Semantic Formalisms:
an overview

Eric Madelaine
eric.madelaine@sophia.inria.fr

INRIA Sophia-Antipolis
Oasis team

Mastere Réseaux et Systemes Distribués
TC4

Program of the course:
1: Semantic Formalisms

* Semantics and formal methods:
— motivations, definitions, examples

* Denotational semantics : give a precise
meaning to programs
— abstract interpretation
* Operational semantics, behaviour models :
represent the complete behaviour of the system
— CCS, Labelled Transition Systems

Mastere RSD - TC4 2005/2006 2

Goals of (semi1) Formal Methods

Develop programs and systems as mathematical
objects

Represent them (syntax)
Interpret/Execute them (semantics)
Analyze / reason about their behaviours
(algorithmic, complexity, verification)

In addition to debug, using exhaustive tests and
property checking.

Mastere RSD - TC4 2005/2006 3

Software engineering (ideal view)

Requirements informal

— User needs, general functionalities.

— 1mncomplete, unsound, open

Detailed specification formal ?

— Norms, standards?..., at least a reference

— Separation of architecture and function. No ambiguities
development

— Practical implementation of components

— Integration, deployment

Tests (units then global) vs verification ?
— Experimental simulations, certification

Mastere RSD - TC4 2005/2006 4

User requirements Product

| T

Specification Validation

Increasing
cost

Component integration

Cycle of refinements unit testing

Programming
reuse ?

V cycle (utopla)

Mastére RSD - TC4 2005/2006

User requirements Product

1 Verification ? T

Specification Test & Validation

SW

Verification ?

Abstraction ?

Programming

Benefits from formal methods ?
automatisation?

Mastere RSD - TC4 2005/2006 6

Support UML (aparte)

* Notation standardisee, une profusion de

mode¢les/diagrammes :

— class diagrams

— use-case diagrams

— séquence diagrams

— statecharts et activity charts
— deployment diagrams

e + stéreotypes pour particulariser les modeles
(UML-RT, Embedded UML, ...)

* Semantique ? Flot de conception et méthodologie?

Mastere RSD - TC4 2005/2006 7

Developer Needs

* Notations, syntax

— textual

— graphical (charts, diagrams...)
 Meaning, semantics

— Non ambiguous signification, executability

— 1nteroperability, standards

 Instrumentation analysis methods
— prototyping, light-weight simulation
— verification

Mastere RSD - TC4 2005/2006

How practical 1s this ?

» Currently an utopia for large software projects, but :
— Embedded systems

* Safety 1s essential (no possible correction)

— Critical systems
 Safety, human lives (travel, nuclear)

Ligne Meteor, Airbus, route intelligente
 Safety, economy (e-commerce, cost of bugs%

Panne réseau télephonique US, Ariane 5
 Safety, large volume (microprocessors)

Bug Pentium

Mastere RSD - TC4 2005/2006

Industry succes-stories

* Model-checking for circuit development

— Finite systems, mixing combinatory logics with
register states

» Specification of telecom standards

* Proofs of Security properties for Java code and
crypto-protocols.

» (Certification of embedded software (trains, aircafts)

* Synthesis ?

Mastere RSD - TC4 2005/2006 10

Semantics: definition, motivations

* Give a (formal) meaning to words, objects,
sentences, programs...

Why ?

« Natural language specifications are not sufficient

* A need for understanding languages: eliminate ambiguities, get
a better confidence.

» Precise, compact and complete definition.

« Facilitate learning and implementation of languages

Mastere RSD - TC4 2005/2006 11

Formal semantics, Prootfs, and Tools

Manual proofs are error-prone !

Tools for Execution and Reasoning

— semantic definitions are input for meta-tools

Integrated in the development cycle
— consistent and safe specifications
— requires validation (proofs, tests, ...)

* Challenge:

Expressive power versus executability...

Mastere RSD - TC4 2005/2006 12

Concrete syntax, Abstract syntax,
and Semantics

* Concrete syntax:

— scanners, parsers, BNF, ... many tools and standards.

* Abstract syntax:

— operators, types, => free representations

* Semantics:
— based on abstract syntax
— static semantics: typing, analysis, transformations

— dynamic: evaluation, behaviours, ...

