-
DC)
e
- Z
>
= 7
Rz
>

IIIIIIIIIIIIIII

Communication and
Concurrency: CCS

R. Milner, “A Calculus of Communicating Systems”,
1980

Why calculi?

Prove properties on programs and languages

Principle: tiny syntax, small semantics, to be
handled on paper or mechanically

Prove properties on the principles of a language
or a programming paradigm

Examples: lambda calculus, sigma calculus, ...

Static semantics : examples

* Checks non-syntactic constraints
« compiler front-end :
- declaration and utilisation of variables,

- typing, scoping, ... static typing => no execution
errors ?77?

* or back-ends:
- optimisers

» defines legal programs :
- Java byte-code verifier

What can we do/know about a
— program without executing it? o

Dynamic semantics

» Gives a meaning to the program (a semantic
value)

* Describes the behaviour of a (legal) program
* Defines a language interpreter

-e->¢’

leti=3in2% ->6

Objective = to prove properties on
Program execution
(determinacy, subject reduction, ...)

Mastére RSD - TC4 oct-nov 2007 4

The different semantic families

 Denotational semantics
- mathematical model, high level, abstract
 Axiomatic semantics

- provides the language with a theory for
proving properties / assertions of programs

* Operational semantics

- computation of the successive states of an
abstract machine

- used to build evaluators, simulators.

Mastéere RSD - TC4 oct-nov 2007 5

What about concurrency and communication?

 Different timing (synchronous/asynchronous ...)

 Different programming models (what is the unit
of concurrency? What is sufficient to
characterize an execution?...?)

* Interaction between communication/
concurrency/shared memory!

Through CCS, this course is a simple
study of synchronous communications

Functional

A-calculus

\

Actors

MultiLisp \

\

\

\

CSP
C

Pict

\

I:,‘hannel l)a.sodl

Objects

/

BN

\

ABCL

Process
Networks

/
/

m-calculus] TOSA

/

\ Ambients

N

/
/

¢-calculus

/ Join-calculus

Obliq/Ojeblik

Gordon Hankin

concurrent calculus

SEMANTICS

Operational Semantics

* Describes the computation

« States and configuration of an abstract machine:
- Stack, memory state, registers, heap...
Abstract machine transformation steps
Transitions: current state -> next state

Several different operational semantics

Natural Semantics : big steps (Kahn 1986)

» Defines the results of evaluation.
 Direct relation from programs to results
env |- prog => result
- env: binds variables to values

- result: value given by the execution of prog
Reduction Semantics : small steps
describes each elementary step of the evaluation
* rewriting relation : reduction of program terms

» stepwise reduction: <prog, s> -> <prog’, s >
— infinitely, or until reaching a normal form.

Labelled Transition Systems (LTS)

» Basic model for representing reactive,
concurrent, parallel, communicating systems.
* Definition:
e<S,s0,L,T>
e S = set of states

e SO € S = Initial state

e L = set of labels (events, communication actions,
etc)

e Il CSxXxLXxS =setof transitions
a
e Notation:. s1 —>s2 = (s1,a,s2)&T

Mastére RSD - TC4 oct-nov 2007 11

An example

collecty, %////// \\\\\\\ collect,

ven y vVeny
big little

collectb.ven collectl.Ven

Deduction Rules

CCS - SYNTAX AND
SEMANTICS

CCS syntax

« Channelnames: a, b, c, ...
 Co-names: & b,C, ...

* Silent action: 1

. Actions: = a | a | 7
* Processes:

P.Q = 0 iInaction
1. P prefix
P | Q parallel

P+ Q (external) choice
(va)P restriction
reckP process P with definition K = P

K (defined) process name

A tiny example
Cl

recc1 (Tick.C1)

tick

Figure: The transition graph for C1

Labelled graph

e vertices: process expressions

e labelled edges: transitions

e Each derivable transition of a vertex is depicted
» Abstract from the derivations of transitions

CCS : behavioural semantics (1)
Operators and rules

* Action prefix:

wP 5P

PEP QlqQ

e Communication:

PIQ = P'|Q
 Parallelism
P“P - Q

PQL PIQ PIQ=PIQ

CCS : behavioural semantics (2)
Operators and rules

 Non-deterministic choice

oo PL P
P+Q L @ P+Q L5 P

PL P +az
(va)P £ (va)P’

« Scope restriction

Plreck P/K] & P’

 Recursive definition

reck P 5 P/

Derivations
(construction of each transition step)

Prefix
aP 2, ,pP
Par-L __ Prefix
aPlQ 3, P|Q a.R2. R
Par-2

(a.P|Q|aR —— (P|QI|R

Par-2(Par_L(Prefix), Prefix)

Another one : One amongst 3 possible derivations
Par-L(Par_L(Prefix))

(a.P| Q) |a.R . (P|Q)|aRrR

EQUIVALENCES

Behavioural Equivalences

 |ntuition:
- Same possible sequences of observable actions
- Finite / infinite sequences
- Various refinements of the concept of observation

« Definition: Trace Equivalence

Fora LTS (S, sO, L, T) its Trace language T is the set of finite
sequences {(t = t,, ..., t, such that 3s,,...,s, € S"*"
and (s,..t.,s,) € T}

Two LTSs are Trace equivalent iff their Trace languages are equal.

