations with new model-
checking engines, including algorithms for representing and analyzing processes
communicating over unbounded channel ; and distributed model-generation and
model-checking engines. We detail these points below.

The Fiacre format All verification platforms and model-checking engines have
their own input language(s). CADP accepts a number of different languages, inclu-
ding Lotos, ELotos, CCS, CSP, mCRL, and none of these languages were directly
suitable to encode our pNets systems, because each of them have their specific
parallelism and synchronization constructs and semantics. We were looking in fact
for a lower level formalism, that would easily encode correctly and concisely the
pNets systems.

Within the FIACRE project, we contributed to the development of the Fiacre
format, which is a pivot format in the development platforms created by the Top-
cased (www.topcased.org) and the OpenEmbeDD (openembedd.org) collaborative
projects. Fiacre is a textual format for representing communicating automata,
including typed channels, a set of simple data types, sequential control constructs,
and parallel constructs for building hierarchical processes. Fiacre can be used
as an input language of CADP, through the use of a Fiacre to Lotos compiler.
Fiacre is not able to represent directly all constructs of the pNets model, in par-
ticular when multi-point synchronization is involved. However, it is a good choice
of intermediate format between Vercors and CADP in the current situation, espe-
cially for encoding models of pure (parameterized) LTSs, or simple compositions of
LTSs. For more complex synchronization structures, we can use the EXP format
of CADP, for expressing our synchronization vectors.

It should be noted that such a choice is always a compromise between the
complexity of representation of our models, the ease of translation, but also of the
precision of the inverse translation, when one needs to translate diagnoses of the
analysis engine into the original model.

An important tool currently missing in the Vercors platform is a translator
between the pNets model (generated from textual or graphical editors), to a pivot
format, or combination of formats, that would automate the interface with the
model-checking toolsets. In some sense, what we seek is a syntactic representation
of the pNets model, in term of Fiacre/Exp processes. We have started, with Adel
Bouchakhchoukha [26] to define this translation, and we have experimented in our
recent use-cases with the structuring of the pivot format, with in mind its utilization
for compositional and distributed model-checking (see chapter 7). The translator
still has to be implemented, and integrated in VerCors. This will be one of our
short term priorities, with the following goal :

The translator from pNets to the pivot format in VerCors should :

– be incorporated as an Eclipse plugin, to be activated directly from the editors,
– be “invertible”, in the sense that diagnoses from the model-checkers have

to be translated back into the original user-level syntax, and eventually dis-

Eric Madelaine -- HDR 44 Sept. 2011

5. Tool platform

played in the editors,
– hide as much as possible the complexity of the underlying model, so that non

specialists users can run the model-checkers.

Figure 5.3 shows the architecture of the future VerCors version. The main
differences with Figure 5.2 are : the addition of behaviour and formulas editors ;
the replacement of FC2 by the Fiacre formalism ; the possibility to plug in new
model-checkers ; the addition of “backward” flows (dashed arrows) expressing the
translation of diagnostics back to the user-level formalisms and editors.

Note that it may be the case that new model-checkers have different input
formalisms, and not accept Fiacre/Exp programs. Still we want to produce such
inputs from pNets models, and be able to reuse the rest of the tool chain in a
coherent way.

CADP

State−Space

Model−checker

generator

model−checker
Infinite−state

pNet models

Pivot Format:

FIACRE
EXP + SVL

Component Editor
(Architecture)

Other
Input
Formats

Behaviour Editor

Property Editor

A
bs

tr
ac

tio
n

de
fin

iti
on

 to
ol

MCL Formulas

A
D

L2
N

Fig. 5.3 – Foreseen architecture of VerCors verification backend(s)

New model-checking techniques Our team expertise does not include the
model-checking methods, algorithms, or tools themselves. Instead we rather focus
on the method and tools for building the program models, and using existing model-
checkers. However, I will speak shortly here of two cases in which we had to make
significant research work to adapt or extend new model-checking technologies to
our needs.

The first one is about verification of unbounded fifo channels. There have
been a number of works in the area of infinite systems model-checking, most of
them addressing the search for (semi-) decidable sublogics, for modeling unboun-
ded channels, processes with counters endowed with various arithmetic operators,
or infinite structures of processes. But there have been very few realization ; the
LASH library [89] is one of them, implementing data structures representing, among
others, systems of finite state machines communicating over unbounded FIFO chan-
nels [22]. We could not use directly the LASH implementation, on one side because
we wanted a java implementation for future integration in VerCors, on the other
hand because the LASH implementation is quite general and we needed specific
adaptation of the algorithm to have a proper control on the search strategies, and
to be able to limit the search space using information specific to our model. We
implemented a prototype providing a formalism for defining such machines, and
an adaptation of the QDD algorithm. This specific “infinite state” domain is im-
portant for ProActive and GCM-like applications, where request queues are by
default unbounded fifos. Our first results show that the approach is feasible for
toy examples, but the practical complexity quite high. A workable implementation

Eric Madelaine -- HDR 45 Sept. 2011

5. Tool platform

would require 1) a thorough work on the efficiency of the data representation and
of the algorithm 2) extension to non-fifo cases where the message selection policy is
expressed in some regular manner, and 3) a way to integrate this algorithm (both
in theory and in practice) with other finite-state and infinite-state tools.

The second case is about distributed and hierarchical model-checking.
We have been using for a while the “Distributor” engine of the CADP toolset, which
provides distributed state-space generation for applications expressed in a number
of different CADP input formalisms. Distributor [49] uses many similar instances
on as many different nodes of a cluster, each instance managing a predefined subset
of the generated states, and communicating with others by message passing. The
generated state space is stored in RAM during generation, so the global state space
can be as large as the total RAM of the cluster... The current bottleneck of this
method is that other tools of CADP (the bisimulation minimizer, or the model-
checker itself) are not distributed, so the generated state-space has to be assembled
in a single file (in bcg format) before applying these tools. We have built a tool for
building “verification workflows” and running them on grid or cloud infrastructures.
We used this in our group-communication case-study [R-10], and you will find
figures in Chapter 7. The results are quite good for scaling up in term of the size
of models (up to 1012 states explicitly stored), and make possible the combination
of many techniques to reduce the state explosion, including hierarchical hiding
and minimization, partial-order reduction, usage of process contexts, etc. In the
current state we are severely lacking of tool support : 1) for generating the various
parts of the pivot format for the different parts of the workflow tasks (Fiacre,
EXP and SVL formats), 2) for automatically adapting the model generation to the
set of formulas we want to prove, 3) for automatically deploying and monitoring
the verification tasks on modern (elastic) computing infrastructures, and 4) for
debugging purposes, and in particular for lifting back the model-checker diagnoses
to the level of the user specification formalisms.

Perspectives The VerCors platform is already a powerful prototype for demons-
trating our methods on large examples. But it needs a number of additional tools
before being usable in a convenient way, and, more important in our perspective,
to be usable by non-specialists. The missing parts are essentially :

– Input formalisms and editing tools for expressing the behaviour of basic ob-
jects (automata), and for defining the properties required (logic formulas).
Whenever possible, we do not want to reinvent new languages, and we would
rather prefer to use some existing formalism already known by developers.
For automata, this could be some form of state-charts or activity diagrams.
For Logic formulas, this is more difficult, but MCL (Model Checking Lan-
guage [70]) could be a good candidate.

– Automatic tools fully implementing the model-generation procedures as des-
cribed in Figure 5.3. These tools will include an extension of the abstraction
operations implemented in the ADL2N tool, helping developers to define pro-
per and consistent abstractions. They will consistently apply these abstrac-
tions to all the elements of the input formalisms, including the logic language.
And they will support the rendering of debugging information directly in the
input formalisms, providing the developer with readable diagnoses.

5.2 Paper from FMCO Symposium, Sep. 2008

Eric Madelaine -- HDR 46 Sept. 2011

Specification and Verification for Grid

Component-Based Applications: From Models to Tools

Antonio Cansado and Eric Madelaine

INRIA – CNRS – I3S – Université de Nice Sophia-Antipolis

2004 Route des Lucioles, Sophia Antipolis - France

{acansado,madelain}@sophia.inria.fr

Abstract. Computer Grids offer large-scale infrastructures for computer inten-

sive applications, as well as for new service-oriented paradigms. Programming

such applications brings a number of difficulties due to asynchrony and dynam-

icity, and require specific verification methods. We define a behavioural model

called pNets for describing the semantics of distributed component systems.

pNets (for parameterized networks of synchronised automatas) are hierarchical

assemblies of labelled transition systems, with data parameters expressing both

value-passing and parameterized topology. We use pNets for building models for

Fractal (hierarchical) and GCM (distributed) components. We present the Ver-

Cors platform, that implements these model generation procedures, but also ab-

straction mechanisms and connections with the model-checking engines of the

CADP toolset.

1 Introduction

Software components [1] are the de facto standard in many information technology

industries. Component-based frameworks and languages are seen as the natural succes-

sors of object-oriented languages for obtaining applications which are more modular,

composable and reusable. Many solutions have been proposed during the past 10 years,

with EJB being certainly the most well-known and used one. However, these promises

are often considered from a software engineering perspective and are at best only em-

pirically verified. We want to build development methods and environments that allow

application designers to specify the external behaviour of software components in a

black-box fashion, assemble them to build bigger components while guaranteeing that

the parts will behave smoothly together, and check that such an assembly implements

the overall behaviour expected by the user requirements. Beyond interoperability be-

tween components constituting large modern systems, e.g. in grid computing appli-

cations, or in large scale distributed software services, raise additional problems. In

particular distributed and asynchronous components require more complex behaviour

models, and the complexity of the analysis is higher. The analysis of properties related

with reconfiguration and dynamicity brings new aspects to check, e.g. defining evolving

systems, or checking substitutability.

Among the existing component models, Fractal [2] provides the following crucial

features: the explicit definition of provided/required interfaces for expressing depen-

dencies between components; a hierarchical structure allowing to build components

F.S. de Boer et al. (Eds.): FMCO 2008, LNCS 5751, pp. 180–203, 2009.

c© Springer-Verlag Berlin Heidelberg 2009

Eric Madelaine -- HDR 47 Sept. 2011

Specification and Verification for Grid Component-Based Applications 181

by composition of smaller components; and the definition of non-functional features

through specific interfaces, providing a clear separation of concerns between functional

and non-functional aspects. The Grid Component Model (GCM) [3], extends Fractal by

addressing large scale distributed aspects of components, providing structures for asyn-

chronous method calls with implicit futures1, and NxM communication mechanisms.

Both Fractal and GCM models provide means to specify and implement management

and reconfiguration operations.

The objective of our work is to provide tools to the programmer of distributed com-

ponents systems in order to verify the correct behaviour of programs. We require those

tools to be intuitive and user-friendly to be usable by non-experts of formal methods.

To this end we build an analysis toolset, including graphical editors for defining the ar-

chitecture and the behaviour of components, and state-of-the-art model-checking tools.

At the heart of this platform lie the behaviour semantics of our component systems, and

the model generation tools that are the subject of this article. In this context the choice

of the behavioural model is crucial: it has to be compact, expressive enough to represent

the behavioural semantics, but not too much, that could prevent us to map the models

to the input formats of automatic verification tools. Some recent approches, for exam-

ple π-ADL [4], are using formalisms based on the π-calculus, others, like µ-CRL [5]

or STS [6] use algebraic descriptions of data domains. In both cases, such foundations

give them powerful primitives for describing dynamic or mobile architectures, but also

strong limitations for using automatic verification.

Most established approaches, on the other side, are using intermediate formats with

data, that can be unfolded to finite-state structures. This is the case e.g. for the CADP

toolbox [7], or for the SPIN model-checker and its specification language PROMELA,

whose data values are instantiated (on bound domains) by the state exploration

engines.

Our choice is to use an intermediate approach with a compositional semantic model

including data called pNets [8]. It is different from previous approaches in the sense that

we want a low-level model able to express various mechanisms for distributed systems,

and that we do not limit ourselves to finite systems: we shall be able to define map-

pings to various classes of systems, finite or not. At the same time, the structure of our

parameterized model is closer to the programming language or the specification lan-

guage structure. Consequently, parameterized models are more compact, and easier to

produce, than classical internal models. Typically, our pNets model is lower level than

Lotos and Promela, but more flexible for expressing different synchronisation mecha-

nisms. On the other hand, it has no recursive constructs, in order to better control the

finiteness of encodings.

The second half of this work is a set of software tools called VerCors [9] for speci-

fying and verifying GCM component systems. In the middle term, it will include both

a textual and a graphical specification languages, unifying the architectural and the be-

havioural description of components [10]. It provides tools for defining abstractions

of the system, and for computing their behaviour model in term of pNets. Finally it

1 This is in contrast with languages like MultiLisp or Creol, where futures are explicit in the

code. Having implicit futures in GCM/ProActive allows us to automatically provide optimal

asynchrony.

FMCO '08

Eric Madelaine -- HDR 48 Sept. 2011

182 A. Cansado and E. Madelaine

has bridges with the CADP verification toolset, allowing efficient (explicit) state-space

construction, and model-checking.

In the next section we describe the context of this work, namely the formalisms and

models that we use for hierarchical distributed components: Fractal and GCM, and the

communication mechanisms of the GCM implementation ProActive. In section 3 we

recall the definitions of the parameterized networks of synchronised automatas (pNets),

and we give the definition of the behavioural semantics of distributed components, start-

ing with active objects, then modelling hierarchical components, Fractal components,

and finishing with the specific features of GCM components, including multicast and

gathercast interfaces, and first-class futures. In section 4, we describe the VerCors spec-

ification and verification platform, with a glimpse at its architecture, a description of

the graphical editors, of the model generation tool, and some results obtained with the

platform.

2 Context: Asynchronous Component Model, Active Objects,

Grids

2.1 ASP and Active Objects

The ASP calculus [11] is a distributed object calculus with futures featuring:

– asynchronous communications: by a request-reply mechanism,
– futures, that are promised replies of remote method invocations,
– sequential execution within each process: each object is manipulated by a single

thread of control,
– imperative objects: each object has a state.

An essential design decision is the absence of sharing: objects live in disjoint activ-

ities. An activity is a set of objects managed by a unique process and a unique active

object. Active objects are accessible through global/distant references. They commu-

nicate through asynchronous method calls with futures. A future is a global reference

representing a result not yet computed. The main result consists in a confluence property

and its application to the identification of a set of programs behaving deterministically.

This property can be summarized as follows: future updates can occur at any time; ex-

ecution is only characterized by the order of requests; programs communicating over

trees are deterministic.

From the proposed framework, we have shown a path that can lead to a component

calculus [12]. It demonstrates how we can go from asynchronous distributed objects to

asynchronous distributed components, including collective remote method invocations

(group communications), while retaining determinism.

The impact of this work on the development of the ProActive library on one hand,

and on the building of the behavioural semantics on the other hand, is probably one of

our strongest achievements.

2.2 Fractal and GCM

Fractal [2] is a flexible and extensible component model. Its main features are: a hier-

archical structure, in which everything can be built from components (including bind-

ings and membranes), a generic description of non-functional concerns (e.g. life-cycle,

Eric Madelaine -- HDR 49 Sept. 2011

Specification and Verification for Grid Component-Based Applications 183

binding, attribute management) through specific control interfaces, a strong separation

of concerns between functional and non-functional aspects, a well-defined architecture

description language (ADL), and several implementations [13, 14].

The Grid Component Model (GCM) [3] is a novel component model that has been

defined by the European Network of Excellence CoreGrid and implemented by the EU

project GridCOMP. The GCM is based on Fractal, and extends it to address Grid concerns.

Grids consider thousands of computers all over the world; programming Grids

involve dealing with latency in communications between computing nodes, and opti-

mizing whenever possible the parallelism of the computation. For that, GCM extends

Fractal using asynchronous method calls. Grid applications usually have numerous sim-

ilar components, so the GCM defines collective interfaces which ease design and im-

plementation of such parallel components by providing synchronisation and distribution

capacities. There are two kinds of collective interfaces in the GCM: multicast (client)

and gathercast (server).

(a) Content of a composite component (b) Membrane of a component

Fig. 1. GCM components

One to N and N to one interfaces. Typically a multicast interface (such as the interface

Multi in Fig. 1(a)) is bound to the service interfaces of a number of parallel compo-

nents, and a method call toward this interface is distributed, as well as its parameters,

to several or all of them. GCM provides various policies for the request parameters,

that can be broadcast, or scattered, or distributed in a round-robin fashion; additional

policies can be specified by the user. The computation on the remote components will

eventually terminate and send back, asynchronously, their results; Then the results of

the invocations have to be assembled back with different possible policies (gather the

results in a list, return the sum of the results, compute the maximum, or just pick the

first that arrives and discard others...).

Symmetrically, gathercast interfaces (e.g. Gather in Figure 1(a)) are bound to a num-

ber of client components, and various synchronisation policies are provided. This corre-

sponds to synchronisation barriers in message-based parallel programming, though here

you may also have to specify how you redistribute the result on the client interfaces.

This treatment of collective communications provides a clear separation of concern

between the programming of each component, and the management of the application

topology: within a component code, method calls are addressed simply to the compo-

nent local interfaces. The management of bindings of clients (on a gathercast interface)

or services (on a multicast interface) is separated from the functional code.

FMCO '08

Eric Madelaine -- HDR 50 Sept. 2011

184 A. Cansado and E. Madelaine

Membranes and Non-functional interfaces. The component’s non-functional (NF) as-

pects are handled by the component’s membrane. The membrane is structured as a

component system defining so-called NF components. Moreover, the GCM specifies in-

terfaces for the autonomic management and adaptation of components. The membrane

is also in charge of controlling the interaction between the component’s content and the

environment: the membrane decides how requests entering or leaving the component

are to be treated.

The simplest binding one can define in a membrane is a binding from an external

interface to an internal interface (e.g server interface I to internal interface Multi in

Figure 1(b)): requests will simply be forwarded to a subcomponent server interface. But

a NF component called Interceptor can be inserted between an external and an internal

functional interface that will perform some non-functional processing (e.g. encrypting,

logging, etc); an example is the Interceptor component between interfaces IR1 and

IR2 in Fig. 1(b)).

More complex NF components can be used for introspection, reconfiguration, or

autonomic management. Those will typically lie between the external and internal NF

interfaces of the composite component.

Architecture. The Architecture Description Language (ADL) of both Fractal and

the GCM is an XML-based format, that contains both the structural definition of the

system components (subcomponents, interfaces and bindings), and some deployment

concerns. Deployment relies on virtual nodes that are an abstraction of the physical

infrastructure on which the application will be deployed. The ADL only refers to an

abstract architecture, and the mapping between the abstract architecture and a real one

is given separately as a deployment descriptor.

The Fractal/GCM ADL descriptions are static. Dynamicity of component applica-

tions, and the ability to reconfigure them, is gained through specific operations of their

APIs. Several aspects of GCM, including its ADL, API, deployment description, appli-

cation resources description, are now standardized by the European Telecommunication

Standards Institute ETSI [15].

2.3 A GCM Reference Implementation: GCM/ProActive

The GCM reference implementation is based on ProActive [16], an Open Source mid-

dleware implementing the ASP calculus. In this implementation, an active object is

used to implement each primitive component and each composite membrane. Although

composite components do not have functional code themselves, they have a membrane

that encapsulates controllers, and dispatches functional calls to inner subcomponents.

As a consequence, this implementation also inherits some constraints and properties

w.r.t. the programming model:

– components communicate through asynchronous method calls with transparent fu-

tures (place-holders for promised replies): a method call on a server interface adds

a request in the server’s request queue;

– communication semantics use a “rendez-vous” ensuring the causal ordering of

communications;

Eric Madelaine -- HDR 51 Sept. 2011

Specification and Verification for Grid Component-Based Applications 185

Subcomponents C

runActivity()

C.sEI
QueueC

C.cEI

ILF

ELF EBC

ELF EBC

C.sIEC.cIE

SubCk.sEI SubCk.cEI

SubCk

Fig. 2. ProActive composite component

– synchronisation between components is ensured with a data-flow synchronisation

called wait-by-necessity: futures are first order objects that can be forwarded to any

component in a non-blocking manner, execution is only blocked if the concrete

value of the result is needed (accessed), while the result is still unavailable;

– there is no shared memory between components, and a single thread is available

for each component.

Each primitive component is associated with an active object written by the program-

mer. Some methods of this active object are exported as the methods of the compo-

nent’s interfaces. The active object managing a composite is generic and provided by

the GCM/ProActive platform; it forwards the functional requests it receives to its sub-

components. Primitive component functionalities are addressed by the encapsulated ac-

tive object. For primitive components, it is possible to define the order in which requests

are served by writing a specific method called runActivity(); we call this the service

policy. If no runActivity() is given, a default one implements a FIFO policy (excepted

for non-functional requests, see below). Composite components always use a FIFO pol-

icy. Note that futures create some kinds of implicit return channels, which are only used

to return one value to a component that might need it.

Life-Cycle of GCM/ProActive Components. GCM/ProActive implements the mem-

brane of a composite as an active object, thus it contains a unique request queue and

a single service thread. The requests to its external server interfaces (including con-

trol requests) and from its internal client interfaces are dropped to its request queue. A

graphical view of a composite is shown in Fig. 2.

Like in Fractal, when a component is stopped, only control requests are served. A

component is started by invoking the non-functional request: start(). Because threads

are non-interruptible in Java, a component necessarily finishes the request it is treating

before being stopped. If a runActivity() method is specified by the programmer, the

stop signal must be taken into account in this method.

Note that a stopped component will not emit functional calls on its required inter-

faces, even if its subcomponents are active and send requests to its internal interfaces.

FMCO '08

Eric Madelaine -- HDR 52 Sept. 2011

186 A. Cansado and E. Madelaine

2.4 Example

We will use the example in Fig. 3 to illustrate the various aspects of this paper. It is

formed from one composite component B and three primitive components A, C, D.

Component B has a number of subcomponents, and requests on its server interface S are

dispatched to them through the multicast interface MC. Component D has two server

interfaces W and R, and is supposed to host some shared resource (e.g. a database);

its role in the example is to show the possible race-conditions or deadlocks that could

arise, e.g, if a request on interface W has a side effect on the shared resource. Com-

ponent A plays the client role, and will send requests to B, creating futures containing

their promised responses, and transmitting these futures as parameters to requests to C.

Component B also has two non-functional interfaces NF1 and NF2 that may be used

e.g. to reconfigure its content.

Fig. 3. Running example

3 Semantic Model

In this section, we recall the main definitions of the parameterized Networks of synchro-

nised automatas (pNets, [8]). We use pNets as a general low level behaviour model for

encoding different variants of our languages or component models. We start with the

formal definitions of the model. Then we use pNets to define the behavioural seman-

tics of two basic and important formalisms in the domain of distributed components: the

ProActive “Active Objects” on one hand, and Fractal hierarchical components on the

other hand (both examples are excerpts from [8]). Finally, we give an encoding for GCM

components, including the management of request queues in primitives and composite

components, and the encoding of future proxies, in presence of first class futures.

3.1 Parameterized Networks of Synchronised Automata (pNets)

The following definitions are taken from [8]. We start with classical labelled transi-

tion systems and structure them using synchronisation networks. Then we extend these

definitions to include parameters, both as arguments in communication and in state defi-

nitions (à la “value-passing CCS”), and in synchronisation operators, obtaining a model

powerful enough to describe parameterized and dynamic topologies.

Eric Madelaine -- HDR 53 Sept. 2011

Specification and Verification for Grid Component-Based Applications 187

We model the behaviour of a process as a Labelled Transition System (LTS) in a

classical way [17]. The LTS transitions encode the actions that a process can perform

in a given state.

Definition 1. LTS. A labelled transition system is a tuple 〈S , s0, L,→〉 where S (possi-

bly infinite) is the set of states, s0 ∈ S is the initial state, L is the set of labels,→ is the

set of transitions :→⊆ S xLxS . We write s
α

−→ s′ for (s, α, s′) ∈→.

We define Nets in a form inspired by the synchronisation vectors of Arnold and Nivat

[18], that we use to synchronise a (potentially infinite) number of processes.

In the following definitions, we frequently use indexed vectors: we note x̃I the vector

〈..., xi, ...〉 with i ∈ I, where I is a countable set.

Definition 2. Network of LTSs.2 Let Act be an action set. A Net is a tuple 〈AG, J, ÕJ,
−→
V 〉

where AG ⊆ Act is a set of global actions, J is a countable set of argument indexes, each

index j ∈ J is called a hole and is associated with a sort O j ⊂ Act.
−→
V = {

−→
v } is a set of

synchronisation vectors of the form: −→v = 〈ag.α̃I〉 where ag ∈ AG, I ⊆ J∧∀i ∈ I, αi ∈ Oi

Fig. 4 gives a naive representation of the Net representing component B, with four sub-

components. Here the semantics has been configured so that call requests are going

through a MC policy component, and are made visible (to the next level) as

“?call(m,args)” for requests received by B, and “B[i].call(m,args)” for the requests

dispatched to the respective B[i]. As an example, the second synchronisation vector in
−→
V reads as: action “!call(m,x1)” of the first hole (here MC) can occur synchronised with

action “?call(m,x1)” of B1, and the corresponding global action is “B[1].call(m,x1)”.

There should be one such vector for each possible value of x1.

Note that the specific syntax (and meaning) of the actions is not important here: it

depends on the specific formalism that has been translated into Nets. The synchronisa-

tion vectors are the only means that we use to express the synchronisation mechanisms.

This way we can express traditional message passing (matching emission/reception),

as well as other mechanisms like one to N synchronisation. In this first non parameter-

ized version, we may need a infinite number of vectors to express the synchronisations

occuring in a Net.

Definition 3. A System is a tree-like structure whose nodes are Nets, and leaves are

LTSs. At each node a partial function maps holes to corresponding subsystems. A

system is closed if all holes are mapped, and open otherwise.

Definition 4. The Sort of a system is the set of actions that can be observed from

outside the system. It is determined by its top-level node, with:

Sort(〈S , s0, L,→〉) = L Sort(〈AG, J, ÕJ,
−→
V 〉) = AG

2 This definition is simpler than the one we gave in [8], from which we have removed the trans-

ducer element in the pNet structure. It is possible to obtain an expressiveness similar to pNets

with transducers by adding an extra argument to each pNet, and specifying this “Controller”

as an argument pLTS.

FMCO '08

Eric Madelaine -- HDR 54 Sept. 2011

188 A. Cansado and E. Madelaine

B2

B3

B1
B

MC

{call(m,x1),
resp(y1)}

{call(m, args)
resp(val)}

{call(foo())
resp(z)}

where B-3-Net = 〈AG, J, ÕJ ,
−→
V 〉 with:

AG = {?call(m,args), !resp(val), B1.call(m,x), ...}

J = {MC, B1, B2, B3}

OMC = {?call(m,args), !resp(val), !call(m,x1), ...}

OB1 = OB2 = OB3 = {?call(m,x), !resp(val),

!call(foo()), ?resp(z)}
−→
V ={
〈 ?call(m,args), ?MC.call(m,args), -, -, -〉

〈 B[1].call(m,x1), !B1.call(m,x1), ?call(m,x1), -, -〉

〈 B[2].call(m,x2), !B2.call(m,x2), -, ?call(m,x2), -〉

... }

Fig. 4. Example of Net

Next we enrich the above definitions with parameters in the spirit of Symbolic Tran-

sition Graphs [19]. We start by giving the notion of parameterized actions. We leave

unspecified here the constructors and operators of the action algebra, they will be

defined together with the encoding of some specific formalism.

Definition 5. Parameterized Actions. Let P be a set of names, LA,P a term algebra

built over P, including at least a distinguished sort Action, and a constant action τ. We

call v ∈ P a parameter, and a ∈ LA,P a parameterized action, BA,P the set of boolean

expressions (guards) over LA,P.

Definition 6. pLTS. A parameterized LTS is a tuple 〈P, S , s0, L,→〉 where:

• P is a finite set of parameters, from which we construct the term algebra LA,P,

• S is a set of states; each state s ∈ S is associated to a finite indexed set of free

variables fv(s) = x̃Js
⊆ P,

• s0 ∈ S is the initial state,

• L is the set of labels,→ the transition relation→⊂ S × L × S

• Labels have the form l = 〈α, eb, x̃Js′
:= ẽJs′

〉 such that if s
l
−→ s′, then:

• α is a parameterized action, expressing a combination of inputs iv(α) ⊆ P

(defining new variables) and outputs oe(α) (using action expressions),

• eb ∈ BA,P is the optional guard,

• the variables x̃Js′
are assigned during the transition by the optional expressions

ẽJs′

with the constraints: fv(oe(α)) ⊆ iv(α)∪ x̃Js
and fv(eb)∪ fv(ẽJs′

) ⊆ iv(α)∪ x̃Js
∪ x̃Js′

.

