
Hints in unification

Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi

Department of Computer Science, University of Bologna
Mura Anteo Zamboni, 7 — 40127 Bologna, ITALY
{asperti,ricciott,sacerdot,tassi}@cs.unibo.it

Abstract. Several mechanisms such as Canonical Structures [14], Type
Classes [16,13], or Pullbacks [10] have been recently introduced with the
aim to improve the power and flexibility of the type inference algorithm
for interactive theorem provers. We claim that all these mechanisms are
particular instances of a simpler and more general technique, just con-
sisting in providing suitable hints to the unification procedure underlying
type inference. This allows a simple, modular and not intrusive imple-
mentation of all the above mentioned techniques, opening at the same
time innovative and unexpected perspectives on its possible applications.

1 Introduction

Mathematical objects commonly have multiple, isomorphic representations or
can be seen at different levels of an algebraic hierarchy, according to the kind
or amount of information we wish to expose or emphasize. This richness is a
major tool in mathematics, allowing to implicitly pass from one representation
to another depending on the user needs. This operation is much more difficult
for machines, and many works have been devoted to the problem of adding
syntactic facilities to mimic the abus de notation so typical of the mathematical
language. The point is not only to free the user by the need of typing redundant
information, but to switch to a more flexible linkage model, by combining, for
instance, resolution of overloaded methods, or supporting multiple views of a
same component.

All these operations, in systems based on type theories, are traditionally
performed during type-inference, by a module that we call “refiner”. The refiner
is not only responsible for inferring types that have not been explicitly declared:
it must synthesize or constrain terms omitted by the user; it must adjust the
formula, for instance by inserting functions to pass from one representation to
another one; it may help the user in identifying the minimal algebraic structure
providing a meaning to the formula.

From the user point of view, the refiner is the primary source of “intelligence”
of the system: the more effective it is, the easier becomes the communication with
the system. Thus, a natural trend in the development of proof assistants consists
in constantly improving the functionalities of this component, and in particular
to move towards a tighter integration between the refiner and the modules in
charge of proof automation.

2 Asperti, Ricciotti, Sacerdoti Coen, Tassi

Among the mechanisms which have been recently introduced in the litera-
ture with the aim to improve the power and flexibility of the refiner, we recall,
in Section 2, Canonical Structures [14], Type Classes [13], and Pullbacks [10].
Our claim is that all these mechanisms are particular instances of a simpler and
more general technique presented in Section 3, just consisting in providing suit-
able hints to the unification procedure underlying the type inference algorithm.
This simple observation paves the way to a light, modular and not intrusive
implementation of all the above mentioned techniques, and looks suitable to
interesting generalizations as discussed in Section 4.

In the rest of the paper we shall use the notation ≡ to express the type
equivalence relation of the given calculus. A unification problem will be expressed
as A

?≡ B, resulting in a substitution σ such that Aσ ≡ Bσ. Metavariables will
be denoted with ?i, and substitutions are described as lists of assignments of the
form ?i := t.

2 Type inference heuristics

In this section, we recall some heuristics for type refinement already described
in the literature and implemented in interactive provers like Coq, Isabelle and
Matita.

2.1 Canonical structures

A canonical structure is declaration of a particular instance of a record to be
used by the type checker to solve unification problems. For example, consider
the record type of groups, and its particular instance over integers (Z).

Z : Group := {gcarr := Z; gunit := 0; gop := Zplus; . . .}

The user inputs the following formula, where 0 is of type Z.

0 + x = x (1)

Suppose that the notation (x+ y) is associated with gop ? x y where gop is the
projection of the group operation with type:

gop : ∀g : Group.gcarr g → gcarr g → gcarr g

and gcarr is of type Group → Type (i.e. the projection of the group carrier).
After notation expansion equation (1) becomes

gop ?1 0 x = x

where ?1 is a metavariable. For (1) to be well typed the arguments of gop have
to be of type gcarr g for some group g. In particular, the first user provided
argument 0 is of type Z, generating the following unification problem:

Hints in unification 3

gcarr ?1
?≡ Z

If the user declared Z as the canonical group structure over Z, the system finds
the solution ?1 := Z. This heuristic is triggered only when the unification prob-
lem involves a record projection πi applied to a metavariable versus a constant
c. Canonical structures S := {c1; . . . ; cn} can be easily indexed using as keys all
the pairs of the form 〈πi, ci〉.

