
Semantic Formalisms 1:

An Overview

Eric Madelaine
eric.madelaine@sophia.inria.fr

INRIA Sophia-Antipolis
Oasis team

UNICE – EdStic
Mastère Réseaux et Systèmes Distribués
TC4

• Formal Methods
Operational Semantics
CCS, Equivalences

• Software Components
Fractal : hierarchical components
Deployment, transformations
Specification of components

• Application to distributed applications
Active object and distributed components
Behaviour models
An analysis and verification platform

www-sop.inria.fr/oasis/Eric.Madelaine/Teaching/

Mastère RSD - TC4 oct-nov 2006 2

Program of the course:
1: Semantic Formalisms

• Semantics and formal methods:
– motivations, definitions, examples

• Operational semantics, behaviour models :
represent the complete behaviour of the system
– CCS, Labelled Transition Systems

– Equivalences

Mastère RSD - TC4 oct-nov 2006 3

Goals of (semi) Formal Methods

• Develop programs and systems as mathematical
objects

• Represent them (syntax)

• Interpret/Execute them (semantics)

• Analyze / reason about their behaviours

(algorithmic, complexity, verification)

• In addition to debug, using exhaustive tests and
property checking.

Mastère RSD - TC4 oct-nov 2006 4

Software engineering (ideal view)

• Requirements informal
– User needs, general functionalities.
– incomplete, unsound, open

• Detailed specification formal ?
– Norms, standards?..., at least a reference
– Separation of architecture and function. No ambiguities

• development
– Practical implementation of components
– Integration, deployment

• Tests (units then global) vsverification ?
– Experimental simulations, certification

Mastère RSD - TC4 oct-nov 2006 5

Specification

Programming
reuse ?

Test & Validation

User User requirementsrequirements ProductProduct

Cycle of refinements Component integration
unit testing

V cycle (utopia)

Increasing
cost

Mastère RSD - TC4 oct-nov 2006 6

Specification

Programming

Test & Validation

User User requirementsrequirements ProductProduct

Benefits from formal methods ?
automatisation?

Abstraction ?

Verification ?

Synthesis ?

Simulation,
Verification ?

Tests
generation?

Mastère RSD - TC4 oct-nov 2006 7

Developer Needs

• Notations, syntax
– textual

– graphical (charts, diagrams…)

• Meaning, semantics
– Non ambiguous signification, executability

– interoperability, standards

• Instrumentation analysis methods
– prototyping, light-weight simulation

– verification

Mastère RSD - TC4 oct-nov 2006 8

How practical is this ?

• Currently an utopia for large software projects, but :
– Embedded systems

• Safety is essential (no possible correction)

– Critical systems
• Safety, human lives (travel, nuclear)

• Safety, economy (e-commerce, cost of bugs)

• Safety, large volume (microprocessors)

Ligne Meteor, Airbus, route intelligente

Panne réseau téléphonique US, Ariane 5

Bug Pentium

Mastère RSD - TC4 oct-nov 2006 9

Industry succes-stories
• Model-checking for circuit development

– Finite systems, mixing combinatory logics with
register states

• Specification of telecom standards

• Proofs of Security properties for Java code and
crypto-protocols.

• Certification of embedded software(trains, aircafts)

Mastère RSD - TC4 oct-nov 2006 10

Semantics: definition, motivations

• Give a (formal) meaning to words, objects,
sentences, programs…

Why ? Why ?
•• Natural language specifications are not sufficientNatural language specifications are not sufficient

• A need for understanding languages: eliminate ambiguities, get
a better confidence.

• Precise, compact and complete definition.

• Facilitate learning and implementation of languages

Mastère RSD - TC4 oct-nov 2006 11

Formal semantics, Proofs, and Tools

• Manual proofs are error-prone !

• Tools for Execution and Reasoning
– semantic definitions are input for meta-tools

• Integrated in the development cycle
– consistent and safe specifications

– requires validation (proofs, tests, …)

• Challenge:

Expressive power versus executability...