Example: Fig. 5 represents a possible behaviour of the body of component A from

our example. The action alphabet used here reflects the active object communication

schema: each remote request sent by the body has the form “!call(f ,M(˜arg))”, where

M is the method name, eventually with parameters ˜arg, and f is the identifier of the fu-

ture proxy instance. Thus in this example, the action expressions are built from variables

f and val, from the constants M1 and M2, and from the binary action constructors call

and getValue. These actions allow the component to perform a remote method call, and

Eric Madelaine -- HDR 55 Sept. 2011

Specification and Verification for Grid Component-Based Applications 189

(f,val)
?getValue

?stop

!call

!call
(f,M2)

(f,M1)

?getValue
(f,val)

?start

A-LTS = 〈P, S , s0, L,→〉

with:

P = { f , val}

S = {si}, i ∈ [0:3]

L= { ?start,?stop,!call(f ,M1),!call(f ,M2),?getValue(f ,val)

}

→ such that:

s0 : ?start → s1,

s1 : ?stop → s0,

s1 : !call(f ,M1) → s2,

s2 : ?getValue(f ,val) → s1

s3 : !call(f ,M2) → s3

s4 : ?getValue(f ,val) → s1

Fig. 5. Behavioural model of component A

access the return value resp.; more details on how the component communicates with

its environment are given later in Fig. 7.

Now, we define pNets as Nets where the holes can be indexed by a parameter, to

represent (potentially unbounded) families of similar arguments.

Definition 7. A pNet is a tuple 〈P, pAG, J, p̃J, ÕJ,
−→
V 〉 where: P is a set of parameters,

pAG ⊂ LA,P is its set of (parameterized) external actions, J is a finite set of holes, each

hole j being associated with (at most) a parameter p j ∈ P and with a sort O j ⊂ LA,P.
−→
V = {

−→
v } is a set of synchronisation vectors of the form:

−→
v = 〈ag, {αt}i∈I,t∈Bi

〉 such that:

I ⊆ J ∧ Bi ⊆ Dom(pi) ∧ αi ∈ Oi ∧ fv(αi) ⊆ P

Explanations: Each hole in the pNet has a parameter p j, expressing that this “parame-

terized hole” corresponds to as many actual arguments as necessary in a given instan-

tiation of its parameter (we could have, without changing the expressiveness, several

parameters per hole). In other words, the parameterized holes express parameterized

topologies of processes synchronised by a given Net. Each parameterized synchroni-

sation vector in the pNet expresses a synchronisation between some instances ({t}t∈Bi
)

of some of the pNet holes (I ⊆ J). The hole parameters being part of the variables of

the action algebra, they can be used in communication and synchronisation between the

processes.

Fig. 6 is the parameterized version of the pNets for component B, in which the second

hole (B) has a parameter n. The second synchronisation vector in the examples synchro-

nises one (parameterized) action of the first hole MC, with an action (?call(m,x)) of the

nth instance of B. The comparison with the instantiated version in Fig. 4 shows clearly

the benefits of parameterization, in term of compactness, and of generality. Note that

this is still a very simplified and naive version of the pNet for B, the full semantics of

GCM composite components will be given later.

A pNet by itself is stateless, but it has state variables that encode some notion of

internal memory that can influence the synchronisation. pNets have the nice property

that they can be easily represented graphically, e.g. using the Autograph editor [20].

FMCO '08

Eric Madelaine -- HDR 56 Sept. 2011

190 A. Cansado and E. Madelaine

B[n]

B

MC
resp(y)}

{call(m,x),

{call(foo()),
resp(z)}

!resp(val)}
{?call(m, args)

where B-param-Net = 〈P, pAG, J, p̃J , ÕJ ,
−→
V 〉 with:

P = {n, args, val, x}

pAG = {?call(m,args), !resp(val), B[n].call(m,x), ...}

J = {MC, B}

pMC = {}, pB = {n}

OMC = {?call(m,args), !resp(val), !call(m,x), ?resp(y)}

OB = {?call(m,x), !resp(val), !call(foo()), !resp(z)}

−→
V ={
〈 ?call(m,args), ?call(m,args), - 〉

〈 B[n].call(m,x), !B(n).call(m,x), n&?call(m,x)〉

... }

Fig. 6. Example of a pNet

Building hierarchical pNets. Once a pNet hierarchical system is built, you need

operations to transform it, and, at least:

– a product operation for reducing a pNets hierarchy to a flat pLTS,

– a way of instantiating a parameterized pNet system with respect to a given domain

for one or several of its parameters.

In [8], we gave the definition of pNets instantiation, and we defined the product opera-

tion only for fully instantiated systems. This is enough for instantiating a pNet system

for some finite abstraction of the parameter domains, and building the global state-space

of the system.

3.2 Model Generation for Active Objects

The first application of pNets that we have published was for defining the behavioural

semantics of active objects of the ProActive library. In [21, 22] we presented a method-

ology for generating behavioural models for active objects (AOs), based on static anal-

ysis of the Java/ProActive code. The pNets model fits well in this context, and allows

us to build compact models, with a natural relation to the code structure: we associate

a hierarchical pNet to each active object of the application, and build a synchronisation

network to represent the communication between them.

Fig. 7 illustrates the structure of the pNets expressing an asynchronous communi-

cation between two active objects. A method call to a remote activity goes through a

proxy, that encodes the creation of the local future object, while the request goes to the

remote request queue. Note that for each program point pp corresponding to a remote

method call in the source code, a series of futures, indexed by a counter c, can be cre-

ated. The request arguments include the references to the caller and callee objects, but

also to the future. Later, the request may eventually be served, and its result value will

be sent back and used to update the future value.

This method is composed of two steps: first the source code is analysed by classical

compilation techniques, with a special attention to tracking references to remote objects

in the code, and identifying remote method calls. This analysis produces a graph includ-

ing the method call graph and some data-flow information. The second step consists in

Eric Madelaine -- HDR 57 Sept. 2011

Specification and Verification for Grid Component-Based Applications 191

Proxy

Queue

Body

Body

Proxy

Counter

Client Role Server Role

Proxy[pp].

?response
(val)

getValue(val)

!getValue(val)
serve

response(c, val)

?Counter[c].call

!Counter[c].

?Proxy[pp].
[c]

(〈pp, c〉,M(˜arg))

Proxy[pp].

[pp]

getValue(c, val)

request(c)

?Counter[c].
response(val)

?request

?caller.request(f,M(˜arg))

(caller, f,M(˜arg))

!caller.response(f, val)

!o.request(〈pp, c〉,M(˜arg))

!o.request

Fig. 7. Communication between two Active Objects

applying a set of structured operational semantics (SOS) rules to the graph, computing

the states and transitions of the behavioural model.

The construction of the extended graphs by static analysis is technically difficult,

and fundamentally imprecise. Imprecision comes from classical reasons (having only

static information about variables, types, etc), but also from specific sources: it may

not be decidable statically whether a variable references a local or a remote object.

Furthermore, the middleware libraries include a lot of dynamic code generation, and

the analysis would not be possible for Java code relying on introspection, classically

used to manage some types of “dynamic topologies” in ProActive.

3.3 Model Generation for Hierarchical Components

Going from active objects to distributed and hierarchical components allows us to gain

precision in the generated models. The most significant difference is that required inter-

faces are explicitly declared, and active objects are statically identified by components,

so we always know whether a method call is local or remote. Moreover, the pNets’s

formalism expresses naturally the hierarchical structure of components, and will allow

to scale up better, using compositional verification methods,

The pNet construction here may apply to any kind of hierarchical component model

that features:

– Components with a set of interfaces and a content.
– Interfaces typed by a set of methods with their signature.
– Bindings between sibling subcomponents, or between a component and one of its

subcomponent.
– Composite content composed of subcomponents, internal interfaces, and bindings.
– Empty content for primitive components.

We leave here undefined the code of a primitive component. It will depend on the

framework, and will be used to generate a pLTS representing the primitive behaviour.

We also leave undefined the data domains used for specifying indexes within the

parameterized structure, and for building the arguments of the method calls.

From the information in a Component structure, it is straightforward to generate a

pNet representing the communication between the interfaces and the subcomponents,

from the following elements:

FMCO '08

Eric Madelaine -- HDR 58 Sept. 2011

192 A. Cansado and E. Madelaine

• the pNet has one hole for each (parametric) subcomponent;

• the global actions pAG and hole sorts ÕJ of the pNets are sets of actions of the form

[!|?]Ci.Itf.M(−−→arg) for invoking/serving a methodM on the interface Itf.

• for each binding, and for each method in the signature of the source interface of

the binding, it has two parameterized synchronisation vectors, one for sending the

request, and one for receiving the response.

3.4 Hierarchical Components +Management Interfaces = Fractal

In the Fractal model, and in Fractal implementations, the ADL describes a static view

of the architecture (used to build the initial component system through a component

factory), and non-functional (NF) interfaces are used to control dynamically the evolu-

tion of the system. In this section we consider the core of the Fractal model, containing

the hierarchical structure from the previous section, plus the basic non-functional inter-

faces and controllers, namely the Life-Cycle Controller (LF) and the Binding Controller

(BC). We defined the behavioural semantics of Fractal applications in terms of pNets,

giving the overall structure of the pNets encoding primitive and composite components,

and the pLTS defining the LF and BC controllers.

A life controller pLTS (see Fig. 8) is attached to each component. Control actions

(start/stop) are synchronised with the parent component and with all of its subcom-

ponents. Status actions (started/stopped) are synchronised with the component’s func-

tional behaviour and with the BC, because the BC may only allow rebinding of interfaces

when stopped.

LF

?start ?stop

!stopped
?start !started

!stopped !started

?stop

BC

?bind(Ci.Itf) ?unbind(Ci.Itf)

?bind(Ci.Itf)

!unbound

?unbind(Ci.Itf)

!bound(Ci.Itf)

Ci.Itf

?bind(Ci.Itf)
→ Ci.Itf

?unbind(Ci.Itf)

!bound(Ci.Itf)

?M(˜arg)

!unbound

!Ci.Itf.M(˜arg)

!E

Fig. 8. pLTS of Fractal Life Cycle and Binding Controllers

A binding controller pLTS (see Fig. 8) is attached to each interface. Control actions

(bind/unbind) are synchronised up to the higher level (Fractal defines a white-box defi-

nition for NF actions) and with the affected interface; status actions (bound/unbound) are

used to allow method callsM(˜arg), to forward the call to the appropriate bound inter-

face and to signal errors. The latter is a distinguished action E(unbound,C, It f), visible

to the higher level of hierarchy, and triggered whenever a method call is performed over

an unbound interface.

Fig. 9 sketches the structure of the synchronisation of a component with its subcom-

ponents. In this drawing, the behaviour of subcomponents is represented by the box

Eric Madelaine -- HDR 59 Sept. 2011

Specification and Verification for Grid Component-Based Applications 193

!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!
!!

errors & visibles

Interceptor

!start/stop

methods M(˜arg)
(visible ∨ τ)

methods M(˜arg)
(visible ∨ τ)

SubCk

E1

M(˜arg)

(1)

(3)

(2)

sEIscnp

cIInp

M(˜arg) M(˜arg)

sIInr

sEInp

cEInr

E2

M(˜arg)
M(˜arg)

cEIscnr

B

M(˜arg)

?bind/unbind(self.cIInp, SubCk.sEIscnp)

(1)!bind/unbind(self.cIInp, SubCk.sEIscnp)

(3)!bind/unbind(SubCk.cEIscnr, self.sIInr)

(2)!bind/unbind(SubCk.cEIscnr, SubCj.sEIscnr), k 6= j

!bind/unbind(cEInr, Cj.Itf)

?bind/unbind(self.cEInr, Cj.Itf) ∨

?start/stop

Fig. 9. Synchronisation pNet for a Fractal Composite Component

named SubCk. For each interface defined in the component’s ADL description, a box

encoding the behaviour of its internal (cII and sII) and external (cEI and sEI) views is

incorporated. The dotted lines inside the boxes indicate a causality relation induced by

the data flow through the box. Primitive components have a similar automaton without

subcomponents and internal interfaces.

3.5 Model Generation for GCM

In Figure 10, we show the behavioural model of a GCM primitive component. There is

a pLTS for dealing with the component’s life-cycle (LF), and a pLTS for serving func-

tional and non-functional requests (Service). The behavioural model for a composite

component is an instance of the model of Figure 9, in which the interceptor itself is a

primitive component.

Service implements the treatment of control requests. It interacts with the LF con-

troller through the !start and !stop actions. The action !start fires the process rep-

resenting the runActivity() method in the Body, and at the same time changes the LF

state to “started”. The !stop action is more complicated: it is sent by Service to the

Body, but a running body may not be able to stop immediately upon reception of a stop

request (because Java is non-interruptible). If the service policy of the component is

the default FIFO, this stop request will be executed when all previous requests will be

served. If the developer has specified his own runActivity() method, she/he has the re-

sponsibility for testing the presence of a stop request, and terminate the runActivity()

method. At this point the !stop action will be transmitted to the LF controller, while

the Body will be back in its initial state, ready for receiving a !start action.

The Queue pNet encodes an unbounded Fifo queue, containing requests composed

by a method name and its arguments, and a selection mode (typically oldest or younguest

request matching a predicate). It is always ready to perform any of the three actions

numbered (1) to (3) in Fig. 10:

FMCO '08

Eric Madelaine -- HDR 60 Sept. 2011

194 A. Cansado and E. Madelaine

– (1) serve the first functional method obeying the selection mode;

– (2) serve a control method only at the head of the queue;

– (3) serve only control methods in FIFO order, bypassing the functional ones.

Depending on the state of the life-cycle controller, these actions may or may not

synchronise with the Body and the Service pNets. This is encoded through the emission

of the !started or !stopped actions by the LF pNet.

LF

Service

Body
Proxy

Queue

?serve

!stop

!start

!bind/unbind (˜arg)

(bind/unbind (˜arg))

!started

!stopped

?serve
(start/stop)

!start/stop

started

(1) !serve∗

(f,M(˜arg))

(NF(˜arg))
(2) !serveFirst

(3) !serveFirstNF
(NF(˜arg))

?call(f,M(˜arg)) !bind/unbind (˜arg)

!stop

!cItf.call(f2,m,args)

?resp(f2, x)
getValue(f2, x)

!f.resp(x)

?call(f,NF(˜arg))

Fig. 10. Behavioural model of a primitive component

Modelling Collective Interfaces. Collective interfaces are responsible of distributing

and gathering request calls and responses. Therefore, we provide a particular kind of

proxy pLTS and N-ary synchronisation vectors encoding the control and data flow of

these interfaces.

In Fig. 3, the multicast interface MC broadcasts request calls to all B’s subcomponents

and gathers the results. We gave incomplete views of its pNet model, in Figures 4 and 6,

and we show now its complete model in Figure 11. The proxy Multicast(f) pLTS is in

charge of distributing the requests to all bound interfaces (in this case the server inter-

faces of B’s subcomponents). We use N-ary synchronisation vectors for broadcasting the

call (!call(args)). This ensures that the call will be enqueued in every subcomponent

at the same time. On the contrary, the response values of each component (?resp(val))

are sent back to the proxy individually and in any order. The proxy is in charge of gath-

ering the result values in a vector. Later, when all results have arrived (guaranteed by

the guard [rep==N]), it allows the component to access the result (!getValue(f,x)).

Modelling First-Call Futures. In Fig. 7 we depicted a simple proxy structure for

ProActive futures. In GCM, futures can be transmitted in the parameters of a method

call, or in the return value of a method call. In a naive approach, this requires know-

ing statically the flow of futures for each component because a future may have been

created locally or by a third-party. This requires the analysis of the complete system.

Instead, a better approach is to assign locally in each component an identifier fid for

Eric Madelaine -- HDR 61 Sept. 2011

Specification and Verification for Grid Component-Based Applications 195

B1

B2

B3

Multicast(f)

!call
(m,x)

!getValue

?resp(2, y)

!call

?call
(m,args)

[rep==N]

(f,~x)

(m,x)

?resp(i,y)
→ x[i] = y; rep++

?resp(1, y)
!resp(y)

?resp(3, y)

Fig. 11. Behavioural model of a multicast interface

each future, which permits the construction of behavioural models independently from

the environment. Later, when the environment is known, the data-flow between com-

ponents will determine which identifiers represent the same future object. At this point,

these identifiers will be put in correspondence, and will be matched in the corresponding

synchronisation vectors. This approach yields a compositional model.

In [23] we have shown the technical details of how to address different scenarios

depending whether (i) a component transmits a locally created future; (ii) a component

receives a future; and (iii) a component receives a future and retransmits it to a third-

party. Here we define a new generic proxy that is able to deal with any combination

of the 3 scenarios above. The proxy model has additional transitions w.r.t. the model

presented in Figure 7 to allow futures to be transmitted. Figure 12 depicts this proxy3.

When the local component is the creator of the future, the proxy starts by a transition

?call. This allows the component to perform the remote remote call. In this case the

proxy will wait for the ?response transition to synchronise on the response value. Then

there is a transition !forward for transmitting the future value to all components (if

any) that may receive the future reference. Finally, the component body may access the

content of the future through a !getValue transition.

Complementarily, if the local component did not create the future, the first transition

of the proxy is a ?forward which receives the value of the future. Afterward, the proxy

behaves as in the previous case: it transmits the value to the remote components, and

allows the component to access the future value.

Example: Sending a future created locally as a method call parameter. In Figure 12,

the Client performs a method callM1 on Server-A, and creates a Proxy(f) for dealing

with the result. Then the Client sends the future to a third activity (Server-B) in the

parameter of the methodM2(f) (this call should eventually create another future f2, but

we have omitted it for simplicity).

3 In this modelisation, we have an unbounded number of proxy instances, that live forever,

and don’t need to be terminated/destroyed. In the implementation, we may want to be more

efficient: based on static analysis, the implementation can decide that some futures have a

limited life-time, and that they can be destroyed or recycled at some point. Then we may want

to prove correctness of such an optimisation.

FMCO '08

Eric Madelaine -- HDR 62 Sept. 2011

196 A. Cansado and E. Madelaine

Client

Server−B

Server−A

Body
!forward
(val)

?forward
(val)

!getValue
(val)

Queue Body

(f,val)
!forward

(x, v)
?forward

!call(f,M1)

Proxy(f)

?response
(val)

!call(M2(f))

(f,val)
getValue

call

?call

Proxy(x)
getValue(x, v)

(M2(f))

response(f,val)

call(f,M1)

serve(M2(x))

Fig. 12. Model for sending a future created locally as a method call parameter

From Server-B’s point of view, there is no way of knowing if a parameter is (or

contains) a future, so every parameter in a method call must be considered as a potential

future. Server-B includes, therefore, a proxy for dealing with the parameter x of the

method callM2.

This example concludes the construction of pNets models for GCM components, in-

corporating non-functional controllers, request queues, future proxies, and NxM com-

munication. In the current implementation, described in the next sections, the NxM

communication and the proxies for first class futures are not yet supported.

4 VerCors: A Toolset for Specification and Verification

In this section, we report on the tool developments ongoing within our VerCors plat-

form, implementing the behaviour model generation explained in the first half of this

paper. We start with a description of the current and middle term functionalities of the

platform, and we explain briefly the software tools used for the construction of the plat-

form. Then we give more details on the graphical editors, on the model generation tool,

and the model instantiation tools. Finally, we discuss some pragmatic aspects of various

verification strategies for using the tools, and give some figures on typical case-studies.

4.1 Vercors Architecture

Fig. 13 sketches the architecture of VerCors. This toolset is available as free software,

from our web site [9]. The platform has two goals: the verification of designs, and the

generation of safe-by-construction code. In the following description of the VerCors

modules, we shall indicate which functionalities are already available in the distribution

(V0.2, spring 2009), and which are still under construction.

Front-End. VCE (for Vercors Component Editor) is our graphical component editor

for designing components. It provides diagrams for defining the component architecture

(see Section 4.3), and diagrams for defining the component behaviour (see Section 4.4).

The latter is not yet available in V0.2. The Java Distributed Components specification

language (JDC) is a textual language more expressive than our graphical diagrams, but

is not yet implemented. It has been described in [10, 24].

Eric Madelaine -- HDR 63 Sept. 2011

Specification and Verification for Grid Component-Based Applications 197

Fig. 13. The VerCors toolset

Model Generator. The model generator is the kernel of the platform. It is fed with

specifications given by VCE diagrams or JDC specifications. It includes tools for data

abstraction (from user-defined classes in JDC to Simple Types in pNets), tools for build-

ing the parameterized models from the specifications, and tools for manipulating and

instantiating pNets (see section 4.5).

Code Generator. Another central part of the platform will be the code generator that

is not (yet) currently developed. We will generate code capable of running under the

standard GCM specification. It has an architecture definition based on the GCM ADL

and Java code based on GCM / ProActive framework. The latter must be refined by the

user by filling-in the business code.

External Tools. Externally to the platform, we interact with model-checking engines

and with the GCM runtime. For now, VerCors uses the CADP toolset [25] for dis-

tributed state-space generation, hierarchical minimization, on-the-fly verification, and

equivalence checking (strong/weak bisimulation). The connection with CADP is done

through various textual input formats, that we generate from (fully instantiated) pNet

models. A better approach would be to use a more generic and standardized intermedi-

ate format, like the FIACRE format [26], that would allow us to represent directly many

(parameterized) constructs from the pNet model.

Verification is done by verifying regular µ-calculus formula encoding the user re-

quirements. In the future, we would like to specify these properties within JDC, which

would be subject to the same abstractions, and finally be translated into regular µ-calculus

formula. We also plan to use other state-of-the-art provers, and in particular apply so-

called “infinite system” provers to deal directly with certain types of parameterized

systems.

4.2 Building Tools Using Eclipse Meta-modelling Framework

From a practical point of view, VCE consists of graphical editors for specifying the

architecture and the behaviour of distributed components. It is built as an Eclipse plug-in

based on EMF and GEF.

FMCO '08

Eric Madelaine -- HDR 64 Sept. 2011

198 A. Cansado and E. Madelaine

We use two similar meta-modelling frameworks, namely Topcased [27] and GMF.

EMF plays the role of the domain model whereas Topcased and GMF provide graphical

editors on top of the domain model. Unfortunately, Topcased is slowing down the devel-

opment of their meta-modelling framework and future support is uncertain. Therefore,

our early work on the architectural editor is generated by Topcased, but our more recent

work on the behavioural editor is generated by GMF.

Model validation is based on OCL (Object Constraint Language) [28] rules that val-

idate instances of the meta-model, and Java code that checks interface compatibility.

There are a minimum set of invariants that every model must hold. Complementary, an

additional set of rules cope with particular GCM implementations. All errors in the user

models are reported in the Eclipse environment.

There is also compatibility with GCM ADL files. VCE is able to import and ex-

port GCM ADL files, though this is limited to functional components since there is no

standard definition of NF components in the GCM ADL.

Fig. 14. Vercors Component Editor

4.3 Graphical Diagrams for Component Architecture

The kernel of the graphical language is a meta-model that reflects the GCM compo-

nent structure. As these graphical constructions have already been used throughout this

paper, we will only comment here on the main design choices that we have made.

At the top-level, the designer defines the root component that sets the services to be

provided and required by the application to the environment. A component has a content

that implements the business code, and a membrane that contains the non-functional

code.

Components in the content are called functional components and those in the mem-

brane are called non-functional (NF) components. The content is represented as a white

Eric Madelaine -- HDR 65 Sept. 2011

Specification and Verification for Grid Component-Based Applications 199

rectangle inside the component, and the membrane is the grey area that surrounds the

content. Nevertheless, the content of primitive components is not depicted; therefore,

primitive components are distinguished as grey rectangles. We colour blue the “usual”

functional interfaces, and green the NF interfaces.

Interface icons are inspired by the ones used in UML component diagrams. Server

interfaces are drawn as filled circles (e.g. interfaces I, IA, ... in Figure 14), and client

interfaces as semi-circles (e.g. interfaces IC, IR, ...). GCM’s collective interfaces are not

defined in UML and hence we adopted our own icons. Figure 14 also shows the icons we

provide for multicast and gathercast interfaces, labelled Multi and Gather respectively.

In the example, the interface Multi broadcasts incoming requests to components A and

B, and the interface Gather gathers and synchronises requests coming from interfaces

IC of components A and B towards the component C.

4.4 Diagrams for Behaviour Specification

The diagrams for behaviour specification have been defined in [29], but the diagram

editors are not yet available in the toolset. They are based on a variant of UML 2 State

Machine diagrams, with a number of State Machines used to specify respectively: the

component service policy, each service method and each local method, the interface

policies, etc.

4.5 Model Generation

The role of the ADL2N tool is to:

– build an abstract version of the component system, in which the user-defined Java

classes used for the parameter domains are abstracted by some Simple Types from

the pNets library.

– use the behaviour semantics defined in sections 3.3 to 3.5 to build the pNet model

for each piece of the system.

The first step of the model generation deals with data abstraction: data types in a JDC

specification are standard, user-defined Java classes, but they must be mapped to Simple

Types before generating the behavioural models and running the verification tools. The

result is an abstract specification with the same structure than the initial ADL.

In practice the user of ADL2N uses a GUI to specify at the same time the methods

that will be visible, the arguments that are significant for the proofs, and finite domains

for these arguments. This is shown in Fig. 15. Here some tool guidance would be very

helpful to reduce the amount of user input required, and to guarantee the coherency of

the abstraction with the dataflow within the system. This kind of guidance is not yet

available in the toolset.

Such an Abstract Specification will then be given as input to the model generator.

This tool builds a model in terms of pNets, including all necessary controllers for non-

functional and asynchronous capabilities of the components. The only missing part

is the functional behaviour (Body) of primitive components for which ADL2N only

defines their sorts.

The second usage of the abstraction module of ADL2N is to specify a finite abstrac-

tion of the parameters domains (from Simple Types to finite Simple Types), so that the

FMCO '08

Eric Madelaine -- HDR 66 Sept. 2011

200 A. Cansado and E. Madelaine

Fig. 15. Screenshot of ADL2N

final pNet system is finite, and suitable for analysis with finite-state model-checkers. In

practice ADL2N produces two files, one file with the parameterized system, the other

file with the definitions of the finite instantiations for the parameter domains.

pNets instantiations and export formats. The textual notation we use currently in the

platform to encode pNets is called FC2 [30]. We provide two tools, FC2Instantiate and

FC2Exp [31], that create finite instantiations of the models and transform the files into

the input formats of CADP, namely BCG for transition systems, and Exp for synchro-

nisation vectors [32].

4.6 Model-Checking: Engineering, Pragmatic Complexity

Having produced our models in a structured and hierarchical format allows us to use

many pragmatic strategies to master as much as possible the state-space complexity of

model-checking. The main tool is compositionality: as we use a bisimulation-based ver-

ification toolset, it is essential that each intermediate subsystem is reduced (by branch-

ing or weak minimization) before being synchronized with others. If we are careful to

reduce as much as possible the visibility of actions, then state-space explosion can be

contained (to some extent) within the model of composite components. Additionally, a

number of advanced features of the CADP toolset can help us to fight state-explosion,

and to scale up. Typically, we can build the state-space at each level of the hierarchy

using the distributed state-space generation of CADP, including on-the-fly hiding and

tau-reduction, but also behaviour generation constrained by the environment. Then the

minimization has to take place on a single machine, because the bisimulation engine is

not implemented in a distributed way. And the next cycle of construction can be dis-

tributed again... This way your state-space construction can scale up to any system in

which the largest intermediate structure will be in the range of 108 states. The model-

checker engine itself has an experimental version working in a distributed fashion.

Using this kind of strategy, we have done some middle-size case studies, including

for example the Common Component Modeling Example (CoCoME, [33]). This is a

system of 17 components structured in 5 levels of hierarchy, with more than 10 data

parameters, and some broadcast communication. We have treated this case using the

Eric Madelaine -- HDR 67 Sept. 2011

Specification and Verification for Grid Component-Based Applications 201

Fractal model generation (3.4), with very small abstract domains for the variables (typ-

ically 2 or 3 values). The brute force state space for this would be approximately 2.108,

while the biggest intermediate structure that we generate is lower than 10000 states. We

have shown in [33] a number of properties and problems verified on this model.

Such models can be used to check the satisfiability of safety or liveness formulas in

branching time logics, or to check the bisimulation equivalence with respect to an ab-

stract specification. In practice, we want to provide non-expert users with simple “press

button” verification functions. This is easy for some families of reachability properties,

like correct termination of deployment, or occurrence of some predefined sets of error

actions. Deadlock detection is also a popular “push button” function, but explaining to

the user the reasons of a deadlock can be challenging; it often involves some “missed

synchronisation”, that may be difficult to show, especially in presence of abstraction

and instantiation.

The type of properties we can check on our models are more versatile than in most

approaches, because we do not only encode the usual functional interactions between

the components, but also their reconfiguration operations. So we can prove properties

of applications in which one would change bindings, or remove and update subcom-

ponents, while the rest of the system keeps running. This kind of properties typically

depends on the behaviour of the system parts, and is not a general property of the

middleware.

5 Conclusion and Perspectives

In this paper we have presented the models and tools we have been implementing to

assist the development of Grid component-based applications. The approach is based

on the modelling of the component behaviour using parameterized networks of au-

tomata. In addition, we have presented tools that generate these models, and tools for the

specification of the component system.

This paper makes a step forward towards the verification of Grid applications. It

provides novel models for multicast interfaces and generic proxies for transmitting fu-

tures. Moreover, one of the strong original aspects of this work is the focus put on

non-functional properties, and the results we provide on the interleaving between func-

tional and non-functional concerns. Thus, the programmer should be able to prove the

correct behaviour of his distributed component system in presence of evolution (or

reconfiguration) of the system.

We are currently developing additional tools in the VerCors platform to support our

methodology. This includes the front-ends for textual and graphical specification lan-

guages, a tool for helping the user to build correct abstractions, and tools for providing

readable explanations of the provers diagnostics.