This device was introduced by A.Saibi in the Coq system [14] and is exten-
sively used in the formalization of finite group theory by Gonthier et al. [2,6].

2.2 Type classes

Type classes were introduced in the context of programming languages to prop-
erly handle symbol overloading in [15,7], and they have been later adopted in
interactive provers [16,13].

In a programming language with explicit polymorphism, dispatching an over-
loaded method amounts to suitably instantiate a type variable. This generalizes
canonical structures exploiting a Prolog-like mechanism to search for type class
instances.

For instance we show how to define the group theoretical construction of the
Cartesian product using a simplification of the Coq syntax.� �
Class Group (A : Type) := { unit : A; gop : A → A → A; . . .}
Instance Z : Group Z := { unit := 0; gop := Zplus; . . .}
Instance × (A,B: Type) (G: Group A) (H: Group B) : Group (A × B) := {

unit := 〈unit G, unit H〉;
gop 〈x1,x2〉 〈y1,y2〉 := 〈gop G x1 y1, gop H x2 y2〉;
. . .
}� �
With this device a slightly more complicated formula than (1) can be accepted
by the system, such as:

〈0, 0〉+ x = x

Unfolding the + notation we obtain

gop ?1 ?2 〈0, 0〉 x = x

where the type of gop and the type of ?2 are:

gop : ∀T : Type.∀g : Group T.T → T → T
?2 : Group ?1

After ?1 is instantiated with Z×Z proof automation is used to inhabit ?2 whose
type has become Group (Z × Z). Automation is limited to a Prolog-like search
whose clauses are the user declared instances. Notice that the user has not defined
a type class instance (i.e. a canonical structure) over the group Z × Z.

4 Asperti, Ricciotti, Sacerdoti Coen, Tassi

2.3 Coercions pullback

The coercions pullback device was introduced as part of the manifesting coercions
technique by Sacerdoti Coen and Tassi in [10] to ease the encoding of algebraic
structures in type theory (see [11] for a formalization explicating that technique).

This devices comes to play in a setting with a hierarchy of structures, some
of which are built combining together simpler structures. The carrier projection
is very frequently declared as a coercion [8], allowing the user to type formulas
like ∀g : Group.∀x : g.P (x) omitting to apply gcarr to g (i.e. the system is able
to insert the application of coercions when needed [12]).

�� ���� ��ring
r group

{{vvv
vv

vv
vv r monoid

$$IIIIIIIII

�� ���� ��group

gcarr $$HHHHHHHHH
�� ���� ��monoid

mcarrzzttttttttt

Type

The algebraic structure of rings is composed by a multiplicative monoid and an
additive group, respectively projected out by the coercions r group and r monoid
so that a ring can be automatically seen by the system as a monoid or a group.
The ring structure can be built when the carriers of the two structures are
compatible (that in intensional type theories can require some non trivial efforts,
see [10] for a detailed explanation).

When the operations of both structures are used in the same formula, the sys-
tem has to solve a particular kind of unification problems. For example, consider
the usual distributivity law of the ring structure:

x ∗ (y + z) = x ∗ y + x ∗ z

Expanding the notation we obtain as the left hand side the following

mop ?1 x (gop ?2 y z)

The second argument of mop has type gcarr ?2 but is expected to have type
mcarr ?1, corresponding to the unification problem:

gcarr ?2
?≡ mcarr ?1

The system should infer the minimal algebraic structure in which the formula
can be interpreted, and the coercions pullback devices amounts to the calculation
of the pullback (in categorical sense) of the coercions graph for the arrows gcarr
and mcarr. The solution, in our example, is the following substitution:

?2 := r group ?3 ?1 := r monoid ?3

Hints in unification 5

The solution is correct since the carriers of the structures composing the ring
structure are compatible w.r.t. equivalence (i.e. the two paths in the coercions
graph commute), that corresponds to the following property: for every ring r

gcarr (r group r) ≡ mcarr (r monoid r)

3 A unifying framework: unification hints

In higher order logic, or also in first order logic modulo sufficiently powerful
rewriting, unification U is undecidable. To avoid divergence and to manage the
complexity of the problem, theorem provers usually implement a simplified, de-
cidable unification algorithm Uo, essentially based on first order logic, sometimes
extended to cope with reduction (two terms t1 and t2 are unifiable if they have
reducts t′1 and t′′2 - usually computed w.r.t. a given reduction strategy - which
are first order unifiable). Unification hints provide a way to easily extend the
system’s unification algorithm Uo (towards U) with heuristics to choose solutions
which can be less than most general, but nethertheless constitute a sensible de-
fault instantiation according to the user.

