Semantic Formalisms 1:
An Overview

U Eric Madelaine |
ormal Ve eric.madelaine@sophia.inria.fr

Operational Semantics
CCS, Equivalences

* Software Components INRIA Sophia-Antipolis

Fractal : hierarchical components :
Deployment, transformations Oasls team

Specification of components

» Application to distributed applications
Active object and distributed components
Behaviour models

An analysis and verification platform UNICE — EdStic
Mastere Réseaux et Systemes Distribués
TC4

www-sop.inria.fr/oasis/Eric.Madelaine/Teaching/

Program of the course:
1: Semantic Formalisms

 Semantics and formal methods:
— motivations, definitions, examples

e Operational semantics, behaviour models :
represent the complete behaviour of the system

— CCS, Labelled Transition Systems
— Equivalences

Mastere RSD - TC4 oct-nov 2006 2

Goals of (semi) Formal Methods

 Develop programs and systems as mathematical
objects

 Represent thensy{ntay

 Interpret/Execute thens¢mantick

 Analyze / reason about their behaviours
(algorithmig complexity, verification

 |In addition to debug, using exhaustive tests and
property checking.

Mastere RSD - TC4 oct-nov 2006 3

Software engineerin@leal view)

 Requirements informal
— User needs, general functionalities.
— Incomplete, unsoundpen
* Detalled specification formal ?
— Norms, standards?..., at least a reference
— Separation of architecture and functinn.ambiguities
e development
— Practical implementation of components
— Integration, deployment
e Tests (units then global)vsverification ?
— Experimental simulations, certification

Mastere RSD - TC4 oct-nov 2006 4

Userrequirements Product

1 T

Specification Test & Validation

|ncreasing
cost

Cycle of refinements ComFonent Integration

unit testing

Programming
reuse ?

V cycle (utopla)

Mastére RSD - TC4 oct-nov 2006

Userrequirements Product

1 Verification ? T
Specification Te?& Validation

SW

Verification ?

Abstraction ?

Programming

Benefits from formal methods ?
automatisation?

Mastére RSD - TC4 oct-nov 2006 6

Developer Needs

* Notations, syntax
— textual
— graphical ¢harts, diagrams.)..
 Meaning, semantics
— Non ambiguous signification, executability
— Interoperability standards
e Instrumentation analysis methods
— prototyping, light-weight simulation
— verification

Mastére RSD - TC4 oct-nov 2006

How practical Is this ?

o Currently an utopia for large software projecis, b

— Embedded systems
« Safety Is essenti@ho possible correction)

— Critical systems
« Safety human lives (travel, nuclear)

Ligne Meteor, Airbus, route intelligente
« Safety economy (e-commerce, cost of bugs)

Panne réseau téléphonique US, Ariane 5
« Safety large volume (microprocessors)

Bug Pentium

Mastére RSD - TC4 oct-nov 2006 8

Industry succes-stories

Model-checking for circuit development

— Finite systems, mixing combinatory logics with
register states

Specification of telecom standards

Proofs of Security propertider Java code and
crypto-protocols.

Certification of embedded softwa(teains, aircafts)

Mastére RSD - TC4 oct-nov 2006 9

Semantics: definition, motivations

« Give a (formal) meaning to words, objects,
sentences, programs...

Why ?
« Natural language specifications are not sufficient

* A need for understanding languages: eliminate gmtes, get
a better confidence.

* Precise, compact and complete definition.
» Facilitate learning and implementation of langusage

Mastere RSD - TC4 oct-nov 2006 10

Formal semantics, Proofs, and Tools

Manual proofs are error-prone !
Tools for Execution and Reasoning
— semantic definitions are input for meta-tools

* |ntegrated in the development cycle
— consistent and safe specifications
— requires validation (proofs, tests, ...)

e Challenge:
Expressive power versus executabllity...

Mastere RSD - TC4 oct-nov 2006 11

Concrete syntax, Abstract syntax,
and Semantics

e Concrete syntax:
— scanners, parsers, BNF, ... many tools and stasdar

* Abstract syntax:
— operators, types, =tree representations

e Semantics:
— based on abstract syntax
— static semantics: typing, analysis, transformation

— dynamic: evaluation, behaviours, ...

This is not only a concern for theoreticians: ithis very basis
for compilers, programming environments, testinggpetc...

