Asynchronous
communications: from calculi
to distributed components

Asynchonous CCS

Communication timing
Asynchronous components

ludovic.henrio@inria.fr

Synchronous and asynchronous languages

» Systems build from communicating components :
parallelism, communication, concurrency

» Asynchronous Processes
- Synchronous communications (rendez-vous)
Process calculi: CCS, CSP, Lotos
- Asynchronous communications (message queues)
SDL modelisation of channels
» Synchronous Processes (instantaneous diffusion)
Esterel, Sync/State-Charts, Lustre

Question on D. Caromel course: how do you classify
ProActive ?

Processes Calculi — Asynchrony in CCS

» A proposal in r-calculus: Asynchronous Tr-calculus
* No consequence of output actions
» Equivalentin CCS:

P,Q === 0 inaction
[1. P prefix |
P | Q nparalel

|

|

| P+ Q (external) choice

| (va)P restriction

| reckP process P with definition K = P
| K (defined) process name

Processes Calculi — what is asynchrony? (2)

« p.PcanbeaP, aP,1.P

* An asynchronous version would be to allow only a.P, and
1.P, and simply @ without suffix

* a.P has to be replaced by (a]P)

» A very simple notion but sufficient at this level

» Same expressivity, but simple synchronisation can
become more complex

Exercise: rewrite the following example in
asynchronous CCS:

(a.b.a+c.b.c)|(ab.a+c.bc)

16/03/10

Communication Ordering; A Deeper Study

Synchronous, asynchronous, and causally
ordered communication

Bernadette Charron—-Bost, Friedemann
Mattern, Gerard Tel

1996

Time and processes representation

P2
P1% —
PO

Imaginary
Time Axis
P2
% E
PO T
= these execution are identical -> event representation
= Only the order of message reception matters, whatever the
transmission and execution duration
P—O—— = R~ —————
b1 P O
0 S~ # B ~ 7

Happened Before Relation
= Asynchronous Communication

asynchronous communications, any order is valid
(provided messages are received after being sent)

(s,r) € ' a communication

<, local causality relation (total order on LOCAL events)
Global causality <,verifies at least

If < is a partial order (antisymetric) then it
represents a valid asynchronous

s<r if(syr)er communication

+ transitivity: If e1 < e2, i.e. there must be no cycle of different

and e2 < e3, then, e1 < e3 | events

Happened before relation

a<;b=a<b

Happened-before relation

* Not all events are mandatorily related along <

- Incomparable, independent, concurrent: ||
e e1|| e2 if neither e1<e2 nor e2<el
o Non transitivity of ||

P2 et . 5

o e —————£3 o

PO T~

U
e2

el <e2v el || el
el <e2 62 || e2'
e2 <e3
el <e3 el || el
el"<e2' | |e2 || et
e2' <e3 | |e2 |l e2
el <e3

16/03/10

Exercise

-
N T

N

* Why is the above execution not asynchronous?
* Make it a correct execution by changing just the
red arrow
* Find 2 unrelated events

Synchronous communication

» Emission and reception is almost the same event
A first characterization: Asynchronous +

if (s,r) €, then a<s= a<rand r<a = s<a

(still no cycle)

strong common past, strong common future
» Or:in execution diagram messages can be all drawn

vertically at the same time >/
* OR: no crown
(s1<r2ands2<r3and ...sn<r1) X

FIFO

» Order of messages sent between two given processes is
guaranteed (reception order is the sending order)

* Leta~bifa and b on the same process
» Asynchronous +
if (s,r) €T, (s',r)ET, s~ and r~r
then s<s’ = r<r’

(still no cycle)
yn\
-t

Causal Ordering

* More constrained than FIFO
* Asynchronous +
if (s,r) €, (s',r)eTrl, and r~r
then s<s’ = r<r’
(still no cycle)
* A nice characterization: for each message m the diagram
can be drawn with m as a vertical arrow and no other

message go backward
P

&
_— /1 ™~

* Or no message is bypassed by a chain of messages

16/03/10

Causal ordering (2): Causality Violation

Physical Time

P1 ®-2=2

P2 @ 2\ %5/)
P3 @ & @
» Causality violation occurs when order of messages

causes an action based on information that another host
has not yet received.