The general structure of a hint is

→
?x :=

→
H myhint

P ≡ Q

where P ≡ Q is a linear pattern with free variable FV (P,Q) =
→
?v,

→
?x⊆

→
?v, all

variables in
→
?x are distinct and Hi cannot depend on ?xi , . . . , ?xn . A hint is ac-

ceptable if P [
→
H /

→
?x] ≡ Q[

→
H /

→
?x], i.e. if the two terms obtained by telescopic

substitution, are convertible. Since convertibility is (typically) a decidable rela-
tion, the system is able to discriminate acceptable hints.

Hints are supposed to be declared by the user, or automatically generated by
the systems in peculiar situation. Formally a unification hint induces a schematic

unification rule over the schematic variables
→
?v to reduce unification problems

to simpler ones:

→
?x

?≡
→
H myhint

P
?≡ Q

Since
→
?x are schematic variables, when the rule is instantiated, the unification

problems
→
?x

?≡
→
H become non trivial.

When a hint is acceptable, the corresponding schematic rule for unification

is sound (proof: a solution to
→
?x

?≡
→
H is a substitution σ such that

→
?x σ ≡

→
H σ

and thus Pσ ≡ P [
→
H /

→
?x]σ ≡ Q[

→
H /

→
?x]σ ≡ Qσ; hence σ is also a solution to

P
?≡ Q).

6 Asperti, Ricciotti, Sacerdoti Coen, Tassi

From the user perspective, the intuitive reading is that, having a unification

problem of the kind P
?≡ Q, then the “hinted” solution is

→
?x:=

→
H.

The intended use of hints is upon failure of the basic unification algorithm
Uo: the recursive definition unif that implements Uo

let rec unif m n = body

is meant to be simply replaced by

let rec unif m n =
try body
with failure -> try_hints m n

The function try hints simply matches the two terms m and n against the hints
patterns (in a fixed order decided by the user) and returns the first solution
found:

and try_hints m n =
match m,n with
| ...
| P,Q when unif(x,H) as sigma -> sigma (* myhint *)
| ...

This simple integration excludes the possibility of backtracking on hints, but
is already expressive enough to cover, as we shall see in the next Section, all the
cases discussed in Section 2.

Due to the lack of backtracking, hints are particularly useful when they are
invertible, in the sense that the hinted solution is also unique, or at least “canon-
ical” from the user point of view. However, even when hints are not canonical,
they provide a strict and sound extension to the basic unification algorithm.

Hints may be easily indexed with efficient data structures investigated in the
field of automatic theorem proving, like discrimination trees.

3.1 Implementing Canonical Structures

Every canonical structure declaration that declares T as the canonical solution
for a unification problem πi ?S

?≡ t 7→?S := T can be simply turned in the
corresponding unification hint:

?S := T

πi ?S ≡ t

3.2 Implementing Type Classes

Like canonical structures, type classes are used to solve problems like πi ?
?≡ t,

where πi is a projection for a record type R. This kind of unification problem
can be seen as inhabitation problems of the form “? : R with πi := t”. Because

Hints in unification 7

of the lack of the with construction in the Calculus of Inductive Constructions,
Sozeau encodes the problem abstracting the record type over t, thus reducing
the problem to the inhabitation of the type R t. Since the the structure of t is
explicit in the type, parametric type class instances like the Cartesian product
described in Section 2.2 can be effectively used as Prolog-like clauses to solve
the inhabitation problem. This approach forces a particular encoding of algebraic
structures, where all the fields that are used to drive inhabitation search have
to be abstracted out. This practice has a nasty impact on the modularity of non
trivial algebraic hierarchies, as already observed in [10,9].