Mastère RSD - TC4 oct-nov 2006 12

Concrete syntax, Abstract syntax,
and Semantics

• Concrete syntax:
– scanners, parsers, BNF, ... many tools and standards.

• Abstract syntax:
– operators, types, => tree representations

• Semantics:
– based on abstract syntax

– static semantics: typing, analysis, transformations

– dynamic: evaluation, behaviours, ...
This is not only a concern for theoreticians: it is the very basis
for compilers, programming environments, testing tools, etc...

Mastère RSD - TC4 oct-nov 2006 13

Static semantics : examples
Checks non-syntactic constraints

• compiler front-end :
– declaration and utilisation of variables,

– typing, scoping, … static typing => no execution errors ???

• or back-ends :
– optimisers

• defines legal programs :
– Java byte-code verifier

– JavaCard: legal acces to shared variables through firewall

Mastère RSD - TC4 oct-nov 2006 14

Dynamic semantics
• Gives a meaning to the program (a semantic value)

• Describes the behaviour of a (legal) program

• Defines a language interpreter

|- e -> e ’

let i=3 in 2*i -> semantic value = 6

• Describes the properties of legal programs

Mastère RSD - TC4 oct-nov 2006 15

The different semantic families (1)

• Denotational semantics

– mathematical model, high level, abstract

• Axiomatic semantics
– provides the language with a theory for proving properties /

assertions of programs

• Operational semantics
– computation of the successive states of an abstract machine

– used to build evaluators, simulators.

Mastère RSD - TC4 oct-nov 2006 16

Semantic families (2)
• Denotational semantics

– defines a model, an abstraction, an interpretation

⇒ for the language designers

• Axiomatic semantics
– builds a logical theory

⇒ for the programmers

• Operational semantics
– builds an interpreter, or a finite representation

⇒ for the language implementors

Mastère RSD - TC4 oct-nov 2006 17

Program of the course:
1: Semantic Formalisms

• Semantics and formal methods:
– motivations, definitions, examples

• Operational semantics, behaviour models :
represent the complete behaviour of the system
– CCS, Labelled Transition Systems

– Equivalences

Mastère RSD - TC4 oct-nov 2006 18

Operational Semantics
(Plotkin 1981)

• Describes the computation

• States and configuration of an abstract machine:
– Stack, memory state, registers, heap...

• Abstract machine transformation steps

• Transitions: current state -> next state

Several different operational semantics

Mastère RSD - TC4 oct-nov 2006 19

Natural Semantics : big steps (Kahn 1986)
• Defines the results of evaluation.

• Direct relation from programs to results

env |- prog => result
– env: binds variables to values

– result: value given by the execution of prog

describes each elementary stepof the evaluation

• rewriting relation : reduction of program terms

• stepwise reduction: <prog, s> -> <prog’, s ’>
– infinitely, or until reaching a normal form.

Reduction Semantics : small steps

Mastère RSD - TC4 oct-nov 2006 20

Differences: small / big steps

• Big steps:
– abnormal execution : add an « error » result

– non-terminating execution : problem
• deadlock (no rule applies, evaluation failure)

• looping program (infinite derivation)

• Small steps:
– explicit encoding of non termination, divergence

– confluence, transitive closure ->*

Mastère RSD - TC4 oct-nov 2006 21

Natural semantics: examples
(big steps)

• Type checking:

Terms: X | tt | ff | not t | n | t1 + t2 | if b then t1 else t2

Types: Bool, Int

• Judgements : Typing: ΓΓΓΓ |- P : ττττ

Reduction: ΓΓΓΓ |- P ⇒⇒⇒⇒ v

Mastère RSD - TC4 oct-nov 2006 22

Deduction rules
Values and expressions:

