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Ozalp Babaöglu Andrea Asperti





Abstract

Interactive theorem provers (ITP for short) are tools whose final aim is to certify

proofs written by human beings. To reach that objective they have to fill the gap

between the high level language used by humans for communicating and reasoning

about mathematics and the lower level language that a machine is able to “un-

derstand” and process. The user perceives this gap in terms of missing features or

inefficiencies. The developer tries to accommodate the user requests without increas-

ing the already high complexity of these applications. We believe that satisfactory

solutions can only come from a strong synergy between users and developers.

We devoted most part of our PHD designing and developing the Matita inter-

active theorem prover. The software was born in the computer science department

of the University of Bologna as the result of composing together all the technologies

developed by the HELM team (to which we belong) for the MoWGLI project. The

MoWGLI project aimed at giving accessibility through the web to the libraries of

formalised mathematics of various interactive theorem provers, taking Coq as the

main test case. The motivations for giving life to a new ITP are:

• study the architecture of these tools, with the aim of understanding the source

of their complexity

• exploit such a knowledge to experiment new solutions that, for backward com-

patibility reasons, would be hard (if not impossible) to test on a widely used

system like Coq.
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Matita is based on the Curry-Howard isomorphism, adopting the Calculus of Induc-

tive Constructions (CIC) as its logical foundation. Proof objects are thus, at some

extent, compatible with the ones produced with the Coq ITP, that is itself able to

import and process the ones generated using Matita. Although the systems have a

lot in common, they share no code at all, and even most of the algorithmic solutions

are different.

The thesis is composed of two parts where we respectively describe our experience

as a user and a developer of interactive provers. In particular, the first part is based

on two different formalisation experiences:

• our internship in the Mathematical Components team (INRIA), that is formal-

ising the finite group theory required to attack the Feit Thompson Theorem.

To tackle this result, giving an effective classification of finite groups of odd

order, the team adopts the SSReflect Coq extension, developed by Georges

Gonthier for the proof of the four colours theorem.

• our collaboration at the D.A.M.A. Project, whose goal is the formalisation

of abstract measure theory in Matita leading to a constructive proof of

Lebesgue’s Dominated Convergence Theorem.

The most notable issues we faced, analysed in this part of the thesis, are the fol-

lowing: the difficulties arising when using “black box” automation in large formal-

isations; the impossibility for a user (especially a newcomer) to master the context

of a library of already formalised results; the uncomfortable big step execution of

proof commands historically adopted in ITPs; the difficult encoding of mathemati-

cal structures with a notion of inheritance in a type theory without subtyping like

CIC.

In the second part of the manuscript many of these issues will be analysed with

the looking glasses of an ITP developer, describing the solutions we adopted in the

implementation of Matita to solve these problems: integrated searching facilities to
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assist the user in handling large libraries of formalised results; a small step execution

semantic for proof commands; a flexible implementation of coercive subtyping al-

lowing multiple inheritance with shared substructures; automatic tactics, integrated

with the searching facilities, that generates proof commands (and not only proof

objects, usually kept hidden to the user) one of which specifically designed to be

user driven.
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Introduction



2 Chapter 1. Introduction

We devoted most part of our PHD designing and developing the Matita [3]

interactive theorem prover. The software was born in the computer science de-

partment of the University of Bologna as the result of composing together all the

technologies developed by the HELM1 team (to which we belong) for the MoWGLI2

project.

The MoWGLI project aimed at giving accessibility through the web to the li-

braries of formalised mathematics of various interactive theorem provers, taking

Coq [92] as the main test case. The motivations for giving life to a new ITP are:

• study the architecture of these tools, with the aim of understanding the source

of their complexity

• exploit such a knowledge to experiment new solutions that, for backward com-

patibility reasons, would be hard (if not impossible) to test on a widely used

system like Coq.

These motivations come from a simple observation. Automatic theorem provers

showed their effectiveness many times [35, 86], and their architecture and design

choices are really well detailed in the literature [56, 78, 76]. Moreover, comparisons

between different solutions adopted are performed in a pragmatic way [67, 60, 76,

77] giving a clean classification of algorithms and data structures, analysing their

tips and pitfalls. Said that, tools like the well known Otter [63] count around

50 thousands lines of C code, the impressive Vampire [78] a little more then 100

thousands of C++, the same size for Waldmeister [19]. Coq is written in Objective

Caml, that is notably less verbose than C or C++, but counts more than 110

thousands lines of code (version 8). It works in higher order logic, and not the first

order one implemented in most automatic theorem provers, but its objective, proof

checking, is usually considered a simpler, less ambitious, task than proof search.