This 1s not only a concern for theoreticians: it 1s the very basis
for compilers, programming environments, testing tools, etc...

Mastere RSD - TC4 2005/2006 13

Static semantics : examples

Checks non-syntactic constraints

* compiler front-end :

— declaration and utilisation of variables,

— typing, scoping, ... static typing => no execution errors ???
* or back-ends :

— optimisers
 defines legal programs :

— Java byte-code verifier

— JavaCard: legal acces to shared variables through firewall

Mastere RSD - TC4 2005/2006 14

Dynamic semantics

Gives a meaning to the program (a semantic value)
Describes the behaviour of a (legal) program
Defines a language interpreter

-e->¢e’

let 1=3 1n 2*1 -> semantic value =6

Describes the properties of legal programs

Mastere RSD - TC4 2005/2006

15

The different semantic families (1)

 Denotational semantics
— mathematical model, high level, abstract

e Axiomatic semantics

— provides the language with a theory for proving properties /
assertions of programs

* Operational semantics

— computation of the successive states of an abstract machine.

Mastere RSD - TC4 2005/2006 16

Semantic families (2)

 Denotational semantics
— defines a model, an abstraction, an interpretation

= for the language designers

e Axiomatic semantics

— builds a logical theory
= for the programmers

* Operational semantics

— builds an interpreter, or a finite representation
= for the language implementors

Mastere RSD - TC4 2005/2006 17

Semantic families (3)
relations between :

 denotational / operational

— 1mplementation correct wrt model

e axiomatic / denotational
— completeness of the theory wrt the model

Mastere RSD - TC4 2005/2006

18

Program of the course:
1: Semantic Formalisms

* Denotational semantics : give a precise
meaning to programs

— abstract interpretation

Mastere RSD - TC4 2005/2006

19

Denotational semantics

* Gives a mathematical model (interpretation)

for any program of a language.
All possible computations in all possible environments
Examples of domains:
lambda-calculus, high-level functions, pi-calculus, etc...

« Different levels of precision : hierarchy of semantics,
related by abstraction.

 When coarse enough
=> effectively computable (finite representation)

(automatic) static analysis.

Mastere RSD - TC4 2005/2006 20

Abstract Interpretation

 Motivations :
— Analyse complex systems by reasoning on simpler models.
— Design models that preserve the desired properties
— Complete analysis 1s undecidable

* Abstract domains :
— abstract properties (sets), abstract operations

— Galois connections: relate domains by adequate
abstraction/concretisation functions.

Mastere RSD - TC4 2005/2006 21

Abstract Interpretation (2)

 Example :
— Program with 2 integer variables X and Y

— Trace semantics = all possible computation traces
(sequences of states with values of X and Y)

— Collecting semantics =
(1nfinite) set of values of pairs <x,y>

— Further Abstractions :
Signs : N --> {-.0,+}
succ --> - -->{-,0}
0 -->+

+ >+

Mastere RSD - TC4 2005/2006

22

Abstract Interpretation (3)

oo
FAYPAY

T = 5 mod 3
y =7 mod Y

{

LA AR RS E R NS N
LEI TR N TSI RN NN]
[IX XX RN T T T Y RN N
LA A RN E RN N
LEI RN RN NN]
[I XX R I TT T RN NN
LSRR NI E RN N
LA AR R T X RN ND
[ZI XN TITTI T RE NN
FEFFRAERRFFFPRN
LA AR NI RN NN
LR R R XL o o L 2Lk o
tttti-r+ltt||-i
T I I
iiittii+lli--i
Fr I XIS ITYYY)
I I

S* P FFEEEREEAAS
=

(b} Sign Abstraction

L N R R RN BN

4

5,7),..

oo
(13,215, ..
y €[4, 32]

(.