Mastere RSD - TC4 oct-nov 2006 12

Static semantics : examples

Checks non-syntactic constraints

e compiler front-end :

— declaration and utilisation of variables,

— typing, scoping, ... static typing => no executioroes ???
e Or back-ends :

— optimisers
« defines legal programs :

— Java byte-codeerifier
— JavaCard: legal acces to shared variables throreytdl

Mastere RSD - TC4 oct-nov 2006 13

Dynamic semantics

Gives a meaning to the program (a semantic value)
Describes the behaviour of a (legal) program
Defines a language interpreter

-e->e’

let =3 In 2*I -> semantic value =6

Describes the properties of legal programs

Mastere RSD - TC4 oct-nov 2006 14

The different semantic families (1)

e Denotational semantics
— mathematical model, high level, abstract

e AXiomatic semantics

— provides the language with a theory for provingperties /
assertions of programs

e Operational semantics
— computation of the successive states of an abbshachine
— used to build evaluators, simulators.

Mastere RSD - TC4 oct-nov 2006 15

Semantic families (2)

e Denotational semantics
— defines a model, an abstraction, an interpretation

= for the language designers

e AXiomatic semantics

— builds a logical theory
= for the programmers

e Operational semantics

— builds an interpreter, or a finite representation
= for the language implementors

Mastere RSD - TC4 oct-nov 2006 16

Program of the course:
1: Semantic Formalisms

* Operational semantics, behaviour models :
represent the complete behaviour of the system

Mastere RSD - TC4 oct-nov 2006 17

Operational Semantics
(Plotkin 1981)

Describes the computation

States and configuration of an abstract machine:
— Stack, memory state, registers, heap...

Abstract machine transformation steps
Transitions: current state -> next state
Several different operational semantics

Mastere RSD - TC4 oct-nov 2006 18

Natural Semantics : big stepgsaqn 1986

* Defines the results of evaluation.
« Direct relation from programs to results

env |- prog => result
— env: binds variables to values
— result: value given by the execution of prog

Reduction Semantics : small steps
describe®ach elementary stef the evaluation
e rewriting relation : reduction of program terms
e stepwise reduction <prog, s> -> <prog’, s '>

— Infinitely, or until reaching a normal form.

Mastere RSD - TC4 oct-nov 2006 19

Differences: small / big steps

* Big steps:
— abnormal execution : add an « error » result
— non-terminating execution : problem
» deadlock (no rule applies, evaluation failure)
* looping program (infinite derivation)
 Small steps:
— explicit encoding of non termination, divergence
— confluence, transitive closure ->*

Mastere RSD - TC4 oct-nov 2006 20

Natural semantics: examples
(big steps)

e Type checking:
Terms: X |tt|ff|nott|n|tl +1t2|If b thElnelse t2
Types Bool, Int

e Judgements : Typing: |- P:T

Reduction: T |- P=vV

Mastere RSD - TC4 oct-nov 2006 21

Deduction rules

Values and expressions:

[|- tt: Bool [|- tt = true
[|- ff: Bool [|- ff = false
[]- t1:Int []- t2:Int M-tl=n1l T|-t2=n2
[]- t1+t2: Int [|- t1 + 2= n1+n2

Mastere RSD - TC4 oct-nov 2006 22

Deduction rules

 Environment :
O {X->V}|- x =V O {Xx:1}|- x:1

e Conditional :

[|- b= true []- el=>vV

|- ifbthenelelseezv

Exercice : typing rule ?

Mastére RSD - TC4 oct-nov 2006 23

Operational semantics:
big steps for reactive systems
Behaviours

 Distributed, synchronous/asynchronous programs:
transitions represent communication events
e Non terminating systems

* Application domains:
— telecommunication protocols
— reactive systems
— Internet (client/server, distributed agents, geidommerce)
— mobile / pervasive computing

Mastere RSD - TC4 oct-nov 2006 24

Synchronous and asynchronous languages

e Systems build from communicating components :
parallelism, communication, concurrency
« Asynchronous Processes

— Synchronous communicatiofgndez-vous)
Process calculi: CCS, CSP, Lotos

— Asynchronous communicatiofsiessage gueues)
SDL modelisation of channels

e Synchronous Processg@gsstantaneous diffusion)
Esterel, Sync/State-Charts, Lustre

Question on D. Caromel course: how do you classifyr@Active ?

