
Asynchronous Components

Asynchronous communications:
from calculi to distributed

components

Synchronous and asynchronous languages

•  Systems build from communicating components :
parallelism, communication, concurrency

•  Asynchronous Processes
-  Synchronous communications (rendez-vous)

-  Asynchronous communications (message queues)

•  Synchronous Processes (instantaneous diffusion)

Question on D. Caromel course: how do you classify
ProActive ?

2

Process calculi: CCS, CSP, Lotos

SDL modelisation of channels

Esterel, Sync/State-Charts, Lustre

Asynchrony in CCS

Processes Calculi – what is asynchrony?

•  A proposal in π-calculus: Asynchronous π-calculus
•  No consequence of output actions
•  Equivalent in CCS:

Processes Calculi – what is asynchrony? (2)

•  µ.P can be a.P, a.P, τ.P
•  An asynchronous version would be to allow only a.P, and
τ.P, and simply a without suffix

•  a.P has to be replaced by (a|P)

•  A very simple notion but sufficient at this level
•  Same expressivity, but simple synchronisation can

become more complex

Communication Ordering; A Deeper Study

Synchronous, asynchronous, and causally
ordered communication

 Bernadette Charron–Bost, Friedemann
Mattern, Gerard Tel

1996

Causality Violation

•  Causality violation occurs when order of messages
causes an action based on information that another host
has not yet received.

P1

P2

P3

1 2

3 4

5

0

0

0

1

2

Physical Time

4

6

The “triangle pattern”

A

C

B

2

1
(e.g., init)

3

Objective: Ensure that 3 arrive at C after 1.

Mattern: Communication is not only
synchronous or asynchronous

 a ≺i b ⇒ a ≺ b

+ transitivity

If ≺ is a partial order (antisymetric) then it
represents a valid asynchronous
communication
i.e. there must be no cycle of different
events

Synchronous communication

FIFO

Causal Ordering

Applications

Such characterizations are useful for
-  Identifying coherent states (states that could exist)
-  Performing fault-tolerance and checkpointing
-  Study which algorithms are applicable on which

communication orderings
-  Might be useful for debugging, or replaying an

execution

A “few” communication orderings

•  Synchronous
•  FIFO channels
•  Causal ordering
•  Synchronous

•  What is rendez-vous?
What does rendez-vous ensure?

•  So why is ProActive said asynchronous?

No event beteen sending
and reception

GCM: “Asynchronous” Fractal Components

GCM – Quick Context

•  Designed in the CoreGrid Network of Excellence,
Implemented in the GridCOMP European project

•  Add distribution to Fractal components
•  OUR point of view in OASIS:
-  No shared memory between components
-  Components evolve asynchronously

-  Components are implemented in ProActive
-  Communicate by request/replies (Futures)

•  A good context for presenting asynchronous components
futures and many-to-many communications

What are (GCM/Fractal) Components?

Bindings

Business code

Business code

Server
interfaces

Client
interfaces Primitive component

Primitive component

Composite component

NF (server) interfaces

A Primitive GCM Component

CI.foo(p)

Primitive components communicating by asynchronous
remote method invocations on interfaces (requests)

  Components abstract away distribution and concurrency

in ProActive components are mono-threaded
 simplifies concurrency but can create deadlocks

Composition in GCM

Bindings:
Requests = Asynchronous method invocations

Futures for Components

f=CI.foo(p)
……….
f.bar() f.bar()

Component are independent entities
(threads are isolated in a component)

+
Asynchronous method invocations with results


Futures are necessary

Replies

f=CI.foo(p)

…
…
… f.bar()

First-class Futures

f=CI.foo(p)

…
…
… CI.foo(f) CI.foo(f)

•  Only strict operations are blocking (access to a future)
•  Communicating a future is not a strict operation

First-class Futures and Hierarchy

Without first-class futures, one thread is systematically
blocked in the composite component.

f=f’

First-class Futures and Hierarchy

… …
…

Almost systematic dead-lock in ProActive

A lot of blocked threads otherwise

Reply Strategies

In ASP / ProActive, the result is insensitive to the order of
replies (shown for ASP-calculus)

experiments with different strategies

delta.send(result) result.bar() result.bar()

β
α

δ

Future Update Strategies

γ

4 – Implementation Strategies Part V

delta.send(result) result.bar() result.bar()

β
α

δ

Future Update Strategies: Message-based

γ

4 – Implementation Strategies

Fu
tu

re
 F

or
w

ar
de

d
M

es
sa

ge
s

Part V

delta.send(result) result.bar() result.bar()