=
b |
fach
LL
M
._..l..-..l.._

(a) [In]finite Set of Points

23

Simple Congruence Ab-

straction

(d)

Mastere RSD - TC4 2005/2006

€T

(c) Interval Abstraction

Abstract Interpretation (4)

— Function Abstraction: F¥=yoFoa

F#

Ab;tract domain)

a

T

Concrete domain /

Mastere RSD - TC4 2005/2006

24

Abstract Interpretation (35)

e Galois connections :
— a pair of functions (0,Y) such that:

L# O L b, b

(abstract) (concrete)

— where :
— [0* and [P are information orders

— O and Yy are monotonous

Mastere RSD - TC4 2005/2006

25

Abstract Interpretation (6)

example
.%ita abstraction
- Compilation

Operational semantics

Consistent Chain . .
Finite instanciation i

of approximations -

Mastere RSD - TC4 2005/2006 26

Abstract Interpretation

Summary:
- From Infinite to Finite / Decidable

— library of abstractions for mathematical objects
— 1nformation loss : chose the right level !
— composition of abstractions
— sound abstractions :
property true on the abstract model => true on concrete model
— but incomplete :
abstract property false => concrete property may be true

Ref: Abstract interpretation-based formal methods and future challenges,
P. Cousot, in “informatics 10 years back, 10 years ahead”, LNCS 2000.

Mastere RSD - TC4 2005/2006 27

Program of the course:
1: Semantic Formalisms

» Operational semantics, behaviour models :
represent the complete behaviour of the system

— CCS, Labelled Transition Systems

Mastere RSD - TC4 2005/2006 28

Operational Semantics
(Plotkin 1981)

Describes the computation

States and configuration of an abstract machine:

— Stack, memory state, registers, heap...
Abstract machine transformation steps
Transitions: current state -> next state

Several different operational semantics

Mastere RSD - TC4 2005/2006

29

Natural Semantics : big steps (Kahn 1986)

* Defines the results of evaluation.
* Direct relation from programs to results

env |- prog => result
— env: binds variables to values

— result: value given by the execution of prog

Reduction Semantics : small steps
describes each elementary step of the evaluation
* rewriting relation : reduction of program terms
* stepwise reduction: <prog, s> -> <prog’,s >

— 1nfinitely, or until reaching a normal form.

Mastere RSD - TC4 2005/2006 30

Differences: small / big steps

* Big steps:
— abnormal execution : add an « error » result
— non-terminating execution : problem
 deadlock (no rule applies, evaluation failure)
* looping program (infinite derivation)
* Small steps:
— explicit encoding of non termination, divergence

— confluence, transitive closure ->*

Mastere RSD - TC4 2005/2006

31

Natural semantics: examples
(big steps)
* Type checking :
Terms: X |tt | ff |nott|n |tl +t2 | 1f b then tl else 2
Types: Bool, Int

* Judgements : Typing: T |- P: T

Reduction: [[- P=>v

Mastere RSD - TC4 2005/2006

32

Deduction rules

Values and expressions:

[|- tt: Bool [|- tt = true
[|- ff : Bool [|- ff = false
[|- t1:Int [|- €2 : Int]-tl=nl [|- t2=n2
[|- t1+t2: Int [|- t1 +t2 = nl+n2

Mastere RSD - TC4 2005/2006 33

Deduction rules

* Environment :
i {x->V} |- x=>vV O {x:T}|- x:T

 Conditional :

[|- b= true [|-el=vV

[|- ifbthenelelsee2 = v

Exercice : typing rule ?

Mastere RSD - TC4 2005/2006 34

Operational semantics:
big steps for reactive systems
Behaviours

* Distributed, synchronous/asynchronous programs:
transitions represent communication events
 Non terminating systems

* Application domains:
— telecommunication protocols
— reactive systems
— 1nternet (client/server, distributed agents, grid, e-commerce)

— mobile / pervasive computing

Mastere RSD - TC4 2005/2006 35

Synchronous and asynchronous languages

* Systems build from communicating componants :
parallelism, communication, concurrency

* Asynchronous Processes

— Synchronous communications (rendez-vous)
Process calculi: CCS, CSP, Lotos

— Asynchronous communications (message queues)
SDL modelisation of channels

* Synchronous Processes (instantaneous diffusion)
Esterel, Sync/State-Charts, Lustre

Exercice: how do you classify ProActive ?