Unification hints can be employed to implement type classes without requir-
ing an ad-hoc representation of algebraic structures. The following hint schema

?R := {π1 :=?1 . . . πi :=?i . . . πn :=?n}
h-struct-i

πi ?R ≡?i

allows to reduce unification problems of the form πi ?
?≡ t to the inhabitation

of the fields ?1 . . .?n. Morevoer, if we dispose of canonical inhabitants for these
fields we may already express them in the hint. Note that the user is not required
to explicitly declare classes and instances.

Unification hints are flexible enough to also support a different approach that
does not rely on inhabitation but reduces the unification problem to simpler
problems of the same kind.

For example, the unification problem

gcarr ?1
?≡ Z× Z

can be solved by the following hint:

?1 := gcarr ?3 ?2 := gcarr ?4 ?0 :=?3×?4 h-prod
gcarr ?0 ≡?1×?2

Intuitevely, the hint says that, if the carrier of a group ?0 is a product ?1×?2,
where ?1 is the carrier of a group ?3 and ?2 is the carrier of a group ?4 then
we may guess that ?0 is the group product of ?3 and ?4. This is not the only
possible solution but, in lack of alternatives, it is a case worth to be explored.

3.3 Implementing Coercions Pullback

Coercions are usually represented as arrows between type schemes in a DAG.
A type scheme is a type that can contain metavariables. So, for instance, it is
possible to declare a coercion from the type scheme Vect ?A to the type scheme
List ?A. Since coercions form a DAG, there may exist multiple paths between
two nodes, i.e. alternative ways to map inhabitants of one type to inhabitants of
another type. Since an arc in the graph is a function, a path corresponds to the
functional composition of its arcs. A coercion graph is coherent [8] when every
two paths, seen as composed functions p1 and p2, are equivalent, i.e. p1 ≡ p2.
In a coherent dag, any pair of cofinal coercions defines a hint pattern, and the
corresponding pullback projections (if they exist) are the hinted solution.

Consider again the example given in Sect. 2.3. The generated hint is

8 Asperti, Ricciotti, Sacerdoti Coen, Tassi

?1 := r group ?3 ?2 := r monoid ?3

gcarr ?1 ≡ mcarr ?2

This hint is enough to solve all the unification problems listed in Table 1, that
occur often when formalizing algebraic structures (e.g. in [11]).

Table 1. Unification problems solved by coercion hints

Problem Solution

gcarr ?1
?≡ mcarr ?2 ?1 := r group ?3, ?2 := r monoid ?3

gcarr ?1
?≡ mcarr (r monoid ?2) ?1 := r group ?2

gcarr (r group ?1)
?≡ mcarr ?2 ?2 := r monoid ?1

gcarr (r group ?1)
?≡ mcarr (r monoid ?2) ?2 :=?1

4 Extensions

All the previous examples are essentially based on simple conversions involv-
ing records and projections. A natural idea is to extend the approach to more
complex cases involving arbitrary, possibly recursive functions.

As we already observed, the natural use of hints is in presence of invertible
reductions, where we may infer part of the structure of a term from its reduct.

A couple of typical situations borrowed from arithmetics could be the follow-
ing, where plus and times are defined be recursion on the first argument, in the
obvious way:

?1 := 0 ?2 := 0
plus0

?1+?2 ≡ 0
?1 := 1 ?2 := 1

times1?1∗?2 ≡ 1

To understand the possible use of these hints, suppose for instance to have
the goal

1 ≤ a ∗ b

under the assumptions 1 ≤ a and 1 ≤ b; we may directly apply the monotonicity
of times

∀x, y, w, z.x ≤ w → y ≤ z → x ∗ y ≤ w ∗ z

that will succeed unifying (by means of the hint) both x and y with 1, w with a
and z with b.

Even when patterns do not admit a unique solution we may nevertheless
identify an “intended” hint.

Consider for instance the unification problem

?n+?m
?≡ S ?p

In this case there are two possible solutions:

Hints in unification 9

1) ?n := 0 and ?m := S ?p
2) ?n := S ?q and ?p :=?q+?m

however, the first one can be considered as somewhat degenerate, suggesting to
keep the second one as a possible hint.