Moreover, the size of the kernel of Coq is 10 thousands lines of code and it is hard

to believe that to build up a successful interactive theorem prover one has to write

1Hypertextual Electronic Library of Mathematics
2MoWGLI: Mathematics On the Web: Get it by Logic Interfaces. IST-2001-33562.



Chapter 1. Introduction 3

an additional 100 thousands lines of code. The architecture of interactive theorem

provers is not pragmatically studied as it is done for automatic theorem provers. The

HELM team decided to investigate the source of the complexity of Coq trying to

rewrite it from scratch, possibly documenting tips an pitfalls learned in this process

and comparing the solutions adopted with the ones already implemented in Coq.

Matita is based on the Curry-Howard isomorphism, adopting the Calculus of

Inductive Constructions [93, 73, 30] (CIC) as its logical foundation. Proof objects

are thus, at some extent, compatible with the ones produced with the Coq ITP, that

is itself able to import and process the ones generated using Matita. Although the

systems have a lot in common, they share no code at all, and even most of the

algorithmic solutions are different.

The thesis is composed of two parts where we respectively describe our experience

as a user and a developer of interactive provers, pointing out issues we faced as a

user that are inherent to the subsystems of interactive theorem provers we worked

on as a developer.

The first part of the manuscript is based on two different formalisation expe-

riences, using the interactive theorem prover Coq in the first and Matita in the

second.

The former experience comes from our internship in the Mathematical Compo-

nents team3 (INRIA) leaded by Gonthier. The Mathematical Components project

aims to demonstrate that formalised mathematical theories can, like modern soft-

ware, be built out of components. To reach this objective, it proposes to develop a

general platform for mathematical components, based on the Coq SSReflect [45]

extension, developed by Gonthier to carry out the formalisation of the Four Colour

Theorem [44]. The team is formalising the finite group theory required to attack

the Feit Thompson Theorem and we worked at the formalisation of many compo-

nents on which the whole formalisation will stand, like finite sets. The results we

formalised as well as the issues we encountered are detailed in Chapter 2. Our con-

3http://www.msr-inria.inria.fr/Projects/math-components/

http://www.msr-inria.inria.fr/Projects/math-components/


4 Chapter 1. Introduction

tribution has been published in [46] that we co-authored with other members of the

Mathematical Components team: Gonthier, Mahboubi, Rideau and Thery.

The latter experience comes from our collaboration at the D.A.M.A. Project4,

leaded by Sacerdoti Coen and funded by the University of Bologna. The projects

has three major goals:

• improvement and specialisation of the interactive theorem prover Matita

• development on top of Matita of a learning environment for students to verify

their improvements in doing mathematical proofs

• formalisation of abstract measure theory in Matita up to Lebesgue’s Domi-

nated Convergence Theorem

We worked on the first and the last items, but in the first part of the thesis

we concentrate only on the last task. Our work consisted in the encoding of alge-

braic structures and abstract measure notions in constructive type theory. We then

proved the so called sandwich lemma in this constructive setting.

One of the most notable issues we faced as a user, analysed in this part of the

thesis, is the difficulty for a newcomer (like we were at the beginning of our experi-

ence in the Mathematical Components team) to master the context of a reasonably

large library of available results. The library in question was mainly developed

for the four colour theorem and is reasonably large and well designed (with stan-

dard naming schemas for example). Although Coq offers some searching facilities,

we found them insufficient. Gonthier himself later developed a more sophisticated

“Search” command to ameliorate the situation. We also believe that ITPs can not

be conceived thinking that a (trained) user masters the content of the available li-

brary, since the effort needed to formalise mathematical results is known to be non

negligible and is thus realistic to think that entire teams collaborate on the same

formalisation. It is hardly the case that every team component knows exactly what

4http://dama.cs.unibo.it/

http://dama.cs.unibo.it/
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all her colleagues did. Moreover, available theorems are usually referenced by name

(or even sequential numbers in the huge library of Mizar [64]) and the user needs to

remember the precise statement and recall the exact name to use it.

