
Natural deduction environment for Matita

Claudio Sacerdoti Coen? and Enrico Tassi?

Department of Computer Science, University of Bologna
Mura Anteo Zamboni, 7 — 40127 Bologna, ITALY

{sacerdot,tassi}@cs.unibo.it

Abstract. Matita is a proof assistant characterised by a rich, user ex-
tensible, output facility based on a widget for the rendering of MathML
Presentation, and by the automatic handling of overloading by means of
a flexible disambiguation mechanism. We show how to use these features
to obtain a simple learning environment for natural deduction, without
modifying the source code or Matita.

1 Introduction

There is at least one good reason for pushing the adoption of Interactive Theorem
Provers as teaching instruments that go beyond any pedagogical consideration:
make students familiar with Interactive Theorem Provers, grasping their interest
for future project works or thesis assignments.

To do that, Interactive Theorem Provers have to be turned into learning
platforms, for example tools for learning induction or other fundamental concepts
like formal proofs. Learning logics, students meet formal proofs as derivation
trees, for example following the natural deduction calculus.

In this paper we present our effort in implementing on top of the Matita
Interactive Theorem Prover [2] a learning environment for Natural Deduction,
exploiting the flexibility of the notational mechanism the tool offers and its
peculiar ambiguity management. Our requirements were:
– allow students to input possibly incorrect derivation trees
– force the user to input exactly the same information he would write on paper,

even if redundant or inferable by the system
– notify the user highlighting erroneously applied derivation rules, but allow

him to complete the tree
– graphically display the derivation tree, facilitating its navigation in the fre-

quent case of huge derivations not fitting the screen
– allow a quick (batch) correction of exercises to the teacher
– introduce the user to a textual syntax for the procedural construction of

derivation trees in order to smooth the transition from derivation trees to
procedural/declarative scripts

– help the user in learning such syntax and haste the input phase
? Partially supported by the Strategic Project “DAMA: Dimostrazione Assistita per

la Matematica e l’Apprendimento” of the University of Bologna

2 Sacerdoti Coen, Tassi� �
lemma ex1: ¬ (∃ x.P x) ⇒∀ x.¬ P x.
apply rule (prove (¬ (∃ x.P x) ⇒∀ x.¬ P x));
apply rule (⇒i [h1] (∀ x.¬ P x));
apply rule (∀ i {l} (¬P l));
apply rule (¬ i [h2] (⊥));
apply rule (¬ e (¬ (∃ x.P x)) (∃ x.P x));

[apply rule (discharge [h1]);
| apply rule (∃ i {l} (P l));

apply rule (discharge [h2]);
]

qed.� �
Fig. 1. Input palette and proof script

We presents the input and output interfaces in Section 2. The real contribu-
tion of the paper is in Section 3 where we show how to achieve the aforementioned
goals without modifying the system and exploiting the MathML Presentation
based notational system [4] and the peculiar management of notational over-
loading [6] Matita provides.

2 User interface

Derivation trees are described using the following subset of the procedural lan-
guage of Matita:� �
apply rule (rule name arguments. . .); [subproof | subproof . . .]� �
The apply-rule tactic is the standard application of a proof-term (which is usu-
ally, but not in our case, the name of a lemma), while square brackets are stan-
dard tacticals used to structure the proof script. Unlike other systems like LCF,
Coq or Isabelle, the execution of a structured script is performed in Matita
one tactic at a time [5], so that the incremental build of a structured proof is
comfortable.

To apply a derivation rule the user is asked to list after the rule name all
the information he would write as a side condition and above the inference line.
For example the partial derivation tree of Figure 2 is obtained by executing the
script of Figure 1 up to the end of the blue region in Figure 2.

The choice of annotating rules with the name of the hypotheses they discharge
was a teacher choice, and it reflects the way the teacher wants the students to
write the tree even on paper. Similarly, hypotheses are discharged by labelling
them with their names (e.g. [·]h1) and witnesses are explicitly provided for
existential elimination. Missing sub-derivations are represented by numbered
question marks; clicking on them the user is reminded of what assumptions are
in scope.