ΓΓΓΓ |- tt : Bool
ΓΓΓΓ |- ff : Bool

ΓΓΓΓ |- tt ⇒⇒⇒⇒ true
ΓΓΓΓ |- ff ⇒⇒⇒⇒ false

ΓΓΓΓ |- t1 + t2 : Int

ΓΓΓΓ |- t1 : Int ΓΓΓΓ |- t2 : Int

ΓΓΓΓ |- t1 + t2 ⇒⇒⇒⇒ n1+n2

ΓΓΓΓ |- t1 ⇒⇒⇒⇒ n1 ΓΓΓΓ |- t2 ⇒⇒⇒⇒ n2

Mastère RSD - TC4 oct-nov 2006 23

Deduction rules

• Environment :

• Conditional :

Exercice : typing rule ?

δδδδ :: {x->v} |- x ⇒⇒⇒⇒ v δδδδ :: {x : ττττ} |- x : ττττ

ΓΓΓΓ |- if b then e1 else e2 ⇒⇒⇒⇒ v

ΓΓΓΓ |- b ⇒⇒⇒⇒ true ΓΓΓΓ |- e1 ⇒⇒⇒⇒ v

Mastère RSD - TC4 oct-nov 2006 24

Operational semantics:
big steps for reactive systems

Behaviours

• Distributed, synchronous/asynchronous programs:

transitions represent communication events

• Non terminating systems

• Application domains:
– telecommunication protocols

– reactive systems

– internet (client/server, distributed agents, grid, e-commerce)

– mobile / pervasive computing

Mastère RSD - TC4 oct-nov 2006 25

• Systems build from communicating components :
parallelism, communication, concurrency

• Asynchronous Processes
– Synchronous communications (rendez-vous)

– Asynchronous communications (message queues)

• Synchronous Processes(instantaneous diffusion)

Question on D. Caromel course: how do you classify ProActive ?

Synchronous and asynchronous languages

Process calculi: CCS, CSP, Lotos

SDL modelisation of channels

Esterel, Sync/State-Charts, Lustre

Mastère RSD - TC4 oct-nov 2006 26

Program of the course:
1: Semantic Formalisms

• Semantics and formal methods:
– motivations, definitions, examples

• Operational semantics, behaviour models :
represent the complete behaviour of the system
– CCS, Labelled Transition Systems

– Equivalences

Mastère RSD - TC4 oct-nov 2006 27

• Basic model for representing reactive, concurrent,
parallel, communicating systems.

• Definition:
< S, s0, L, T>

S = set of states

S0 ∈ S = initial state

L = set of labels (events, communication actions, etc)

T ⊆ S x L x S = set of transitions

Notation: s1 � s2 = (s1, a, s2) ∈ T

Labelled Transition Systems (LTS)

a

Mastère RSD - TC4 oct-nov 2006 28

• Parallel processes communicating by Rendez-vous :

CCS
(R. Milner, “A Calculus of Communicating Systems”, 1980)

?a
?a:!b:nil !b:nil

!b

ττττ

nil

?a:P || !a:Q P || Q

let rec { st0 = ?a:st1 + !b:st0 } in st0

!b

?a
•Recursive definitions :

Mastère RSD - TC4 oct-nov 2006 29

CCS : behavioural semantics (1)
Operators and rules

aa:P:P P P a

nil (or skip)nil (or skip)

PP PP’’a

P+QP+Q PP’’a
QQ QQ’’a

P+QP+Q QQ’’a

Inactivity

Action prefix

Non deterministic
choice

Mastère RSD - TC4 oct-nov 2006 30

PP PP’’!a QQ QQ’’?a

P||QP||Q PP’’ ||Q||Q’’ττττ

PP PP’’a

P||QP||Q PP’’ ||Q||Qa

QQ QQ’’a

P||QP||Q P||QP||Q’’aEmissions & réceptions
are dual actions

τ invisible action
(internal communication)

CCS : behavioural semantics (2)
More operators, more rules

aµµX.PX.P PP’’

[[µµ X.P/X]PX.P/X]P PP’’
a

Recursion :

alocal local bb in Pin P local b in PP’’