Finally, we have presented techniques to master state-space explosion. The key

aspect is the use of compositionality to reduce the system at each level of hierar-

chy. Nevertheless, in some cases, particularly when queues are unbounded, state-space

explosion is inevitable when using explicit-state model-checkers. Therefore, our lat-

est work focuses on the development of an infinite-state model-checker that verifies

automata endowed with unbounded FIFO queues.

FMCO '08

Eric Madelaine -- HDR 68 Sept. 2011

202 A. Cansado and E. Madelaine

References

[1] Szyperski, C.: Component Software, 2nd edn. Addison-Wesley, Reading (2002)

[2] Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: An open component

model and its support in java. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K.

(eds.) CBSE 2004. LNCS, vol. 3054, pp. 7–22. Springer, Heidelberg (2004)

[3] CoreGRID, Programming Model Institute: Basic features of the grid component model

(assessed). Technical report, CoreGRID, Programming Model Virtual Institute, Deliverable

D.PM.04 (2006),

http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf

[4] Oquendo, F.: π-ADL: An Architecture Description Language based on the Higher Or-

der Typed π-Calculus for Specifying Dynamic and Mobile Software Architectures. ACM

Software Engineering Notes 26(3) (2004)

[5] Groote, J., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.: The For-

mal Specification Language mCRL2. In: Proc. Methods for Modelling Software Systems

(2007)

[6] Poizat, P., Royer, J.-C., Salaün, G.: Bounded Analysis and Decomposition for Behavioural

Descriptions of Components. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,

vol. 4037, pp. 33–47. Springer, Heidelberg (2006)

[7] Garavel, H., Lang, F., Mateescu, R.: An overview of CADP 2001. European Association

for Software Science and Technology (EASST) Newsletter 4, 13–24 (2002)

[8] Barros, T., Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behavioural models for

distributed Fractal components. Annals of Telecommunications 64(1-2) (January 2009);

also Research Report INRIA RR-6491.

[9] OASIS team: VerCors: a Specification and Verification Platform for Distributed Applica-

tions (2007-2009), http://www-sop.inria.fr/oasis/index.php?page=vercors

[10] Cansado, A., Henrio, L., Madelaine, E., Valenzuela, P.: Unifying architectural and be-

havioural specifications of distributed components. In: International Workshop on Formal

Aspects of Component Software (FACS 2008), Malaga, Electronic Notes in Theoretical

Computer Science (ENTCS) (September 2008)

[11] Caromel, D., Henrio, L.: A Theory of Distributed Objects. Springer, Heidelberg (2005)

[12] Caromel, D., Henrio, L.: Asynchonous distributed components: Concurrency and determi-

nacy. In: Proceedings of the IFIP International Conference on Theoretical Computer Sci-

ence 2006 (IFIP TCS 2006), Santiago, Chile, August 2006. Springer Science (2006); 19th

IFIP World Computer Congress

[13] Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B.: An open component

model and its support in java. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K.

(eds.) CBSE 2004. LNCS, vol. 3054, pp. 7–22. Springer, Heidelberg (2004)

[14] Seinturier, L., Pessemier, N., Coupaye, T.: AOKell: an Aspect-Oriented Implementation of

the Fractal Specifications (2005),

http://www.lifl.fr/˜seinturi/aokell/javadoc/overview.html

[15] European Telecommunication Standards Institute, http://portal.etsi.org

[16] Caromel, D., Delbé, C., di Costanzo, A., Leyton, M.: ProActive: an integrated platform for

programming and running applications on grids and P2P systems. Computational Methods

in Science and Technology 12(1), 69–77 (2006)

[17] Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

[18] Arnold, A.: Finite transition systems. Semantics of communicating sytems. Prentice-Hall,

Englewood Cliffs (1994)

[19] Lin, H.: Symbolic transition graph with assignment. In: Sassone, V., Montanari, U. (eds.)

CONCUR 1996. LNCS, vol. 1119. Springer, Heidelberg (1996)

Eric Madelaine -- HDR 69 Sept. 2011

Specification and Verification for Grid Component-Based Applications 203

[20] Madelaine, E.: Verification tools from the CONCUR project. EATCS Bull. 47 (1992)

[21] Barros, T., Boulifa, R., Madelaine, E.: Parameterized models for distributed java objects.

In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004, Madrid. LNCS, vol. 3235, pp.

43–60. Springer, Heidelberg (2004)

[22] Boulifa, R.: Génération de modèles comportementaux des applications réparties. PhD the-

sis, University of Nice - Sophia Antipolis – UFR Sciences (December 2004)

[23] Cansado, A., Henrio, L., Madelaine, E.: Transparent first-class futures and distributed com-

ponent. In: International Workshop on Formal Aspects of Component Software (FACS

2008), Malaga, Electronic Notes in Theoretical Computer Science, ENTCS (September

2008)

[24] Cansado, A.: Formal Specification and Verification of Distributed Component Systems.

PhD thesis, Université de Nice - Sophia Antipolis – UFR Sciences (December 2008)

[25] Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A Toolbox for the Construc-

tion and Analysis of Distributed Processes. In: CAV (2007)

[26] Berthomieu, B., Bodeveix, J.P., Filali, M., Garavel, H., Lang, F., Peres, F., Saad, R.,

Stoecker, J., Fran, C.V.: The Syntax and Semantics of FIACRE V2.0. Technical report

(Feburary 2009)

[27] Pontisso, N., Chemouil, D.: Topcased combining formal methods with model-driven engi-

neering. In: ASE, pp. 359–360. IEEE Computer Society, Los Alamitos (2006)

[28] Object Management Group: UML 2.0 Object Constraint Language (OCL) Specification.

formal/03-10-14 edn, version 2.0 (2003)

[29] Ahumada, S., Apvrille, L., Barros, T., Cansado, A., Madelaine, E., Salageanu, E.: Specify-

ing Fractal and GCM Components With UML. In: Proc. of the XXVI International Con-

ference of the Chilean Computer Science Society (SCCC 2007), Iquique, Chile, Nov 2007,

IEEE, Los Alamitos (2007)

[30] Ressouche, A., de Simone, R., Bouali, A., Roy, V.: The FC2Tool user manuel (1994),

http://www-sop.inria.fr/meije/verification/

[31] Barros, T.: Formal specification and verification of distributed component systems. PhD

thesis, University of Nice - Sophia Antipolis (November 2005)

[32] Lang, F.: Exp.Open 2.0: A flexible tool integrating partial order, compositional, and on-the-

fly verification methods. In: Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.) IFM 2005.

LNCS, vol. 3771, pp. 70–88. Springer, Heidelberg (2005)

[33] Rausch, A., Reussner, R., Mirandola, R., Plášil, F.: The Common Component Modeling

Example. LNCS, vol. 5153. Springer, Heidelberg (2008)

FMCO '08

Eric Madelaine -- HDR 70 Sept. 2011

6. Specification Languages

Chapitre 6

Specification Languages

6.1 Summary

We have explained in the introduction how we decided to base our model ge-
neration methodology on some sort of specification language, rather than static
analysis of Java code. The benefits are two-folded :

– the model generation is more precise, and more properties can be proven,
than relying on code analysis ; and “safe by construction” code generation
methods can be envisaged,

– the verification activity can be performed much earlier in the development
process, allowing one to find problems, and to build a reliable software archi-
tecture, as soon as possible.

There are many existing modeling formalisms, and specification languages, for
distributed applications. Is there one fitting our needs ? We did not want to invent
“yet another formalism”, especially because we want our methods to be accessible
to non-specialists developers. We have explained in Section 5.1 our early attemps
to use UML for behavioural and architectural description of GCM components,
and how we reached 2 opposite decisions for these two aspects :

1. At the level of architecture descriptions, we finally decided that the differences
were too important, and it was too complicated, and not really efficient, to
define a specific UML profile for describing GCM components. The next step
was to define a specific graphical formalism more natural for this goal. We
implemented it as the VerCors Component Editor (VCE), and built a number
of case-studies with this formalism [C-04b], [32]. This graphical formalism is
also the one used in the definition of the GCM ADL standard (ETSI [S-09]),
but the formalism also includes GCM features that are not (yet) in the stan-
dard : complex and structured component membranes, and non-functional
components. We recently defined [79] an extension of this formalism for des-
cribing usual parametrized topologies of distributed components, including
arrays, rings, pipelines, or matrices.

2. At the level of behaviour descriptions, it is less difficult to adapt existing gra-
phical formalisms to our needs. Basically, activity diagrams, or state-machine
diagrams from UML would be suitable. The choice of an adequate formalism
(and the corresponding tool) is planned in our short-term objectives.

However it is usually considered that pure graphical editors are not really conve-
nient when defining real-size models, and that textual formalisms are better suited.
In this line of research, we have defined in Antonio Cansado PhD thesis [32] the
Java Distributed Components (JDC) specification language, that addresses in a

Eric Madelaine -- HDR 71 Sept. 2011

6. Specification Languages

Fig. 6.1 – A State machine from the CoCoME case-study

coherent manner both the behaviour and the architecture aspects of GCM com-
ponents. This language is described in the paper presented at FACS 2008 [C-08c],
included here.

Last but not least, we need formalisms to express the requirements, or the pro-
perties, that will constitute the specification of our components and applications.
We have been using different kinds of (action-based) temporal logic dialects, from
ACTL [43] and regular µ-calculus [62, 69]. There are also means to express these
logics using higher level constructs, easier to use by non-specialists, as in specifi-
cation patterns [66], but also using some symbolic version of automata, expressing
the acceptance of properties. More recently MCL [70] has been created as an ex-
tension of the regular µ-calculus, allowing formulas to include manipulation of data
variables, in a manner consistent with their usage in the system definition. MCL
is not yet available in the distributed version of CADP, but it provides a rigorous
way to express properties with data, and we are starting to use it in our recent
publications.

Discussion and Perspectives

We haven’t started implementing the JDC specification language. The main
reason is that we think that its architecture and abstract data part are usable,
but the concurrency/behaviour part is not satisfactory in its current version. In
fact there is little provision in JDC for specifying concurrency within a component
in an abstract way, without giving explicitly an architecture. Moreover, the cur-
rent trends towards managing multi-core processors, and optimizing applications
running on such infrastructures, demand specific extensions of our behaviour spe-
cification model (see Chapter 8).

The other important research theme here is the so-called ”Correct by construc-
tion” code generation method. The idea is to specify the system, prove that the
specification is correct, and then generate (Java) code skeletons guaranteed to
conform to the specification. We have started implementing this idea at the archi-
tecture level : the VCE editor generates ADL files implementing the component

Eric Madelaine -- HDR 72 Sept. 2011

6. Specification Languages

architecture. For the other parts, we cannot expect to generate complete code,
because we only have ”abstract data” available in the JDC code, but more fun-
damentally because we do not want the behavioural specification to include all
the functional logic of the application : this would not be manageable. Instead,
we want to generate only the minimal code skeleton required to guarantee the
behavioural properties of the application. Then the correctness may be based on
restrictions on code modifications, together with some form of runtime condition
checking (see Chapter 8).

6.2 Paper from FACS Workshop, June 2008

Eric Madelaine -- HDR 73 Sept. 2011

Unifying Architectural and Behavioural

Specifications of Distributed Components

Antonio Cansadoa, Ludovic Henrioa, Eric Madelainea and

Pablo Valenzuelab

a INRIA Sophia-Antipolis, CNRS, I3S, UNSA. 2004, Route des Lucioles, BP 93, F-06902
Sophia-Antipolis Cedex, France. First.Last@sophia.inria.fr

b Universidad Diego-Portales, Ejército 441, Santiago, Chile, pablo.valenzuela@inf.udp.cl

Abstract

We present a novel specification language called JDC to be used at design phase of distributed components.
The extensive seek for asynchrony in distributed components demands new techniques for its specification
that have not been addressed before. We propose to focus the specification on its data-flow; this allows
to reason about inter-component synchronisations produced by a data-driven synchronisation model. The
language is endowed with enough formality so it allows a constructive approach; it allows the generation of
behaviour models which can be model-checked, and the generation of code skeletons with the control flow
of components. Globally, this approach aims at generating components with strong guarantees w.r.t. their
behaviour.

Keywords: Hierarchical components, distributed asynchronous components, formal verification,
behavioural specification, model-checking, specification language.

1 Introduction

Component-based software development (CBSD) has emerged as a response from

both the industry and the academy for dealing with complexity and reusability in

software. The main idea is to clearly define interfaces between components so that

they can be assembled and composed in several contexts.

Unfortunately, software engineers often face non-trivial runtime incompatibilities

when assembling off-the-shelf components. These arise due to an inadequate (or

nonexistent) dynamic specification of the component behaviour. In fact, only few

state-of-the-art implementations of component models take into account dynamic

compatibility. The component models SOFA [22] and Fractal [8] can be specified

using “behavior protocols” [22], or (for Fractal) with our pNets formalism [3]. Other

component models such as CORBA Component Model [21] only check interface

type-compatibility in order to realise a binding. Types are defined in an Interface

Description Language (IDL).

Electronic Notes in Theoretical Computer Science 260 (2010) 25–45

1571-0661/$ – see front matter © 2009 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.12.030

FACS 2008

Eric Madelaine -- HDR 74 Sept. 2011

A major originality of our work is that we target distributed component systems

communicating by asynchronous method calls with futures, concretely in the frame

of the Grid Component Model (GCM) [15]. The GCM is a novel component model

defined by the european Network of Excellence CoreGrid. The GCM is based on

the Fractal Component Model, with extensions addressing Grid computing. From

Fractal, GCM inherits a hierarchical structure with strong separation of concerns

between functional and non-functional behaviours. The extensions to Fractal come

from the fact that in Grid computing components are deployed over thousands of

nodes, so scalability plays a major role.

Even if there are many specification languages in the literature, none fits well in

the context of distributed components. In the GCM, most difficulties come when

specifying the synchronisations. From a practical point of view, we focus on a refer-

ence implementation of GCM in Java: GCM/ProActive. In GCM/ProActive [11],

components communicate through asynchronous method calls with futures. Futures

act as placeholders for promised return values. Synchronisations happen upon data

access on a future, and futures can be transmitted in remote method calls to other

components; finally, almost any object in the program can be a future or not in a

transparent way. Such transparent futures alleviate the programmer from synchro-

nisation difficulties, allow for separation of concerns (the source code can be really

independent from the physical infrastructure), and give optimisation opportunities

at the middleware level. On the other hand, specifying and/or inferring about syn-

chronisations becomes more complex; we need to provide help to the programmer.

To our knowledge, no specification language has been proposed within this context.

Our approach in [10] was to attach the behaviour of components as part of the

architecture specification, defined in terms of Parameterized Networks of Transi-

tion Systems (pNets) [3]; pNets is a powerful model that expresses parameterized

topologies of processes communicating with value passing. Using pNets, we showed

how to synthesise the behaviour of distributed components; however the formalism

is too low-level to be used as a specification language, and lacks of the high-level

concepts particular to the different contexts in which we want to use it.

Related work

In the same spirit, “behavior protocols” [22] is an ongoing research project that

seeks formal specifications of components. They opt for simplicity rather than

expressivity, for example “behavior protocols” uses a simple regular-language to

describe traces of the component behaviour. This allows them to check for be-

havioural mismatches, however they only take into account a limited abstraction of

the data-flow.

STSLib [18] provides a formal component framework that synthesises compo-

nents from symbolic protocols in terms of Symbolic Transition Systems (STS). Just

as pNets, STS concisely represents infinite systems, however, STS relies on Abstract

Data Types (ADT) which are more expressive than our Simple Types (see Section

2.3), but less intuitive for software engineers. Both formalisms rely on (N-ary) syn-

chronisation vectors, but in STS they are static whereas in pNets they are dynamic;

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–4526

FACS 2008

Eric Madelaine -- HDR 75 Sept. 2011

as shown in [3], this allows us to express reconfiguration in a natural way: rebind-

ing a set of interfaces is seen as a change in the synchronisation vectors. STSLib

synthesises components based on their STS protocols; a controller interprets the

STS protocol and data from the ADT is implemented (and generated) in Java. The

communication in STS components is rather low-level; both emitter and receiver

must agree exchange a message, although there is no clear notion of required nor

provided services.

Sensoria [1] is another project which provides a mathematical framework for

component interaction. It targets Service Oriented Architectures (SOA) such as

Web Services and SCA (Service Component Architecture [7]). Their approach is

akin with “behavior protocols”, specifying the allowed interaction within the system.

Our approach is closer to the programming model, expressing what the component

does to later infer which are the interactions.

Contribution

The originality of our work is to focus on service invocations, and implicit syn-

chronisation by the mean of futures. We will show that the data-flow and the access

to the transmitted results implicitly set the synchronisations. This approach pro-

vides a high-level and powerful abstraction for the programmer that is close to the

programming model.

Instead of proving that legacy code is safe, in this paper we take a constructive

approach similar to [14,18]. The idea is to specify the system, prove that the spec-

ification is correct, and then generate (Java) code skeletons guaranteed to conform

to the specification. pNets is left as the underlying formalism that interfaces with

model-checkers, and the programmer uses a high-level specification on top of pNets.

The language is called Java Distributed Components (JDC for short).

Paper structure

The paper is organised as follows. Section 2 discusses the foundations of the

specification language. Then, Section 3 illustrates how components can be de-

scribed and composed using an architecture specification. In Section 4, we define

the black-box behaviour of a component, that abstracts the internal details of a com-

ponent. Section 5 specifies abstractions of user types. Finally, Section 6 explains

how to generate both behavioural models and code skeletons from our specification

language.

2 Foundations of the Specification Language

Distributed components tend to be coarse grain units of composition, and are often

loosely-coupled. In the following we present a specification language in the form

of an extension of a subset of Java for specifying these components. The language

includes both the architecture and the behaviour definitions, and is endowed with

enough formality and control-flow information so that we are able to:

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–45 27

FACS 2008

Eric Madelaine -- HDR 76 Sept. 2011

• on one hand check the correctness of the system (Section 6.2): we build a be-

haviour model that can be model-checked against temporal formulas;

• on the other hand generate safe components (Section 6.3): we generate the control

code of components that is guaranteed to respect the specification.

We opt for a Java-like language for several reasons; (i) it is close to the target

expertise of engineers, using common syntax such as method calls and data classes;

(ii) it allows to embed part of the specification within the code skeletons; (iii) it

uses the same datatypes as in the implementation, guaranteeing that operations on

the datatypes are directly useful without modification.

2.1 Background on Distributed Components

A recent approach to deal with distributed components on Grids is provided by

ProActive [11], the reference implementation of the GCM. Components communi-

cate through asynchronous method calls. A method call creates a request in the

queue of the target component, and a future on the caller side as a placeholder

for the result. These futures may be transmitted between components, no explicit

instruction deals with futures, neither for creation nor for access, but access to the

queue is explicit. serve(method) is used to select methods from the queue.

ProActive guarantees that, once the promised value of a future is known, it is

transmitted to every component that has received a reference to it. Moreover, the

various strategies used for transmitting the future values are proved not to change

the component behaviour. A precise operational semantics of ProActive is given

by the ASP-calculus [12]. These results inspire our specification language to adopt

futures in order to decouple components.

Using transparent futures in the specification language brings the same advan-

tages as in the programming language: the system designer doesn’t have to wonder

if a variable might contain a future; or more precisely, no explicit synchronisation

mechanism is needed for variables that may sometimes contain a future. This ex-

tends reusability of specifications as they may fit several contexts, where values

are remotely computed, or come from local instances. A drawback of transparency

of futures is non-determinism; it is in general not statically decidable whether a

variable is a future or not at a given point of the program. However, additional syn-

chronisation can be specified, ensuring that, after synchronisation upon a variable,

this variable is known to be value, or a future with a filled value.

Dynamic reconfiguration is supported in the GCM, however, it is not yet con-

sidered in JDC. In [3] we proposed models, based on our pNets, to handle reconfig-

uration of components. We plan to extend the language towards this direction.

2.2 Decomposing the Behaviour into Services

The functional behaviour of the component is an abstraction of the control-flow,

some elements of data-flow, and access to data. Concretely, for the distributed

components we deal with, the interesting events are:

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–4528

FACS 2008

Eric Madelaine -- HDR 77 Sept. 2011

• Remote method calls, these represent communication between components. A

remote call is always an asynchronous, it creates a request in request queue of

the callee component, and it creates a future in the caller for dealing with the

promised result. Remote calls are identified by calls on client interfaces.

• Future flow, these represent the creation of implicit communication channels be-

tween the component that computes the value of the future, and the component

that receives the reference to the future. The future flow can be identified by

tracking future objects in parameters and results of remote method calls.

• Data-access, these trigger synchronisations between components. They are iden-

tified using static analysis, or given explicitly within the specification.

The first part of the component specification is called the service policy; it

defines how a component selects requests depending on its internal state, and any

behaviour the component triggers by its own. This is a rough specification of the

component protocol, however, it gives the user a good idea of how the component

should be used. For instance, the specification may specify that a component must

serve requests in a particular order.

The second part of a service specifies what each request exposed at the service

policy actually does. This behaviour is defined by a Java-like language that is

very close to the programming model we want to specify. In there we include

an abstraction of the control and data flow, remote method calls done within the

service method, and access to data. Although it requires static analysis to infer the

behaviour, it is easier than in standard Java; remote calls are easily identified by

calls on the component’s client interfaces; future creation points are identified as

the results of these calls; there is no concurrency within the service method; and

there is no exception handling (for the sake of asynchrony).

2.3 Datatypes and Abstraction

The datatypes used in JDC are standard Java classes. This way the code skele-

tons obtained by our generation tools will be directly usable. On the other hand,

arbitrary datatypes often have large (possibly infinite) domains which can’t be

model-checked directly. The kind of behavioural properties we seek only require

an abstraction of these datatypes. Therefore, whenever verification is desired, the

specification includes as well an abstraction of the user types that allows to derive

a simpler specification.

The abstraction keeps solely data influencing the control-flow and the synchroni-

sations, however, it must preserve the behavioural properties in the sense of Cousot’s

abstract interpretations [16]. If abstractions are finite and constitute abstract in-

terpretations of the initial parameter domains, then the model is finite. Following

[13], we build an abstract interpretation of the system behaviour, from abstractions

of the domains of the program variables; this construction can be used for finite

model-checking as it preserves safety and liveness properties.

The abstractions are mappings from user types to predefined first order data-

types (simple types for now on). Simple types themselves are provided as Java

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–45 29

FACS 2008

Eric Madelaine -- HDR 78 Sept. 2011

classes, and as a particular case, can be used in JDC programs. They are: point

(or singleton), booleans, enumerated types, integers, intervals of integers, strings,

records of simple types, arrays of simple types.

In our work we decompose the abstraction in two steps: the first maps concrete

types to potentially infinite simple types allowing us to generate parameterized

pNets models. From pNets, we can apply many different proof methods, including

inductive theorem proving techniques, that can address a large family of properties.

The second step is based on finite partitions of parameter domains that depend on

each set of properties to prove. In this case, the abstraction produces finite pNets

on which we can use explicit-state model-checkers.

Finally, our abstractions must consider futures. Even if a variable has insignif-

icant values, access to the variable may still trigger synchronisation. This makes

the choice of a good abstraction tricky, and some variables are only kept within

the abstraction in order to signal eventual access on them. In other words, these

variables have an abstract domain with 2 values filled or non-filled.

3 Architecture Specification

In the next sections, we present elements of the abstract and concrete syntax of JDC.

Each box defines a piece of JDC syntax, using: keywords in bold (e.g. component);

terminal symbols written between simple quotes (e.g. ’{’); non-terminal symbols in

monospace (e.g. Services); optional expressions with square-brackets (e.g. [expr

]); choices with | (e.g. expr1 | expr2); concatenations of zero (resp. one) or more

expressions with ∗ and + (e.g. expr∗, expr+); and identifiers: ’id’ .

3.1 Defining a Component

The definition of a component type comprises its external interfaces with both

provisions and requirements, and a specification of its behaviour. The behaviour is

either given by a black-box specification in the form of a set of Services (Section 4),

or by a composition of components, also called Architecture (Section 3.2), or even

by both.

Component → component ’id’ ’{’ ≪component definition≫

external interfaces

Interface∗ ≪set of interfaces≫

[Services] ≪black-box description≫

[Architecture] ≪content description≫

’}’

Interface → server | client ≪interface role≫

interface InterfaceType ’id’ ’;’ ≪type and name≫

Each interface in a component has a role (either server or client), a type (a

Java interface as in most IDLs), and a name. The interfaces defined within the

context of the component definition are external interfaces and can be bound to

the environment. Interfaces determine both provided and required services of a

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–4530

FACS 2008

Eric Madelaine -- HDR 79 Sept. 2011

component; provided services are defined by server interfaces, and required services

are defined by client interfaces.

3.2 Composing Components

The composition of components is done within the architecture. It exposes the con-

tent of a component by means of its subcomponents, its internal interfaces, and the

bindings. The subcomponents are named and typed, the type being given by either

an external component definition, or by an inline definition. The bindings connect

two interfaces among the component’s internal interfaces and the subcomponents’

external interfaces.

Architecture → architecture

contents

Subcomponent∗ ≪set of subcomponents≫

internal interfaces

Interface∗ ≪set of interfaces≫

bindings

Binding∗ ≪set of bindings≫

Subcomponent → ComponentType ’id’ ’;’ ≪named subcomponent≫

| Component ≪inline definition≫

ComponentType → ’id’ ≪reference to a type≫

Binding → bind ’(’ SourceItf ’,’ TargetItf ’)’ ’;’ ≪binds a pair of interfaces≫

In the GCM, the relation between an internal interface and an external interface

of a component is arbitrary: interceptors can transform or intercept any incoming

invocation. For simplicity, in this paper, we assume that there is an exact match

for each pair of external-internal interfaces (interfaces that have the same type and

name, but with opposite roles); and that invocations on an external (resp. internal)

server interface is directly forwarded to the corresponding internal (resp.external)

client interface.

3.3 Example

The CoCoME example [9] was implemented using GCM / ProActive. It is a Point-

Of-Sale system, in which the cash desk deals with the sales. The Cash Desk and its

hardware controllers are implemented as components, depicted in Figs. 1 and 2.

4 Behaviour Specification

When designing a system, the designer would like to adopt a top-bottom approach:

specifying first the behaviour of a component before going down into its architecture.

Thus, we also propose to specify directly the behaviour acceptable by the interfaces;

this is called a black-box behaviour of a component. Of course different architecture

definitions can match the same component black-box. In this paper, we leave the

equivalence (or preorder) between a component black-box, and its implementation

(architecture) unspecified. Many existing work can apply, starting with all notions

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–45 31

FACS 2008

Eric Madelaine -- HDR 80 Sept. 2011

component CashDesk {
external interfaces
server interface ApplicationIf appIf;
client interface ScannerIf scannerIf;
// ... external interfaces

architecture
contents
component Application application;
component Scanner scanner;
// ... controllers

internal interfaces
server interface ApplicationIf appIf;
// ... internal interfaces

bindings
bind(this.appIf, application.appIf);
// ... bindings

}

Fig. 1. Architecture specification

Fig. 2. Equivalent schema

of simulations and bisimulations inherited from process algebras. They have to be

adapted to our component model though, e.g. in a way similar to the component

substitutability relations of [23].

In GCM there are two kinds of components, primitives that are atomic compo-

nents, and composites that are components composed of other components. Primi-

tives are monothreaded, and concurrency is introduced by composites. The concur-

rency in JDC is specified by a set of concurrent services within the Services block.

Each service denotes a sequential process with its own set of local variables. A se-

quential process is split into the service policy that defines the high-level protocol of

the service, and a set of service methods that details the behaviour of the methods

exported by the component.

4.1 Service Policy

The service policy defines how incoming requests are selected from the queue de-

pending on the internal state of the component, and any behaviour triggered in-

ternally. It is given by (non-deterministic) state-machines, expressed using regular

expressions. The actions can express reactive or active behaviour.

The reactive behaviour defines which kind of methods to select, and in which

order to pick them from the queue. This represents work that depends on the

requests at the component’s request queue. As an example, serveOldest(itf.m1,

itf.m2) selects from the queue the oldest request on m1 or m2; if none of them is in

the queue, the service blocks until one of them arrives. Then, the request is served,

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–4532

FACS 2008

Eric Madelaine -- HDR 81 Sept. 2011

Policy → ServeMode ’(’ [Filter] ’)’ ≪reactive service≫

| MethodCall ≪active service≫

| Policy ’;’ Policy ≪concatenation≫

| Policy ’|’ Policy ≪choice≫

| Policy ’*’ ≪Kleene closure≫

ServeMode → serveOldest | serveYoungest ≪request queue accessor≫

Filter → | InterfaceName ≪any method in this interface≫

| InterfaceName ’.’ MethodName ≪this method≫

| Filter ’,’ Filter ≪a list of filters≫

i.e., the control is delegated to the service method representing the request.

Additionally, an active behaviour denotes spontaneous behaviour, i.e., some

work that is done without being requested. In our example, a component in charge

of the scanner sends signals to the application component whenever a product is

scanned. The signals take the form of method calls on the application components.

For the scanner component, this behaviour is spontaneous as the interaction with

the physical scanner is abstracted away.

The service policy is the only block authorised to access the queue. Basically,

this ensures that the code generated for the service policy will be complete w.r.t.

how the component provides services. Moreover, the state-machines are precise

enough to ensure that the code generated will be the final implementation of the

runActivity() method of a GCM/ProActive component, and no other method will

access the component’s request queue. More details are discussed in Section 6.3.