Mastere RSD - TC4 2005/2006 36

CCS

(R. Milner, “A Calculus of Communicating Systems”, 1980)

 Parallel processes communicating by Rendez-vous :

4 '
a?:b!:nil L b!:nil b_> nil
T
a2:P||al:Q — P||Q
b?
 Recursive definitions :
a?

let rec { st0 = a?:stl + b?:st0 } in st0

Mastere RSD - TC4 2005/2006 37

CCS : behavioural semantics (1)
nil (or skip)
a:P 2. p

p_A.p 02, 0

P+o 2.0 pro 2.0

Mastere RSD - TC4 2005/2006 38

CCS : behavioural semantics (2)

p_a p 0 a 0’
Emissions & receptions
are dual actions Plo 2. PO Pllo 2. PO’
T invisible action
(internal communication) al , a? ’
PP Q2,0
T b b
Pl — PO
[uX.P/xip 2. p’
we 2. p

P -2, P alib?,bY

localbinP —*_, localb in P’

Mastere RSD - TC4 2005/2006 39

Derivations

(construction of each transition step)

Prefix
a2:P 27 p
Par-L ; Prefix

a?:P||Q 2, PO aliR2, R

T Par-2

(@?:P||Q)||[a:\R — @P||O)||IR

a?

(@?:P|| Q) || a!:R » P 9] alR

Par-L(Par_ L(Prefix))

Mastere RSD - TC4 2005/2006

40

Example: Alternated Bit Protocol

21mss lomss

Fwd _channel

lack1Xx?0out0

Pack1Xx?1mss

Bwd channel

emitter receiver

Hypotheses: channels can loose messages

Write in CCS ? Requirement:

the protocol ensures no loss of messages

Mastere RSD - TC4 2005/2006 41

Example: Alternated Bit Protocol (2)

e emitter =

let rec {em0 = ack1? :em0 + imss?:eml
and eml = 1n0! :em1 + ack0? :em2
and em2 = ack0? :em2 + 1imss? :em3
and em3 = 1nl! :em3 + ackl? :em0

j

in em0
 ABP =local {in0, inl, out0, outl, ack0, ackl, ...}

in emitter || Fwd channel || Bwd channel || receiver

Mastere RSD - TC4 2005/2006 42

Example: Alternated Bit Protocol (3)

Channels that loose and
duplicate messages (inl and inl)
but preserve their order ?

e Exercise :

1) Draw an automaton describing the loosy
channel behaviour

2) Write the same description in CCS

Mastere RSD - TC4 2005/2006

43

Bisimulation

* Behavioural Equivalence
— non distinguishable states by observation:

two states are equivalent if for all possible action, there
exist equivalent resulting states.

e minimal automata

quotients = canonical normal forms ® _ ©

act - act

Mastere RSD - TC4 2005/2006 44

Some definitions

* Labelled Transition System (LTS)
(S,s0,L, T)

where: S is a set of states
sO [S 1s the 1nitial state
L is a set of labels
T O SxLxS 1s the transition relation

 Bisimulations ® ®
R [0 SxS is a bisimulation iff
— It is a equivalence relation act act
- Up,q) UR, é pe
(p,Lp’)) OT=>0q"/ (q,,g) DT and (p’,q°) IR =
~ is the coarsest bisimulation
2 LTS are bisimilar iff their initial states are in ~

Mastere RSD - TC4 2005/2006 45

Bisimulation (3)

* More precise than trace equivalence :

Y
et \L

* Congruence for CCS operators :
for any CCS context C[.], C[P] ~ C[Q] <=>P~Q
Basis for compositional proof methods

Mastere RSD - TC4 2005/2006 46

Bisimulation (4)

* Congruence laws:
P1~P2 => a:P1 ~a:P2 (L1 P1,P2,a)
P1~P2, Q1~Q2 => P1+Q1 ~ P2+Q2
P1~P2, Q1~Q2 => P1||Q1 ~ P2||Q2
Etc...

Mastere RSD - TC4 2005/2006

47

Bisimulation : Exercice

Mastere RSD - TC4 2005/2006

48

Next courses

2) Application to distributed applications
— ProActive : behaviour models
— Tools : build an analysis platform

3) Distributed Components
— Fractive : main concepts
— Black-box reasoning
— Deployment, management, transformations

www-sop.inria.fr/oasis/Eric.Madelaine
—> Teaching

Mastere RSD - TC4 2005/2006 49