Causal ordering (3): The “triangle pattern”

Objective: Ensure that 3 arrive at C after 1.

Summary of communicaiton orderings

» Asynchronous C FIFO channelsC Causal ordering C
Synchronous

» Several characterization of communication timing
(equations, diagram, ...)

* Such characterizations are useful for
- Identifying coherent states (states that could exist)
- Performing fault-tolerance and checkpointing

- Study which algorithms are applicable on which
communication orderings

- Might be useful for debugging, or replaying an
execution

Exercise: Are the execution CO, synchronous,
asynchronous or FIFO?

S >

/ ~

A /

~

16/03/10

<
/

/
[]
/%////

Weak common past — weak common future

« if (s,r) €T, for a CO computation, then a<r = NOT s<a
(WCP)
and s<a = NOT a<r (WCF)

Exercise

Exercise: find a computation that does not ensure
weak common past
is it asynch FIFO CO or synch?

* Rendez-vous:

No event between sending
and reception

Exercise: What does rendez-vous ensure?

* So why is ProActive said asynchronous?

16/03/10

GCM: “Asynchronous” Fractal Components

GCM - Quick Context

» Designed in the CoreGrid Network of Excellence,
Implemented in the GridCOMP European project

» Add distribution to Fractal components

* OUR point of view in OASIS:
- No shared memory between components
- Components evolve asynchronously

- Components are implemented in ProActive
- Communicate by request/replies (Futures)

* A good context for presenting asynchronous components
futures and many-to-many communications

What are (GCM/Fractal) Components?

NF (server) interfaces B|nd'|ngs

T T T :

Composite component 1

| Client

B

Business code

Primitive component

1
| | NG | foan /I”*\l
Server > Primitive component/ >

interfaces

}__'%_,—" Business code [T

\Qte‘rfaces

A Primitive GCM Component

HoR [[[]] -+

Cl.foo(p) —
T ¥

Primitive components communicating by asynchronous
remote method invocations on interfaces (requests)

= Components abstract away distribution and concurrency

in ProActive components are mono-threaded
=> simplifies concurrency but can create deadlocks

16/03/10

Composition in GCM

Bindings:
Requests = Asynchronous method invocations
7/

-
N
T

E
N

Futures for Components

T

Ol [TT] t>—HLITIT]
PO T TT] t>—HK

Component are independent entities
(threads are isolated in a component)
+

Asynchronous method invocations with results

Futures are necessary

Replies

OO [TT] pt>=HlO [IT]] H
g

f.bar()

First-class Futures

Sl [T 1]

A\

Holol [[[] 4+

o & e

Cl.foo(f) <1

* Only strict operations are blocking (access to a future)
* Communicating a future is not a strict operation

16/03/10

First-class Futures and Hierarchy

First-class Futures and Hierarchy

Without first-class futures, one thread is systematically
blocked in the composite component.

Nicusny

1

Almost systematic dead-lock in ProActive

A lot of blocked threads otherwise

Reply Strategies

T

ORI HoH@ 1] H

In ASP / ProActive, the result is insensitive to the order of
replies (shown for ASP-calculus)

experiments with different strategies

Future Update Strategies

How to bring future values to components that need them
Different strategies can be envisioned

A “naive” approach: Any component can receive a value for
a future reference it holds.

More operational is the laz oach:
require future value

~

HH>— >' HH> tou ' , tl H
Hp S %NW
— ~a 7

« On demand » future update

No-unnecessary transfer of values - Single step uptate
« registration delay + time for transfer »
Results stored for long term =» Not much operational.