Mastére RSD - TC4 oct-nov 2006 25

— __ Program of the courser
1: Semantic Formalisms

e Semantics and formal methods:
— motivations, definitions, examples

 Operational semantics, behaviour models :
represent the complete behaviour of the system

— CCS, Labelled Transition Systems
— Equivalences

Mastére RSD - TC4 oct-nov 2006 26

Labelled Transition Systems (LTS)

e Basic model for representing reactive, concurrent,
parallel, communicating systems.
o Definition:
<S§,s0,L, T>
S = set of states
SO0 S = initial state

L = set of labels (events, communication actions, etc)
TOSXLXxS =setof transitions

Notation: s1 —2-—>s2 = (sl,a,sZ) T

Mastere RSD - TC4 oct-nov 2006 27

CCS

(R. Milner, “A Calculus of Communicating SystemsQ)

o Parallel processes communicating by Rendez-vous :

P |
2a:b:nil 22 il 2P il

T
2aP|['laQ — P||Q b

*Recursive definitions :
let rec { stO = ?a:stl + !b:stO } in stO

Mastére RSD - TC4 oct-nov 2006 28

CCS : behavioural semantics (1)
Operators and rules

Inactivity nil (or skip)
Acti . . a
ction prefix aP —P
p 2. p Q2. Q

Non deterministic
choice P+Q a P’ P+O a Q

Mastére RSD - TC4 oct-nov 2006 29

CCS : behavioural semantics (2)
More operators, more rules
P2, p Q2. Q

Emissions & réceptions a , a ,
are dual actions PlIQ —P'||Q P”Q —_— P”Q

T invisible action ! ~ ,
(internal communication) P i. P’ Q '_a. Q

PIQ —/— P|IQ

Recursion : _
a - Local action :

[uX.PIX]P — P Tool for forcing synchronisation

Xp 2, p PA.P af?,b}

localbinP _2., localbin P

Mastére RSD - TC4 oct-nov 2006 30

Derivations
(construction of each transition step)

Prefix
2aP 7 p
- Par-L 5 Prefix
2aP||Q &2 PO la:R-%, R
Par-2

T
(PaP|[Q)llalR — (P [Q)|IR
Par-2(Par_L(Prefix), Prefix)

One amongst 3 possible derivations
Another one :

Par-L(Par_L(Prefix))

(?a:P || Q) || !a:R 2 - (P Q)] &R

Mastére RSD - TC4 oct-nov 2006 31

Example: Alternated Bit Protocol

?21ImssS lomss

Fwd channel

Bwd channel ?outl lackO

emitter receiver

Hypotheses: channels can loose messages

Write in CCS ? Requirement:

the protocol ensures no loss of messages

Mastére RSD - TC4 oct-nov 2006 32

Example: Alternated Bit Protocol (2)

e emitter =

let rec {emO = ?ackl :emO + ?imss.eml

and em1 =1in0 :em1 + ?ack0 :em2
and em2 = ?ackO :em2 + ?Imss :em3
and em3 =!inl :em3 + ?ackl :em0

}

In emO
e ABP =local {in0, in1, outO, outl, ackO, ackl, ...}
In emitter || Fwd_channel || Bwd_channel || receiver

Mastere RSD - TC4 oct-nov 2006 33

Example: Alternated Bit Protocol (3)

Channelsthat |oose and
duplicate messages (inO and inl)
but preserve their order ?

e EXxercise :

1) Draw an LTS describing the loosy channel
behaviour

2) Write the same description in CCS

Mastére RSD - TC4 oct-nov 2006

34

Program of the course:
1: Semantic Formalisms

e Semantics and formal methods:
— motivations, definitions, examples

* Operational semantics, behaviour models :
represent the complete behaviour of the system

— CCS, Labelled Transition Systems
— Equivalences

Mastére RSD - TC4 oct-nov 2006 35

Behavioural Equivalences

 |ntuition:
— Same possible sequences of observable actions

— Finite / infinite sequences
— Various refinements of the concept of observation

* Definition: Trace Equivalence

Fora LTS (S, sO, L, T) itsrace languag® is the set of finite

sequences {(t 5t..., t such thatk,,...,s, 0 S™*t
and (ﬁ-l’tn’sn)] T}

Two LTSs arelrace equivalentf their Trace languageare equal.