Another issue is that the tactic engine of Coq executes composed tactic in a big

step fashion. SSReflect script lines are the composition of many simpler tactics

and, even if the syntax allows to compose them in an easy way, the big step execution

model of Coq makes their incremental construction particularly tedious. The user

is forced to undo a command to compose it with the following one.

During our internship in the Mathematic Components team we never used au-

tomatic tactics. The main motivation was that proof scripts that heavily uses au-

tomatic tactics are harder to mend when they break. Finding the right and most

handy definition is an hard task, and since there is no silver bullet, they are always

subject to changes. These changes are usually made to make proofs work smoother,

and break many existing already proved results that have thus to be fixed, possibly

shortening the proof because of the new smarter definition. This process is long and

tedious, but it is still feasible and contributes in keeping the library of formalised

results in a good shape. When a proof heavily use automation and breaks, the

user has usually no idea of what went wrong, since no trace of the previously found

proof is left to him. Moreover, even if automation does not break, the lack of an

history of what was done in the previous run forces the tactic to find again a proof,

eventually the same. This makes the execution of proof scripts slower and the user

tends to procrastinate tasks like moving lemmas in the right place just because she

does not want to trigger the re-execution of many proof scripts. That last issue is

not only related to automation, but to the linear execution paradigm proposed by

Proof General [5].

The last issue that will be treated in this thesis is the well known difficulty to

encode in a type theory without subtyping, like CIC, mathematical structures that

respect an inheritance relation. That problem is usually described in terms of coer-

cive subtyping [57] and dependently typed records [31, 15] that, together, allow to

mimic inheritance. Coercive subtyping has been widely implemented in ITPs, but
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strong restrictions are usually made to ease the implementation, constraining the

user to encode mathematical structures in a non natural way.

In the second part of the manuscript many of these issues will be analysed with

the looking glasses of an ITP developer, describing the solutions we adopted in

the implementation of Matita to attack these problems. Although we worked on

almost every component of Matita we describe in full details the refiner (type

inference) subsystem in Chapter 5 and the automatic tactics in Chapter 6.

A preliminary introduction to Matita is made in Chapter 4 giving a data-

driven analysis of overall architecture of the tool. Particular attention is given to

some peculiarities of the system we consider relevant, like the integrated search en-

gine Whelp and the small-step execution tactic language. The chapter concludes

describing the solutions we adopted to deliver a complex system like Matita to the

users. Matita always suffered from complex installation procedures and external

dependencies, like a relational database, making it almost impossible to concretely

release it to the public. The system has now an official release, can be evaluated

without even installing it by means of a live CD and can be installed with a sin-

gle click on Linux distribution based on Debian5 GNU/Linux, like the nowadays

widespread Ubuntu6. Our contributions described in this chapter are related to

Whelp search engine we tuned for performances and are published in [1] we co-

author with the rest of the HELM team, and the small step tactic language [81]

that we designed and developed together with Sacerdoti and Zacchiroli. The part

regarding the delivery of the system is our contribution too.

Chapter 5 describes the implementation of coercive subtyping we made in Matita

and the way it has been used to formalise algebraic structures for the DAMA Project.

Most implementation of coercive subtyping, like the ones of Coq and Lego, do not

allow multiple coercive paths between the same types. Allowing that, the user can

5http://debian.org
6http://ubuntu.com

http://debian.org
http://ubuntu.com
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build algebraic structures in a more natural way, possibly creating diamonds. For

example, let us call a ring a structure with a carrier and two operations, the former

forming with the carrier a group and the latter a monoid, and declare coercions from

ring to monoid (called ψ2) and group (called φ2). Both group and monoid are then

coercible to their carrier, a type, by φ1 and ψ1.

�� ���� ��Ring
φ2

zzuuuuuuuuu
ψ2

%%KKKKKKKKKK

�� ���� ��Group

φ1 $$I
IIIIIIII

�� ���� ��Monoid

ψ1yyssssssssss

�� ���� ��Type

In this scenario two distinct paths from a ring to the (same) carrier are available,

and uncommon unification problem arise in formulas using both the monoid and

the group operations (respectively + and ∗), whose input/output type has to be

unified. In a formula like x+ (y ∗ z) we find a rigid v.s. rigid case, where the output

of ∗ has to be unified with the input of +. In that case both head constants are

coercions and the arguments (the structure the operation is projecting) are flexible:

ψ1 ?1
?≡ φ1 ?2. φ1 and ψ1 are different constants, thus unification heuristics usually

fail in cases like this one. But this unification problem has a solution that can be

found exploiting the information given by the inheritance graph: there is a structure

(the ring) containing a group and monoid with the same carrier, thus the former

unification problem can be reduced to the following one:

ψ1 (ψ2 ?3)
?≡ φ1 (φ2 ?3)

The typing rules adopted in the refiner subsystem are presented, as well as the

modification made to the original unification algorithm of Matita.