An example of a Service definition is found in Fig. 3. We give part of the

behaviour of the cash desk application. It has a single service (the component is

indeed monothreaded), and it is mainly reactive; it responds to incoming events in

a FIFO order.

4.2 Concurrent Behaviour

A primitive component can be specified by a single Service. This specification fits

as well in a composite component with a pipeline of subcomponents inside. In any

of these configurations, two request calls are treated sequentially. However, a single

Service cannot express concurrency as there is no explicit thread creation in JDC.

Instead, concurrency of requests is defined by multiple services within a component.

Each service is an independent activity serving requests in parallel, with its own set

of local variables and provided services.

A drawback of this approach is that it is not possible to define interference

among the services directly. That is, we must rely on an architecture definition

that composes independent components in order to express interference. Other

alternatives would have introduced more complexity to the language; moreover, the

generation of the control code would have been difficult as the programming model

doesn’t have explicit concurrency.

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–45 33

FACS 2008

Eric Madelaine -- HDR 82 Sept. 2011

services
service {

// variables of simple types
Bool expressMode;
public enum CashState{

IDLE, STARTED, PAYING
}
CashState cashState;
// ... other variables of

simple types and user
types

// initialises the system with
some RPC and then treats
calls in FIFO order

policy {
init(); // local method
serveOldest(applicationIf)*

}
// ... the service methods

}

Fig. 3. Service definition of the Cash
Desk Application

void applicationIf.barcodeScanned(Barcode barcode) {
switch (cashState) {

case IDLE:
case PAYING:

break; // ignore signal
case STARTED:

Product product = cashDeskIf.getProduct(barcode
);

if (product == null) {
eventBusIf.productBarcodeNotValid();
break;

}
if (expressMode && products.isFull())

__ERROR("ExceededNumberOfProducts");
else {

products.add(product);
runningTotal.add(product.getPurchasePrice());
eventBusIf.runningTotalChanged(runningTotal,

product);
} } }

Fig. 4. A Service Method of the Cash Desk Application

4.3 Service Methods

A service method is an abstraction of a service exported by a component. It is

defined by means of a subset of Java statements in which there is no exception

handling, and no concurrency. This includes the relevant dataflow between input

parameters and results of the method, as well as communication with required

services. The service method has access to the component’s variables, however, it

doesn’t access the component’s request queue.

Java is extended to deal with component interfaces. The name of the service

method is prefixed by the server interface in which it is defined. Client interfaces

are accessed as usual objects but they cannot be assigned to other variables. This

last requirement is very important to ensure that all the interactions between com-

ponents are realised through the client interfaces.

An example of a service method is depicted in Fig. 4. The behaviour focuses on

a cash desk that may provide an express mode for dealing with sales with a limited

amount of products. When the barcode of a product is scanned, the component

reacts accordingly to its internal state. Its usual behaviour is to get the product

information by invoking a remote method call (getProduct(barcode)), add the

product to a list of products, and update some information regarding the current

sale (runningTotal). The specification is quite close to Java, notably the operations

on the product are the ones that would be expected in a real implementation.

5 Specifying Abstractions

This section shows how to define and use abstractions of user types in JDC. One

particularity is that a class may have more than one abstraction defined, each one

focusing on the significant behaviour of a variable.

The abstractions ensure that we are able to generate behavioural models based

on pNets. pNets allows us to interface with several verification tools; for the moment

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–4534

FACS 2008

Eric Madelaine -- HDR 83 Sept. 2011

we focus on finite-state model-checkers, but using pNets we can potentially interface

with infinite-state model-checkers and theorem provers as well.

5.1 Formalisation of an Abstraction

A class is a tuple C =< −→m,
−→
f >, where −→m = {mi(−→a) : τ i} are the methods of C;

−→a = {aj : τ j} are the method arguments; and
−→
f = {fk : τk} the fields.

An abstraction of C is a class CA =< −→mA,
−→
fA >, where each public method

m({aj : τ j} : τ) of C has one or more abstract method mA(−→aA) : {τA} with −→aA the

abstract arguments, which domains are sets of values in the abstractions of classes

τ i, and the result is an abstract value in the abstraction of class τ .

For defining what is a good abstraction of the domains of the variables in the

specification, we need to identify:

• where in the specification are the “variables of interest” – those used in the

properties to be proved;

• what are the significant values of these “variables of interest” – these will deter-

mine their abstract domain;

• which other variables in the program influence (through control-flow and data-

flow) the “variables of interest” – these other variables will also have a non-empty

abstract domain.

For each of these significant variables, we must attach an abstract type in the

following manner:

• for each public method m of C, abstract versions mA are provided that capture

the accesses on the class variables, accesses on the variables passed as arguments,

and relevant results of them.

• the fields of the concrete class that are of interest are included as a record. The

domains of these fields are such that they are precise enough to hold the property

to prove. This is done recursively in order to find the abstractions of the other

variables of interest.

5.2 Using Abstractions

An abstraction in JDC is similar to a Java class, with extensions to deal with non-

determinism and data abstraction. An important notion is that we may have to

use different abstractions for different variables of the same concrete type, within

a given program. This means that in the abstract program, we may need different

versions of the abstract operators, depending on the abstract types of the arguments.

For example, if the concrete program has variables x:Int, y:Int then the abstract

program may have x:Sign, y:[0..3], and we may need to define the + operator for

arguments in Sign and [0..3]. We solve this problem in two phases: we define a

library of abstract classes (here Sign and interval as abstractions of Int, with the

standard abstract operators in each (e.g. + : Sign*Sign -> Sign); these libraries

can be defined in a generic way, and reused easily. Then for a specific program,

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–45 35

FACS 2008

Eric Madelaine -- HDR 84 Sept. 2011

we define abstract classes that inherit from the required library abstract classes,

and define additional abstract operators depending on the specific abstraction of

variables, and of the occurrences of the operators found in the code (e.g. + :

Sign*[0..3] -> Sign).

Abstraction → abstraction ’id’ of ’id’ ’{’ ≪datatype abstraction≫

Field∗ ≪local variables≫

Constructor∗ ≪abstract constructors≫

Operator∗ ≪abstract operators≫

’}’

Field → Type ’id’ ≪type and name of variable≫

[abstracted as Type] ≪local mapping of a type≫

Operator → Type ’id’ ’(’ args ’)’ ≪signature of concrete operator≫

[abstracted as Type ’id’ ’(’ args ’)’] ≪signature of abstract version≫

The fields within an abstraction are variables of type simple type, or any other

usertype provided with an abstraction. The latter can be given by a unique global

abstraction for the type, or by an inline abstraction that selectively determines the

abstraction for the type.

The operators are abstract versions of the class methods, that capture the be-

haviour of interest for a variable. It is possible to have multiple versions of the same

operator, each one taking different abstract versions of the arguments and return

types. Similarly, the same applies to constructors.

It is often useful (or required) to underspecify what are the results of an ex-

pression, possibly as the result is a set of abstract values. The language includes

for that two non-deterministic operators; the first, called ANY, non-deterministically

returns any element of the abstract domain; the second, called ANYELEMENT, non-

deterministically selects an element from a list.

Moreover, it is often not possible to statically know if a variable refers to a value

or to a future. The safe assumption is to consider such variable as possibly future.

In here, we exploit that a non-future variable is semantically equivalent to a future

variable with filled value. Nevertheless, the user must keep in mind that some traces

in the specification may never occur in a concrete implementation. A solution can

be then to make the specification more precise by enforcing more synchronisation on

a variable (by means of touch()). After the synchronisation, the variable is known

to be non-future. touch() synchronises on the variable without describing which

operations are applied. This allows details of the implementation to be filled-in

later without changing the synchronisations occurring in the system.

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–4536

FACS 2008

Eric Madelaine -- HDR 85 Sept. 2011

5.3 Example

abstraction ListProducts_A of ListProducts {
enum ListState { EMPTY, OK, FULL }
List<Product> products abstracted as

ListState;
ListProducts() abstracted as

ListProducts_A() {
products = EMPTY;

}
Bool isFull() { return (products==FULL); }
Product get() abstracted as Product_A get

() {
switch(products) {

case EMPTY:
return null;

case OK:
if (Bool.ANY())

products = EMPTY;
return Product_A.ANY();

case FULL:
products = OK;
return Product_A.ANY();

} }
void add(Product product) abstracted as

void add(Product_A product){
product.touch();
switch(products) {

case EMPTY:
products = OK;
break;

case OK:
if (Bool.ANY())

products = FULL;
break;

case FULL:
break;

} } }

The example above illustrates the use of a data abstraction influencing the

control-flow. A short-sale must not exceed a maximum number of products, but

there is no constraint on the type of products. Therefore, the abstraction of the

product list must be precise enough to take into account whether the maximum has

been exceeded or not, and can abstract away the product information.

The abstraction for the product list has no counter. Instead, it focuses on the

states the list can have: the list is either EMPTY, OK or FULL. This abstraction is

imprecise w.r.t. the number of products it has, so actions on the list are non-

deterministic. Adding a product from an EMPTY state never reaches the limit for

a short-sale, however, from an OK state it may (the state change to FULL is non-

deterministic). Note that the context guarantees that we never call add() when the

list is FULL.

The abstraction for the product is such that we are able to signal access upon

the variable. This is necessary as the product may be a future; indeed, in Fig. 4

product is the return of a remote method call and thus can be a future. Therefore,

the product is abstracted as a Singleton domain (Product A) such that the access

is signalled by touch.

6 Work in Progress

The middle term aim of this work is to create code with a guaranteed behaviour.

It is therefore natural to start by checking the behaviour of a component, and then

to generate code skeletons for the components.

6.1 Finding Abstractions

Defining abstractions can be burden without a tool support. For developping this

kind of tool a first step is to characterise what is a good abstraction. It surely

depends on the property to prove, but there are a couple of general ideas that

support some automatising of the abstractions.

Using static analysis, the variables used in the property will signal which are the

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–45 37

FACS 2008

Eric Madelaine -- HDR 86 Sept. 2011

“variables of interest”. The abstract domain for these variables is such that if there

is a non-deterministic choice affecting the property, then the abstraction must be

refined. There are tools like Bandera [17] that take this approach. Bandera defines

a family of abstractions for a variable and lets the system find the least precise one

that still holds the property. This work must be extended, though, to take into

account futures. At least one needs to find the set of variables that may contain a

future in any of their subfields. This leads us to the set of variables that must have

a non-empty abstract domain as well. Moreover, this gives us the most abstract

structure a variable can have for its type, i.e. a record with a field (or recursively

subfield) for each of these variables with non-empty abstract domain.

6.2 Behaviour Model Generation

Building the behavioural model requires to abstract the JDC specification into a

corresponding specification with only simple types. This is done by replacing each

variable of user type by its abstraction. Then the pNets model will create:

(i) for each service, a storage for each of its local variables. A storage is a parame-

terized Labelled Transition Systems (pLTSs) that stores the variable state, and

that exports actions set and get for accessing the variable. These storage are

synchronised with all the pLTSs of the service methods and the service policy.

(ii) pLTSs for specific library elements of JDC, e.g. request queues, and proxies

for futures. The latter requires dataflow analysis of the futures flow – in [4] we

have defined a similar procedure.

(iii) a pLTS for each service policy. The service policy is a state machine so the

transformation is straightforward. The reactive behaviour is transformed into

two actions, one synchronised with the queue, and another that fires the af-

fected service method. Similarly, each active behaviour is transformed into an

action that fires the method directly.

(iv) a pLTS for each service method. This requires static analysis of the pseudo

Java code of the abstract specification.

(v) synchronisation structures (pNets) for relating these pLTS. Each component

is modelled by a pNet that synchronises the actions of the pLTSs – the model

was previously shown in [3].

(vi) a tree of pNets modelling the architecture of the components. Each branch

is the pNets model of a component, where its branches are the pNets of its

subcomponents – the model was previously shown in [3].

6.3 Code Generation

From the JDC specification, it is possible to generate GCM/ProActive code skele-

tons with the control code of the components. Java code is only generated for

sequential components, so concurrent components must be provided with an archi-

tecture that decomposes the behaviour into sequential components. The ProActive

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–4538

FACS 2008

Eric Madelaine -- HDR 87 Sept. 2011

middleware is adequate because it supports distributed components that communi-

cate with first-order futures. We base our method on the following steps:

For each Architecture specification of a component, the compiler generates a

composite component. The composite architecture is expressed with the GCM ADL

(Architecture Description Language). The composite ADL defines the component

type and its content based on the ADLs of other subcomponents, bindings and the

IDLs of the interfaces.

Each Service denotes a sequential component, and therefore its natural im-

plementation is a primitive component. An ADL is also created for defining the

component type, as well as a reference to its Java implementation. A code skeleton

is generated for the latter with the control flow. The code is a translation of the

JDC’s black-box specification based on:

• each service method in JDC is a public method of the component. We rely on

the strong functional behaviour encapsulation of GCM for this matter, and that

every possible method call and data-usage appears in the black-box specification.

• all data types are created, but these will need to be modified by the programmer

to give implementation details.

• the service policy is implemented as a state machine within the ProActive’s

runActivity() method. This method dictates the initial activity of the com-

ponent and we use it to orchestrate the access to the queue and to serve requests.

7 Conclusion

We aim at safe-by-construction components. Our approach is to define the architec-

ture, the behaviour, and an abstraction of data within the specification language.

The specification is formal enough in order to generate behavioural models that can

be model-checked, and to generate code skeletons that include the control code of

components.

More specifically, our contribution in this work is:

• A high level specification language for distributed software components, called

JDC, that includes architectural, behavioural, and data parts. The behaviour of

a component is given as a set of services; the details of a service are given in a

Java-like language that makes easy to specify the control and data flow.

The data part is an abstraction of the final application data classes. It must be

designed by the developer as a compromise between verification and implementa-

tion concerns: precise enough to keep track of domains of variables affecting the

control and data flow, but abstract enough to allow model-checking.

• Procedures for producing a hierarchical behaviour model, in pNets format, on

one side, and code skeletons, in GCM/ADL and Java, on the other side.

This work builds on the GCM, however, at the moment only a small subset

of it is addressed. We plan to extend the language to cope with other interesting

features, such as group communications and non-functional aspects (dynamic re-

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–45 39

FACS 2008

Eric Madelaine -- HDR 88 Sept. 2011

configuration). Currently we have no tool support for the JDC language, except

for a graphical version in the form of an Eclipse editor of the architecture part.

Nevertheless, we plan to have a first prototype for the full language by the time of

the workshop.

References

[1] Sensoria webpage. http://www.sensoria-ist.eu .

[2] S. Ahumada, L. Apvrille, T. Barros, A. Cansado, E. Madelaine, and E. Salageanu. Specifying Fractal
and GCM Components With UML. In proc. of the XXVI International Conference of the Chilean
Computer Science Society (SCCC’07), Iquique, Chile, Nov. 2007. IEEE.

[3] T. Barros, R. Boulifa, A. Cansado, L. Henrio, and E. Madelaine. Behavioural models for distributed
Fractal components. Annals of Telecommunications, accepted for publication, 2008. also Research
Report INRIA RR-6491.

[4] T. Barros, R. Boulifa, and E. Madelaine. Parameterized models for distributed Java objects. In Forte’04
conference, volume LNCS 3235, Madrid, Sept. 2004. Spinger Verlag.

[5] T. Barros, A. Cansado, E. Madelaine, and M. Rivera. Model checking distributed components : The
Vercors platform. In 3rd workshop on Formal Aspects of Component Systems, Prague, Czech Republic,
Sep 2006. ENTCS.

[6] F. Baude, D. Caromel, L. Henrio, and P. Naoumenko. A flexible model and implementation of
component controllers. In CoreGRID Workshop on Grid Programming Model, Grid and P2P Systems
Architecture, Grid Systems, Tools and Environments, pages 12–23, june 2007. CoreGRID TR-0080
technical report.

[7] BEA Systems, IBM, IONA, Oracle, SAP AG, Siebel Systems, and Sybase. Service component
architecture. Whitepaper, November 2005.

[8] E. Bruneton, T. Coupaye, M. Leclercp, V. Quema, and J. Stefani. An open component model and its
support in java. In 7th Int. Symp. on Component-Based Software Engineering (CBSE-7), LNCS 3054,
may 2004.

[9] A. Cansado, D. Caromel, L. Henrio, E. Madelaine, M. Rivera, and E. Salageanu. The Common
Component Modeling Example: Comparing Software Component Models, volume 5153 of Lecture Notes
in Computer Science, chapter A Specification Language for Distributed Components implemented in
GCM/ProActive. Springer, 2008. http://agrausch.informatik.uni-kl.de/CoCoME .

[10] A. Cansado, L. Henrio, and E. Madelaine. Towards real case component model-checking. In 5th Fractal
Workshop, Nantes, France, July 2006.

[11] D. Caromel, C. Delbé, A. di Costanzo, and M. Leyton. ProActive: an integrated platform for
programming and running applications on grids and P2P systems. Computational Methods in Science
and Technology, 12(1):69–77, 2006.

[12] D. Caromel, L. Henrio, and B. Serpette. Asynchronous and deterministic objects. In Proceedings of the
31st ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 123–134.
ACM Press, 2004.

[13] R. Cleaveland and J. Riely. Testing-based abstractions for value-passing systems. In Int. Conference
on Concurrency Theory (CONCUR), volume 836 of LNCS, pages 417–432. Springer, 1994.

[14] A. Coglio and C. Green. A constructive approach to correctness, exemplified by a generator for certified
Java Card appplets. In Proc. IFIP Working Conference on Verified Software: Tools, Techniques, and
Experiments, October 2005.

[15] CoreGRID, Programming Model Institute. Basic features of the grid component model (assessed).
Technical report, 2006. Deliverable D.PM.04,
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf .

[16] P. Cousot. Abstract interpretation based formal methods and future challenges, invited paper. In
R. Wilhelm, editor, Informatics — 10 Years Back, 10 Years Ahead, volume 2000 of LNCS, pages
138–156. Springer-Verlag, 2001.

[17] M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareanu, Robby, W. Visser, and H. Zheng. Tool-
supported program abstraction for finite-state verification. In Proceedings of the 23rd International
Conference on Software Engineering, 2001.

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–4540

FACS 2008

Eric Madelaine -- HDR 89 Sept. 2011

[18] F. Fernandes and J.-C. Royer. The STSLIB project: Towards a formal component model based on
STS. In Proceedings of the Fourth International Workshop on Formal Aspects of Component Software
(FACS’07), Sophia Antipolis, France, September 2007. ENTCS.

[19] H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. European Association for Software
Science and Technology (EASST) Newsletter, 4:13–24, Aug. 2002.

[20] Object Management Group. UML 2.0 Object Constraint Language (OCL) Specification, formal/03-10-
14 edition, 2003. version 2.0.

[21] OMG. Corba components, version 3. Document formal/02-06-65, June 2002.

[22] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE Transactions on
Software Engineering, 28(11), nov 2002.

[23] I. Černá, P. Vařeková, and B. Zimmerova. Component substitutability via equivalencies of component-
interaction automata. In Proceedings of the Workshop on Formal Aspects of Component Software
(FACS’06), Prague, Czech Republic, September 2006. ENTCS.

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–45 41

FACS 2008

Eric Madelaine -- HDR 90 Sept. 2011

A VCE: A Graphical Tool for Architectural Definitions

of GCM Components

This annex presents a graphical tool called Vercors Component Editor (VCE) for the design of GCM-like
components. Here, we present only the graphical language for defining distributed components.

Since in JDC the architectural part is basically that found in classical ADLs, VCE can be seen as a
front-end for the architectural part of the JDC specification language. There are other architectural features
in the GCM that were not addressed in JDC, and we provide support for them in VCE. For example, we will
show how non-functional aspects can be defined, as well as one-to-many and many-to-one communications.

This graphical tool is an extension of the work presented in [2], in which we proposed a graphical syntax
for describing the architecture and the behaviour of Fractal and GCM component systems, based on UML
2.1 diagrams for component structures and state machines. In our new version, we abandoned the strict
definition of the UML diagrams, that were not sufficient for our needs. Our new graphical constructs can
be considered as a specific UML profile for the GCM components, or as an independent Domain Specific
Language (DSL) for the GCM.

The interested reader can refer to [9] for a large case-study using our previous approach; the case-study
is modelled with JDC as well.

Contribution
We provide an editor with custom diagrams for the GCM. We stress on the architectural specification

of both functional and non-functional behaviours. We define a meta-model for dealing with these aspects,
and provide verification features for validating the design. The tool is fully integrated into Eclipse, and can
interface with the GCM runtime files, namely the GCM ADL and the interface signatures.

Context
This tool models GCM components; besides usual composition, the main particularities found in the

GCM are group communication (called collective interfaces), and structuring of the control part of compo-
nents.

Collective interfaces provide some synchronisation and distribution capacities. There are of two kinds in
the GCM: multicast, that distribute one message with its parameters to a set of destinations; and gathercast,
that synchronise and gather a set of messages with their parameters. A client interface may be a multicast
interface, meaning that a call toward this interface can be distributed to many server interfaces depending
on the distribution used. Similarly, a server interface may be a gathercast interface, meaning that multiple
client calls will be synchronised and a single call will be performed towards the service component.

The control part of a GCM is deal with by the component’s membrane; this one is in charge of all
non-functional (NF) concerns. The membrane is composed of controllers that implement the NF concerns.
Instead of an arbitrary implementation of the membrane (as in Fractal), we structure the membrane with
a composition of NF components; such a structure is presented in [6].

Annex structure
In Section A.1 we present the editor; first, the functional specification, then the NF specification, and

finally the validation and ADL generation features. In Section A.2 we present the tool architecture, and its
place in the platform. Finally, the annex concludes in Section A.3 with a summary and some future work.

A.1 The Editor

In this section we present our component editor. VCE is built as an Eclipse plug-in using code generated
using the TOPCASED environment. It is uses a Model-Driven-Architecture pattern, with an Ecore meta-
model at its kernel. We do not detail the meta-model in here, but basically it is built on the symmetry
between structure of the content and the structure of the membrane. Moreover, it is compatible with the
architectural definition of JDC, and we expect to provide the user with similar tools for the behavioural
part as well.

A.1.1 Components and their Content
The editor is based on the concepts from the Fractal and GCM model, but we have significantly changed
some of the graphical notations. One important change is the representation of components. Fractal sets
the role of an interface based on the orientation (left/right, top/down). While these conventions make
interpretation of small diagrams easier, the diagrams do not scale well. In here we rather use a more
classical notation with no orientation constraints, and interface types distinguished by icons and/or colors.

Interfaces are depicted using the icons from UML component diagrams; server interfaces are shown as
filled circles (e.g. interfaces I, IA, IB, IR1 in Fig. A.2), and client interfaces as semi-circles (e.g. interfaces
IC, IR, IR2 in Fig. A.2). We distinguish between external and internal interfaces. External interfaces are
accessible by the environment; and internal interfaces accessible by the component’s subcomponents.

Multicast and gathercast interfaces have custom icons. These were not considered in UML, and hence
it was not possible to reuse existing ones; in Fig. A.2, we show the icons Multi and Gather that represent
these interfaces respectively. The interface Multi broadcasts incoming messages to components A and B,
and the interface Gather gathers and synchronises calls coming from interfaces IC towards the component
C.

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–4542

FACS 2008

Eric Madelaine -- HDR 91 Sept. 2011

Fig. A.1. Screenshot of VCE

The content of a component is represented as a white rectangle inside the component, and the membrane
is the grey area that surrounds the content. A binding between a pair of interfaces is presented as an arrow
from a client interface to a server interface.

Fig. A.2. Example of composite component exposing its content

A.1.2 Membranes and Non-Functional Components
By exposing the component’s membrane it is possible to control non-functional (NF) aspects. We depict
the membrane with a grey area; in composites it surrounds the content, and in primitives it fills the whole
figure.

The access rights of each interface is defined by marking each interface either as functional or NF.
Examples of NF interfaces are I NF Control and I NF in Fig. A.3. These interfaces are connected to NF
components that handle the component’s life-cycle.

Fig. A.3. Example of a component component exposing its membrane

VCE allows the designer to intercept functional calls entering or leaving a component. The interception
takes place as NF components that are connected to the component’s external functional interface, and to

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–45 43

FACS 2008

Eric Madelaine -- HDR 92 Sept. 2011

component’s internal functional interface; they are also called interceptors. This is a convenient way of
implementing security aspects, or to check and adapt the component protocol.

In Fig. A.2, the binding 〈IR1, IR2〉 forwards the calls from the internal interface to the external interface.
In Fig. A.3, however, the calls are intercepted and sent to a NF component called Interceptor.

A.1.3 Model Validation
To ensure the integrity of the user model, we define a minimum set of invariants that every model must hold.
These invariants are defined with OCL (Object Constraint Language) [20], and complement the meta-model
by expressing constraints that were left undefined. By defining the rules using OCL, we let our meta-model
open. This allows us, in theory, to define different set of rules depending on particular implementations of
the GCM.

However, checking for interface compatibility is not feasible using OCL. This would require us to define,
within the meta-models, the full interface compatibility of Java. Instead, interface compatibility will be
checked independently by our tool using hand-made Java code.

The errors are mapped back to the user diagrams. Back in Fig. A.1, the designer connected the external
interface with a subcomponent’s interface. This error was detected, and reported as a red cross on the object
that violated the constraint in the Problems tab, in the Outline view, and in the diagram.

A.1.4 Interfacing with ADLs
We are able to generate ADLs from these diagrams useful within GCM. In its current state, we only generate
GCM ADL files with the definition of the content. The membrane is still not taken into account because
the ADL for dealing with non-functional aspects is still being defined.

Moreover, we also allow the designer to import ADLs in XML. The layout, however, is manual meaning
that the user needs to manually place the components in the diagram.

A.2 Tool Architecture

We are working on a verification platform called Vercors [5], Fig. A.4. We want to build a GUI that
integrates the several tools found in our platform. In this context, VCE fits in as front-end to the user,
and is the one responsible of interfacing with the rest of the tools. It allows the user to rapidly design the
system, and provides direct tools for verifying the architectural consistency (for the moment).

Fig. A.4. The Vercors architecture

The internal model is based on our pNets [3] formalism. Using pNets, we create behavioural models
that are suitable as entry for verification tools. Our Vercors platform is using the CADP toolset [19] for
state-space generation, hierarchical minimisation, (on-the-fly) model-checking, and equivalence checking
(strong/weak bisimulation). We are able to verify temporal properties, including those that take into
account dynamic reconfiguration of the system. The verification is based on model-checking, by translating
the pNets model into a suitable input language. This is not yet supported by VCE, but we have prototypes
using this approach. These will certainly be included in VCE to allow using the same GUI for the full
verification chain.

We are also working on generation of skeleton code. Based on the behavioural specification of the
system, we will create the control code of GCM components.

A.3 Conclusion and Work in Progress

In this annex we introduced our new graphical tool. It allows one to specify the architectural definition
of GCM components, including the functional concerns, as well as the non-functional concerns. The latter
takes the form of non-functional components within the component’s control part – the membrane. We also
support the group communication found in the GCM.

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–4544

FACS 2008

Eric Madelaine -- HDR 93 Sept. 2011

We are also working on adding behavioural specifications to VCE. These will be in the form of state-
machines, and will certainly be a subset of JDC’s behavioural specification. Moreover, the new tool will be
fully integrated to our pNets [3] formalism. This allows us to provide a GUI for the full verification chain
within our Vercors platform.

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 25–45 45

FACS 2008

Eric Madelaine -- HDR 94 Sept. 2011

7. Case-studies

Chapitre 7

Case-studies

7.1 Summary

It should be evident that this kind of research, addressing by essence ”indus-
trial” programming languages, must be backed up by realistic case-studies. Still
it was not very easy to find such significant examples in our domain : by contrast
with the embedded systems or critical systems areas, where motivations for formal
methods are well-established, it is not common to find large-case studies in the area
of distributed systems, grid applications, or even for large-case, highly dynamic,
distributed services. Among published case-studies in this area, let us mention the
Airport Wifi System, that was formalized in Fractal and proved using Sofa [74], or
the Scalagent example that was verified with CADP [86].

?B.verify() !B[id].notIn()
!B[id].in()

!B[id].cancelled()

?Recp1[id].okCancellation() ?Recp2[id].ok()

?Recp1.okCancellation()

?B[id].verify()

?B.verify()

?B.verify()

!B.cancelled(id)

!B[id].cancelled()

!B.in(id)

!B[id].in()

!B.notIn(id)?B.verify(id)

!B[id].notIn()

?Recp2.ok()

!Recp3[id].okCancellation()

?Recp2.ok()

id : [1,maxId]

?V [id].sendCancellation()

Recp1id()

!Recp3[id].okCancellation()

?V.send(id)

!Recp3[id].ok()

Recp2id()

Reception(maxId)

!Recp3[id].ok()?V.send()

!V.ok(id)

Recp3id()

?V [id].send()

?Recp2[id].ok()

!V.okCancellation(id)

?V.sendCancellation(id)

?V.sendCancellation()

Fig. 7.1 – A pNets model from the Electronic Chilean Taxes case-study

The first realistic case-study we ran, with Tomás Barros, was the electronic
tax management system that the Chilean government was studying in the years
2000-2002 [50]. This was quite a large problem, that we modeled directly at the
semantic level, while developing the pNets theory (see Figure 7.1). This encoding
did not include the modeling of active object request queues and futures, but was

Eric Madelaine -- HDR 95 Sept. 2011

7. Case-studies

already quite a large model, featuring 17 automata in 4 levels of hierarchy, and 7
parameters whose abstract domains had 2 or 3 values. The global state space, if
computed by brute force would be in the order of 1012 states, but we were using a
compositional approach, minimizing sub-system models by branching bisimulation
(using the FcTools engines [25]). Using the Evaluator model-checker, we proved
7 temporal properties on this system, either safety or correctness (inevitability of
responses), expressed as ACTL [43] or regular mu-calculus [69] formulas.

