Asynchronous Components

Asynchronous communications:
from calculi to distributed

components

Synchronous and asynchronous languages

« Systems build from communicating components :
parallelism, communication, concurrency

* Asynchronous Processes
- Synchronous communications (rendez-vous)

Process calculi: CCS, CSP, Lotos
- Asynchronous communications (message queues)

SDL modelisation of channels

« Synchronous Processes (instantaneous diffusion)
Esterel, Sync/State-Charts, Lustre

Question on D. Caromel course: how do you classify
ProActive ?

Asynchrony in CCS

Processes Calculi — what is asynchrony?

* A proposal in mr-calculus: Asynchronous tr-calculus
* No consequence of output actions
* Equivalent in CCS:

P.Q = 0 iInaction
| | w.P prefix |
P | Q parallel

P + Q (external) choice

(va)P restriction

reckP process P with definition K = P
K (defined) process name

S

Processes Calculi — what is asynchrony? (2)

u.P can be a.P, a.P, 1.P

An asynchronous version would be to allow only a.P, and
1.P, and simply a without suffix

a.P has to be replaced by (a|P)

A very simple notion but sufficient at this level

Same expressivity, but simple synchronisation can
become more complex

Communication Ordering; A Deeper Study

Synchronous, asynchronous, and causally
ordered communication

Bernadette Charron—-Bost, Friedemann
Mattern, Gerard Tel

1996

Causality Violation

Physical Time _
P1 @
P2 @
P3 @ @

« (Causality violation occurs when order of messages
causes an action based on information that another host
has not yet received.

The “triangle pattern”

Objective: Ensure that 3 arrive at C after 1.

Mattern: Communication is not only
synchronous or asynchronous

asynchronous communications, any order is valid
(provided messages are received after being sent)

(s,r) & I' a communication

<; local causality relation (total order on events)

Global causality <,verifies at least

If < is a partial order (antisymetric) then it
represents a valid asynchronous

a<;b=a<b

s <r(if(s,r)) communication
i.e. there must be no cycle of different
events

+ transitivity

Synchronous communication

* Emission and reception is almost the same event

: -
|

A first characterization: Additionally
if (s,r) €T, then a<s = a<rand r<a = s<a
(still no cycle) — strong common past, strong common

future

* Or : messages can be all drawn vertically at the same
time

* OR: no crown y

(s1<r2ands2<r3and ...sn<r1) /{

S L ——

FIFO

* Order of messages sent between two given processes is
guaranteed (reception order is the sending order)

 Leta~b if and b on the same process

* Asynchronous +
if (s,r)erl, (s,r)erl, s~s"and r~r
then s<s’ = r<r’
(still no cycle)

Causal Ordering

* More general than FIFO

* Asynchronous +
if (s,r)erl, (s,r)erl, and r~r
then s<s’ = r<r’
(still no cycle)

* A nice characterization: for each message the diagram
can be drawn with m as a vertical arrow and no other
message go backward

7~ N\

T

S L ———

Applications

Such characterizations are useful for
- ldentifying coherent states (states that could exist)
- Performing fault-tolerance and checkpointing

- Study which algorithms are applicable on which
communication orderings

- Might be useful for debugging, or replaying an
execution

A “few” communication orderings

e Synchronous

* FIFO channels
« Causal ordering
e Synchronous

No event beteen sending
and reception

« \What is rendez-vous?
What does rendez-vous ensure?

* So why is ProActive said asynchronous?

GCM: “Asynchronous” Fractal Components

GCM - Quick Context

* Designed in the CoreGrid Network of Excellence,
Implemented in the GridCOMP European project

« Add distribution to Fractal components
 OUR point of view in OASIS:
- No shared memory between components
- Components evolve asynchronously

- Components are implemented in ProActive
- Communicate by request/replies (Futures)

« A good context for presenting asynchronous components
futures and many-to-many communications

What are (GCM/Fractal) Components?

_ Bindings
NF (server) interfaces f J
T T T I
Composite component ,' :
i ‘ Client

interfaces |

| Business code

Primitive component

Server = => I Primitive compone”t//‘; l?—ékwrfaces

| | > |] Business code [

A Primitive GCM Component

Cl.foo(p) —
b -

Primitive components communicating by asynchronous
remote method invocations on interfaces (requests)

= Components abstract away distribution and concurrency

in ProActive components are mono-threaded
=> simplifies concurrency but can create deadlocks

Composition in GCM

Bindings:

Requests = Asynchronous method invocations

/
7

e et

Futures for Components

Component are independent entities
(threads are isolated in a component)
+

Asynchronous method invocations with results

Futures are necessary

Replies

f.bar()

First-class Futures

mg

Cl.foo(f) €<~

* Only strict operations are blocking (access to a future)
« Communicating a future is not a strict operation

First-class Futures and Hierarchy

f=f

|——|9I Without first-class futures, one thread is systematically
blocked in the composite component.