?n := S ?q ?p :=?q+?m plus-S
?n+?m ≡ S ?p

This would for instance allow to apply the lemma le plus : ∀x, y : N.x ≤ y+x
to prove that m ≤ S(n+m).
The hint can also be used recursively: the unification problem

?j + ?i
?≡ S(S(n+m))

will result in two subgoals,

?j
?≡ S ?q S(n+m)

?≡?q+?i plus-S
?j+?i

?≡ S(S(n+m))

and the second one will recursively call the hint, resulting in the instantiation
?j := S(S n) and ?i := m (other possible solutions, not captured by the hint,
would instantiate ?j with 0, 1 and 2).

4.1 Simple reflexive tactics implementation

Reflexive tactics [1,3] are characterized by an initial phase in which the problem
to be processed is interpreted in an abstract syntax, that is later fed to a normal-
ization function on the abstract syntax that is defined inside the logic. This step
needs to be performed outside the logic, since there is no way to perform pattern
matching on the primitive CIC constructors (i.e. the λ-calculus application).

Let us consider a simple reflexive tactic performing simplification in a semi-
group structure (that amounts to eliminating all parentheses thanks to the as-
sociativity property).

The abstract syntax that will represent the input of the reflexive tactic is
encoded by the following inductive type, where EOp represents the binary semi-
group operation and EVar a semi-group expression that is opaque (that will be
treated as a black box by the reflexive tactic).� �
inductive Expr (S : semigroup) : Type :=
| EVar : sgcarr S → Expr S
| EOp : Expr S → Expr S → Expr S.� �

We call sgcarr the projection extracting the carrier of the semi-group structure,
and semigroup the record type representing the algebraic structure under anal-
ysis. Associated to that abstract syntax there is an interpretation function [[·]]S
mapping an abstract term of type Expr S to a concrete one of type sgcarr S.

10 Asperti, Ricciotti, Sacerdoti Coen, Tassi

� �
let rec [[e : Expr S]](S:semigroup) : sgcarr S :=

match e with
[EVar x ⇒ x
| Eop x y ⇒ sgop S [[x]]S [[y]]S
].� �
The normalization function simpl is given the following type and is proved

sound:� �
let rec simpl (e: Expr S) : Expr S := . . .
lemma soundness:
∀ S:semigroup.∀P:sgcarr S → Prop.∀ x:Expr S. P [[simpl x]]S →P [[x]]S� �

Given the following sample goal, imagine the user applies the soundness
lemma (where P is instantiated with λx.x = d).

a+ (b+ c) = d

yielding the unification problem

[[?1]]g
?≡ a+ (b+ c) (2)

This is exactly what the extra-logical initial phase of every reflexive tactic has
to do: interpret a given concrete term into an abstract syntax.

We now show how the unification problem is solved declaring the two follow-
ing hints, where h-add is declared with higher precedence.

?a := Eop ?S ?x ?y ?m := [[?x]]?S
?n := [[?y]]?S h-add

[[?a]]?S
≡?m+?n

?a := EVar ?S ?z h-base
[[?a]]?S

≡?z

Hint h-add can be applied to problem (2), yiedling three new recursive unification
problems. H-base is the only hint that can be applied to the second problem,
while the third one is matched by h-add, yielding three more problems whose
last two can be solved by h-base:

?1
?≡ Eop g ?x ?y

?x
?≡ EVar g a

h-base
a

?≡ [[?x]]g

?y
?≡ Eop g ?x ?y

...

b
?≡ [[?x]]g

...

c
?≡ [[?y]]g

b+ c
?≡ [[?y]]g

h-add
[[?1]]g

?≡ a+ b+ c

The leaves of the tree are all trivial instantiations of metavariables that together
form a substitution that instantiates ?1 with the following expected term:

Eop g (EVar g a) (Eop g (EVar g b) (EVar g c))

Hints in unification 11

4.2 Advanced reflexive tactic implementation

The reflexive tactic to put a semi-group expression in canonical form is made
easy by the fact that the mathematical property on which it is based has linear
variable occurrences on both sides of the equation:

∀g : semigroup.∀a, b, c : sgcarr g.a+ (b+ c) = (a+ b) + c

If we consider a richer structure, like groups, we immediately have properties
that are characterized by non linear variable occurrences, for example