This experiment was presented at the SCCS’04 conference [C-04b], a full version
with all proofs in [R-04], and also in Tomás PhD thesis [14].

Our next large case study was done in the context of a European initiative
led by a number of university groups working on modeling of component-based
software systems. This was the ”Common Component Modeling Example” (Co-
CoME), consisting in a specification of a store cash-desk management system, with
15 teams applying their various modeling and analysis methodologies to the same
specification. Our contribution (with Antonio Cansado and Ludovic Henrio) was
naturally based on GCM, and was demonstrating the encoding in pNets of broad-
cast communication, and of a simple reconfiguration mechanism. It was also our
first specification using both the CTTool graphical editors, and JDC code. This
study was using a model based on synchronous remote method calls. CTTool auto-
matically produced Lotos code, which was fed directly to the CADP model-checker.
The CoCoME specification was encoded as a set of properties, expressed as exten-
ded Buchi automata, with acceptance or rejection states, and predicates over the
abstract data types of the specification (example in figure 7.2).

ANYANYANYANYANYANYANYANYANYANYANYANYANYANYANYANYANY

SaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStartedSaleStarted ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1>ProductScanned<1> CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0>CashAmountEntered<0> BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>BookSale<1>

NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished)NOT(SaleFinished) NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)NOT(BookSale<*>)

truetruetruetruetruetruetruetruetruetruetruetruetruetruetruetruetrue

Fig. 7.2 – A formula from the CoCoME case-study

This was published as a chapter in the CoCoME book [J-08], and also in An-
tonio’s PhD thesis [32].

Our most recent study is the subject of the two papers included in this chapter.
It illustrate the modeling and verification of a group communication mechanism, on
an exemple of an consensus protocol for establishing meeting agendas. This case-
study is 2 orders of magnitude more complex than the previous ones, because it
includes : 1) the modeling of the request queues of active objects, 2) the treatment
of group communication between an object and a (fixed) number of group members
receiving group requests, 3) the modeling of future proxies.

The WCSI’10 paper [C-10] defines the encoding in pNets of the behavioural
semantics of queues and group communication, and shows the full structure of the
example pNets model. The model was first encoded (manually) using the Fiacre
format in a monolithic manner (one single Fiacre program, encoding the basic
LTSs as Fiacre processes, and each level of the successive pNets synchronization
as a Fiacre component). The model generation for this system was an opportunity
to check the limits of the CADP distributed state generation engine (Distributor)
on a cluster comprising 120 cores and 480 Giga bytes of RAM. It was also an
opportunity to estimate various strategies of state generation using partial-order
on-the-fly reduction methods.

The second step was to use a compositional decomposition of the system, taking
care of building the state-spaces of subsystems in a properly restricted environment,

Eric Madelaine -- HDR 96 Sept. 2011

7. Case-studies

then minimizing them using branching bisimulation (see the detailed figures in [C-
10, page 12]).

The last step consisted in using both fine-grain parallelism for the state-generation
of sub-systems with the Distributor engine, and coarse-grain parallelism for exe-
cuting independent tasks on our Cloud infrastructure. This provided us with very
interesting preliminary insight on the kind of formalism that would be necessary
to enable submission (by non-specialists) of complex verification tasks on such in-
frastructures. This was reported in [R-10], which is included here.

Perspectives and Challenges

The case-studies included in this chapter have shown that we are able to address
middle-size applications including many of the basic features of and distributed
components. One important exception is dynamic reconfiguration, which presents
important challenges for finite-state modeling and model-checking, in particular
in terms of model complexity, but also in terms of representation in the model of
potential dynamic evolution (implying changes in the synchronization of events),
and of the architecture management mechanics. Moreover, such ”elastic” appli-
cation architectures are often involving large data domains, and the definition of
valid data abstraction for such systems is complex. We shall discuss ideas to attack
these challenges in the next chapter.

7.2 Paper from WCSI Workshop, June 2010

7.3 Extended Abstract from SAFA Workshop, Sept.

2010

Eric Madelaine -- HDR 97 Sept. 2011

Cámara, Canal, and Salaün (Eds.)

Component and Service Interoperability (WCSI10)

EPTCS 37, 2010, pp. 42–56, doi:10.4204/EPTCS.37.4

c© R. Ameur-Boulifa, L. Henrio, and E. Madelaine

This work is licensed under the

Creative Commons Attribution License.

Behavioural Models for Group Communications

Rabéa Ameur-Boulifa

System-on-Chip Laboratory (LabSoC), Telecom Paristech, Sophia Antipolis, France

Rabea.Ameur-Boulifa@telecom-paristech.fr

Ludovic Henrio and Eric Madelaine

INRIA, CNRS, I3S, University of Nice Sophia-Antipolis, Sophia Antipolis, France

Ludovic.Henrio@sophia.inria.fr and Eric.Madelaine@sophia.inria.fr

Group communication is becoming a more and more popular infrastructure for efficient distributed

applications. It consists in representing locally a group of remote objects as a single object accessed

in a single step; communications are then broadcasted to all members. This paper provides models

for automatic verification of group-based applications, typically for detecting deadlocks or checking

message ordering. We show how to encode group communication, together with different forms

of synchronisation for group results. The proposed models are parametric such that, for example,

different group sizes or group members could be experimented with the minimum modification of

the original model.

1 Introduction

Group communication is a communication pattern allowing a single process to perform a communica-

tion to many clients in a single instruction, this operation can be synchronized or optimized accordingly.

Nowadays group communication is widely used in distributed computing particularly in grid technolo-

gies [27]. Objects can register to a group and receive communications handled in a collective way. Group

membership is transparent to the receiver that simply handles requests it receives. Group communications

are also easy to handle on the sender side because a simple invocation can trigger several communica-

tions. Communication parameters are sent according to a distribution policy; they can be for example

broadcasted or split between the members of the group. Several middleware platforms and toolkits for

building distributed applications implement one-to-many communication mechanisms [1, 6, 23].

This paper addresses the crucial point of reliability of distributed applications using group commu-

nications. The most frequent reliability issue for distributed application is to be able to detect deadlocks,

in the case of group, a dead lock can occur for example when a member of the group does not answer

to its requests while the request sender is waiting for all the results. Such an absence of response might

be due to an issue in message ordering for example. In order to enhance reliability of group applications

we develop methods for the analysis and verification of behavioural properties of such applications, our

method can be applied with automatic tools.

A first contribution of this paper is to provide a model allowing the verification of the behaviour of

group-based applications, in other words, we provide a verifiable model for group communication. We

also illustrate our approach by specifying an application example, instantiating the verifiable model, and

proving a few properties.

To precisely define the semantics of group communications, we focus on a specific middleware

called ProActive [2]. ProActive provides a high-level programming API for building distributed applica-

tions, ranging from Grid computing to mobile applications. ProActive offers advanced communication

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 98 Sept. 2011

R. Ameur-Boulifa, L. Henrio, and E. Madelaine 43

strategies, including group communication [31, 6]. In ProActive, remote communication relies on asyn-

chronous requests with futures: upon a call on a remote entity, a request is created at the receiver side,

and a future is created on the sender side that will be filled when the remote entity provides an answer.

What make the handling of groups particular in ProActive is the necessity to also gather and manage

replies for requests sent to the group. Synchronisation on futures is generally transparent: an access

to a future blocks until the result is computed and returned. However, synchronisation on group of fu-

tures, that represent the result of a group invocation, features more specific and complex synchronization

primitives. Consequently, our model also encodes different synchronisation policies.

In [8] we have defined a parameterized and hierarchical model for synchronised networks of labelled

transition systems. We have shown how this model can be used as an intermediate format to represent the

behaviour of distributed applications, and to check their temporal properties. In this paper, we present a

method for building parameterized models capturing the behavioural semantics of group communication

systems; models are the networks of labelled transition systems, whose labels represent method invo-

cations. The language we chose is pNets; it is an intermediate language: the models we present here

should be generated, either from source code or from a higher-level specification. PNets themselves are

then used to generate a model in a lower-level language that will be used for verification of the program

properties. In this paper the advantage of choosing such an intermediate language are the following:

compared to a higher-level language, pNets are precise enough to define a behavioural semantics, and

compared to lower level languages, they provide parameterized processes and synchronization which

allow the expression of the models in a generic manner.

Our approach aims at combining compositional description with automatic model generation. The

formal specification consists in a labelled transition system and synchronisation networks, in which

both events (messages) and processes (group members) can be parameterized and built from a graphical

language. On one hand, having a well-defined semantics made the specification sound; on the other hand,

having a framework based on process algebras and bisimulation semantics made possible to benefit from

compositionality for specification and verification [10]. Parametric synchronisation vectors also allow

us to envision the modelling of dynamic groups with members joining or leaving the group.

Related Work Some work has been done to formally verify properties in group-based applications.

Some of these verifications deal with safety properties, while others remain limited to a case study. In

[22] the formal verification of cryptographic protocols is proposed. It used model-checking tool to verify

confidentiality and confidentiality properties. Model-checking was also used to verify behavioural and

dependability properties [28]. The authors adopted Markov chains to specify the studied protocols. By

using a combination of inductive poofs and probabilistic model checking [24] verified a randomized

protocols. In the same way, [25] used a combination PVS theorem prover and model-checker based on

timed-automata for formal verification of an intrusion-tolerant protocol. [7] presented a simple deadlock

detection mechanism caused by circular synchronous group remote procedure calls. In contrast with all

these, we limit ourselves to apply finite model-checking techniques to abstract semantic models. Our

pNets semantic model is very helpful in this matter, providing us with a very expressive and compact

formalism, but where the usage of parameters is limited in a way that can be easily abstracted to finite

instances.

Group-based systems as well as parameterized systems are particular infinite systems in the sense

that each of their instances are finite but the number of states of the system depends on one or several

parameters. Among these parameters we can distinguish: data structures or variables (e.g., queues,

counters), number of components involved in the system, ... Automatic verification of such systems has

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 99 Sept. 2011

44 Behavioural Models for Group Communications

to face state explosion problem. A variety of techniques to alleviate state explosion has been investigated.

We can cite: techniques based on abstraction [26, 16]; techniques based on finding network invariants

[20, 32, 15, 30], which can (possibly-over) approximate the system with an infinite family of processes.

Others [18, 19] based on finding an appropriate cut-off value of the parameters to bound the system

model. For automatic verification of infinite-state systems [13, 3] propose regular model checking. The

approach is based on the idea of giving symbolic representation in term of regular languages. Our work

tries to take the best of these approaches: whenever possible, we use property-preserving abstractions

to build very small (abstract) data domains for the parameters of the basic processes of our systems;

but for parameterized topologies such abstractions are not generally complete, so we have to use cut-off

strategies as in bounded model-checking.

In the following of the paper, Section 2 overviews ProActive communication model and group con-

cepts, and introduces a running example. Section 3 presents our theoretical model and its graphical

syntax. Section 4 provides a behavioural model for group communication and synchronisation. Section

5 shows our verification methodology, with experimental results on state-space generation and verifica-

tion of properties.

2 The ProActive communication model

ProActive is an LGPL Java library [2] for parallel, distributed, concurrent applications. It is based on

an active object model, where active objects communicate by asynchronous method invocation (called

requests) with futures: upon a method invocation on an active object, a request is enqueued at the re-

mote object’s side, and a future is automatically created to represent the result of the request while the

caller continues its execution. Active objects are mono-threaded and treat the incoming invocations one

after the other, returning a value for the request at the caller as soon as a request is finished. As remote

invocations and future creation are handled transparently, the programmer can write distributed appli-

cations in a much similar manner to standard sequential ones. In ProActive there is no shared memory

between active objects to prevent data race-conditions; consequently, a copy of the request arguments

are transmitted to the remote active objects.

2.1 ProActive Groups

In this paper, we focus on the group communication mechanism offered by ProActive [6]. Groups in

ProActive work as follows: a group of active objects is a set of active objects that behaves as follows.

First, a method invocation on the group results in a remote invocation to all the members of the group

in parallel. Second, a list of futures is automatically created to receive the results returned by the group

members. Groups are typed as usual objects, and thus invocations to a group are made transparently, as

any object invocation. This way, specific primitives for groups are only group creation and management,

and thus code modification to handle group communication is minimal. In ProActive, groups are dynamic

in the sense that objects can join or leave the group at runtime. The main ProActive primitives for

handling groups are the following:

• Group ProActive .newActiveGroup(String Type) creates a new group of the type “Type”.

• void Group.add(Object o) adds an object to a group.

• void Group.remove(int index) Remove the object at the specified index.

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 100 Sept. 2011

R. Ameur-Boulifa, L. Henrio, and E. Madelaine 45

2.2 Synchronisation for ProActive Groups

For classical active objects, synchronisation occurs as follows: a simple access to the future representing

the result of a request automatically blocks until the result is computed, and the future is filled. For

a group invocation, there is one result by group member, those results are stored in a group of futures.

Synchronizing on a group of futures is more complex, here are 3 synchronization primitives of ProActive:

• void ProActiveGroup.waitAll (Object FutureGroup) blocks until all the futures of the group return.

• void ProActiveGroup.waitN(Object FutureGroup, int n) waits until n futures are returned.

• Object FutureListGroup .waitAndGetTheNth(Object FutureGroup, int n) waits for the result from the

n-th member and returns it.

2.3 Example

To illustrate group communication, we consider an application synchronising meetings, it consists of a

master initiator and several clients that contain the agendas of the participants. The initiator suggests a

date to all participants that reply whether they are available or not. For this, we define a class Participant :

p u b l i c c l a s s P a r t i c i p a n t {
Booolean s u g g e s t D a t e (Date d) { . . . }
Boolean v a l i d a t e () { . . . }
void c a n c e l () { . . . }

}

The following code can be implemented by the initiator to coordinate the meeting:

p u b l i c s t a t i c vo id main (. . .) {
. . . .

/ / group c r e a t i o n

P a r t i c i p a n t p a r t i c i p a n t s = P r o A c t i v e . newAct iveGroup ("Participant") ;

. . .

/ / we p o p u l a t e t h e group by add ing one or s e v e r a l e l e m e n t

p a r t i c i p a n t = P r o A c t i v e . n e w A c t i v e ("Participant" , n u l l) ;

p a r t i c i p a n t s . add (p a r t i c i p a n t) ;

. . .

whi le (t rue) {
/ / t h e n we s u g g g e s t a d a t e t o a l l members s i m p l y by :

O b j e c t answers = p a r t i c i p a n t s . s u g g e s t D a t e (d a t e) ;

. . .

/ / c o l l a t e R e s u l t s g e t s t h e r e s u l t and p r o v i d e s an o v e r a l l r e s u l t ,

/ / e . g . r e t u r n s t r u e i f a l l f u t u r e s are t r u e

i f (c o l l a t e R e s u l t s (answers , ProAc t i veGroup . s i z e (p a r t i c i p a n t s))) {
O b j e c t f = p a r t i c i p a n t s . v a l i d a t e () ; / / v a l i d a t e t h e m e e t i n g

w a i t A l l (f) ; / / w a i t s u n t i l e v e r y b o d y acknowledged v a l i d a t i o n

}
e l s e

p a r t i c i p a n t s . c a n c e l () ; / / c a n c e l t h e m e e t i n g

. . . }
}

This example illustrates well the different mechanisms of group management and communication:

first an empty group is created (newActiveGroup), then it is populated by several Participant objects.

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 101 Sept. 2011

46 Behavioural Models for Group Communications

Thus when the initiator invokes suggestDate on the group, this broadcasts a meeting request to all the

members. Then the members reply, which fills the futures contained in the group of futures answers.

The local method collateResults synchronises the returns from all these invocations. Validate or cancel

is broadcasted to all the group members depending on the result of the preceding step. To illustrate

more synchronization mechanisms, the initiator waits until all participants acknowledge the validation.

A possible implementation of the collateResults method is the following:

boolean c o l l a t e R e s u l t s (O b j e c t ans , i n t s i z e) {
boolean r e s u l t = t rue ;

f o r (i n t i =0 ; i < s i z e ; i ++) {
i f (! ProAc t i veGroup . wai tAndGetTheNth (ans , i)) r e s u l t = f a l s e ;

}
re turn r e s u l t ;

}

Fig. 1 illustrates the mechanism of group communication as implemented in ProActive. A method

call to a remote activity goes through a proxy, that locally creates “future” objects, while the request goes

to the remote request queues.

Active object Active object A

Remote node

Active object A

Remote node

Active object A

Remote node

futur 1 futur 2 futur 3

result group

Local node

proxy

Figure 1: Asynchronous and remote method call on group

3 Theoretical Model

In [8] we have proposed a formalism to represent the behavior of distributed applications. Behavior of

complex systems can be represented hierarchically by composition of classical LTSs [29]. Those LTSs

are composed using synchronisation Networks (Net) [4, 5] so that the synchronisation product generates

a LTS which can be used at the higher level of hierarchy. Finally the behavior of the system can be

expressed by a global LTS. We have also shown that this model can be used as an intermediate format to

check behavioral properties like temporal ones.

To encode both families of processes and data value passing communication LTSs and Nets are

enriched with parameters [14]. Parameters can be used as communication arguments, in state definitions,

and in synchronisation operators. This enables compact and generic description of parameterized and

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 102 Sept. 2011

R. Ameur-Boulifa, L. Henrio, and E. Madelaine 47

dynamic topologies. In the following we recall definitions of the parameterized Networks of synchronised

automatas (pNets) as given in [8]. We start by giving the notion of parameterized actions.

Definition 1 Parameterized Actions. Let P be a set of names, LA,P a term algebra built over P, includ-

ing at least a distinguished sort A for actions, and a constant action τ. We call v ∈ P a parameter, and

a ∈ LA,P a parameterized action, BA,P is the set of boolean expressions (guards) over LA,P.

A describes the possible actions representing interactions between processes. Main actions of our sys-

tem are illustrated in bold fonts in Figure 2. The typical shape of an action is !Participant[i].Q Suggest(f,Date)

for a message Q Suggest sent to the member number i of the process family Participant. f and Date are

the message parameters, here f is the future for the request, and Date the request parameter. ! indicates an

emission, and ? a reception. In most cases the destination of the message can be inferred by the context,

and in the figure by the destination of the arrows, in that case, the actions look like ?Q Cancel().

Definition 2 pLTS. A parameterized LTS is a tuple 〈P,S,s0,L,→〉 where:

• P is a finite set of parameters, from which we construct the term algebra LA,P,

• S is a set of states; each state s ∈ S is associated to a finite indexed set of free variables fv(s) =
x̃Js

⊆ P,

• s0 ∈ S is the initial state,

• L is the set of labels, → the transition relation →⊂ S×L×S

• Labels have the form l = 〈α, eb, x̃Js′
:= ẽJs′

〉 such that if s
l
−→ s′, then:

- α is a parameterized action, expressing a combination of inputs iv(α) ⊆ P (defining new

variables) and outputs oe(α) (using action expressions),

- eb ∈ BA,P is the optional guard,

- the variables x̃Js′
are assigned during the transition by the optional expressions ẽJs′

with the constraints: fv(oe(α))⊆ iv(α)∪ x̃Js
and fv(eb)∪ fv(ẽJs′

)⊆ iv(α)∪ x̃Js
∪ x̃Js′

.

We defined Networks of LTSs called Nets in a form inspired by the synchronisation vectors of Arnold

and Nivat [4], that we use to synchronise a (potentially infinite) number of processes. The Nets are

extended to pNets such that the holes can be indexed by a parameter, to represent (potentially unbounded)

families of similar arguments.

Definition 3 A pNet is a tuple 〈P, pAG,J, p̃J, ÕJ,
−→
V 〉 where: P is a set of parameters, pAG ⊂ LA,P is its

set of (parameterized) external actions, J is a finite set of holes, each hole j being associated with (at

most) a parameter p j ∈ P and with a sort O j ⊂ LA,P.
−→
V = {−→v } is a set of synchronisation vectors of the

form: −→v = 〈ag,{αti}i∈I,t∈Bi
〉 such that: I ⊆ J∧Bi ⊆ Dom(pi)∧αti ∈ Oi ∧ fv(αti)⊆ P

Each hole in the pNet has a parameter p j, expressing that this “parameterized hole” corresponds

to as many actual processes as necessary in a given instantiation of its parameter. In other words, the

parameterized holes express parameterized topologies of processes synchronised by a given Net. Each

parameterized synchronisation vector in the pNet expresses a synchronisation between some instances

({t}t∈Bi
) of some of the pNet holes (I ⊆ J). The hole parameters being part of the variables of the action

algebra, they can be used in communication and synchronisation between the processes.

Figure 2 gives an illustration of a graphical representation of a parametrized system in our interme-

diate language. It shows a meeting system with a single initiator and an arbitrary number of participants.

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 103 Sept. 2011

48 Behavioural Models for Group Communications

R_Validate(...)

Participant[i]

Meeting

!R_Suggest(c,i,val)?R_Suggest(i,val)

R_Suggest(val)

Initiator(G:int)

!Q_Validate()

?Q_Validate()

!Q_Cancel()
?Q_Cancel()

Q_Cancel()

!Participant[i].Q_Suggest(f,Date)

?Q_Suggest(f,Date)

!R_Validate(...)

?R_Validate(...)

Q_Suggest(Date)

Q_Validate()

i:[1..G]

Figure 2: Graphical representation of a parameterized network

The parameterized network is represented by a set of three boxes, INITIATOR and PARTICIPANT boxes

inside MEETING box (hierarchy). Each box is surrounded by labelled ports encoding a particular Sort

(sort constraint pAG) of the corresponding pNet. The box will be filled with a pLTS or another pNet (see

Fig. 4) satisfying the Sort inclusion condition (L ⊆ pAG). The ports are interconnected through edges for

synchronization. Edges are translated to synchronisation vectors. In previous works we only had single

edges with simple arrows having one source and one destinations, which were translated into synchroni-

sation vectors of the form (R Validate(),!R Validate(),?R Validate()) expressing a rendez-vous

between actions !R Validate() and ?R Validate(), visible as a global action R Validate(). Next

section details synchronisation vectors for the multiple arrows we use in our example.

4 Behavioural Model for ProActive Groups

In [9] we presented a methodology for generating behavioural model for ProActive distributed applica-

tions, based on static analysis of the Java/ProActive code. This method is composed of two steps: first

the source code is analysed by classical compilation techniques, with a special attention to tracking refer-

ences to remote objects in the code, and identifying remote method calls. This analysis produces a graph

including the method call graph and some data-flow information. The second step consists in applying a

set of structured operational semantics (SOS) rules to the graph, computing the states and transitions of

the behavioural model.

The contribution of this paper is to extend our previous with support for group communication and

complex synchronizations related to group communication.

The behavioural model is given as a pNets, which we use as an intermediate language. We express

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 104 Sept. 2011

R. Ameur-Boulifa, L. Henrio, and E. Madelaine 49

CO:

Q_Suggest (date) R_Suggest (val)

BC:

service

client

services(i)

i ∈ D
i ∈ D

Figure 3: Graphical representation of broadcasting operator

here the semantics of group communication in this intermediate language and show how behaviour of

application including group communications with various synchronisation policies can be expressed.

4.1 Modeling complex synchronisations

In order to encode the simultaneity of several message reception/sending, we use a particular kind of

proxy and N-ary synchronisation vectors. In Fig. 3 we give a graphical notation for two operators, the

ellipse on the left shows a broadcasting operation, and the one on the right show a collection operation.

The first operator that is in charge of broadcasting requests to multiple processes. It is represented

by an ellipse with one link arriving from a process, and a set of link departing from the ellipse. The

incoming action is triggered as the same time as all the outgoing ones: in the example the output of the

client is triggered at the same time as the input in the service on the left, and the input in all the services

on the right (the dotted arrow denotes a multiple link). We extend parameterized vectors to support the

multicasting communication.

For broadcasting, we introduce the BC operator to encode a family of synchronized processes. The

vector <Q suggest, !Q suggest(date),BC i∈D.?services[i].Q suggest(date),?service.Q suggest(date)>
indicates the synchronisation between one instance of the network 1 (client), a given number of network

2 (services), and another service process. The synchronisation is an observable action labeled Q suggest.

The parameter i ranges in the domain D . For instance, if D = [0..1], then the vector is expanded to:

< Q suggest, !Q suggest(date),?services[0].Q suggest(date),?services[1].Q suggest(date),?service.Q suggest(date)>.

The operator on the right side collects communications: it synchronizes one of its input with its single

output. For encoding such a synchronisation, we introduce the CO operator to encode a set of synchroni-

sation vectors. The vector < R suggest(val),?R suggest(i,val),COi ∈ D. !services[i].R suggest(val) >
indicates the synchronisation between a R suggest action in the network 1 (client) and an output of one

of the network 2 (services). For instance, with D = [0..1], this vector is expanded to several vectors:

< R suggest(val),?R suggest(0,val), !services[0].R suggest(val),∗>
< R suggest(val),?R suggest(1,val),∗, !services[1].R suggest(val)>

Those two synchronisation mechanisms will be further illustrated in the encoding of the example.

4.2 Modeling the Example

We describe now the behavioural model for our example application, especially focusing on the modeling

of group proxies, and the communications involving groups. The full model for our example is shown in

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 105 Sept. 2011

50 Behavioural Models for Group Communications

Fig. 4. The model is split into two parts interconnected by parameterized synchronization vectors.

• The initiator encodes a client side behaviour. The Initiator contains a body encoding an abstraction

of the functional code, and the group proxies. For each remote method call in the Initiator code

there is a parameterized group proxy, representing an unbounded number of future proxy instances.

The body repeatedly suggest a date and either cancel or validate depending on the answers.

• The participants encodes the server side behaviour. They are modelled by an indexed family of

processes, each representing the behaviour of one element of the group, with its request queue, its

body serving requests one after the other in a FIFO order, and the code of its local methods.

A Proxy pNet (box) is created for each remote method invocation. The Proxy is indexed by the

program point (c) where the method is called. The Proxy pNet models the creating and the management

of the group of futures: Once the group of future is created, futures can be received one after the other,

and each already received future can be accessed. It is also possible to wait until N answers are received.

For each remote method call of the Initiator, a broadcast node, synchronizes the sending of the

method call by the initiator body, the initialisation of the corresponding future, and the reception of the

request message in the queues of each of the participants in the group.

Concerning the user code, the Body boxes in Fig. 4 represent the behaviour of the main method

of each active object, again on the form of a pLTS. The code for each method (e.g. Validate) is also

expressed by a pLTS, and triggered when serving the corresponding request, or by direct invocation like

collateResult. Each of them is either obtained by source code analysis, or provided by the user.

As it is the only object to act as a server, the participant has a Queue box. The corresponding pLTS

encodes a FIFO queue of request that is accessed by the participant’s body, and filled when the initiator

sends a request. The queue can be given a maximum length and raise an error if it is overflowed.

4.3 Variations on group synchronisations

ProActive provides various primitives (see Section 2.2) allowing the programmer to control explic-

itly the synchronization of asynchronous methods calls by waiting the incoming replies. The network

Proxy suggest in Fig. 4 specifies three kinds of these primitives: waitAll, waitN and waitAndGetTheNth.

Those three primitives show the different synchronisations that our group proxies can express: counting

the number of returned objects, or returning a specific result. They are encoded very naturally using a

table of received results, and the number N of results already returned. Those information are updated

when receiving messages from a collection (CO) of different results as explained in Section 4.1. Addi-

tionally to those primitives, one could also use a waitOne primitive waiting for one result, no matter of

which it is; this primitive could be encoded with a little more effort by our proxy, but we do not present

it because it is not used in our example and we believe it is less crucial than the others. waitOne is useful

in the case several workers perform the same task, and only one result is necessary.

5 Verification and Results

In principle, the steps for designing and validating a distributed application with our approach are:

1. Specify the structure and the behaviour of the application, in terms of active objects (or compo-

nents). We provide editors for distributed components in the Vercors platform; specific component

interfaces exist for group communication. Alternatively one could imagine tools for static analysis

of Java/ProActive code, that would provide a similar abstraction of the system.

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 106 Sept. 2011

R
.

A
m

eu
r-B

o
u

lifa,
L

.
H

en
rio

,
an

d
E

.
M

ad
elain

e
5
1

R_suggest(i,val)

CO:

!R_Validate(c1)

...

Group(G)

?Suggest
N:=0

Proxy_suggest[c]

!getNth(i,Results[i])

?R_suggest(i,val)

[N=G]

!get(Results)

get_Suggest(c,Results)

Proxy_validate[c1]

!waitN_Validate(c1,G)

waitN_Suggest(c,n)

getNth_Suggest(c,i,val)

Initiator

!Participant[i].Q_suggest(c,date)

?Proxy_suggest[c].Suggest

!Suggest(c,date)

!Validate(c1)

!Cancel()

waitN_Validate(c1,n)

Results[i]:=val
N++

!waitN(n)

!CollateResults(c1)

?T_CollateResults(Ok)

!Suggest(c,date)

Ok

!Validate(c1)

!Cancel()

?CollateResults(c)
Ok:=true
i:=0

CollateResults

!T_CollateResults(Ok)

?getNth_Suggest(c,i,x)

i:=i+1

[i=G]

Body

Call_suggest(c,date)

Call_validate(c1)

Suggest

Queue

push(req,queue)

?Q_Suggest(c,date)

?Q_Validate(c1)

?Q_Cancel

...