Natural deduction environment for Matita 3

Fig. 2. Rendering of a partial derivation tree

Fig. 3. Rendering of a partially collapsed incorrect tree

The concrete syntax consistently uses round brackets for formulae, square
brackets to name hypotheses and curly brackets to name terms/variables.

A palette (Figure 1) can be used to insert in the script a template for every
derivation rule, where no formula or term is inserted for the user. It is thus
possible that the user incorrectly applies a rule. In such a case, the rule name is
coloured in red as in Figure 3.

To improve readability, correct sub-trees can be collapsed to “[unfold]” by
clicking on their root formula (see Figure 3).

4 Sacerdoti Coen, Tassi

3 Implementation

The notational system of Matita is based on three different languages for the
representation of formulae and proofs: semantics, which is logic dependent, con-
tent, where we use MathML Content and OMDoc, and presentation, where we
use MathML Presentation within a simple layout language called BoxML [3].
The user may define two sets of rules to map back and forth semantic objects
to content objects, and to map content objects to presentation objects [1].

The two mappings need not to be one-to-one, and disambiguation is employed
in the parsing phase to resolve overloading in favour of the interpretation that
is meaningful (i.e. the well typed semantics objects).

Thanks to MathML Presentation we can render derivation trees in a partially
satisfactory way as fractions (<mfrac>) and we can use <maction> nodes to
collapse sub-trees and to show hypotheses in scope; finally we can use <mstyle>

to highlight errors in red.
Disambiguation is used to associate to the same rule name two different

semantics objects. The first one is the constant corresponding to the introduc-
tion/elimination rule in the logic of Matita. Thus, the object is well typed (i.e.
meaningful for the disambiguation engine) only if its conclusion matches the
current goal and its arguments are the expected ones. The second interpreta-
tion, that is always meaningful and is only used when the former fails, uses an
(axiomatic, non admissible) cast operator to fix the incorrect rule application.
Another notational rule associates <mstyle>, that produces the rendering in red,
to occurrences of that particular cast constant.

The second interpretation can be deactivated by the teacher to make the
system reject incorrect proofs. This is useful for batch correction of exercises.

We show now all the definitions, interpretations (from semantics to content)
and notations (from content to presentation) that deal with logical conjunction
and its elimination rule.� �
inductive And (A,B:CProp) : CProp :=And intro: A →B →And A B.

definition And elim l : ∀A,B.And A B →A :=
λA,B,f. match f with [And intro l r ⇒l].

axiom any : CProp.� �
Note that the definition of conjunction is the standard one used in Matita,

and not an embedding only useful for natural deduction. This allows the reuse
of the standard machinery of Matita (e.g. automation, type checking) and of its
library (e.g. in order to propose proofs of arithmetical statements). It also allows
to progressively drop the natural deduction trees when the student is ready to
embrace the full procedural language, or the declarative or to mix the three
modes. The any proposition is necessary in the interpretation of a badly-applied
conjunction elimination rule.

Natural deduction environment for Matita 5

� �
(∗ Used to replace a proof ‘p‘ of ‘P‘ with ‘(show P p)‘ to use ‘P‘ in rendering ∗)
definition show: ∀A:CProp.A→A :=λA,a.a.
axiom cast: ∀A,B:CProp.B →A.� �

Show is used to make statements of sub-proofs explicit (so that notation can
label the root of every subtree with the formula it proves). Cast is used to accept
a formula erroneously typed by the user by “casting” a proof of any proposition
B to any proposition A.

We present now the output notations and relative interpretations used to
render the conjunction elimination rule.� �
notation < ”\infrule ab a mstyle color #ff0000 (∧ e l)”

with precedence 19 for @{ ’And elim l ko ab a }.
interpretation ”And elim l ko” ’And elim l ko ab a =

(show a (cast (And elim l (cast ab)))).

notation < ”maction (\infrule ab a (∧ e l)) [unfold]”
with precedence 19 for @{ ’And elim l ok ab a }.

interpretation ”And elim l ok” ’And elim l ok ab a = (show a (And elim l ab)).� �
The first output notation displays the content symbol ’And elim l ko with an

\ infrule layout (mapped to MathML <mfraction> plus <mstyle> directions to
avoid font shrinking in fractions of fractions) colouring the rule name in red. Its
corresponding interpretation is associated to a term containing the cast constant.
The second output rule displays a correct rule application, adding the possibility
to fold the tree clicking on it (<maction> node, whose default behaviour is to
toggle between its children).