16/03/10

Eager home-based future update

» A strategy avoiding to store future values indefinitely

* Relies on future registration and sends the value as soon
as it is calculated register future

<
R
2

= 4 1
HeH_2 |

Results sent as soon as available - Un-necessary transfers
Every component with future reference registers
Garbage collection of computed results possible -

Eager forward-based strategy

» Future updates follow the same path as future flow

» Each component remembers only the components to
which it forwarded the future

s T
HpH s

\

Results sent as soon as available
No registration required

Future updates form a chain = intermediate components

Easy to garbage collect computed results L

A Distributed Component Model with Futures

® Primitive components contain the business code

® Primitive components act as the unit of distribution and
concurrency (each thread is isolated in a component)

® Communication is performed on interfaces and follows
component bindings

® Futures allow communication to be asynchronous
requests

® Futures are transparent can lead to optimisations
and are a convenient programming abstraction but

What Can Create Deadlocks?

* Arace condition:

QueryManager
Data query(String s) { db
S ey e
TSSINIE, Database
Ll/ return db.quer(@; \\‘ Data query (Query q) {
void run(Table t) {
Datad = am

return database.query(q);
d }
qm.query(s); J void insert (Table t, Data d) {
db.insert(t,d); _li database.insert(t,d);
} | db }

Client

» Detecting deadlocks can be difficult = behavioural specification and
verification techniques (cf Eric Madelaine)

16/03/10

Conclusion

* An overview of asynchronism and different
communication timings

» Applied to components with richer language constructs
(futures, collective interfaces, ...)

» Still a lot of other distributed computing paradigms exist
(Ambient Talk, creol, X10 for example)

» A formalism for expressing communication ordering

Exercise 1: Request queue

* In CCS with parameters (a value can be a request)
- Express a request queue:

Request Dequeue(R)
queue —

- Also express 2 simple processes accessing it

Enqueue(R)
IR

Hint from last course: Reg; = read(i).Reg; + write(x).Reg ,

» Same thing in asynchronous CCS (without and with
RDV)

Exercise 2: find a solution to the deadlock slide 37

Exercise 3: Ensuring causal ordering with a
sending queue
In the example below, suppose that the bottom thread has

a sending queue, that is it sends all messages to an
additional thread that emits the final messages.

- Draw the new message exchanges

- Suppose the communications are synchronous, what
is lost by adding this new thread? what is the new
overall ordering (what if CO, FIFO, or asynch?)

/ \ /

Exercise 4: Ensuring causal ordering with
many sending queues
» Same thing but with one sending queue per destination
process
- Draw the new message exchanges

- Suppose the communications are synchronous, what
is lost by adding this new thread? what is the new
overall ordering (what if CO, FIFO, or asynch?)

16/03/10

10

Pointeurs pour exposés SSDE

wikipedia Model-checking:
http://en.wikipedia.org/wiki/Model checking

Sites

SPIN: http://spinroot.com/
SMV: http://www-cad.eecs.berkeley.edu/~kenmcmil/

PSL/SuGaR: http://www.pslsugar.org/
http://www.haifa.il.ibm.com/projects/verification/sugar/

Ptolemy: http://ptolemy.eecs.berkeley.edu/
Metropolis: http://www.gigascale.org/metropolis/
Bandera: http://bandera.projects.cis.ksu.edu/
Blast: http://www-cad.eecs.berkeley.edu/~blast/
Slam: http://research.microsoft.com/slam/

SPEC#: http://research.microsoft.com/specsharp/
http://spex.projects.cis.ksu.edu/spex-jml/

AmbientTalk: http://prog.vub.ac.be/amop/
Fractal: http://fractal.objectweb.org/documentation.html

Sites

« SCA+ Frascati:
http://www.davidchappell.com/articles/Introducing SCA.pdf
http://wiki.ow2.org/frascati/
AltaRica/ARC:
http://altarica.labri.fr/tools:arc
http://altarica.labri.fr/api-docs/current/arc/arc-handbook.pdf
* Divine:
http://divine.fi.muni.cz/page.php?page=overview
http://divine.fi.muni.cz/page.php?page=language
MCRL2

http://www.mcrl2.org/mcrl2/wiki/index.php/Tool manual pages
http://www.mcrl2.org/mcrl2/wiki/index.php/MCRL2 primer

16/03/10

11