Corresponding Ordering: Trace inclusion

Trace Languages, Examples

* Those 2 systems are trace equivalent:

2 = a/\.

o \e= g [TTO-@ @b @)

¢« A trace Ianguage can be an infinite set:

IR T={(), (a), (a,a), (a,...,a),...
e l (a,b), (a,a,b), (a,a,...,a,b),
o .

Bisimulation

 Behavioural Equivalence

- non distinguishable states by observation:

two states are equivalent if for all possible transitions labelled
by the same action, there exist equivalent resulting states.

 Bisimulations o
R C SxS is a simulation iff e .
- Itis a equivalence relation act act
(plp)ET=>3q/(qlg)ETand (p.g)ER & __
- Ris a bisimulation if the same condition hold with g too:
V(p.9) ER,

(ql,d)eT=>3q/(q,l,qg)eTand (p’,q) €ER

« ~|s the coarsest bisimulation
2 LTS are bisimilar iff their initial states are in ~
quotients = canonical normal forms

Transitivity

* If R, S are bisimulations, then so is their composition
RS={P,P)| 3 Q.PRQand QS P}
* |n particular, ~~ € ~, i.e., bisimilarity is transitive.

Bisimulation

* More precise than trace equivalence

A1

% .7/ B1 ‘I/BZ No state in B is equivalent to

A2 .A B3 .B4L

* Preserves deadlock properties.

e Can be built by adding elements in the
equivalence relation

» Coinductive definition (bigges’g set verifying ...)

Bisimulation

« Congruence laws:
P1~P2 =>a.P1~a:.2 (V P1,P2,a)
P1~P2, Q1~Q2=>P1+Q1 ~ P2+Q2
P1~P2, Q1~Q2=>P1|Q1 ~ P2|Q2
Etc...

* ~is a congruence for all CCS operators :

for any CCS context C[.], C[P] ~ C[Q] <=> P~Q
Basis for compositional proof methods
 Maximal trace is not an equivalence

Observational Equivalences

 Weak bisimulation

- Abstraction: hidden actions
U

- allows for arbitrary many internal actions
T act

N /} T\ act T*/'>

S

Weak bisimulation

* The following def is a tractable version of weak
bisimulation:

A weak bisimulation is a relation R SUCIZ/ that
PRQ= Vu P, P (P—->P = 3Q.Q=>Q and PR Q)
and conversely

* Note the dissymetry between the use of —on the left and
of = on the right

« Two processes are weakly bisimilar if (notation P = Q) if
there exists a weak bisimulation R such that P R Q.

B

Branching bisimulation

* only staying in equivalent states

Still existence of a canonical minimal automata
Computation is polynomial

ADDITIONAL NOTATIONS AND
CONSTRUCTS

Alternative Notations

: def

recc1(Tick.C1) <:> Cl def tick.Cl

a little more complex for several definitions
-> exercise?

« Input/output: a=?a ;a =!a

* |or]|

Extension: Parameterized actions

 Input of data at port a, a(x).E
* a(x) binds free occurrences of x in E .

 Portarepresents{a(v):v € D } where D is a family of
data values

« Qutput of data at port a, ale).E where e is a data
expression.

* Transition Rules: depend on extra machinery for
expression evaluation. Let Val(e) be data value in D (if
there is one) to which e evaluates

. R(in)ax)E ™ E{vix}ifv e Dwhere {v/x}is
substitution

V)

- R(out)a(e)E —»"E if Valle)=v

Example: a register

Reg = aj(i).Reg; + write(x).Reg ,

write(3)
Regs —— " Regs
. write(3
read(5).Regs + write(x)Reg, —— ~ Regs

write{X).Reg, —— " Regs

EXAMPLES

Example: dining philosopher

philosopher
chopstick
Drop_right}
Drop?
ake_right
Take_le Take?

(F€Ciging eaing- (idle.idling + take_left.take_right.eating +

take right.take left.eating,

eat.eating + drop_left.drop_right.idling +
drop_right.drop_left.idling)

Deadlock or not ?
Mutual exclusion ?

(trivial) ;example: Milner’s
Scheduler

* Processes iteratively start and finish executing
tasks (one task per process)

» Task starts are cyclically ordered

cycler = a.start.($.0 || end.cycler)
scheduler 3 =local a1, a2, a3 in

([a1/ a, a2/, start1/start, end1/end] cycler
o2/ a, ad/p, start2/start, end2/end] cycler

a3/ a, a1/p, start3/start, end3/end] cycler

vérification des
a1.0) propriétés ?

e — -Scheduler—2——
expanded

Scheduler_2 reduced

tau
start1
end2

end1

Scheduler_2 reduced

CONCLUSION

* A synchronous communication language

* A (complex but) efficient notion of equivalence on
processes

* What is missing?