Dually, we introduce an input notation and two corresponding interpreta-
tions, respectively for a correct and a wrong application of conjunction elimina-
tion.� �
notation > ”∧ e l term 90 ab” with precedence 19 for @{ ’And elim l (show ab ?) }.
interpretation ”And elim l KO” ’And elim l ab =

(cast (And elim l (cast (And any any) ab))).
interpretation ”And elim l OK” ’And elim l ab = (And elim l ab).� �

The input notation is associated to the rule name. The second interpretation
is preferred and inserts no cast constant, while the first one, used only if the
second fails, applies the rule casting both its conclusion and premise. In partic-
ular, the premise is cast to the conjunction of two occurrences of the previously
declared dummy proposition any in order to apply elimination of conjunction.

4 Conclusion

Matita is a proof assistant based on the Curry-Howard isomorphism: proofs are
internally represented at the semantics level with proof terms. Thus the machin-
ery used to associate the familiar mathematical notation to formulae can as well
be used to render proofs. In particular, in place of the usual rendering as natural

6 Sacerdoti Coen, Tassi

language text with embedded MathML formulae, we can output derivation trees
as interactive MathML formulae, exploiting <mfrac>, <maction> (to collapse
and expand sub-trees) and <mstyle> (to highlight incorrect parts of the proof).
Thanks to the typical MKM layered representation of knowledge (semantics,
content and presentation [1]) that is at the core of the notational machinery
of Matita, we have been able to achieve the latter result without changing the
source code, and with around 800 lines of notation and interpretation commands.

We then proceeded to fulfil the minimal requirements for a learning system,
that we identified in the possibility for the student to input exactly the same
information he would write on paper and to be allowed to commit errors and con-
tinue. We achieved this easily thanks to the disambiguation engine of Matita [6]
that allows to resolve overloading in favour of the interpretations that yield
meaningful formulae: by introducing an axiomatic, non admissible cast rule, any
derivation tree becomes legal, but incorrect trees can be easily distinguished and
displayed accordingly.

This way of implementing the learning system using only notational devices
allows to progressively abandon the derivation trees in favour of the standard
declarative or procedural language of Matita, when the students are ready. The
system was adopted in a first course of logic for computer scientists at the Uni-
versity of Bologna in the academic year 2008/2009.

The only current limitation is the impossibility to develop derivation trees in
a bottom-up fashion, from the leaves to the root, by working with hypotheses
that will be discharged only later. This reflects the way proofs are developed in
Fitch style and in informal mathematics, and in class we carefully avoid making
students work with un-assumed hypotheses anyway. On the other hand, sub-
proofs (containing no free assumptions) can be proved in advance and plugged
in the main proof.

References

1. Andrew A. Adams. Digitisation, representation and formalisation: Digital libraries
of mathematics. In J.H. Davenport A. Asperti, B. Buchberger, editor, Proceedings
of Mathematical Knowledge Management 2003, volume 2594 of Lecture Notes in
Computer Science, pages 1–16. Springer-Verlag, 2003.

2. The Matita interactive theorem prover. http://matita.cs.unibo.it.
3. Luca Padovani. A math canvas for the GNOME desktop. In 5th Annual GNOME

User and Developer European Conference (GUADEC’04), volume 107. Agder Uni-
versity College.

4. Luca Padovani and Stefano Zacchiroli. From notation to semantics: There and back
again. In Proceedings of Mathematical Knowledge Management 2006, volume 4108
of Lectures Notes in Artificial Intelligence, pages 194–207. Springer-Verlag, 2006.

5. Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchiroli. Tinycals: step by
step tacticals. In Proceedings of User Interface for Theorem Provers 2006, volume
174 of Electronic Notes in Theoretical Computer Science, pages 125–142. Elsevier
Science, 2006.

6. Claudio Sacerdoti Coen and Stefano Zacchiroli. Spurious disambiguation errors and
how to get rid of them. Journal of Mathematics in Computer Science, special issue
on Management of Mathematical Knowledge, 2:355–378, 2008.

http://matita.cs.unibo.it

	Natural deduction environment for Matita