β
α

δ

Future Update Strategies: Forward-based

γ

4 – Implementation Strategies Part V

delta.send(result) result.bar() result.bar()

β
α

δ

Future Update Strategies: Lazy Future Updates

γ

4 – Implementation Strategies Part V

A Distributed Component Model with Futures

•  Primitive components contain the business code

•  Primitive components act as the unit of distribution and
concurrency (each thread is isolated in a component)

•  Communication is performed on interfaces and follows
component bindings

•  Futures allow communication to be asynchronous
requests

•  Futures are transparent can lead to optimisations
and are a convenient programming abstraction but
…

What Can Create Deadlocks?

•  A race condition:

•  Detecting deadlocks can be difficult  behavioural specification and
verification techniques (cf Eric Madelaine)

Collective Communications

Communications are not necessarily one-to-one:
•  One-to-many
•  Many-to-One

•  M by N

Collective Communications

•  Simple type system
•  Component type = types of its interfaces
•  Interface type :
-  Name
-  Signature
-  Role
-  Contingency
-  Cardinality extended to support multicast / gathercast

Fractal type-system

Multicast interfaces

Transform a single invocation into a list of invocations

•  Multiple invocations
-  Parallelism
-  Asynchronism
-  Dispatch

•  Data redistribution (invocation parameters)
-  Parameterisable distribution function
-  Broadcast, scattering
-  Dynamic redistribution (dynamic dispatch)

•  Result = list of results

Ordering and Multicast

•  FIFO ordering: If a correct process issues
multicast(i,m) and then multicast(i,m’), then every
correct process that delivers m’ will deliver m before
m’.

•  Causal ordering: If multicast(i,m) precedes
multicast(i’,m’) with i abd i’ containing the same
elements then any correct process that delivers m’
will deliver m before m’.

•  Totally ordering (determinism): If a correct process
delivers message m before m’, then any other
correct process that delivers m’ will deliver m before
m’.

Gathercast interfaces

Transform a list of invocations
into a single invocation

• Synchronization of incoming
invocations
-  ~ “join” invocations
-  Timeout / drop policy
-  Bidirectional bindings

(callers  callee)
• Data gathering

Aggregation of parameters
into lists

• Redistribution of results
Redistribution function

Collective interfaces

•  Specific API  manage collective interfaces
and reconfigure them (add client, change
policy, …)

  Allow MxN communications:
Redistribution and direct

communications for many-to-many
communications

The MxN Problem (1)

M components

N components

The MxN Problem (2)

CM

CN

Coupling controllers

The MxN Problem (3)

M components

N components

The MxN Problem (4): data distribution

M components

N components

invocation parameters

Summary of Collective Communications

•  Simple way of specifying collective operations
•  + definition at the level of the interfaces  better for

verification and specification
•  Rich high levels spec of synchronisation (especially

gathercast)
•  Easier to optimize
-  The MxN case: synchronisation issues, complex

distribution policies avoid bottleneck

A few things we did not cover

•  SPMD programming and Synchronization Barriers, cf
gathercast???

•  Group communications ~ Multicast
•  Purely synchronous models -> Robert de Simone
•  Shared memory models

•  … and a lot of more complex communication models

Conclusion

•  An overview of asynchronism and different
communication timings

•  Applied to components with richer language constructs
(futures, collective interfaces, …)

•  Still a lot of other distributed computing paradigms exist
(Ambient Talk, creol, X10 for example)

•  A formalism for expressing communication ordering

Exercises

Exercise 1: Request queue

•  In CCS with parameters (a value can be a request)
-  Express a request queue:

-  Also express 2 simple processes accessing it

•  Same thing in asynchronous CCS (without and with
RDV)

Request
queue !Enqueue(R)

?Dequeue(R)

Hint from last course: Regi = read(i).Regi +
 write(x).Reg x

Exercise 2: Are the execution CO,
synchronous, asynchronous or FIFO?

Exercise 3: find a solution to the deadlock slide 31

Exercise 4: Ensuring causal ordering with a
sending queue

In the example below, suppose that the bottom thread has
a sending queue, that is it sends all messages to an
additional thread that emits the final messages.
-  Draw the new message exchanges
-  Is causal ordering still ensured?
-  FIFO ?

Exercise 5: Ensuring causal ordering with
many sending queues

•  Same thing but with one sending queue per destination
process
-  Draw the new message exchanges
-  Is causal ordering still ensured?
-  FIFO ?