...

Validate

Cancel

Participant[i]

T_validate()

!Call(req)

?Terminate(req)

req

?Serve(req)

Body

Serve(req)

!Serve(req)

req:=pop(queue)?Q_*

!OutOfBounds(err_mess)

Call_cancel()

T_cancel()

T_suggest()

!T_suggest()

!R_suggest(c,val)

?Call_suggest(c,date)

CO:

R_Validate(i)

BC:

Q_Validate(c1)

Q_Cancel()

BC:

BC:

Q_Suggest(c,date)

i ∈ [1..G]

i ∈ [1..G]

Results:=[⊥, . . . ,⊥]

[Results[i] 6= ⊥]

i ∈ [1..G]

[n ≤ N]

[Ok]

[¬ Ok]

Ok:=Ok ∪x

F
ig

u
re

4
:

M
o

d
el

o
f

a
co

m
m

u
n
icatio

n
b
y

b
ro

ad
castin

g

E
P

T
C

S
 3

7
, 2

0
1

0
 W

o
rk

s
h

o
p

 o
n

 C
o

m
p

o
n

e
n

t a
n

d
 S

e
rv

ic
e

 In
te

ro
p

e
ra

b
ility

 (W
C

S
I'1

0
)

Eric Madelaine -- HDR 107 Sept. 2011

52 Behavioural Models for Group Communications

Abstract data domains: Group index: G ∈ [0..2], Q Suggest argument: data ∈ {D1,D2}, Q Suggest result: bool

Observed sorts:

Initiator sort: {Q Suggest(data),Q Validate(),Q Cancel(),R Suggest(index,bool),R Validate(index),
T CollateResults(bool)}
Participant sort: {Q Suggest(data),Q Validate(),Q Cancel(),R Suggest(bool),R Validate(),Error()}
ParticipantGroup sort: {Q Suggest(data),Q Validate(),Q Cancel(),R Suggest(index,bool),R Validate(index),
Error()}
System sort: {Q Suggest(data),Q Validate(),Q Cancel(),R Suggest(index,bool),Error(),
T CollateResults(bool)}

Subsystem
brute force minimized gen. + min.

nb states nb transitions nb states nb transitions (seconds)

Single Participant 1 801 5 338 90 376 8.2

Initiator 3 163 152 081 54 1 489 11.3

Full system:

with 3 participants, queue[1] 85 213 839 188 178 489 17.9

with 3 participants, queue[2] 170 349 1 646 368 458 1 284 406.0

With Distributed generation generation Total Time States/Transitions States/Trans

algorithm (minimized)

Full system with 3 participants brute force 6’45” 170 349 / 1 646 368 458 / 1 284

(8x4 cores) tauconfluence 30’ 5591 / 14 236 458 / 1 284

Group of 2 participants brute force 11’32” 13 327 161 / 48 569 764 4 811 / 24 588

(15x8 cores) tauconfluence 1150’55” 392 961 / 1 354 948 4 811 / 24 588

Group of 3 participants tauconfluence - Out of memory -

(15x8 cores) estimate ≥ 1011 states

Figure 5: Size of the generated state spaces for different sub-systems of our example

2. Generate a pNet model, following the approach in the previous section. We plan to have tools

automatizing this step in a near future, integrated in the Vercors platform.

3. Write user requirements, in the form of logical formulas in some temporal logic dialect (most

action-based logics will be suitable).

4. Use a model-checker to check the validity of theses formulas on the generated model. Currently

only finite-state model-checkers are capable to analyse our models. This means that the param-

eterized pNets have to be instantiated first to a finite system, and that the formulas have to be

instantiated accordingly.

The reader acquainted with model-checkers will have guessed that such models are severely exposed

to state explosion. It is very important here to observe two facts: First we only work with an abstraction

of the system. We use finite abstractions of data-values in the description of data domains, and we only

expose (and observe) the events that are useful for the properties. Secondly, we make use as much as

possible of the congruence properties of our semantic model: we build the state-space in a hierarchical

manner, often minimizing partial models using branching bisimulation before building their products.

But this strategy has limits, and sometimes it is better to build the state-space of a subsystem under the

constraints of its environment, avoiding unnecessary complexity; this is illustrated in our case-study by

the “Participant group” that has by itself a very high state complexity, of which only a small part is used

by the “Initiator” client.

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 108 Sept. 2011

R. Ameur-Boulifa, L. Henrio, and E. Madelaine 53

In Figure 5 we give figures obtained on our example. The systems in the first 4 lines of the table

have been computed on a Fedora 10 box, with 2 dual-core Intel processors at 2.40 GHz, with a total

of 3.8 Gbytes of RAM. The source specification was written in the intermediate format Fiacre [12, 11],

and the state space generated using CADP version 2008-h. The systems in the last part of the table have

been computed on a cluster with 15 nodes, each having 8 cores and 32 Gbytes of RAM. We have been

using the Distributor tool of CADP for distributed state-space generation, with or without on-the-fly

reduction by tauconfluence [21]; the distributed state space has to be merged into a single state space

before minimization and model-checking. The execution times in this part include the deployment of the

application, the distributed generation, the merging and the minimization of the resulting state-space. A

cell with a “-” means that the computation did not terminate.

The main lesson from this experiment is that intermediate systems will often cause the main bottle-

necks in the system construction. Here, an unconstrained model for a group of 3 participants is already

too big to be computed on a single desktop machine. By contrast, computing the behavior of such a

group in the context of a specific client is feasible (here the model of the full system with 3 participants

remains reasonably small). Generating the state-space in a distributed fashion gives us the capability of

handling significantly larger models. On-the-fly reduction strategies are useful too, but to a certain point

only, because it may involve local computations that require large local memory space themselves. In our

tests the generation of the model of a group with 3 participants failed: we estimated that the brute force

model has approximately 125 billiards of states (this would require some 12 Terabytes of distributed

RAM, 25 times more than our full cluster). But even using on-the-fly reduction by tauconflence, local

computations caused an out-of-memory failure.

Proving properties We give here examples of functional behavioural properties that we checked on

various scenarios. For this, we have built the global synchronisation product of the system, with 3

Participants in the group (the number of participants does not change the results), and with the size of

requests queues instantiated to 1 or 2 depending of the cases.

For expressing the properties, we could use any of the logical languages provided within the CADP

tool suite, including LTL, CTL, or specification patterns [17]. In general, we use the regular alternative-

free µ-calculus formalism, which is a powerful modal logic, nicely expressing action sequences as regular

expressions; it is the native logics of the model-checker. We have checked the following formulas:

1. < True∗ .Error > True : in the system with queue of length 1, the queues can signal an Error.

2. [True∗ .Error]False : in the system with queue of length 2, the queues never signal an Error.

3. < True∗ .R suggest(i,b)> True : some paths lead to a response to the suggest request.

4. < True ∗ .T CollateResult(f alse) > True : the collection of results by the Initiator can return

false.

5. A f ter !Q Suggest(id) Eventually !Q Cancel()∨!Q validate() : inevitable reachability of either

a validation or a cancellation after a date has been suggested. This formula is written in the

specification patterns formalism, and expresses correct progress of the system.

Properties 1. and 2. are checked on two different models, with different size of the queue. They prove

that a bounded queue of length 2 is required and sufficient to ensure the correct operation of the system.

The Error action in the queue of a participant signals that a request is received in a state where the Queue

is already full.

Properties 3. and 4. check the reachability of some possible events; technically, property 3 has to be

checked for each possible values of parameters i and b, because the µ-calculus logic is not parameterized.

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 109 Sept. 2011

54 Behavioural Models for Group Communications

Property 5. expresses the correction of the (first iteration of the) behaviour of the system: in response

to a suggest request, we guarantee that the initiator sends either a validation or a cancellation message.

It is interesting to discuss the tools available for exploring and debugging the generated systems. In

addition to the model-checking and minimization engines, we have used tools for:

• exploring interactively the generated behaviour at the level of its Lotos representation (OCIS)

• displaying graphically the generated LTS (BCG EDIT)

Consider formula 1 that checks reachability of action Error. In addition to a “True” result, the model-

checker produces a trace illustrating the reachability from the initial state, as shown in Figure 6. The

trace consists in a full cycle through the system behaviour, from the initial state to state 6 and action

“Q cancel()”. Then, because we do not wait for the return of the Cancel requests, one of the Participants

can still have a Cancel request pending in its queue when the Initiator sends the next Suggest request,

which leads to an Error. The BCG EDIT tool can display the sequence of Figure 6. A finer trace showing

internal interactions and allowing user-driven guidance of the system can be obtained with the OCIS tool.

Q_Suggest(date)
R_Suggest(1, false)

R_Suggest(2, true)
T_collateResults(false) Q_Suggest(date)

Q_Cancel()
Error

R_Suggest(0, true)

τ

Figure 6: Path containing the Error action

6 Conclusion

In this paper we have sketched models for specifying and verifying the correct behaviour of group-

based applications. Our parameterized models enable the finite representation of groups of arbitrary

size, and express the communication with such groups, together with the associated synchronizations.

For our modelling, we focused on the ProActive library; nevertheless these models can be applied to

other middlewares involving collective communications. Our parameterized models are supported by

model checking tool. Besides they are hierarchical labelled transition systems, therefore suitable for

analysis with verification tools based on bisimulation semantics.

Our main contribution is to provide a behavioural semantic model for group communication applica-

tions. It allows the application programmer to prove the correctness of his/her behavioral properties, and

for instance detect deadlocks [7]. We have illustrated our approach on an example application, generated

the corresponding model, and proved several properties ensuring the correct behaviour of the example.

The size of the generated system and the proven properties show that, if the system is entirely known at

instantiation time, we are able to prove non-trivial properties on examples of a reasonable size.

Towards dynamic groups A nice perspective of this work is the verification of groups with dynamic

membership. The ProActive middleware allow active objects to join and leave a group during execution.

This way the application can adapt dynamically in the case new group members are necessary to perform

a complex computation, or systematically when new machines join the network. The use of pNets will

facilitate the specification of dynamic groups thanks to the support for parameterized processes and

synchronisation vectors.

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 110 Sept. 2011

R. Ameur-Boulifa, L. Henrio, and E. Madelaine 55

References

[1] JGroups - A Toolkit for Reliable Multicast Communication. Http://www.jgroups.org/index.html.

[2] ProActive - Programming, Composing, Deploying on the Grid. Http://proactive.inria.fr/.

[3] P. A. Abdulla, G. Delzanno, N. Ben Henda & A. Rezine (2007): Regular Model Checking Without Transduc-

ers (On Efficient Verification of Parameterized Systems). In: TACAS, pp. 721–736.

[4] A. Arnold (1994): Finite transition systems. Semantics of communicating sytems. Prentice-Hall. ISBN

0-13-092990-5.

[5] A. Arnold (2002): Nivat’s processes and their synchronization. Theor. Comput. Sci. 281(1-2), pp. 31–36.

[6] L. Baduel, F. Baude & D. Caromel (2007): Asynchronous Typed Object Groups for Grid Programming.

International Journal of Parallel Programming 35(6), pp. 573–614.

[7] B. Ban: A Simple Deadlock Resolution Scheme for Synchronous Reliable Group RPC (draft).

Http://www.jgroups.org/javagroupsnew/docs/papers.html.

[8] T. Barros, R. Ameur-Boulifa, A. Cansado, L. Henrio & E. Madelaine (2009): Behavioural models for dis-

tributed Fractal components. Annals of Tlcommunications 64(1-2), pp. 25–43.

[9] T. Barros, R. Boulifa & E. Madelaine (2004): Parameterized Models for Distributed Java Objects. In:

International Conference on Formal Techniques for Networked and Distributed Systems FORTE’04. LNCS

3235.

[10] J.A. Bergstra, A. Ponse & S.A. Smolka (2001): Handbook of Process Algebra. North-Holland. ISBN 0-444-

82830-3.

[11] B. Berthomieu, J.P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet, F. Lang & F. Vernadat (2008):

Fiacre: an Intermediate Language for Model Verification in the Topcased Environment. In: ERTS 2008,

Toulouse France.

[12] B. Berthomieu, J.P. Bodeveix, M. Filali, H. Garavel, F. Lang, F. Peres, R. Saad, J. Stoecker & F. Vernadat

(Mai 2007): The syntax and semantics of Fiacre. In: Rapport LAAS N07264 Rapport de Contrat Projet

ANR05RNTL03101 OpenEmbeDD.

[13] A. Bouajjani, B. Jonsson, M. N. & T. Touili (2000): Regular Model Checking. In: CAV, pp. 403–418.

[14] A. Cansado & E. Madelaine (2008): Specification and Verification for Grid Component-Based Applications:

From Models to Tools. In: FMCO, pp. 180–203.

[15] E. M. Clarke, O. Grumberg & S. Jha (1997): Verifying parameterized networks. ACM Trans. Program. Lang.

Syst. 19(5), pp. 726–750.

[16] E. M. Clarke, M. Talupur & H. Veith (2006): Environment Abstraction for Parameterized Verification. In:

VMCAI, pp. 126–141.

[17] Matthew Dwyer, George S. Avrunin & James C. Corbett (1998): Property Specification Patterns for Finite-

State Verification. In: Proceedings of the Second Workshop on Formal Methods in Software Practice, ACM

Press, pp. 7–15.

[18] E. A. Emerson & K. S. Namjoshi (1995): Reasoning about rings. In: POPL ’95: Proceedings of the 22nd

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 85–94.

[19] E. A. Emerson, R. J. Trefler & T. Wahl (2006): Reducing Model Checking of the Few to the One. In: 8th

international conference on formal engineering methods, ICFE, pp. 94–113.

[20] E.A. Emerson & K.S. Namjoshi (1996): Automatic verification of parameterized synchronous systems. In:

Information Processing Letters, 8th International Conference on Computer Aided Verification, CAV’96, Rut-

gers. 22(6):307-309.

[21] H. Garavel & G. Serwe (2006): State space reduction for process algebra specifications. Theorical Computer

Science 351(2).

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 111 Sept. 2011

56 Behavioural Models for Group Communications

[22] Alan J. Hu, Rui Li, Xizheng Shi & Son T. Vuong (1999): Model-Checking a Secure Gorup Communication

Protocol: A Case Study. In: FORTE, pp. 469–478.

[23] A. Kupšys, S. Pleisch, A. Schiper & M. Wiesmann (2004): Towards JMS compliant group communication

- a semantic mapping. In: Proceedings of the 3rd International Symposium on Network Computing and

Applications (IEEE NCA04), IEEE, Cambridge, MA, USA.

[24] M. Kwiatkowska & G. Norman (2002): Verifying Randomized Byzantine Agreement. In: FORTE (LNCS

2529), Springer Berlin / Heidelberg, pp. 194–209.

[25] M. Layouni, J. Hooman & S. Tahar (2003): On the Correctness of an Intrusion-Tolerant Group Communica-

tion Protocol. In: CHARME, pp. 231–246.

[26] D. Lesens & H. Saı̈di (1997): Abstraction of parameterized networks. Electr. Notes Theor. Comput. Sci. 9.

[27] M. Li & M. Baker (2005): The Grid: Core Technologies. Wiley. ISBN: 0-470-09417-6.

[28] M. Massink, J-P. Katoen & D. Latella (2004): Model Checking Dependability Attributes of Wireless Group

Communication. In: DSN ’04: Proceedings of the 2004 International Conference on Dependable Systems

and Networks (DSN’04), IEEE Computer Society, Washington, DC, USA, p. 711.

[29] Robin Milner (1989): Communication and Concurrency. Prentice Hall. ISBN 0-13-114984-9.

[30] A. Pnueli & E. Shahar (2000): Liveness and Acceleration in Parameterized Verification. In: CAV, pp. 328–

343.

[31] A. Schiper (2006): Dynamic group communication. Distributed Computing 18(5), pp. 359–374.

[32] A. Prasad Sistla & V. Gyuris (1999): Parameterized Verification of Linear Networks using Automata as

Invariants. Formal Asp. Comput. 11(4), pp. 402–425.

EPTCS 37, 2010 Workshop on Component and Service Interoperability (WCSI'10)

Eric Madelaine -- HDR 112 Sept. 2011

1

Experiments with distributed Model-Checking of

group-based applications

Ludovic Henrio & Éric Madelaine

INRIA Sophia Antipolis, CNRS - I3S - Univ. Nice Sophia Antipolis

2004, Route des Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex - France

Email: First.Last@sophia.inria.fr

I. BEHAVIOURAL MODELS FOR GROUP-BASED

APPLICATIONS

In recent work [3], we have proposed a modelisation of the

behaviour of group-based distributed applications, in the form

of parameterized networks of synchronised automata (pNets,

see [4]). A typical structure in group-based applications is

illustrated in Figure 1, where a client sends requests using

a synchronous broadcast mechanism (BO) to a number of

servers, then collects (CO) the results from these requests in

an asynchronous way.

The pNets formalism provides us with a powerful and

flexible way to encode labelled transition systems with value-

passing, as well as parameterized topologies of processes, and

many different communication primitives. But it also has the

great advantage that it can be transformed by abstraction into

finite pNet models, suitable for finite-state model-checking.

BC:

service

client

CO:

Q_Suggest (date) R_Suggest (val)

services(i)

i ∈ D
i ∈ D

Figure 1. Graphical representation of broadcasting operator

II. ENCODING WITH THE FIACRE INTERMEDIATE

LANGUAGE

The middle term goal of these experiments is to integrate

automatic model-generation procedures in our VerCors toolset

[6]. VerCors includes (graphical) editors for the definition

of distributed component-based applications; from such a

description, the system generates a pNet behaviour model,

that needs to be translated into a language usable as input

of a model-checker. We use the CADP verification toolset

[9]. Amongst the possible input languages for the CADP

engines, we have chosen the recently defined Fiacre format

[5], featuring most of the concepts we need for encoding our

pNet structures: simple constructive data-types, automata-like

processes, parameterized processes, multi-process communi-

cation (a la Lotos).

In Figure 2 we show the high-level architecture of our case-

study: Participant[i] is a group of processes providing services

Suggest and Validate. Initiator is a client, that may send

requests to the whole group in a broadcast manner. Results

from these requests are returned asynchrounously by each

group member, collected by a proxy, before being used by

the Initiator body. Each Participant has a queue, storing the

incoming requests; the participant body is monothreaded, and

encodes the service policy.

BC
Suggest

CO
Suggest

BC
Validate

CO
Validate

Initiator Participant [i]

Queue[length]

Suggest

Body
Body

Proxy_Suggest

Proxy_Validate

Validate

Cancel

i ∈ D

i ∈ D

Figure 2. Structure of our case-study

In the current state of our research, we encode manually the

pNets into Fiacre code. The most interesting features of the

Fiacre language are described here:

Fiacre processes feature standard state-oriented and guarded

events concepts, e.g.:

process Queue2 [Q_Suggest: in data,
Q_Validate: in data2, Q_Cancel:
none, ...]

is
states S_empty, S1, S2, ...
var x:data, y:data2, ...

from S_empty
select
Q_Suggest?x; to S1

[]
Q_Validate?y; to S2

...
end

It also support user-defined data types, and classical pro-

gramming constructs, as in :

Workshop SAFA -- Sept. 2010 Extended Abstract

Eric Madelaine -- HDR 113 Sept. 2011

const G:nat is 3
type fut_data is union undef | b of

bool end
type Result_vector is array G of

fut_data
process Group_proxy [WaitFor_m: none,

GetNth_m: out indexG#bool, ...]
is
states A
var val:bool,

V : Result_vector
from A

case V[0] of
undef -> WaitForNth_m ! 0

| b(val) -> GetNth_m ! 0,val
end case;
to A

Fiacre components are used to compose processes hierar-

chically, with parallel operators inspired from Extended Lotos.

They feature explicit declaration of ports, and constructs for

specifying multi-way synchronisation of events on these ports:

component System [Q_Suggest: data, ...]
is
port R_Validate0, ...: indexG

par Q_Suggest, ... in
R_Suggest0, R_Validate0, ... ->
Initiator [Q_Suggest, R_Suggest0,

R_Validate0, ...]
||

R_Suggest0, R_Validate0
-> Participant0 [Q_Suggest,

R_Suggest0,...]
||

...
end

In this composition we can observe all synchronisation

modes useful for the encoding of our pNets: Events on

port R_Suggest0 are synchronized between components

Initiator and Participant0, events on port Q_Suggest

are synchronised between all participating components

(our broadcast communications), events on the local port

R_Validate0 are hidden from outside System, while those

on Q_Suggest are visible in the global system. Components

can have parameters, however they cannot encode directly pa-

rameterized topologies, because this would require to specify

parameterized synchronisation on their ports. For example here

we had to declare one separate port R_Suggest_i for each of

the possible message from Participant[i] to Initiator.

III. USING DISTRIBUTOR ON A CLUSTER

INFRASTRUCTURE

In the following tables, we show the figures obtained with

the distributed version of the CADP state-generation tools.

These figures have been obtained on a cluster, comprising 15

nodes; each node has 8 cores and 32 Go of RAM. The table

in Figure 3 measures the overhead due to the deployment of

the distributed model-checker. The cost is linear in the number

of cores, and mainly due to the copy of the engine executable

file on all nodes. There is also a quasi-constant cost, due to

preliminary compilation of state-generation code, and to final

merging and minimization of the generated state-space.

Subsystem configuration Total Time

Initiator : sequential 11”

3x4 cores 24”

3x8 cores 33”

8x4 cores 38”

15x4 cores 52”

15x8 cores 89”

Figure 3. benchs for a small component

Figure 4 shows results obtained for bigger systems. The

principal source of state explososion in our example comes

from the Queue process as it encodes all possible values of

requests with their data arguments, in each position of the

queue. We encode a bounded queue structure, with a specific

OOB event allowing for checking boundedness properties.

Playing with the size of data domains, as well as with

the group size, is an easy way to experiment with various

strategies and resource configurations.

An important remark is that building systems in a pure

compositional way is not always the best strategy: the full

state-space of subsystems, when computed out of their context,

can be much larger that the part really useful. Here we can

observe that the full system size is much smaller than the size

of the group of participants, and that trying to compute the

group state-space by itself may even fail. This of course is

not new, and usual solutions include:

1) generate directly the state space of the server(s) together

with their client(s). This is what we have done here in

the rows for the “Full system”.

2) generate separately the state-space of the server(s), but

providing some constraints on the context behaviour.

This would be the idea of a “contract” for using the

server(s) in a correct manner. In the CADP toolbox, the

projector tool is providing this possibility; the context

can be computed from the client code, or can be guessed

by the server developper, and checked correct later

3) generate separately the state-space of the server(s), and

reduce it by (branching) bisimulation before computing

any product.

Solutions 2) and 3) technically involve using Fiacre code

for describing the individual subsystems, then using the script

language of CADP, SVL, to perform the reduction and parallel

product operations. This would have been too complicated for

our ongoing experiments, and we have concentrated on the

pure distributed features of the tools.

The distributor tool of CADP generates state spaces in a

distributed way, based on a static hash function ensuring the

distribution of states on a number of nodes. The resulting

states must then be merged before application of tools that

are only available in a sequential implementation, including

bisimulation-based minimization, and model-checking. How-

ever, some partial-order reduction techniques are available "on-

the-fly", during distributed state generation, namely taucom-

pression and tauconfluence [8]. They provide a trade-off be-

2

Workshop SAFA -- Sept. 2010 Extended Abstract

Eric Madelaine -- HDR 114 Sept. 2011

Subsystem generation Total Time States/Transitions States/Transitions

algorithm (minimized)

Initiator (sequential) brute force 12” 3 163 / 152 081 54 / 1 489

Initiator (3x4 cores) brute force 24” 3 163 / 152 081 54 / 1 489

taucompression 30” 3 163 / 131 942 54 / 1 489

tauconfluence 35” 1 219 / 33 815 54 / 1 489

Full system with 3 participants (8x4 cores) brute force 6’45” 170 349 / 1 646 368 458 / 1 284

taucompression 11’48” 170 349 / 607 570 458 / 1 284

tauconfluence 30’ 5591 / 14 236 458 / 1 284

Single Participant (sequential) brute force 9’ 9 653 / 31 480 171 / 641

Group of 2 participants (15x8 cores) brute force 11’32" 13 327 161 / 48 569 764 4 811 / 24 588

taucompression 30’59" 13 327 161 / 48 569 764 4 811 / 24 588

tauconfluence 1150’55” 392 961 / 1 354 948 4 811 / 24 588

Group of 3 participants (15x8 cores) tauconfluence - Out of memory -

Figure 4. Benchs for the various on-the-fly reduction strategies

tween space and time consumption, generating less transitions

and less states at the price of local "on-the-fly" computations.

This trade-off is clearly visible on the full system computation

figures, where we generate only 5K states in tauconfluence

mode (before merging and minimization). Taucompression is

significantly less expensive in time than tauconfluence; here,

it appeared that it does not give any benefit for the “Groups of

participants” cases. Tauconfluence brings significant reduction

in the number of generated states, but it appears here that

local computation was too costly in local memory space for

the “group of 3” case, preventing us to get a measurable result.

IV. CONCLUSION

Group-based distributed systems are specific cases of dis-

tributed applications with a parameterized topology. They

are naturally modelled by systems with a very large state-

space. We encode the behavioural semantics of group-based

applications using the intermediate format FIACRE. We have

experimented with model-checking of such systems, using the

CADP verification toolset, and in particular the distributor tool.

This allowed us to generate very large but finite state-space on

the PacaGrid cloud infrastructure. We have then been able to

compare different techniques for generating state-spaces, and

experiment with different sizes of the modelled system and of

the experimental platform.

In practice, an efficient solution would rely on a com-

bination of the techniques mentionned in this paper, and

in particular on the use of, at the same time, on-the-fly,

hierarchical, and contextual techniques. In particular the last

technique allows the partial specification of the context in

which the system will be used, which will greatly reduce the

state space to be generated, and seems a promising method

that we want to experiment in future works.

There exists other implementations of distributed model-

checking tools, in particular the DiViNe toolset [1], that

implements model-checking algorithm for LTL, with specific

optimisation for various computing infrastructures, namely

clusters, multi-core, and Cuda; and LTSmin [2], that is a

MPI-based tool implementing equivalence checking and min-

imization for various formalisms. Comparisons between these

systems is not easy, as it involves encoding the case-studies in

quite different formalisms, e.g. the DVE specification language

for DiVinE, or µCRL for LTSmin. Furthermore, these toolsets

also implement their model-checking algorithms in a dis-

tributed way, while the current version of CADP only supports

state-generation and on-the-fly reduction in a distributed way,

while minimization and model-checking remain sequential.

As a consequence, a significant comparison should include

non-trivial efforts, in each of the systems, to find the best

encodings of our semantics into the system’s input format(s),

and to find the optimal strategy for combining the state-

generation / minimization / model-checking primitives of the

various tools. Last, the result of such a comparison will heavily

depend on the physical resources available; for example the

distributed state-space generation in CADP is specifically

dedicated to cluster architecture, and will not take benefit of

multi-core or CUDA optimizations.

REFERENCES

[1] DiVinE, Distributed and Parallel Verification Environment.
[2] LTSmin: Minimization and Instantiation of LAbelled Transition Systems.

http://fmt.cs.utwente.nl/tools/ltsmin/.
[3] R. Ameur-Boulifa, L. Henrio, and É. Madelaine. Behavioural models for

group communications. In in proceedings of the International Workshop
on Component and Service Interoperability, WICS’10, Malaga, june 2010.
to appear.

[4] T. Barros, R. Boulifa, A. Cansado, L. Henrio, and E. Madelaine.
Behavioural models for distributed Fractal components. Annals of
Telecommunications, 64(1–2), jan 2009. also Research Report INRIA
RR-6491.

[5] B. Berthomieu, J. Bodeveix, M. Filali, H. Garavel, F. Lang, F. Peres,
R. Saad, J. Stoecker, and F. Vernadat. The syntax and semantics of Fiacre.
In Rapport LAAS #07264 Rapport de Contrat Projet ANR05RNTL03101
OpenEmbeDD, Mai 2007.

[6] A. Cansado and E. Madelaine. Specification and verification for grid
component-based applications: from models to tools. In F. S. de Boer,
M. M. Bonsangue, and E. Madelaine, editors, FMCO 2008, number 5751
in LNCS, pages 180–203, Berlin Heidelberg, 2009. Springer-Verlag.

[7] A. Cansado, E. Madelaine, and P. Valenzuela. VCE: A Graphical Tool for
Architectural Definitions of GCM Components. 5th workshop on Formal
Aspects of Component Systems (FACS’08), Sep 2008.

[8] H. Garavel and G. Serwe. State space reduction for process algebra
specifications. Theorical Computer Science, 351(2), 2006.

[9] F. Lang, H. Garavel, and R. Mateescu. Cadp 2006: A toolbox for the
construction and analysis of distributed processes. In CAV’07, 2007.