PP PP’’ aa∉∉{{??b,!bb,!b}}
a

Local action :
Tool for forcing synchronisation

Mastère RSD - TC4 oct-nov 2006 31

Derivations
(construction of each transition step)

(?(?a:Pa:P || Q) || Q) |||| a!:Ra!:R

??aa::PP
Par-L

?a P || Q
Par-2

??a:Pa:P |||| QQ !a !a ::RR

ττττ
(P || Q) || RP || Q) || R

Prefix
!a

RR

?a PP
Prefix

(?(?a:Pa:P || Q) || !|| Q) || !a:Ra:R
?a

(P || Q) || !P || Q) || !a:Ra:R

One amongst 3 possible derivations

Par-2(Par_L(Prefix), Prefix)

Another one :

Par-L(Par_L(Prefix))

Mastère RSD - TC4 oct-nov 2006 32

Example: Alternated Bit Protocol

Hypotheses: channels can loose messages

Requirement:

the protocol ensures no loss of messages

?imss

?imss

?imss
?ack0

?ack0

?ack1

?ack1

!in0

!in1

?out0

?out1
!ack0

!omss

!ack1

!omss

?out0

?out1

!omss

emitter

Fwd_channel

Bwd_channel

receiver

Write in CCS ?

Mastère RSD - TC4 oct-nov 2006 33

Example: Alternated Bit Protocol (2)

• emitter =

let rec {em0 = ?ack1 :em0 + ?imss:em1

and em1 = !in0 :em1 + ?ack0 :em2

and em2 = ?ack0 :em2 + ?imss :em3

and em3 = !in1 :em3 + ?ack1 :em0

}

in em0

• ABP = local {in0, in1, out0, out1, ack0, ack1, …}

in emitter || Fwd_channel || Bwd_channel || receiver

Mastère RSD - TC4 oct-nov 2006 34

Example: Alternated Bit Protocol (3)

Channels that loose and
duplicate messages (in0 and in1)
but preserve their order ?

• Exercise :
1) Draw an LTS describing the loosy channel

behaviour

2) Write the same description in CCS

Mastère RSD - TC4 oct-nov 2006 35

Program of the course:
1: Semantic Formalisms

• Semantics and formal methods:
– motivations, definitions, examples

• Operational semantics, behaviour models :
represent the complete behaviour of the system
– CCS, Labelled Transition Systems

– Equivalences

Mastère RSD - TC4 oct-nov 2006 36

Behavioural Equivalences

• Intuition:
– Same possible sequences of observable actions

– Finite / infinite sequences

– Various refinements of the concept of observation

• Definition: Trace Equivalence
For a LTS (S, s0, L, T) its Trace languageT is the set of finite
sequences {(t = t1, …, tn such that ∃s0,…,sn ∈ Sn+1,

and (sn-1,tn,sn) ∈ T}

Two LTSs are Trace equivalentiff their Trace languagesare equal.

Corresponding Ordering: Trace inclusion

Mastère RSD - TC4 oct-nov 2006 37

Trace Languages, Examples

1. Those 2 systems are trace equivalent:

2. A trace language can be an infinite set:

≡
a a a

b c b c
T = {(), (a), (a,b), (a,c)}

b
a T = {(), (a), (a,a), (a,…,a),…

(a,b), (a,a,b), (a,a,…,a,b), …}

Mastère RSD - TC4 oct-nov 2006 38

Bisimulation
• Behavioural Equivalence

– non distinguishable states by observation:
two states are equivalent if for all possible transitions labelled by
the same action, there exist equivalent resulting states.

• Bisimulations
R ⊆⊆⊆⊆ SxS is a bisimulation iff
– It is a equivalence relation
– ∀(p,q) ∈ R,

(p,l,p’) ∈ T => ∃ q’/ (q,l,q’) ∈ T and (p’,q’) ∈ R

• ~ is the coarsest bisimulation
2 LTS are bisimilar iff their initial states are in ~
quotients= canonical normal forms

~

~
act act

Mastère RSD - TC4 oct-nov 2006 39

Bisimulation (3)
• More precise than trace equivalence :

• Preserves deadlock properties.