∀g : group.∀x : gcarr g.x ∗ x−1 = 1

To apply the simplification rule above, the data type for abstract terms must
support a decidable comparison function. We represent concrete terms external
to the group signature by pointers (De Bruijn indexes) to a heap (represented
as a context Γ). Thanks to the heap, we can share convertible concrete terms so
that the test for equality is reduced to testing equality of pointers.� �
record group : Type :={

gcarr : Type;
1 : gcarr;
∗ : gcarr → gcarr → gcarr;
−1 : gcarr → gcarr

}.� �
The abstract syntax for expressions is encoded in the following inductive

type:� �
inductive Expr : Type :=
| Eunit : Expr
| Emult : Expr →Expr →Expr
| Eopp : Expr →Expr
| Evar : N →Expr.� �

The interpretation function takes an additional argument that is the heap Γ .
Lookup in Γ is written Γ (m) and returns a dummy value when m is a dandling
pointer.� �
let rec [[e : Expr; Γ : list (gcarr g)]](g:group) on e : gcarr g :=

match e with
[Eunit ⇒1
| Emult x y ⇒[[x; Γ]]g ∗ [[y; Γ]]g
| Eopp x ⇒[[x; Γ]]−1

g

| Evar n ⇒Γ (n)].� �
For example:

[[Emult (Evar O) (Emult (Eopp (Evar O)) (Evar (S O)))); [x; y]]]g ≡ x∗(x−1 ∗y)

The unification problem generated by the application of the reflexive tactic
is of the form

12 Asperti, Ricciotti, Sacerdoti Coen, Tassi

[[?1; ?2]]?3

?≡ x ∗ (x−1 ∗ y)

and admits multiple solutions (corresponding to permutations of elements in the
heap).

To be able to interpret the whole concrete syntax of groups in the abstract
syntax described by the Expr type, we need the following hints:

?a := Emult ?x ?y ?m := [[?x; ?Γ]]?g
?n := [[?y; ?Γ]]?g

h-times
[[?a; ?Γ]]?g

≡?m∗?n

?a := Eunit
h-unit

[[?a; ?Γ]]?g
≡ 1

?a := Eopp ?z ?o := [[?z; ?Γ]]?g h-opp
[[?a; ?Γ]]?g

≡?−1
o

To identify equal variables, and give them the same abstract representation,
we need two hints, implementing the lookup operation in the heap (or better,
the generation of a duplicate free heap by means of explicit sharing).

?a := Evar 0 ?Γ :=?r ::?Θ h-var-base
[[?a; ?Γ]]?g ≡?r

?a := Evar (S ?p) ?Γ :=?s ::?∆ ?q := [[Evar ?p; ?∆]]?g

h-var-rec
[[?a; ?Γ]]?g

≡?q

To understand the former rule, consider the following unification problem:

[[Evar 0; ?t ::?Γ]]?g

?≡ x

Since the first context item is a metavariable, unification (unfolding and com-
puting the definition of [[Evar 0; ?t ::?Γ]]?g

to ?t) instantiates ?t with x, that
amounts to reserving the first heap position for the concrete term x.

In case the first context item has been already reserved for a different variable,
unification falls back to hint h-var-rec, skipping that context item, and possibly
instantiating the tail of the context ?Γ with x ::?∆ for some fresh metavariable
?∆.

We now go back to our initial example [[?1; ?2]]?3

?≡ x ∗ (x−1 ∗ y) and follow
step by step how unification is able to find a solution for ?1 and ?2 using hints.
The algorithm starts by applying the hint h-times, yielding one trivial and two
non trivial recursive unfication problems:

?1
?≡ Emult ?x ?y x

?≡ [[?x; ?2]]?g
x−1 ∗ y ?≡ [[?y; ?2]]?g

h-times
[[?1; ?2]]?g

?≡ x ∗ (x−1 ∗ y)

The second recursive unification problem can be solved applying hint h-var-base:

?x
?≡ Evar 0 ?2

?≡ x ::?Θ h-var-base
x

?≡ [[?x; ?2]]

Hints in unification 13

The application of the hint h-var-base forces the instantiation of ?2 with x ::
?Θ, thus fixing the first entry of the context to x, but still allowing the free
instantiation of the following elements.