3

Workshop SAFA -- Sept. 2010 Extended Abstract

Eric Madelaine -- HDR 115 Sept. 2011

8. Conclusion and Perspectives

Chapitre 8

Conclusion and Perspectives

We have described our development of the pNets behavioural model, and of a
specification and verification environment for distributed component-based appli-
cations, based on the pNets model. We also have tried to show how these research
directions were natural developments of our previous results in the area of process
algebras and behavioural semantics.

Our main contributions are :
– On the theoretical side, we have defined a comprehensive, compact, and

flexible model called pNets. We have used this model to define the behaviou-
ral semantic of many of the main features of our distributed components,
including asynchronous remote requests, request queues with user-defined
service policy, non-functional controllers (life-cycle, binding controller, attri-
bute controller), future proxies and first-class future management, collective
interfaces with group proxies.

– On the practical side, we have developed a set of prototype tools for program
specification and model generation, and shown how this approach can be used
for non-trivial use-cases, in conjunction with state-of-the-art model-checking
and equivalence-checking tools. We have experimented distributed model-
checking tools that allows us to scale up to large state spaces (billions of
explicite states), built in a hierarchical and compositional manner.

This work was backed-up with 3 PhD thesis and more than 16 studentships, and
gave birth to the publication of a journal article, a book chapter, and 14 papers in
international conferences.

From this point we develop in this chapter our perspectives for short-term and
longer-term research, along 4 different axes :

1. Integration of our prototypes in a verification platform, providing an envi-
ronment usable by non-specialist developers.

2. Addition of model-checking techniques and engines beyond the current limits
of finite (explicit or implicit) state-space representations.

3. Generation of “safe by construction” code.

4. Extension of our models to handle new types of distributed systems.

Platform : Our existing prototypes have to be complemented and tightly inte-
grated, before being usable by non-specialists. In particular we have mentioned in
Chapter 5 that we need to choose formalisms, and some related tools, for the spe-
cification of automata (FSMs or StateCharts) describing the behaviour of the basic
processes of our systems, and for the expression of the logical formulas defining the
system requirements. Then the integration of tools will include (see Fig. 5.3) :

Eric Madelaine -- HDR 116 Sept. 2011

8. Conclusion and Perspectives

– Extension of our ADL2N tool to handle abstraction definition in a coherent
way for all specification formalisms (behaviour, architecture, and properties).
The tool should give as much help as possible to the user by using static
analysis information (method call graphs, data flow analysis, aliases analysis,
etc.).

– Generation of pNets structures from the behaviour and architecture forma-
lisms. At this level, it may be useful to consider generating a specific model
for each property in the requirement set, allowing for optimal abstraction
and for optimal model generation strategies.

– Generation of input files for specific verification toolsets (E.g. Fiacre or Lo-
tosNT, plus SVL and EXP files, in the CADP case), implementing verification
strategies, and combining all possible state-space reduction techniques in an
automatized manner (hierarchical minimization, optimal hiding, contextual
behaviour, distributed processing, etc.).

– Translation of verification diagnoses back to user-level formalisms, and dis-
play of such diagnoses (transitions and states, traces, or more complex games)
within the specification editors.

– Integration of all these elements as plugins within the VerCors eclipse envi-
ronment.

Beyond Finite-state MC : Even when combining all available techniques for
reducing the state-space explosion, it is clear that the processing of large distributed
applications may easily exceed the capacity of our verification tools. We foresee
several independent ways to overcome current limitations :

First by a more elaborated use of our knowledge of the semantics of data values.
In the current approach, we define abstract data domains by identifying values
that have an equivalent impact, statically, on the whole system behaviour. This
method can (and should) be enhanced by adapting automatically the abstraction
to the data occurring in the formulas one wants to prove. But going further, data
information can be used to reduce the subset of the transition system that needs to
be explored by the model-checker : there is a quite active research domain in the
area of symmetry reduction techniques, that exploit symmetry in the structure of
processes (when the system includes sets of identical processes), or symmetry in the
data manipulated by processes (e.g. in structured data like vectors or sets). These
techniques may be a good approach to reduce drastically the size of state-space
that is sufficient to represent faithfully the whole system behaviour.

Secondly we should seek to enhance significantly the abstraction level of our
models, by using general properties of our specification and programming languages
to hide lower levels of details in the construction of behavioural models. We are
already using this approach for encoding the semantics of remote requests me-
chanisms in ProActive/GCM, where generic results have been proved by theorem
proving techniques [34, 57], allowing us to encode remote request deposits and re-
sult retrievals atomically in the behavioural model. It should be possible to use
similar links between theorem-proving and model-checking to prove other proper-
ties, more or less specific to some application structures or skeletons, and reduce
accordingly the level of detail of the pNets behaviour model.

Last we shall continue looking for specific representations of infinite-state sys-
tems where (semi-) decidable satisfiability algorithms exist, as we have started
experimenting in the case of unbounded fifo channels. The challenge then is to
find a way for combining such representations and algorithms together, without
encoding all of them into one single universal model (as such an approach would

Eric Madelaine -- HDR 117 Sept. 2011

8. Conclusion and Perspectives

loose any advantage of each specific algorithm).

Code Generation : We have mentioned in Chapter 6 the idea of generating
code from our specification formalisms, that would be “safe by construction” with
respect to the properties proved during the verification phase. While this is a well
established approach in the area of hardware, where synthesis methods and tools
are widely used, it is not so common in the software development area. Still this is
not far from the the idea of Model-driven Development (MDE). The difference is
that we do not intend to define specification formalisms precise enough to generate
100% of the final implementation, as this would prevent any effective verification
activity.

What we plan is to have specifications that will be as abstract as possible, while
containing enough information to enable the full generation of the control part of
our components. More precisely, for ProActive/GCM applications, the code of the
“runactivity” method of primitive components (which defines the selection policy of
incoming requests), and the code for the management of non-functional interfaces
of both primitive and composite components can be fully generated, while for the
“functional code” of service and local methods the tool can simply generate a
skeleton, that will be complemented by the developer.

Then we can provide rules about what can be safely modified or not (e.g.
can one change, or add, parameters to a method call of a client interface of the
component ?), or even provide assertions to be checked by run-time verification
code. An important open question is how to allow (and to help) the developer to
define mappings between its own data classes and the abstract (simple) types he
has been using in the specification formalisms. Ideas for defining such mappings in
a safe way have been experimented e.g. in the Bandera framework [41].

New Challenges : The foreseen architecture of VerCors, and the perspectives
listed in the previous paragraphs, should allow us to master the modeling and ve-
rification of today’s distributed applications, including large scale and dynamically
reconfigurable Internet services. But of course technological progress goes fast, and
the Moore law applies also to the complexity of software systems. While we can
do our best to advocate and teach development methods that will include formal
methods, rigorous specification, well-structured development of software, we also
face deep changes in the technology that bring intrinsic complexity in computer
science.

Multicore is certainly the best example of such a break in technology that
brings in, simultaneously, a huge advance in computing power, but also significant
difficulties in system and application programming. For us it means a deep refor-
mulation of the basic model of distributed objects, introducing concurrency inside
local behaviour of components, challenging the core semantics of our sequential
processes. How can we redefine this model to handle the local structure of new
processor architectures, allowing for optimization of local performance, while kee-
ping the fundamental semantic properties of the whole model ? The challenge is to
handle properly and safely these new development contexts in which programmers
are faced with new dimensions of heterogeneity, from multicore architectures, GPU
computation units, virtual machines, to dynamic and adaptable software services
ready for elastic cloud computing, and Internet-wide applications.

Eric Madelaine -- HDR 118 Sept. 2011

8. Conclusion and Perspectives

Our next PhD subjects : In the short term, in parallel with the implementation
of the most urgent missing tools of VerCors, we have some PhD subjects that are
just starting, or still open. This includes :

– Novel verification methods for distributed software (open). This
subject aims at extending our approaches beyond the usual frame of finite-
state systems in two complementary directions. First, identify finite abstrac-
tions of parameterized systems that preserve some useful sets of properties.
Second, use dedicated infinite-state (semi) decision procedures able to deal
with specific classes of systems, for example infinite communication channels
or arithmetic counters,

– Reliable Integrated and Autonomic Deployment and Management
for SaaS composite applications (starting). This subject is in the
context of an industrial research contrat of the Oasis team, in which we
develop GCM-based tools for the management of highly dynamic component
structures. These developments will be accompanied by the development
of validation methods combining theorem-proving approaches with model-
checking of parameterized and dynamic pNets structures.

– Formal Model and Scheduling Algorithm for Real-time CPS (star-
ted). This is in the context of a collaborative research with ECNU University
in Shanghai (and the Aoste team at INRIA SophiaAntipolis), in which we
want to draw bridges between our respective synchronous and asynchronous
behaviour models and tools. The (chinese) PhD student will work on abs-
tractions enabling the application of our methods in the context of CPS
(Cyber-Physical Systems) with time constraints. This is in some sense a
frontier case of our “new challenges” domains.

– Safe Code Generation (open). This is a work that builds up on the
approach where the application modeling and verification is done on early
abstract formalisms (behaviour and architecture). Then we aim at produ-
cing code skeletons (eventually associated with runtime assertions) that will
guarantee that the implementation satisfies the properties proved at model
level. This work is in the context of our collaboration with the new CIRIC
Center in Santiago de Chili.

Eric Madelaine -- HDR 119 Sept. 2011

9. Annexes

Chapitre 9

Annexes

9.1 Diplomas

Engineer from Ecole Polytechnique de Paris, 1980

DEA Theoretical Computer Science, University of Paris 7, 1981

PhD (doctorat de 3eme cycle), University of Paris 7, “Système d’aide à la preuve
de compilateurs”, 1983

9.2 Professional activities

1980-1983 PhD, INRIA project-team “Languages and Translators”, adviser M.
Nivat & M.C. Gaudel.

1983-1996 Research Scientist (Chargé de Recherche) INRIA, project-team “MEI-
JE”, Sophia-Antipolis.

jan-aug 1992 NSF-INRIA scientist exchange, 7 months visit, Un. of North-
Carolina, Raleigh, USA.

1996-2000 Computer systems deputy (Responsable des Moyens Informatiques),
INRIA Research Unit of Sophia-Antipolis.

2001-feb.2011 Senior Research Scientist, INRIA project-team OASIS (Active
Objects, Semantics, Internet, and Security), Sophia-Antipolis.

since march 2011 Head of the OASIS project-team.

Student directions 4 PhD thesis, 1 Postdoc, 16 master, or engineer internships.

Teaching Courses in Software Engineering, Functional Languages, Reflexive Lan-
guages, Operational Semantics, Formal Methods, Verification.
Schools : CERICS, CERISI (DESS, DEA), Telecom Paris (3rd year), University of
Nice Sophia Antipolis (Licence, Master 1 & 2)

9.3 Research community responsibilities

Steering Committee of International Conferences : FACS (2006-2011),
FMCO (2007-2011)

Program Committee of International Conferences : LDTA’05, Pro-
vecs’07, SCCC’07, SAVCBS’08, Qoas’08, SERA’08, FACS (2006-2011), FMCO
(2007-2011) , Euromicro-SEAA’09, PDMC’09, FESCA’09, ICPP’11

Review for journals : SCP, IET-Software, l’Objet

Eric Madelaine -- HDR 120 Sept. 2011

9. Annexes

Standardization : I have been member, and voting representative for INRIA,
from 2008 to today, of the TC-GRID (Technical Committee on Grid Technolo-
gies) at ETSI, now renamed as TC-CLOUD. In this standardization body, I have
participated, and actively pushed, the creation and approval process for the Grid
Component Model GCM. This led to the publication of 5 standards, between 2008
and 2010.

EC Referee : I have acted as a referee for the European commission, in 2007-
2008, for the review of FP6 projects.

9.4 Scientific collaboration, projects, contracts

I have participated at different levels to a long series of collaborative projects,
in the context of the Meije and Oasis teams. I give below a list of these projects,
then I give a more complete description of the Fiacre and ReSeCo projects, that I
have coordinated, as well as the ANR international project MCorePhP, that is the
most significant of the current Oasis collaborations in terms of verification.

International : NSF-INRIA (1992, with a 7 month research visit at NCSU,
Raleigh, USA), Associated Team Oscar (2004-2006, with Universidad de Chili,
Santiago, participant then coordinator), Stic-Amsud ReSeCo (2006-2009, Chili,
Uruguay, Argentina, coordinator), Stic-Asie Grids (2008-2010, Pakistan, China,
participant).

Europe : Lotosphere (1989-1992, Esprit IP, task leader), Concur (Esprit BRA
1989-1990, resp. INRIA), Concur2 (Esprit Bra, 1991-1992, task leader), CoreGrid
(FP6 NoE, 2005-2009, participant), GridComp (FP6 Strep, 2006-2009, partici-
pant), NessiGrid (FP6 SSA, 2006-2008, INRIA representative).

France : ACI Fiacre (ACI Sécurité, 2005-2007, coordinator), ANR MCorePhP
(ANR Blanc International, avec Un. Tsinghua Pekin, 2010-2012, participant).

The FIACRE project

Type and Dates : French ACI Sécurité, sep. 2005 - sep. 2007.
Title : Models and Tools for Safety and Security Analysis of Distributed Compo-
nents and their Composition
Partners : INRIA Rhône-Alpes EPI Vasy, Feria- IRIT/LAAS, GET-ENST Paris
My role : Creation, Coordination
Abstract

This project was launched with the ambition of strengthening the impact of
distributed component based programming on software development methods. In
order for this approach to fully work, while component libraries become available,
it is necessary to be able to compose existing components into more complex ob-
jects, and to guarantee that this composition will work correctly and fulfill its
expected role. Classical, static interface typing does not allow to reach this goal.
Gathering teams specialized in behavioural specifications of components, languages
and models for distributed, mobile, and communicating application programming,
and methods and tools for compositional verification, the goal of FIACRE was to
design methods and tools for specification, model extraction, and verification of
distributed, hierarchical, and communicating components. The project work-plan
was articulated around the following axes :

– Definition of a specification formalism for component behaviours, which must
be adapted to verify distributed applications and allow an easy translation
into the low-level formalisms that are used for verification.

Eric Madelaine -- HDR 121 Sept. 2011

9. Annexes

– Development of semi-automated procedures for the behavioural model ex-
traction of distributed components.

– Efficient tools for the verification (either using temporal logic formulas, beha-
vioural equivalences, or behavioural typing) of the hierarchical compositions
of components from their behavioural specifications.

In particular, within the collaborative project Topcased, and now supported by
national RNTL platform OpenEmbbed, the FIACRE partners have defined an in-
termediate language for verification called Fiacre (“Format Intermédiaire pour les
Architectures de Composants Répartis Embarqués”) based on our developments,
and that is the central exchange format for the verification tools of the OpenEmb-
bed platform [20].

The ReSeCo project

Type and Dates : Collaborative, Stic-Amsud, jan. 2007 - dec. 2009.
Title : Reliability and Security of Distributed Software Components
Partners : Univ. De la Republica (Montevideo, Uruguay) ; FAMAF, Univ. De
Cordoba (Argentine) ; Univ. De Chili (Santiago, Chili) ; Univ. Diego Portales
(Santiago, Chili)
My role : Participation, then Coordination
Abstract

The objective of the project ReSeCo (Reliability and Security of Distributed
Software Components) is to investigate reliability and security in a computational
model in which both the platform and applications are dynamic, so that incoming
software, built from off-the-shelf components, may be destined to form part of
the platform or to execute as a standard application. The concrete goals of the
project include the development of mechanisms that help software developers build
reliable software from of-the-shelf components, and of security infrastructures that
guarantee end-users that the software they use is safe and secure .

The MCorePhP project

Type and Dates : ANR Blanc International, jan. 2010 - dec. 2012.
Title : Multi-Core Parallel Heterogeneous Programming
My role : Scientific and Management Participation
Partners : Tsinghua University (Pekin)
Abstract

In this MCorePHP project, we investigate certain methods and techniques that
help simplify the parallel programming without sacrificing performance, in the main
areas of scheduling, synchronization and proper use of the multi-core architecture
features. Therefore, we need a safe, dependable, autonomic way of developing ap-
plications on multi-core processors, but also on multilevel infrastructures including
multi-core, clusters, and large scale grid/cloud resources. The partners will ensure
the compatibility of the new programming model with the China Grid specifica-
tions, and will assess the viability and efficiency of the approach on a large example
from the area of bio-informatics.

At the semantic level, this project includes the development of a new program-
ming model that contains information about the multilevel infrastructure, and
provides users with a notion of multi-active object model. The idea is to allow
some restricted form of sharing between activities that run in cores accessing a
common memory, without unleashing the complexity of standard shared-memory

Eric Madelaine -- HDR 122 Sept. 2011

9. Annexes

models. Sharing information comes in the form of user-defined annotations ex-
pressing the set of resources used by each method. This information is then used,
together with information of the mapping of active object onto cores, statically or
at run-time. This model will have some impact on the behavioural model used for
verification : we need to modify and extend our models to take into account this
new information, and the constraints on concurrency that are implied.

9.5 Participation to PhD juries

J.A. Montero de Queiroz, Univ. Paris 6, 1990 (jury member). Title : Représentations
Graphiques, Transformations et Pré-Implémentation de LOTOS

Abderaman Lakas, Univ. Paris 6, 1996 (jury member). Title : Les Transforma-
tions Lotomaton : une contribution à la pré-implémentation des systèmes
Lotos

Arnaud Février, ENST, janvier 1997 (reviewer). Title : Modèles et langages
formels pour le point de vue de traitement ODP

Christophe Joubert, INPG, décembre 2005 (jury member). Title : Vérification
distribuée à la volée de grands espaces d’états.

Jiri Adamek, Charles University, Prague, 2006 (reviewer). Title : Behaviour
Composition in Component Systems

9.6 Activities as Students Adviser/Director

PhDs

1. Didier Vergamini

PhD Thesis. Spécialité Informatique, Université de Nice
Title : Vérification de Réseaux d’Automates Finis par Equivalences Obser-
vationnelles : le Système AUTO
Defense : 1987, December 4th
Adviser(s) : P. Franchi, E. Madelaine
Reviewers : A. Arnold, G. Boudol
Abstract

To model parallel and communicating systems, we use process algebras in-
troduced by R. Milner, allowing to give the semantics of terms representing
such systems in form transition systems. In order to verify programs written
in this formalism, we use the notion of observational equivalence attached to
the notion of observational criterion. In order to implement this principle of
verification, we built the system called AUTO, descended from the system
ECRINS which allows the manipulation of process algebras. We give a full
description of this system and of its implementation in LELISP. Its utiliza-
tion is illustrated by very classic examples in the domain of the verification
of parallel systems. After, we treat more complex examples of distributed
algorithms.

2. Rabéa Boulifa

PhD Thesis. Spécialité Informatique, Université de Nice Sophia-Antipolis
Title : Génération de modèles comportementaux des applications réparties
Defense : 2004, december 15th
Adviser(s) : E. Madelaine

Eric Madelaine -- HDR 123 Sept. 2011

9. Annexes

Reviewers : F. Vernadat, A. Fantechi
Abstract

In this work, we aim at developing automatic methods for verification of be-
havioural properties of distributed applications by methods based on models.
Specifically, we study the question of building models from the source code
of the Java applications. The models are labeled transition systems.

Therefore, we define a behavioural semantics for ProActive, a Java library for
concurrent, distributed, and mobile computing. From this semantics we build
behavioural models for finite abstractions of applications. These models are
based on pro cess algebra semantics, so they can be built in a compositional
manner. Building the finite models is not always possible. In order to deal
the problems that take into account the data as well the problems concerning
topologies with infinite objects, we define the notion of hierarchical models,
based on parametrized transition systems and parametrized synchronization
networks. By means of abstractions these models can depict infinite applica-
tions by expressive and finite representations. On the other hand, we define
a system of semantics rules for building the (finite or parametrized) models
from an intermediate form of programs obtained by static analysis. The mo-
dels generated this way are used directly or after instantiation, standard by
verification tools.

3. Tomás Barros

PhD Thesis. Spécialité Informatique. Université de Nice Sophia-Antipolis
Title : Formal Specification and Verification of Distributed Component Sys-
tems
Defense : 2005, November 25th
Adviser(s) : I. Attali, E. Madelaine
Reviewers : A.R. Cavalli, F. Plasil
Abstract

A component is a self contained entity that interacts with its environment
through well-defined interfaces. The component library Fractive provides
high level primitives and semantics for programming Java applications with
distributed, asynchronous and hierarchical components. It also provides a
separation between functional and non-functional aspects, the latter allows
the execution control of a component and its dynamic evolution.

In this thesis, we provided a formal framework to ensure that the applica-
tions built from Fractive components are safe. Safe, in the sense that each
component must be adequate to its assigned role within the system, and the
update or replacement of a component should not cause deadlocks or fai-
lures to the system. We introduced a new intermediate format extending the
networks of communicating automata, by adding parameters to their com-
munication events and processes.

Then, we used this intermediate format to give behavioural specifications of
Fractive applications. We assumed the models of the primitive components
as known (given by the user or via static analysis). Using the component
description, we built a controller describing the component’s non-functional
behaviour. The semantics of a component is then generated as the synchroni-
zation product of : its LTSs sub-components and the controller. The resulting
system can be checked against requirements expressed in a set of temporal
logic formulas, as illustrated in the thesis report.

4. Antonio Cansado

Eric Madelaine -- HDR 124 Sept. 2011

9. Annexes

PhD Thesis. Spécialité Informatique. Université de Nice Sophia-Antipolis
Title : Formal Specification and Verification of Distributed Component Sys-
tems
Defense : 2008, October
Adviser(s) : E. Madelaine
Reviewers : F. Plasil, C. Canal
Abstract

Components are self-contained building blocks. They communicate through
well-defined interfaces, that set some kind of contract. This contract must
guarantee the behavioural compatibility of bound interfaces. This is par-
ticularly true when components are distributed and communicate through
asynchronous method calls.

This thesis addresses the behavioural specification of distributed components.
We develop a formal framework that allows us to build behavioural models.
After abstraction, these models are a suitable input for state-of-the-art veri-
fication tools. The main objective is to specify, to verify, and to generate safe
distributed components.

To this aim, we develop a specification language close to Java. This language
is built on top of our behavioural model, and provides a powerful high-level
abstraction of the system. The benefits are twofold : (i) we can interface with
verification tools, so we are able to verify various kinds of properties ; and
(ii), the specification is complete enough to generate code-skeletons defining
the control part of the components. Finally, we validate our approach with
a Point-Of-Sale case-study under the Common Component Model Example
(CoCoME).

The specificities of the specification language proposed in this thesis are : to
deal with hierarchical components that communicate by asynchronous me-
thod calls ; to give the component behaviour as a set of services ; and to
provide semantics close to a programming language by dealing with abstrac-
tions of user-code.

Postdocs

1. Régis Gascon

Title : Application of Formal Methods for the Verification of Infinite Systems
to the Verification of Distributed Component Systems
Dates : September 2008 to december 2009
Adviser(s) : E. Madelaine
Abstract

In Vercors, the verification of safety properties on the formal models gene-
rated by the platform uses finite state model-checkers. As a consequence,
this operation relies on the instantiation of some parameters and the finite
abstraction or abstract interpretation of others. In order to improve this pro-
cedure, we have investigated the field of infinite state model-checking. This
work follows three directions depending on the characteristics of pNets :

– manipulation of “infinite data” (data in an infinite set),
– representation of unbounded queues,
– representation of parametrized topologies.

Each of these points is a source of infinity since it introduces an unbounded
parameter. The goal of infinite state model-checking methods is to consider
directly these unbounded parameters without any abstraction. But the com-

Eric Madelaine -- HDR 125 Sept. 2011

9. Annexes

bination of these different parameters makes the verification problem very
difficult : from a theoretical point of view, any of the parameters mentioned
above can imply undecidability of standard reachability analysis.

However, there are several techniques using semi-algorithm or restrictions of
the general problems that allow tackling some problems in practice. We have
studied some of these techniques with the objective to find a way to apply
them to pNets. For instance, some representations using finite state automata
can be used to represent (infinite) set of states in systems manipulating inte-
gers, queues or pointers. Regular expressions can also be used to describe the
evolution of a parametrized or dynamic network during an execution. These
are a few examples of the different possibilities that we have been studying.
Now, an important open question is to understand how these techniques can
be mixed together to verify safety properties as precisely as possible. Indeed,
none of them is able to treat all the infinite aspects of Vercors formal model.

As experimentation, we have implemented a prototype to explore the set
of configurations that can be reached in a network of finite state machines
communicating with unbounded FIFO queues. We want to add mechanisms
able to check liveness ; we would also like to define an input language to
express the safety properties that can be checked using all our material. Of
course, the other unbounded parameters linked to the data and the topology
have to be taken into account. For the moment, such tools extensions are
difficult to design since we do not exactly know how to mix the techniques
needed with the current implementation. However, it is already possible to
introduce some infinite data, with the condition that the set of their values
can be finitely partitioned w.r.t. the kind of properties to verify.

Internships

This is a list of internships that I have proposed and directed from 2002 to
2010, in the Oasis team. They have been done by students from levels L3 to M2,
or as engineer final internship.

– Tomas Barros : Formalisation et preuves du système de factures électroniques
au Chili, Master, U. de Chile, 2002

– Dao Anh Viet : Modèle comportemental pour calculs d’objets Répartis et
Mobiles, DEA, LIP6, 2002 [88]

– Toufik Maarouk : Outils pour le model checking d’applications Java dis-
tribuées, DEA U. d’Orléans, 2002 [67]

– Christophe Massol : Outils d’analyse statique et de vérification pour les
applications Java distribuées, IUP Nice, 2003 [68]

– Alejandro Vera : Formalisme graphique et éditeur pour réseaux de proces-
sus paramétrés, Ingéniorat, U. de Chile, 2004

– Walid Belkir : Spécifications comportementales de composants distribués,
M2, U. Aix-Marseille, 2005 [17]

– Marcela Rivera : Efficient automatic tools for model-checking distributed
Java applications, M2, U. Técnica Federico Santa Maŕıa, Chile. 2006

– Hejer Rejeb : Construction par analyse statique de modèles comportemen-
taux de composants distribués, M2, LRI, 2006

– Emil Salageanu : An UML Profile for the specification of distributed com-
ponent systems, EPU Nice, 2007 [83, 82]

– Vivien Maisonneuve : Vérification de systèmes distribués utilisant une
représentation des canaux à base d’automates, L3, ENS Cachan, 2007

Eric Madelaine -- HDR 126 Sept. 2011

9. Annexes

– Pablo S. Valenzuela : Vercors Components Environment, an Eclipse plugin
for Grid Component Model, Ingéniorat, U. Diego Portales, Chili, 2008 [33]

– Krzysztof Nirski : Une plateforme pour la spécification graphique de
systèmes à base de composants distribués, M1, AGH U. of Science and Tech-
nology, Krakovie, 2008

– Mikolaj Baranowski : Une plateforme pour la spécification graphique
de systèmes à base de composants distribués, M1, AGH U. of Science and
Technology, Krakovie, 2008

– Adel Bouchakhchoukha : Génération de modèles comportementaux de
composants GCM : formalisation et mise en oeuvre, M2, U. Aix-Marseille,
2009 [26]

– Amine Rouini : Topologies paramétrées pour les composants logiciels :
extension et implantation d’un langage de description d’architecture, M2, U.
Nice-Sophia-Antipolis, 2010 [79]

– Raluca Halalai : Packaging of CADP for ProActive Scheduling and Re-
sourcing tools, L3, U. Cluj, 2010

Eric Madelaine -- HDR 127 Sept. 2011

10. Personal Bibliography

Chapitre 10

Personal Bibliography

Editions

[E-08] Eric Madelaine and Markus Lumpe, editors. Proceedings of the 4th Inter-
national Workshop on Formal Aspects of Component Software (FACS’07), volume
vol 215. ENTCS, 2008.

[E-09] Frank S. de Boer, Marcello M. Bonsangue, and Eric Madelaine, editors. For-
mal Methods for Components and Objects, 7th International Symposium, FMCO
2008, Sophia Antipolis, France, October 21-23, 2008, Revised Lectures, volume
5751 of LNCS. Springer, dec 2009.

Journals and Book Chapters

[J-92] E. Madelaine. Verification tools from the Concur project. EATCS Bulletin,
47, 1992.

[J-08] Antonio Cansado, Denis Caromel, Ludovic Henrio, Eric Madelaine, Marcela
Rivera, and Emil Salageanu. The Common Component Modeling Example : Com-
paring Software Component Models, volume 5153 of LNCS, chapter A Specification
Language for Distributed Components implemented in GCM/ProActive. Springer,
2008. http://agrausch.informatik.uni-kl.de/CoCoME.

[J-09] Tomás Barros, Rabéa Boulifa, Antonio Cansado, Ludovic Henrio, and Eric
Madelaine. Behavioural models for distributed Fractal components. Annals of
Telecommunications, 64(1–2), jan 2009.

International Conferences with Selection Committee and Procee-
dings

[C-84] E. Madelaine. Un système d’aide à la preuve de compilateurs. In Manfred
Paul and Bernard Robinet, editors, International Symposium on Programming,
6th Colloquium, Toulouse, April 17-19, 1984, Proceedings, volume 167 of LNCS.
Springer, 1984.

[C-89] Eric Madelaine and Didier Vergamini. Auto : A verification tool for dis-
tributed systems using reduction of finite automata networks. In Son T. Vuong,
editor, Formal Description Techniques, II, Proceedings of the IFIP TC/WG6.1 :
2nd International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols, FORTE 89, Vancouver, BC, Canada, 5-8
December, 1989. North-Holland, 1989.