No state in B is equivalent to A1~
!a !a !a

?b ?c ?b ?c

A0

A1

A2 A3

B0

B1

B3

B2

B4

Mastère RSD - TC4 oct-nov 2006 40

Bisimulation (4)

• Congruence laws:
P1~P2 => a:P1 ~ a:P2 (∀ P1,P2,a)

P1~P2, Q1~Q2 => P1+Q1 ~ P2+Q2

P1~P2, Q1~Q2 => P1||Q1 ~ P2||Q2

Etc…

• ~ is a congruence for all CCS operators :

Basis for compositional proof methods

for any CCS context C[.], C[P] ~ C[Q] <=> P~Q

Mastère RSD - TC4 oct-nov 2006 41

Observational Equivalences
• Weak bisimulation

– Abstraction: hidden actions

– allows for arbitrary many internal actions

• Branching bisimulation
– … only staying in equivalent states

τ
τ* τ* τ*

act

act

τ

a a

Still existence of a canonical minimal automata
Computation is polynomial

Mastère RSD - TC4 oct-nov 2006 42

Exercice 2 : Bisimulations
Are those LTSs equivalent by:

- Strong bisimulation?

- Weak bisimulation ?

In each case, give a proof.

!out0!out0

?in0

τ

!out0

?in0

τ

Mastère RSD - TC4 oct-nov 2006 43

Exercice 3 : Bisimulation

• Exercice :
1) Compute the strong minimal automaton for A1.

2) Compute the weak minimal automaton for A1.

!out0!out0

τ?in0

τ

A1

Mastère RSD - TC4 oct-nov 2006 44

Exercice 4 : Synchronized Product

!out0!out1 !out0

?in1 τ?in0

!out1

ττ
τ

Compute the synchronized
product of the LTS
representing the ABP
emitter with the (forward)
Channel:

local {in0, in1} in
(Emitter || Channel)

?imss

?imss

?imss
?ack0

?ack0

?ack1

?ack1

!in0

!in1

0 1

23

0
12

Mastère RSD - TC4 oct-nov 2006 45

Automatas with data
from state<i>

provided guard_cond(vars)
then execute body
goto state<j>

• We need add: if_then_else: tree of successor states
guardsand conditionson external signals
local variables (scoping)

Graphical specifications languages :
SDL, Statecharts, etc.

[x<3] ?n. y=x+n
x x,y

Mastère RSD - TC4 oct-nov 2006 46

The Dream

Provide Analysis and Verification Tools to the
(non-specialist) programmer
– Specification Language (textual or graphical)

– Code analysis tools

– Automatic Model-Checking

Mastère RSD - TC4 oct-nov 2006 47

Tool Set (future…)

Abstraction/
Compilation

Architecture:
ADL code

Behaviour Spec
Java / ProActive

code

Data Types
(simple)

Result Interpretation

Semantical Model

Model-Checker
And

Verification
Tools

Mastère RSD - TC4 oct-nov 2006 48

Tool Set (future…)

Method
Call Graph

Network of
Parameterized LTSs

Network of
finite LTSs

Abstraction/
Compilation

Operational
semantics

Finite
instanciation

Architecture:
ADL code

Compilation

Network of
Parameterized LTSsBehaviour Spec

Java / ProActive
code

Data Types
(simple)

Result Interpretation

Model-Checker
And

Verification
Tools

Mastère RSD - TC4 oct-nov 2006 49

Next courses
3) Software Components

– Fractal : main concepts
– Deployment, management, transformations
– Specification of components

2) Application to distributed applications
– ProActive : active object and distributed components
– Behaviour models
– Tools : build an analysis and verification platform

www-sop.inria.fr/oasis/Eric.Madelaine
Teaching/RSD-2006