Additionally, subset [87] coercions can be declared. Subset coercions, when ap-

plied, generate side proofs asserting that the coerced element validates a given pred-

icate. An example of such coercion is the one mapping a list l to the sigma type of

ordered lists. When this coercion is applied to a list, the conjecture that such list is

ordered is opened, and the user is asked to prove it. Propagating subset coercions
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under fix points and pattern matching constructors gives a mechanism, in the spirit

of PVS predicate subtyping [85], to specify software.

Our contribution has been published with Sacerdoti in [27] and details the encod-

ing of mathematical structures in CIC we made as well as the unification algorithm

that exploits the inheritance relation expressed in the graph of coercions.

Chapter 6 is devoted to the description of two automatic tactics we implemented

and how we integrated them in an interactive tool like Matita. Both tactics gen-

erate proof scripts starting from carefully built proof objects.

We believe that generating proof scripts allows to drop the usual black box na-

ture of automation, possibly allowing the user to adopt automated tactics more

fruitfully even in frequently changing developments. Re-execution of proof script

is obviously faster since the proof is given in the script file and failures, due to a

modified definition for example, can be clearly spotted since the previously found

proof breaks when executing a precise command (i.e. the application of a lemma).

Black box automation can lead to extremely compact proof scripts, and in some

cases make minor modifications to definitions transparent. We believe that com-

pactness of proof script can mainly be regarded as an editor issue, proofs found

by means of automation could be folded if too long: any modern editor supports

folding. Moreover, the ability of automation to make proof scripts resistant to small

changes is still available, the generated proof script can, in case of failure, execute

the automatic tactic again, possibly replacing the previously generated proof script

with a new one.

Another requirement we made on automation is to be integrated with searching

facilities. Huge libraries are likely to be created by many ITP users: one can not

assume that every user knows the whole content of the library. Providing a set of

lemmas to an automatic tactic can be seen as an hint, speeding up the searching

procedure cutting down the search space, not as the only way a tactic works. Already

available results concerning the current goal have to be suggested by the system to

the user, that may be not aware of their existence.
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We implemented two tactics, both generating proof scripts starting from carefully

refined proof objects and exploiting the searching facilities available in Matita. One

performs (first order) rewriting using the superposition calculus, and is optimised

for speed obtaining good results against the enormous TPTP [90] test suite. The

other tactic was designed having user interaction in mind. It performs Prolog-like

proof search using a depth-first strategy. This, at the cost of worse performances,

allows a good user interaction that is thus able to prune/follow computations. Our

contribution to the proof reconstruction algorithm has been published in [4] we co-

author with our advisor Professor Asperti. The implementation and tuning of both

automatic tactics is also our contribution.
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The Mathematical Components project aims to demonstrate that formalised

mathematical theories can, like modern software, be built out of components. To

reach this objective, it proposes to develop a general platform for mathematical com-

ponents, based on the Coq [29] SSReflect [45] extension, developed by Georges

Gonthier to carry out the formalisation of the Four Colour Theorem [44].

We had the pleasure to work for six months in this team, contributing to the

development of such modular components, meant to tackle in the long term the

Feit-Thompson theorem [41]. The internship ended in march 2007 and the paper

“A modular formalisation of finite group theory” [46] was published in August 2007.

The following section introduces the SSReflect extension, its main features

and the base library. Section 2.2 details the design choices made to make the for-

malisation of finite groups run smoothly. Our main contributions are described in

Section 2.2.3 and the following ones, where the encoding of finite and intensional sets

is presented, together with all its implications in the definitions of tuples, function

spaces and actions. Parts of the Section 2.1 and Section 2.2 are reworked extensions

of [46]. In the last Section 2.3 some considerations on the approach, both method-

ological and technical, used in the Mathematical Components projects are made.

Some links with the work the author made as a developer of the Matita interactive

theorem prover are also analysed.