Under the latter instantiation, the third unification problem to be solved
becomes x−1 ∗ y ?≡ [[?y; x ::?Θ]] that requires another application of hint h-times
followed by h-opp on the first premise.

?y
?≡ Emult (Evar 0) ?y x−1 ?≡ [[?x′ ; x ::?Θ]]?g

y
?≡ [[?y′ ; x ::?Θ]]?g

h-times
x−1 ∗ y ?≡ [[?y; x ::?Θ]]?g

The first non-trivial recursive unification problem is x−1 ?≡ [[?x′ ; x ::?Θ]]?g
and

can be solved applying hint h-opp first and then h-var-base. The second problem
is more interesting, since it requires an application of h-var-rec:

?y′
?≡ Evar (S ?p) x ::?Θ

?≡?s ::?∆ y
?≡ [[Evar ?p; ?∆]]?g

h-var-rec
y

?≡ [[?y′ ; x ::?Θ]]?g

The two unification problems on the left are easy to solve and lead to the fol-
lowing instantiation

?y′ := Evar (S ?p) ?s := x; ?∆ :=?Θ

The unification problem left is thus y
?≡ [[Evar ?p; ?Θ]]?g

and can be solved using
hint h-var-base. It leads to the instantiation

?p := Evar 0 ?Θ := y ::?Θ′

for a fresh metavariable ?Θ′ . Note that hint h-var-base was not applicable in place
of h-var-rec since it leads to an unsolvable unification problem that requires the
first item of the context to be equal to both x and y:

?y′
?≡ Evar 0 x ::?Θ

?≡ y ::?Θ
h-var-base

y ≡ [[?y′ ; x ::?Θ]]?g

The solution found for the initial unification problem is thus:

?1 := Emult (Evar O) (Emult (Eopp (Evar O)) (Evar (S O))))
?2 := x :: y ::?Θ′

Note that ?Θ′ is still not instantiated, since the solution for ?1 is valid for every
context that extends x :: y ::?Θ′ . The user has to choose one of them, the empty
one being the obvious choice.

All problems obtained by the application of the soundness lemma are of
the form [[?1; ?2]]?3

?≡ t. If t contains no metavariables, hints cannot cause

14 Asperti, Ricciotti, Sacerdoti Coen, Tassi

divergence since: h-opp, h-unit and h-times are used a finite number of times
since they consume t; every other problem recursively generated has the form
[[?1;

→
s ::?Γ]]?3

?≡ r where r is outside the group signature. To solve each goal,
h-var-rec can be applied at most | →s | + 1 times and eventually h-var-base will
succeed.

5 Conclusions

In a higher order setting, unification problems of the kind f ?i
?≡ o and ?f i

?≡ o
are extremely complex. In the latter case, one can do little better than us-
ing generate-and-test techniques; in the first case, the search can be partially
driven by the structure of the function, but still the operation is very expensive.
Moreover, higher order unification does not admit most general unifiers, so both
problems above usually have several different solutions, and it is hard to guide
the procedure towards the intended solution.

On the other side, it is simple to hint solutions to the unification algorithm,
since the system has merely to check their correctness. By adding suitable hints
in a controlled way, we can restrict to a first order setting keeping interesting
higher-order inferences. In particular, we proved that hints are expressive enough
to mimic some interesting ad-hoc unification heuristics like canonical structures,
type classes and coercion pullbacks. It also seems that system provided unifica-
tion errors in case of error-free formulae can be used to suggest to the user the
need for a missing hint, in the spirit of “productive use of failure” [4].

Unification hints can be efficiently indexed using data structures for first
order terms like discrimination trees. Their integration with the general flow
of the unification algorithm is less intrusive than the previously cited ad-hoc
techniques.

We have also shown an interesting example of application of unification hints
to the implementation of reflexive tactics. In particular, we instruct the unifica-
tion procedure to automatically infer a syntactic representation S of a term t
such that [[S]] ≡ t, introducing sharing in the process. This operation previously
had to be done by writing a small extra-logical program in the programming
language used to write the system, or in some ad-hoc language for customiza-
tion, like L-tac [5]. Our proposal is superior since the refiner itself becomes able
to solve such unification problems, that can be triggered in situations where the
external language is not accessible, like during semantic analysis of formulae.