Corresponding Orderingirace inclusion

Mastere RSD - TC4 oct-nov 2006 36

Trace Languages, Examples

1. Those 2 systems are trace equivalent:

o a/\

b/\ T={0, (a), (a,b), (a,c)}

2. Atrace Ianguage can be an infinite set:

l.]a T7={0. (3. (a.a). (a,....a),...
b | (a,b), (a,.ab), (@a,....ab), ...}

Mastere RSD - TC4 oct-nov 2006 37

Bisimulation

 Behavioural Equivalence
— non distinguishable states by observation:

two states are equivalent if for all possible traosgilabelled by
the same action, there exist equivalent resultingsta

e Bisimulations o
R O SxS is a bisimulation iff :

— Itis a equivalence relation act - act

— O(p,q) U R, |
(p,,p) OT=>0qg"(q,l,g) O Tand (p’,g)OR ¢ __ ¢

e ~|s the coarsest bisimulation
2 LTS are bisimilar iff their initial states are in ~
guotients = canonical normal forms

Mastere RSD - TC4 oct-nov 2006 38

Bisimulation (3)

e More precise than trace equivalence :

A0
I Bl?/\ No state in B is equivalent to Al
’?b / \:c i
BBQ B4

* Preserves deadlock properties.

Mastére RSD - TC4 oct-nov 2006 39

Bisimulation (4)

e Congruence laws:

P ~
P11 ~
P11 ~

b2 => a:P1 ~ a:P2 (0 P1,P2,a)
P2, Q1~Q2 => P1+Q1 ~ P2+Q2

b2, Q1~Q2 => P1||Q1 ~ P2||Q2

Etc...
e ~Is a congruence for all CCS operators :

for any CCS context C[.], C[P] ~ C[Q] <=>P~Q

Basis for compositional proof methods

Mastére RSD - TC4 oct-nov 2006 40

Observational Equivalences

 Weak bisimulation
— Abstraction: hidden actions
— allows for arbitrary many internal actions

T act .
>
\ T* / '[* \-3 act V
* Branching bisimulation a ;a
— ... only staying in equivalent states ° :
1

Still existence of a canonical minimal automata
Computation is polynomial

Mastere RSD - TC4 oct-nov 2006 41

Exercice 2 : Bisimulations

Arethose LTSsequivalent by:
- Strong bisimulation?
- Weak bisimulation ?

I n each case, give a proof.

Mastere RSD - TC4 oct-nov 2006 42

Exercice 3 : Bisimulation

Exercice :

1) Compute the strong minimal automaton for Al.
2) Compute the weak minimal automaton for Al.

Mastére RSD - TC4 oct-nov 2006

43

Exercice 4 : Synchronized Product

Compute the synchronized
product of the LTS
representing the ABP
emitter with the (forward)
Channel:

?2imss

local {in0, inl}in
(Emitter || Channel)

loutl loutl

Mastere RSD - TC4 oct-nov 2006 44

Automatas with data

from state<i>

providedguard cond(vars)
then executéody [X<3] ?n. y=x+n

goto sate<j> ‘ .

* We need addif then else tree of successor states
guardsandconditionson externakignals
local variablegscoping)

=) Graphical specificationslanguages:
SDL, Statecharts, etc.

Mastére RSD - TC4 oct-nov 2006 45

The Dream

Provide Analysis and Verification Tools to the

(non-specialist) programmer

— Specification Language (textual or graphical)
— Code analysis tools
— Automatic Model-Checking

Mastére RSD - TC4 oct-nov 2006 46

Tool Set (future...)

.\->
Abstraction/
Compilation

ec

ti

\

Result Interpretation

Model-Checker
And
Verification
Tools

Mastére RSD - TC4 oct-nov 2006

47

Tool Set (future...)

Compilation

.e:

tive

LTSs

(r./Ilistaﬁjatlon

LTSs
rational

;Absmqsema”t'cs
:.Compilation

Result Interpretation

Model-Checker
And
Verification
Tools

Mastére RSD - TC4 oct-nov 2006

..............

48

Next courses

3) Software Components
— Fractal : main concepts
— Deployment, management, transformations
— Specification of components

2) Application to distributed applications
— ProActive : active object and distributed composent
— Behaviour models
— Tools : build an analysis and verification platfor

www-sop.inria.fr/oasis/Eric.Madelaine
—— Teaching/RSD-2006

Mastere RSD - TC4 oct-nov 2006 49