2.1 SSReflect

The SSReflect extension [45] offers a new syntax for the Coq proof shell and a

bunch of libraries making use of small scale reflection in various respects.

Small scale reflection is so named because instead of using the computational

aspect of the logic to run full-blown decision procedures or algebraic simplification

algorithms (”big-scale” reflection, like the one use by the ring tactic [18]), it uses

it to automate small menial operations, such as locally unfolding a function defini-

tion, often using directly the computational content of the objects under study and

thereby avoiding the clumsy reification process. This technology was developed for
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the proof of the four colour theorem [44], where so many concepts were falling in

this category.

To make this reflection work smoothly some tactics have been modified, for

example making use of the refiner (type inference) subsystem of Coq, instead of the

simpler type checker, to benefit from the canonical structures mechanism. As we will

see in the following section, this allows some sort of modularity. Theorems can be

proved on polymorphic data structures where the abstracted type is equipped with

a decidable equality. Then concrete types can be linked with their equality decision

function and its properties by the canonical structure mechanism, and the user is

freed from the burden of providing additional informations when these lemmas are

applied to a structure on the concrete type. Moreover, Coq tactics are not written

to handle boolean propositions, thus a convenient way to switch between logical

propositions and their boolean reflection was developed. In addition to that some

tactics and best practices have been developed to make it easier to maintain proof

scripts.

In this section, we describe the proof shell SSReflect provides, and comment

the fundamental definitions present in the library and how modularity is carried out

throughout the development.

2.1.1 The proof shell

The commands allowed in this new proof shell syntax aim at providing both more

structure in the proof scripts and more control on the operations performed on

terms. The main issue is to obtain proof scripts that are more robust to changes in

the definitions: broken scripts are usually difficult to mend because failures occur

too late after the place where incompatibilities should have been detected. Proof

scripts written with the SSReflect extension have a very different flavour than the

ones developed using standard Coq tactics. Many of Coq’s primitive tactics, like

intro or inversion are performing complex operations with a minimal input from the

user. The SSReflect package promotes the use of a small, but compositional set

of operations, with a sharp control on the occurrence at which they are performed.
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Structuring scripts

Structuring a proof script helps for sure the reader to figure out the sketch of the

informal proof described. Yet a robust structure is also useful at development time

to detect as early as possible the changes implied in a replayed script by a previous

modifications in the definitions involved. This may not be considered a frequent

scenario, and in fact it is for small developments. But when the aim is a huge

formalisation like the Feit-Thompson theorem, definitions have to be chosen with

extreme care, and since there is no silver bullet, this can only happen by trial and

error. Having robust scripts, easy to maintain, is the key point for experimenting

approaches/encodings at a reasonable cost.

We can draw a parallel with software development, where the more a compiler

is strict (for example using static typing) the more it is easy to change a data or

function type. The compiler will spot all places where there is a misuse of such data

or function.

The first structuring feature consists in closing commands. Detecting modifica-

tions needed in a script is eased if the proof of any subgoal should end with a tactic

which fails if it does not solve it. The done and by tactics try to solve the current

goal by trivial means (simplification, assumption already in the context,...) and fail

if it does not succeed. They are both highlighted in bright red (using the Proof

General[5] interface), with the purpose of better marking where subproofs end. The

sequence: by t1 ;...; tn. is equivalent to t1 ;...; tn; done. but the former is to be pre-

ferred since prefixing the terminator better marks the ending line of the subproof.

A best practice, used in a consistent way by the Mathematical Components team,

is to indent subproofs longer than one line, ending them with the prefix by tactic.

The done tactic is implemented as an Ltac [36] tactic performing the following

operations:

• Introducing Hypothesis

• Applying the split tactic (actually it is equivalent to constructor 1 in Coq)
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• Tempting to solve the goal with the tactics: trivial, contradiction, discriminate,

assumption and

• If the context contains a proposition P and its negation (actually P →False in

Coq) conclude by inhabiting False using modus ponens.

Another way of highlighting the steps of a proof is to use forward/backward

chaining commands. This affects the shape of the proof term constructed by ab-

stracting some of its subterms. This declarative style is closer to the one of pen-

and-paper proofs and can be freely mixed with the procedural one.

These commands differ from the available standard Coq tactics cut and assert

by their internal implementation through abstraction rather than by a let-in binding:

this approach seems to better interact with Coq’s term comparison algorithms.