First-class Futures and Hierarchy

L1 Almost systematic dead-lock in ProActive

A lot of blocked threads otherwise

Reply Strategies

-
- *
3
D -
L]
.
L]
L4

In ASP / ProActive, the result is insensitive to the order of
replies (shown for ASP-calculus)

experiments with different strategies

Future Update Strategies

4

@‘

\

result.bar
L L

\

v

o

4 — Implementation Strategies

Future Update Strategies: Message-based

Messages

Part V 4 — Implementation Strategies

Future Update Strategies: Forward-based

4 — Implementation Strategies

Future Update Strategies: Lazy Future Updates

o

4 — Implementation Strategies

A Distributed Component Model with Futures

® Primitive components contain the business code

® Primitive components act as the unit of distribution and
concurrency (each thread is isolated in a component)

® Communication is performed on interfaces and follows
component bindings

® Futures allow communication to be asynchronous
requests

® Futures are transparent can lead to optimisations
and are a convenient programming abstraction but

What Can Create Deadlocks?

A race condition:

Client
void run(Table t) {
Datad =

gm.query(s);
db.insert(t,d);—

}

QueryManager
Data query(String s) { db

Query q =
4I- new Query(s); -I\ Database

t db. :
ClUICE L) \ Data query (Query q) {
return database.query(q);

}
void insert (Table t, Data d) {

_I / database.insert(t,d);

db }

« Detecting deadlocks can be difficult =» behavioural specification and
verification techniques (cf Eric Madelaine)

Collective Communications

Communications are not necessarily one-to-one:
* One-to-many
* Many-to-One
*MbyN

Collective Communications

« Simple type system

« Component type = types of its interfaces

* Interface type :
- Name

- Signature
_ Role Fractal type-system

- Contingency
- Cardinality

S

Multicast interfaces N ’}_[E’, .

Transform a single invocation into a list of invocations

* Multiple invocations

- Parallelism

- Asynchronism

- Dispatch
« Data redistribution (invocation parameters)

- Parameterisable distribution function

- Broadcast, scattering

- Dynamic redistribution (dynamic dispatch)
* Result = list of results

SN R ———

a.
broadcast invocation parameter

Invocation parameter received in server component

scattered
invocation parameter

-
-

Ordering and Multicast

* FIFO ordering: If a correct process issues
multicast(i,m) and then multicast(i,m’), then every
correct process that delivers m’ will deliver m before
m’.

« Causal ordering: If multicast(i,m) precedes
multicast(i’,m’) with i abd i’ containing the same
elements then any correct process that delivers m’
will deliver m before m’.

« Totally ordering (determinism): If a correct process

delivers message m before m’, then any other
correct process that delivers m’ will deliver m before
m’.

Gathercast interfaces

Transform a list of invocations

. . . . *Redistribution of results
Into a single invocation

Redistribution function

*Synchronization of incoming invocation parameter
invocations

- ~ “join” invocations
- Timeout / drop policy

- Bidirectional bindings
(callers < callee)

-Data gathering

Aggregation of parameters
into lists

list of
aggrega}ed parameters

Collective interfaces

« Specific APl = manage collective interfaces
and reconfigure them (add client, change

policy, ...)

» Allow MxN communications:

Redistribution and direct
communications for many-to-many
communications

The MxN Problem (1)

M components

)
/

"
N components

The MxN Problem (2)

The MxN Problem (3)

M components

N components

The MxN Problem (4): data distribution

invocation parameters

(]
—~ 7}4 Hi

M components

e

(TC0CIT
?

N components

Summary of Collective Communications

Simple way of specifying collective operations

+ definition at the level of the interfaces = better for
verification and specification

Rich high levels spec of synchronisation (especially
gathercast)

Easier to optimize

- The MxN case: synchronisation issues, complex
distribution policies avoid bottleneck

A few things we did not cover

SPMD programming and Synchronization Barriers, cf
gathercast???

Group communications ~ Multicast
Purely synchronous models -> Robert de Simone
Shared memory models

... and a lot of more complex communication models

S L ——

Conclusion

An overview of asynchronism and different
communication timings

Applied to components with richer language constructs
(futures, collective interfaces, ...)

Still a lot of other distributed computing paradigms exist
(Ambient Talk, creol, X10 for example)

A formalism for expressing communication ordering

Exercises

Exercise 1: Request queue

* In CCS with parameters (a value can be a request)
- Express a request queue:

Request ?Dequeue(R)
IEnqueue(R)

TN queue —

- Also express 2 simple processes accessing it

Hint from last course: Reg| = read(|)Reg| +
write(x).Reg ,

« Same thing in asynchronous CCS (without and with
RDV)

Exercise 2: Are the execution CO,
synchronous, asynchronous or FIFO?

/ \ /
/ AR

[] /

i

7

Exercise 3: find a solution to the deadlock slide 31

Exercise 4: Ensuring causal ordering with a
sending queue

In the example below, suppose that the bottom thread has
a sending queue, that is it sends all messages to an
additional thread that emits the final messages.

- Draw the new message exchanges

- |s causal ordering still ensured?
- FIFO ?

Exercise 5: Ensuring causal ordering with
many sending queues

« Same thing but with one sending queue per destination
process

- Draw the new message exchanges
- |s causal ordering still ensured?
- FIFO ?