A possible extension consists in adding backtracking to the management of
hints. This would require a more intrusive reimplementation of the unification
algorithm; moreover it is not clear that this is the right development direction
since the point is not to just add expressive power to the unification algorithm,
but to get the right balance between expressiveness and effectiveness, expecially
in case of failure.

Another possible extension is to relax the linearity constraint on patterns
with the aim to capture more invertible rules, like in the following cases:

Hints in unification 15

?x := 0
plus-0

?x+?y ≡?y
?x := S ?z plus-S

?x+?y ≡ S (?z+?y)

It seems natural to enlarge the matching relation allowing the recursive use of
hints, at least when they are invertible. For instance, to solve the unification
problem ?1 + (?2 + x)

?≡ x we need to apply hint plus-0 but matching the hint
pattern requires a recursive application of hint plus-0 (hence it is not matching
in the usual sense, since ?2 has to be instantiated with 0). The properties of this
“matching” relation need a proper investigation that we leave for future work.

References

1. Gilles Barthe, Mark Ruys, and Henk Barendregt. A two-level approach towards
lean proof-checking. In Types for Proofs and Programs (Types 1995), volume 1158
of LNCS, pages 16–35. Springer-Verlag, 1995.

2. Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canonical big
operators. In TPHOLs, pages 86–101, 2008.

3. Samuel Boutin. Using reflection to build efficient and certified decision procedures.
In Martin Abadi and Takahashi Ito editors, editors, Theoretical Aspect of Computer
Software TACS’97, Lecture Notes in Computer Science, volume 1281, pages 515–
529. Springer-Verlag, 1997.

4. Alan Bundy, David Basin, Dieter Hutter, and Andrew Ireland. Rippling: meta-level
guidance for mathematical reasoning. Cambridge University Press, New York, NY,
USA, 2005.

5. David Delahaye. A Tactic Language for the System Coq. In Proceedings of Logic
for Programming and Automated Reasoning (LPAR), Reunion Island (France), vol-
ume 1955 of Lecture Notes in Artificial Intelligence, pages 85–95. Springer-Verlag,
November 2000.

6. Georges Gonthier, Assia Mahboubi, Laurence Rideau, Enrico Tassi, and Laurent
Thery. A modular formalisation of finite group theory. In The 20th International
Conference on Theorem Proving in Higher Order Logics, volume 4732, pages 86–
101, 2007.

7. Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler. Type
classes in haskell. ACM Transactions on Programming Languages and Systems,
18:241–256, 1996.

8. Zhaohui Luo. Coercive subtyping. J. Logic and Computation, 9(1):105–130, 1999.
9. Zhaohui Luo. Manifest fields and module mechanisms in intensional type theory.

In TYPES 08, 2009. To appear.
10. Claudio Sacerdoti Coen and Enrico Tassi. Working with mathematical structures

in type theory. In Proceedins of TYPES 2007, volume 4941/2008 of LNCS, pages
157–172. Springer-Verlag, 2007.

11. Claudio Sacerdoti Coen and Enrico Tassi. A constructive and formal proof of
Lebesgue’s dominated convergence theorem in the interactive theorem prover
Matita. Journal of Formalized Reasoning, 1:51–89, 2008.

12. Amokrane Saibi. Typing algorithm in type theory with inheritance. In The 24th
Annual ACM SIGPLAN - SIGACT Symposium on Principle of Programming Lan-
guage (POPL), 1997.

13. Matthieu Sozeau and Nicolas Oury. First-class type classes. In TPHOLs, pages
278–293, 2008.

16 Asperti, Ricciotti, Sacerdoti Coen, Tassi

14. The Coq Development Team. The Coq proof assistant reference manual.
http://coq.inria.fr/doc/main.html, 2005.

15. P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In POPL
’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 60–76, New York, NY, USA, 1989. ACM.

16. Markus Wenzel. Type classes and overloading in higher-order logic. In TPHOLs,
pages 307–322, 1997.

http://coq.inria.fr/doc/main.html

	Hints in unification