The possibility of mixing declarative and procedural proof styles has proven to

be quite effective. In group theory many proofs begin defining a construction (like

a group action or a particular set), but then the proof is performed reasoning in a

backward fashion.

Bookkeeping

By bookkeeping commands, we mean operations which move things between the hy-

potheses and the goal, while changing their shape (by decomposition, generalisation,

simplification).

A single command is used to move things between the context and the goal,

complying with Coq standard intro-patterns. The latter allow to decompose by

case analysis the objects that are introduced or generalised. The user can at the

same time name the generated terms or clear useless hypotheses from the context.

For example, if the context contains a hypothesis H:∀n, P n, the command move:(H 0)

generalises (H 0) and the command move:(H 0)⇒H0 puts a new hypothesis H0:P 0

in the context. If the goal is of the form A1 →A2 ∧A3 →A4, after the command:� �
move⇒ A1 [A2 A3] {H0}� �
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the goal becomes A4, three hypotheses H1:A1, H2:A2 and H3:A3 are created. The

hypothesis H0 is cleared from the context.

The switch //, that tries to solve goals with the done tactic, can be placed

everywhere, even in between an intro pattern. Special names and → can be used

to drop an hypothesis (introducing it without a name) or introduce an hypothesis,

rewrite it in the goal and clear it.

It is again clear the purpose of providing a compact command to make scripts

more robust. The commonly used intros tactic, introduces as many hypothesis as

possible in the context, guessing names for them. The tactic works even if there are

no hypothesis to introduce, avoiding an early detection of script breakage. Moreover

the name guessed by the tactic depend over the type (sort) of the terms moved to

the context, and the proof script that follows relays on these names. move insists

in asking the user the names for the hypotheses, making it impossible that an H2 is

later used instead of an H1 just because H1 changed its sort to Type and thus the

name guessing algorithm named it X1 shifting H2 to H1.

Rewriting

Working with a decidable equality gives to equational reasoning a favoured status

(see sections 2.1.2 and 2.1.3). The proposed extension of the rewriting command of

standard Coq allows both better to control the occurrences to be rewritten, and to

chain in a single command a list of rewrite steps. A rewrite step can either rewrite

a rule, or fold/unfold a definition, or apply the standard simpl tactic (essentially βι

reduction), or try to solve the current goal by trivial means. As soon as it makes

some sense, each rewrite step can be given an orientation flag, and/or a list of

occurrences, and/or a pattern, and/or a multiplier.� �
rewrite !lem1 {3}[x ∗ ]lem2 2!lem3 /= −?lem4 /mydef //.� �
• rewrites lem1 in the current goal as many times as possible (but at least one);

• then, rewrites lem2 at the third occurrence fitting the pattern [x ∗ ] in all the

subgoals generated by the previous rewriting;
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• then, rewrites lem3 exactly 2 times in all the subgoals generated by the previous

rewriting;

• then, simplifies in all the subgoals generated by the previous rewriting;

• then, rewrites lem4, right to left, as many times as possible in all the subgoals

generated by the previous rewriting (even zero times is accepted);

• then, unfolds, if possible, the definition mydef in all the subgoals generated by

the previous rewriting;

• then closes the subgoals generated by the previous rewriting that can be triv-

ially solved.

When most of the lemmas are stating equalities, the possibility to chain rewrit-

ing is extremely handy. All operations that are usually performed between single

rewriting step have a compact counterpart in SSReflect: the possibility to spec-

ify an occurrence resembles the standard Coq pattern tactic invocation; while /name

and /= perform unfolding and simplification. The switch // to close trivial subgoals

and ? to perform optional rewriting is essential when a guarded equality is used, and

the premise obligation can be quickly discharged (by means of another rewriting for

example) without breaking the rewrite chain. Having symbolic names for trivial

operations like simplification, partially hides them, giving more importance to the

names of the lemmas involved in the proof.

Case analysis on dependent types

Even if dependent types are not heavily used in SSReflect, there is a special switch

to handle case analysis over dependent types. The classical example is equality� �
Inductive eq (A:Type) (x:A) : A →Prop := refl equal : eq A x x� �

with the associated elimination principle� �
eq ind : ∀A x (P : A →Prop) (p1 : P x) y (e : x = y) (P y)� �
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When we do case analysis over a proof of an equality we have to help Coq in

inferring how to type the branches of the pattern matching. As an example we take

a lemma needed for proving the irrelevance of proofs of an equality between types

over which equality is decidable [53]� �
Lemma stepK : ∀ (d : eqType) (x : d) E,

refl equal x = eq ind x (fun y ⇒y = x) E x E.