Eric Madelaine -- HDR 128 Sept. 2011

10. Personal Bibliography

[C-90] Eric Madelaine and Didier Vergamini. Finiteness conditions and structu-
ral construction of automata for all process algebras. In Edmund M. Clarke and
Robert P. Kurshan, editors, Computer Aided Verification, 2nd International Work-
shop, CAV 90, New Brunswick, NJ, USA, June 18-21, 1990, Proceedings, volume
531 of Lecture Notes in Computer Science. Springer, 1990.

[C-91a] Eric Madelaine and Didier Vergamini. Specification and verification of
a sliding window protocol in LOTOS. In Formal Description Techniques, IV,
Proceedings of the IFIP TC6/WG 6.1 Fourth International Conference on For-
mal Description Techniques for Distributed Systems and Communication Proto-
cols, FORTE 91, Sydney, Australia, 19-22 November 1991, volume C-2 of IFIP
Transactions. North-Holland, 1991.

[C-91b] Eric Madelaine and Didier Vergamini. Tool demonstration : Tools for pro-
cess algebras. In Ken R. Parker and Gordon A. Rose, editors, Formal Description
Techniques, IV, Proceedings of the IFIP TC6/WG 6.1 Fourth International Confe-
rence on Formal Description Techniques for Distrib uted Systems and Communi-
cation Protocols, FORTE 91, Sydney, Australia, 19-22 No vember 1991, volume
C-2 of IFIP Transactions. North-Holland, 1991.

[C-92] Eric Madelaine and Didier Vergamini. Verification of communicating pro-
cesses by means of automata reduction and abstraction. In Alain Finkel and
Matthias Jantzen, editors, STACS 92, 9th Annual Symposium on Theoretical As-
pects of Computer Science, Cachan, France, February 13-15, 1992, Proceedings,
volume 577 of Lecture Notes in Computer Science. Springer, 1992.

[C-95] Rance Cleaveland, Eric Madelaine, and Steve Sims. A front-end generator
for verification tools. In Tools and Algorithms for Construction and Analysis of
Systems, First International Workshop, TACAS 95, Aarhus, Denmark, May 19-20,
1995, Proceedings, volume 1019 of LNCS. Springer, 1995.

[C-03a] R. Boulifa and E. Madelaine. Finite model generation for distributed java
programs. In IEEE, editor, Workshop on Model-Checking for Dependable software-
Intensive Systems, DNS’03,, pages 92–96, San Francisco, USA, Jan. 2003. IEEE.

[C-03b] R. Boulifa and E. Madelaine. Model generation for distributed Java pro-
grams. In E. Astesiano N. Guelfi and G. Reggio, editors, Workshop on scientiFic
engIneering of Distributed Java applIcations, Luxembourg, nov 2003. Springer-
Verlag, LNCS 2952.

[C-04a] Tomás Barros, Rabéa Boulifa, and Eric Madelaine. Parameterized models
for distributed Java objects. In Formal Techniques for Networked and Distributed
Systems FORTE 2004, volume LNCS 3235, pages 43–60, Madrid, September 2004.
Spinger Verlag.

[C-04b] I. Attali, T. Barros, and E. Madelaine. Formalisation and proofs of the
chilean electronic invoices system. In in proc. of the XXIV International Confe-
rence of the Chilean Computer Science Society (SCCC’04), Arica, Chile, November
2004. IEEE.

[C-05a] T. Barros, L. Henrio, and E. Madelaine. Behavioural models for hierarchi-
cal components. In Patrice Godefroid, editor, Model Checking Software, 12th Int.
SPIN Workshop, San Francisco, CA, USA, August 2005. LNCS 3639, Springer.

[C-05b] T. Barros, L. Henrio, and E. Madelaine. Verification of distributed hierar-
chical components. In International Workshop on Formal Aspects of Component
Software (FACS’05), volume 160, pages 41–55, Macao, October 2006. ENTCS.

[C-06] T. Barros, A. Cansado, E. Madelaine, and M. Rivera. Model checking
distributed components : The Vercors platform. In 3rd workshop on Formal

Eric Madelaine -- HDR 129 Sept. 2011

10. Personal Bibliography

Aspects of Component Systems (FACS’06), volume 182, pages 3–16, Prague, Czech
Republic, Sep 2007. ENTCS.

[C-07a] S. Ahumada, L. Apvrille, T. Barros, A. Cansado, E. Madelaine, and E. Sala-
geanu. Specifying Fractal and GCM Components With UML. In proc. of the XXVI
International Conference of the Chilean Computer Science Society (SCCC’07),
Iquique, Chile, November 2007. IEEE.

[C-07b] Denis Caromel, Ludovic Henrio, and Eric Madelaine. Active objects and
distributed components : Theory and implementation. In Frank S. de Boer and
Marcello M. Bonsangue, editors, FMCO 2007, number 5382 in LNCS, pages 179–
199, Berlin Heidelberg, 2008. Springer-Verlag.

[C-08a] Antonio Cansado, Ludovic Henrio, and Eric Madelaine. Transparent first-
class futures and distributed component. In International Workshop on Formal
Aspects of Component Software (FACS’08), volume 260, pages 155–171, Malaga,
Sept 2008. Electronic Notes in Theoretical Computer Science (ENTCS).

[C-08b] Antonio Cansado, Eric Madelaine, and Pablo Valenzuela. VCE : A Gra-
phical Tool for Architectural Definitions of GCM Components. Tool paper, 5th
workshop on Formal Aspects of Component Systems (FACS’08), Sep 2008.

[C-08c] Antonio Cansado, Ludovic Henrio, Eric Madelaine, and Pablo Valenzuela.
Unifying architectural and behavioural specifications of distributed components.
In International Workshop on Formal Aspects of Component Software (FACS’08),
volume 260, pages 25–45, Malaga, Sept 2008. Electronic Notes in Theoretical
Computer Science (ENTCS).

[C-09] Antonio Cansado and Eric Madelaine. Specification and verification for
grid component-based applications : from models to tools. In Formal Methods for
Components and Objects (FMCO 2008), number 5751 in LNCS, pages 180–203,
Berlin Heidelberg, 2009. Springer-Verlag.

[C-10] Rabéa Boulifa, Ludovic Henrio, and Eric Madelaine. Behavioural models
for group communications. In WCSI-10 : International Workshop on Component
and Service Interoperability, number 37 in EPTCS, pages 42–56, 2010.

Conferences without proceedings or local audience :

[W-04] T. Barros and E. Madelaine. Formal description and analysis for distributed
systems. Technical Report 4-04, University of Kent, Computing Laboratory, April
2004. Doctoral Symposium at IFM’04, Canterbury, Kent, England.

[W-06] A. Cansado, L. Henrio and E. Madelaine. Towards Real-case Component
Model-checking In 5th Fractal Workshop Nantes, France, July 2006

Thesis

[T-83] E. Madelaine. Système d’aide à la preuve de compilateurs. PhD thesis,
Université de Paris VII, 1983.

Technical reports, Others

[R-82] E. Madelaine. Le système Perluette et les preuves de reprsentation de types
abstraits Rapport de Recherche RR0133, INRIA, may 1982.

Eric Madelaine -- HDR 130 Sept. 2011

10. Personal Bibliography

[R-85] M. Devin, A. Ressouche, E. Madelaine. Application de CEYX a la construc-
tion de programmes sous forme de machines virtuelles Rapport de Recherche
RR0219, INRIA, may 1985.

[R-87a] V. Lecompte, D. Vergamini, E. Madelaine. AUTO : un systeme de verifi-
cation de processus paralleles et communicants Rapport Technique RT083, INRIA,
mar. 1987.

[R-87b] R. de Simone, E. Madelaine. ECRINS : un laboratoire de preuve pour les
calculs de processus Rapport de Recherche RR672, INRIA, mar. 1987.

[R-88] G. Doumenc and E. Madelaine. Une traduction de Plotos en Meije. Rapport
de Recherche RR938, INRIA, 1988.

[R-90] G. Doumenc, E. Madelaine, and R. de Simone. Proving process calculi
translations in ECRINS : The PureLotos --> Meije example Rapport de recherche
RR1192, INRIA, March 1990.

[R-92a] S. Gnesi, E. Madelaine, and G. Ristori. An exercise in protocol verification.
In T. Bolognesi, E. Brinksma, and C. Vissers, editors, Third Lotosphere Workshop
and Seminar, Pisa, September 1992.

[R-92b] E. Najm, A. Lakas, A. Serouchni, E. Madelaine, and R. de Simone. Alto :
an interactive transformation tool for lotos and lotomaton. In T. Bolognesi,
E. Brinksma, and C. Vissers, editors, Third Lotosphere Workshop and Seminar,
Pisa, September 1992.

[R-95] W.R. Cleaveland, S. Sims and E. Madelaine. A front-end generator for
verification tools Rapport de Recherche RR2612, INRIA, July 1995.

[R-02] Rabea Boulifa and Eric Madelaine. Preuves de propriétés de comportement
de programmes proactive. Technical Report RR4460, INRIA, May 2002.

[R-04] T. Barros and E. Madelaine. Formalisation and proofs of the chilean elec-
tronic invoices system. Technical Report RR-5217, INRIA, june 2004.

[R-05a] T. Barros, L. Henrio, and E. Madelaine. Behavioural models for hierarchi-
cal components. Technical Report RR-5591, INRIA, June 2005.

[R-06] OASIS team and other partners in the CoreGRID Programming Model Vir-
tual Institute. Proposals for a grid component model. Technical Report D.PM.02,
CoreGRID, Programming Model Virtual Institute, Feb 2006. Responsible for the
delivrable.

[R-07a] Yu Feng, Eric Madelaine, Ian Stockes-Rees and partners of the NESSI-
Grid consortium. Grid Vision and Strategic Research Agenda. Technical report,
NESSI-Grid : Networked European Software and Services Initiative - Grid, October
2007.

[R-07b] OASIS team and GridCOMP partners. Proceedings of the first gridcomp
workshop. Technical report, GridComp, December 2007. Deliverable D.DIS.03.

[R-08a] Tomás Barros, Rabéa Boulifa, Antonio Cansado, Ludovic Henrio, and Eric
Madelaine. Behavioural models for distributed fractal components. Research
Report 6491, INRIA, April 2008.

[R-08b] NESSI-Grid WP1 partners. Grid Vision and Strategic Agenda, Deliverable
D.1.5. Technical report, NESSI-Grid SSA EU project, Nov 2008. final version.

[R-09] Régis Gascon and Eric Madelaine. Verifying distributed systems with un-
bounded channels. Technical report, INRIA, 2009.

[R-10] Ludovic Henrio and Eric Madelaine. Experiments with distributed model-
checking of group-based applications. In Sophia-Antipolis Formal Analysis Work-
shop, page 3p., France Sophia-Antipolis, Oct 2010.

Eric Madelaine -- HDR 131 Sept. 2011

10. Personal Bibliography

Standards, Software

[S-08a] ETSI TC-GRID. ETSI TS 102 827 : GRID ; Grid Component Model ; Part
1 : GCM Interoperability Deployment. Technical report, European Telecommuni-
cations Standards Institute (ETSI), Sophia-Antipolis, France, 2008.

[S-08b] ETSI TC-GRID. ETSI TS 102 828 : GRID ; Grid Component Model ; Part
2 : GCM Application Description. Technical report, European Telecommunica-
tions Standards Institute (ETSI), Sophia-Antipolis, France, 2008.

[S-09] ETSI TC-GRID. ETSI TS 102 829 : GRID ; Grid Component Model ; Part
3 : GCM Fractal Architecture Description Language (ADL). Technical report, Eu-
ropean Telecommunications Standards Institute (ETSI), Sophia-Antipolis, France,
2009.

[S-10] ETSI TC-GRID. ETSI TS 102 830 : GRID ; Grid Component Model ; Part
4 : GCM Fractal JAVA API. Technical report, European Telecommunications
Standards Institute (ETSI), Sophia-Antipolis, France, 2010.

[L-10] OASIS Team. The VERCORS platform : Verification of models for dis-
tributed communicating componants, with safety and security, 2010. http://

agrausch.informatik.uni-kl.de/CoCoME.

[L-88] E. Madelaine, R. de Simone, and D. Vergamini. ECRINS, user manual,
1988. Technical Documentation.

Eric Madelaine -- HDR 132 Sept. 2011

11. General Bibliography

Chapitre 11

General Bibliography

Eric Madelaine -- HDR 133 Sept. 2011

Bibliographie

[1] Apache Tuscany open source project. http ://tuscany.apache.org/..., ? ? ?

[2] SCOrWare : An Open SCA-compliant Service-oriented Component-based soft-
ware platform. http ://www.scorware.org/, ? ? ?

[3] SOFA 2.0 : balancing advanced features in a hierarchical component model.
In Proceedings of SERA 2006, IEEE CS, pages 40–48, Aug 2006.

[4] OASIS Committee Draft 5. SCA Assembly Specification Version 1.1.
http ://oasis..., 2010.

[5] P. André, G. Ardourel, and C. Attiogbé. Adaptation for hierarchical compo-
nents and services. Electron. Notes Theor. Comput. Sci., 189 :5–20, 2007.

[6] P. André, G. Ardourel, and C. Attiogbé. Composing Components with Shared
Services in the Kmelia Model. In 7th International Symposium on Software
Composition, SC’08, volume 4954 of LNCS. Springer, 2008.

[7] L. Apvrille, J.-P. Courtiat, C. Lohr, and P. de Saqui-Sannes. TURTLE : A real-
time uml profile supported by a formal validation toolkit. IEEE transactions
on software Engineering, 30(7), 2004.

[8] A. Arnold. Finite transition systems. Semantics of communicating sytems.
Prentice-Hall, 1994.

[9] C. Attiogbé, P. André, and G. Ardourel. Checking Component Composability.
In 5th International Symposium on Software Composition (ETAPS/SC’06, vo-
lume 4089 of Lecture Notes in Computer Science. Springer Verlag, 2006.

[10] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Qui-
lici. Grid Computing : Software Environments and Tools, chapter Program-
ming, Deploying, Composing, for the Grid. Springer-Verlag, January 2006.

[11] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and R. Qui-
lici. Grid Computing : Software Environments and Tools, chapter 9 : Pro-
gramming, Composing, Deploying for the Grid. Springer, 2006. ISBN : 1-
85233-998-5.

[12] T. Ball, E. Bounimova, V. Levin, R. Kumar, and J. Lichtenberg. The static
driver verifier research platform. In Tayssir Touili, Byron Cook, and Paul
Jackson, editors, Computer Aided Verification, volume 6174 of Lecture Notes
in Computer Science, pages 119–122. Springer Berlin / Heidelberg, 2010.

[13] T. Ball and S. K. Rajamani. Automatically validating temporal safety proper-
ties of interfaces. In Proceedings of the SPIN Workshop, LNCS 2057. Springer-
Verlag, 2001.

[14] T. Barros. Formal specification and verification of distributed component sys-
tems. PhD thesis, University of Nice - Sophia Antipolis, November 2005.

[15] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and
C. Pérez. GCM : A Grid Extension to Fractal for Autonomous Distributed
Components. Annals of Telecommunications, 64(1) :5–24, 2009.

134
Eric Madelaine -- HDR 134 Sept. 2011

BIBLIOGRAPHIE

[16] G. Behrmann, David A, K. G. Larsen, M. Oliver Möller, Paul Pettersson, and
Wang Yi. Uppaal - present and future. In Proc. of 4th IEEE Conference on
Decision and Control. IEEE Computer Society Press, 2001.

[17] W. Belhkir. Behavioural typing for proactice distributed components. Master
thesis, Master recherche Univ. d’Aix-Marseille, June 2005.

[18] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and Wang Yi. Uppaal

— a Tool Suite for Automatic Verification of Real–Time Systems. In Proc. of
Workshop on Verification and Control of Hybrid Systems III, number 1066 in
Lecture Notes in Computer Science, pages 232–243. Springer–Verlag, October
1995.

[19] J.A. Bergstra, A. Pose, and S.A. Smolka. Handbook of Process Algebra. North-
Holland, 2001.

[20] B. Berthomieu, J.P. Bodeveix, M. Filali, H. Garavel, F. La ng, F. Peres,
R. Saad, J. Stoecker, and F. Vernadat. The syntax and semantics of Fiacre. In
Rapport LAAS #07264 Rapport de Contrat Projet ANR05RNTL03101 OpenE
mbeDD, Mai 2007.

[21] D. Binkley and K. Gallagher. Program slicing. Advances in Computers, 43 :1-
50, 1996.

[22] B. Boigelot and P. Godefroid. Symbolic verification of communication proto-
cols with infinite state spaces using QDDs. Formal Methods in System Design,
pages 237–255, 1999.

[23] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. In P.H.J.van Eijk, C.A.Vissers, and M.Diaz, editors, The Formal
Description Technique LOTOS, pages 23–76. North-Holland, 1989.

[24] A. Bouali, Annie R., V. Roy, and R. De Simone. The FCTOOLS User Manual
(Version 1.0). Rapport Technique RT-0191, INRIA, 1996.

[25] A. Bouali, A. Ressouche, V. Roy, and R. de Simone. The fc2tools set. In CAV,
pages 441–445, 1996.

[26] A. Bouchakhchoukha. Translation from pNets model to Fiacre language, for
the verification of parallel, distributed and concurrent applications . Technical
report, Master 2 MDFI, Univ. Aix-Marseille II, 2009.

[27] R. Boulifa. Génération de modèles comportementaux des applications
réparties. PhD thesis, University of Nice - Sophia Antipolis – UFR Sciences,
December 2004.

[28] P. Broadfoot and B. Roscoe. Tutorial on fdr and its applications. In SPIN’00,
volume LNCS #1885, 2000.

[29] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The
fractal component model and its support in java. Software Practice and Ex-
perience, special issue on Experiences with Auto-adaptive and Reconfigurable
Systems, 36(11-12), 2006.

[30] J. R. Burch, E. M. Clarke, K. Mcmillan, D. Dill, and L. J. Hwang. Symbolic
model checking : 102̂0 states and beyond. In Logic in Computer Science, pages
428–439, 1990.

[31] S. Campos, E. Clarke, W. Marrero, and M. Minea. Verus : A tool for quan-
titative analysis of finite-state real-time systems. In In ACM Workshop on
Languages Compilers and Tools for Real-Time Systems, 1995.

[32] A. Cansado. Formal Specification and Verification of Distributed Component
Systems. PhD thesis, Université de Nice - Sophia Antipolis – UFR Sciences,
December 2008.

Eric Madelaine -- HDR 135 Sept. 2011

BIBLIOGRAPHIE

[33] A. Cansado, E. Madelaine, and P. Valenzuela. VCE : A Graphical Tool for Ar-
chitectural Definitions of GCM Components. 5th workshop on Formal Aspects
of Component Systems (FACS’08), Sep 2008.

[34] D. Caromel, L. Henrio, and B. Serpette. Asynchronous and deterministic
objects. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 123–134. ACM Press, 2004.

[35] CCA forum. The Common Component Architecture (CCA) Forum home page,
2005. http ://www.cca-forum.org/.

[36] A. Childs, J. Greenwald, G. Jung, M. Hoosier, and J. Hatcliff. CALM and
Cadena : Metamodeling for Component-Based Product-Line Development.
IEEE Computer, 39(2), 2006.

[37] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counter-example-guided
abstraction refinement. In CAV’00, volume LNCS #1855, pages 154–169,
2000.

[38] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
2000.

[39] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstrac-
tion. ACM transactions on Programming Languages and Systems (TOPLAS),
16(5) :1512–1542, 1994.

[40] R. Cleaveland and J. Riely. Testing-based abstractions for value-passing sys-
tems. In CONCUR’94. LNCS 836, Springer, 1994.

[41] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, S. Laubach, and H. Zheng.
Bandera : Extracting finite-state models from java source code. Int. Confe-
rence on Software Engineering (ICSE), 2000.

[42] P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference
Record of the Twentyseventh Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 12–25, Boston, Mass., January
2000. ACM Press, New York, NY.

[43] R. De Nicola and F.W. Vaandrager. Action versus state based logics for tran-
sition systems. In I. Guessarian, editor, Semantics of Systems of Concurrent
Processes, La Roche Posay, France, 1990. LNCS 469, Springer Verlag.

[44] A. Denis, C. Perez, T. Priol, and A. Ribes. Bringing high performance to
the corba component model. In SIAM Conference on Parallel Processing for
Scientific Computing, 2004.

[45] M. Dwyer, J. Hatcliff, and H. Zheng. Slicing software for model construction.
Journal of High-order and Symbolic Computation, 2000.

[46] F. Fernandes and J.C. Royer. The STSLIB project : Towards a formal com-
ponent model based on STS. In Proceedings of the Fourth International Work-
shop on Formal Aspects of Component Software (FACS’07), Sophia Antipolis,
France, September 2007.

[47] H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. European
Association for Software Science and Technology Newsletter, 4 :13–24, aug
2002.

[48] H. Garavel, F. Lang, R. Mateescu, and W. Serve. Cadp 2010 : A toolbox
for the construction and analysis of distributed processes. In Proceedings of
TACAS’11, Saarbrcken, Germany, 2011. LNCS.

[49] H. Garavel, R. Mateescu, D. Bergamini, A. Curic, N. Descoubes, C. Joubert,
I. Smarandache-Sturm, and G. Stragier. Distributor and bcg merge : Tools

Eric Madelaine -- HDR 136 Sept. 2011

BIBLIOGRAPHIE

for distributed explicit state space generation. In TACAS’06, pages 445–449,
2006.

[50] Servicio de impuestos internos Gobierno de Chile. Factura electrónica. Tech-
nical report, 2002.

[51] J.F. Groote, J. Keiren, A. Mathijssen, B. Ploeger, F. Stappers, C. Tankink,
Y. Usenko, M. van Weerdenburg, W. Wesselink, T. Willemse, and J. van der
Wulp. The mCRL2 toolset. In Proc. International Workshop on Advanced
Software Development Tools and Techniques (WASDeTT’08), 2008.

[52] J.F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, and M. van Weerdenburg.
The formal specification language mcrl2. In Proc. Methods for Modelling Soft-
ware Systems, Dagstuhl Seminar Proceedings 06351, 2007.

[53] J.F. Groote and A. Ponse. Proof theory for µCRL : a language for pro-
cesses with data. In Andrews et al., editors, Proceedings of the International
Workshop on Semantics of Specification Languages, Workshops in Computing
Series, pages 231–250. Springer Verlag, 1994.

[54] O. Grumberg. Abstraction and refinement in model checking. In FMCO’05,
volume LNCS #4111, pages 219–242, 2006.

[55] A. Gupta and O. Strichman. Abstraction refinement for bounded model che-
cking. In CAV’05, volume LNCS #3576, pages 112–124, 2005.

[56] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad Ranganath. Ca-
dena : An integrated development, analysis, and verification environment for
component-based systems. In ICSE’03, 2006.

[57] Ludovic Henrio and Muhammad Uzair Khan. Asynchronous components with
futures : Semantics and proofs in isabelle/hol. In Proceedings of the Seventh
International Workshop, FESCA 2010. ENTCS, 2010.

[58] G. Holzmann. The SPIN Model Checker, Primer and Reference Manual.
Addison-Wesley, 2003. ISBN 0-321-22862-6.

[59] G.J. Holzmann, American Telephone, and Telegraph Company. Design and
validation of computer protocols. Prentice-Hall software series. Prentice Hall,
1991.

[60] P. Hošek, T. Pop, T. Bureš, P. Hntynka, and M. Malohlava. Comparison
of component frameworks for real-time embedded systems. In Lars Grunske,
Ralf Reussner, and Frantisek Plasil, editors, Component-Based Software En-
gineering, volume 6092 of Lecture Notes in Computer Science, pages 21–36.
Springer Berlin / Heidelberg, 2010.

[61] G. Jung. The type system of CALM. Technical Report SAnToS-TR2006-3,
Kansas State University, 2006.

[62] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 40, 1985.

[63] K. G. Larsen, P. Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal
on Software Tools for Technology Transfer, 1(1–2) :134–152, October 1997.

[64] F. Lerda, J. Kapinski, E. M. Clarke, and B. H. Krogh. Verification of super-
visory control software using state proximity and merging. In In Submitted
to the 11th International Workshop on Hybrid Systems : Computation and
Control, 2008.

[65] H. Lin. Symbolic transition graph with assignment. In U. Montanari and
V. Sassone, editors, CONCUR ’96, Pisa, Italy, 26–29 August 1996. LNCS
1119.

Eric Madelaine -- HDR 137 Sept. 2011

BIBLIOGRAPHIE

[66] G. Avrunin M. Dwyer and J. Corbett. Patterns in property specifications for
finite-state verification. In Int. Conf. on Software Engineering, 1999.

[67] T. Maarouk. Outils pour le model-checking d’applications java distribuées.
Master thesis, September 2002.

[68] C. Massols. Outils d’analyse statique et de vérification pour les applications
java distribuées. Master thesis, UNSA, September 2003. Rapport de stage
MIAGE, in french.

[69] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for re-
gular alternation-free mu-calculus. In S. Gnesi et al, editor, Proceedings of
FMICS’2000, GMD Report 91, pages 65–86, Berlin, April 2000.

[70] R. Mateescu and D. Thivolle. A model checking language for concurrent value-
passing systems. In FM’08. LNCS 5014, 2008.

[71] R. Milner. Logic for computable functions : Description of a machine imple-
mentation. Technical report, Stanford University, 1972.

[72] R. Milner. Communication and Concurrency. Prentice Hall, 1989. ISBN
0-13-114984-9.

[73] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Infor-
mation and Computation, 100(1), 1992.

[74] Jezek P., Kofron J., and Plàsil F. Model checking of component behavior
specification : A real life experience. ENTCS, 160 :197–210, 2006.

[75] N. Parlavantzas, M. Morel, V. Getov, F. Baude, and D. Caromel. Performance
and scalability of a component-based grid application. In 9th Int. Worshop on
Java for Parallel and Distributed Computing, in conjunction with the IEEE
IPDPS conference, April 2007.

[76] L. C. Paulson. Logic and computation. Interactive proof with Cambridge LCF.
Cambridge University Press, 1987.

[77] F. Plasil, D. Balek, and R. Janecek. Sofa/dcup : Architecture for component
trading and dynamic updating. pages 43–52. IEEE CS Press, 1998.

[78] F. Ranzato. On the completeness of model checking. In Proc. 10 th ESOP
’ 2001 , Genova, IT, 2–6 Apr. 2001, LNCS 2028, pages 137–154. Springer-
Verlag, 2001.

[79] A. Rouini. Parametric Component Topologies : language extension and imple-
mentation. Technical report, Master Ubinet, Univ. of Nice Sophia Antipolis,
2010.

[80] V. Roy. AUTOGRAPH : Un Outil de Visualisation pour les Calculs de Pro-
cessus. PhD thesis, 1990.

[81] E. Salageanu. An uml profile for the specification of distributed components
systems. Technical report, Université de Nice-Sophia Antipolis, 2006. Rapport
de stage de Master 1.

[82] E. Salageanu. Environment for the specification of distributed components.
Technical report, Université de Nice-Sophia Antipolis, September 2007. Rap-
port de stage de Master 2.

[83] E. Salageanu. Tools for the behavioural modeling of distributed components.
Technical report, Université de Nice-Sophia Antipolis, June 2007. Rapport de
projet de fin d’etudes de Master 2.

[84] B. Scattergood. The Semantics and Implementation of Machine-Readable
CSP. PhD thesis, Oxford University Computing Laboratory, 1998.

Eric Madelaine -- HDR 138 Sept. 2011

BIBLIOGRAPHIE

[85] B. Thome and V. Viswanathan. Enterprise Grid Alliance–Reference Model
v1.0. Apr. 2005.

[86] F. Tronel, F. Lang, and H. Garavel. Compositional verification using CADP of
the ScalAgent deployment protocol for software components. In 6th IFIP In-
ternational Conference on Formal Methods for Open Object-based Distributed
Systems FMOODS’2003, Paris, France, Nov 2003.

[87] D. Vergamini. Vérification de Réseaux d’Automates finis par Équivalences
observationnelles : le système AUTO. PhD thesis, 1987.

[88] Dao Anh Viet. Modèle comportemental pour calculs d’objets répartis et mo-
biles. Master’s thesis, Université Pierre et Marie Curie, LIP6, September 2002.
Stage de DEA de Systèmes Informatiques Répartis.

[89] P. Wolper and B. Boigelot. Verifying systems with infinite but regular state
spaces. In Proceedings of the 10th International Conference on Computer
Aided Verification, volume LNCS 1427 of CAV ’98, pages 88–97. Springer-
Verlag, 1998.

Eric Madelaine -- HDR 139 Sept. 2011

	2009-AnnalsVersionSpringer.pdf
	Behavioural models for distributed Fractal components
	Abstract
	Introduction
	Context
	Fractal, GCM and ProActive
	A GCM reference implementation: GCM/ProActive
	Life-cycle of GCM/ProActive components

	Theoretical model
	Networks of synchronised automata
	Parameterised networks of synchronised automata
	Data abstraction

	Behavioural models for distributed applications
	Active objects
	Hierarchical components
	Hierarchical components + management interfaces = fractal
	Distributed components: GCM/ProActive
	Primitive components
	Composites components

	Platform overview
	User input
	Internal model
	Verification

	Conclusion and perspectives
	References