- Channel communication (like in pi-calculus) -> much
more complex

- No computational construct by nature

EXERCISES

Example: Alternated Bit Protocol

?imss !

Fwd channel

! Bwd_channel ?0out1
ackO
emitter receiver
Hypotheses: channels can loose
messages

Write in CCS ? Reauirement:

the protocol ensures no loss of
messages

42

Example: Alternated Bit Protocol

(2)

* emitter =
let rec {emO0 = ?ack1 :em0 + ?imss:em1
and em1 =1in0 :em1 + ?ack0 :em?2
and em2 = ?ack0 :em2 + ?imss :em3
and em3 = lin1 :em3 + ?ack1 :em0

in emO

 ABP =local {in0, in1, out0, out1, ackO, ack1, ...}

iIn emitter || Fwd_channel || Bwd_channel ||
receiver

Mastére RSD - TC4 oct-nov 2007 43

Example: Alternated Bit Protocol
(3)

Channels that loose and
duplicate messages (in0
and in1) but preserve their

order ?
* EXxercise :
1) Draw an LTS describing the loosy channel
behaviour

2) Write the same description in CCS

[o ———
Mastére RSD - TC4 oct-nov 2007 44

Exercise 2

reck coin.(coffee.ccup.K + tea.tcup.K)
coin.recg (coffee.ccup.coin.K + tea.tcup.coin.K)
reck(coin.coffee.ccup.K + coin.tea.tcup.K)

Question: which of these machines can we safely consider
equivalent?

Note that these machines have all the same traces.

Exercice 3 : Bisimulations

Are those 3 LTSs equivalent by:

- Strong bisimulation?
- Weak bisimulation ?

In each case, give a proof.

?inl ~ ?2in0

Exercice 3 : Bisimulation

« Exercice :
1) Compute the strong minimal automaton for A1.
2) Compute the weak minimal automaton for A1.

Exercise 5

def
« Compare the construct = and recy:

1. Letus st?irtfby a simple pair of processes
(&

A = aA+0b.B

de
B & a.A
2. Suppose rec can accept several variables:
rec (K=P,L=Q) express the same term

3. Isit possible to express the same thing with a single variable K?
Here are some possible hints:
e Define a recursive process All that contains A and B and can

trigger each of them by the reception of a message on channel cA
or cB

e (we suppose cA and cB cannot be used elsewhere)

e What kind of equivalence between the two expressions do you
have?

CORRECTION

Exercice: Alternated Bif Protocol
Correction (1):

Channels that loose and
duplicate messages (in0
and inl) but preserve their
order ?

1) Draw an automaton
describing the loosy
channel behaviour

* It is @ symmetric system, receiving ?in0 and ?in1 messages, then delivering 0 ,
1 or more times the corresponding !outO or lout1 message.

» On each side (bit 0 or 1), the initial state has a single transition for the
reception.
* In the next state, it can either : return silently to the initial state (= lose the

message), deliver the message and return to the initial state (exactly one
delivery), or deliver the message and stay in the same state (thus enabling

duplication).

EXxercice: Alfernated it Protocol
Correction (2):

Channels that loose and
duplicate messages (in0
and inl) but preserve their
order ?

2) Write it in CCS

* Lousy channel =

let rec {chO = ?in0 :ch1 + ?in1:ch2
and ch1 =< :ch1 + T :chO + loutO :ch1 + !'outO :chO
and ch2 =t :ch2 + T :chO + loutO :ch2 + !'outO :ch0

}
in chO

-
Al

Exercice: Alternated Bit Protocol
Correction (3):

Channels that loose and
duplicate messages (in0
and inl) but preserve their
order ?

Other Solutions:

More generally,
parameterized model :

Exercice 2 : Bisimulations

Are those 3 LTSs equivalent by:

- Strong bisimulation?

NO ! Need find non equivalent states. E.g. counter
example for 1 # 2:

States 1.0 and 1.1 are different because 1.0 can do ?
in0 and 1.1 cannot.

Then 1.1 and 2.1 are different because 1.1 can do !
out0 -> 1.0, while no 2.1 !out0 transitions can go to a
state equivalent to 1.0.

- Weak bisimulation ?

YES. Exhibit a partition of equivalent states:
1={1.0,2.0}, 2={1.1, 2.1}

Check all possible (t*at*) transitions:

0i 1 Vo,
2inl ~ ?in0 1-1n0->2,...,2 - lout0.t* > |

Remark: this transition set defines the minimal
representant modulo weak bisimulation e ———

Exercice 4 : Produit synchronisé

Compute the synchronized
product of the LTS
representing the ABP
emitter with the (forward)
Channel:

21mss

local {in0, in1} in
(Emitter || Channel)

Exercice 4 : Produit synchronise
Correction ? partially...

local {in0, in1} in
(Emitter || Channel)

Exercice 4 : Produit synchronise
Correction ? Tool generated LTS...