Proof.

move⇒ d x E.

case: {2 3 4 5 7 8}x / E.

reflexivity .

Qed.� �
The tactic case produces a pattern matching over E. In CIC, inferring a common

type for all branches is in general undecidable. As a workaround, every pattern

matching construct over an inductive type T is equipped with a typing function f.

If T is an inductive type with some parameters params and has n constructors Ki

each of them taking argsi parameters, the typing function f is expected to return

the type of the i-th branch if applied as follows: f params (Kiargsi). In this case the

pattern match construct has to be equipped with the following function� �
f := fun (r : d) (e : x = r) ⇒refl equal r = eq ind x (fun y ⇒y = r) e r e� �

since eq has one parameter (abstracted with name r here). Unfolding the notation

= and making all types explicit we obtain� �
f := fun (r : d) (e : eq d x r) ⇒

@eq (@eq d r r) (@refl equal d r) (@eq ind d x (fun y : d ⇒eq d y r) e r e)� �
The list of occurrences specified to the case tactic is the list of occurrences of x in

the goal that have been bound to r in f.

The type of E, eq d x x, can be inhabited by just one term, refl equal d x that

fixes the parameter of eq to x. f is thus applied to x and refl equal d x, obtaining

the following type
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� �
@eq (@eq d x x) (@refl equal d x)

(@eq ind d x (fun y : d ⇒eq d y x) (@refl equal d x) x

(@refl equal d x))� �
That simplifies to refl equal x = refl equal x and thus can be inhabited using the

reflexivity tactic.

Searching the library

Standard Coq provides some functionalities to search the library of already proved

theorems. SearchPattern [13] is easy to use, but sometimes not flexible enough.

The integration with Whelp (a search engine briefly described in Section 4.3.1) was

not complete at the time of the internship (the author helped the Coq team to set

up a Whelp server internal to INRIA). Moreover the SSReflect library was not

yet released to the public and thus not indexed by the Whelp server in Bologna.

SSReflect implements a Search command that resembles the match query of

whelp: it is possible to specify a list of constants that may appear in the conclusion

or hypothesis of the searched lemma, and also fix an head constant for the conclusion.

For example, to look for all equalities that use both the orbit and the stabiliser

constant in their statements the following command could be used:� �
Search eq [orbit stabilizer ].� �

No feature of SSReflect has been used more frequently by the author of this

manuscript after it was implemented (that unluckily happened after few months of

the internship where passed).

2.1.2 Small scale reflection

The Coq system is based on an intuitionistic type theory, the calculus of inductive

constructions [93, 73, 30]. Yet when the theory to be formalised inside the system

is classical, developing proofs may not go as smooth as expected. The SSReflect
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extension proposes a workaround to recover the ease of classical reasoning in Coq

when it is allowed by the theory.

In the Coq system, logical propositions are represented by types having the

sort Prop. Of course, this sort does not enjoy the excluded middle principle : the

proposition ∀P : Prop, P ∨¬P is not provable. On the other hand, bool is an induc-

tive datatype with two constructors true and false , and the pattern matching on its

constructors allows classical reasoning on predicates defined as boolean functions.

The boolean datatype can be injected into this Prop sort thanks to the following

function:� �
Coercion is true := fun b : bool →b = true.� �

The coercion mechanism of Coq realises this injection inside the system. It

automatically inserts applications of the is true function when a boolean needs

to be changed into a proposition for a term to be well typed. By default, these

applications are hidden to the user at display time for sake of clarity.

Another key issue about boolean predicates is their computational behaviour:

two such predicates are logically equivalent if and only if their values are equal.

Hence rewriting becomes a way to handle equivalent statements. Anyway the Prop

level is still needed when one needs to perform primitive tactics on the boolean

statements: case analysis, generalisation, . . .

In practice, going back and forth between booleans and their coerced version

needs to be easy and convenient. The relation between a boolean predicate and a

proposition is realized by the reflect inductive predicate: ( reflect P b) means that

( is true b) and P are logically equivalent.� �
Inductive reflect (P : Prop) : bool →Type :=

| Reflect true : P → reflect P true

| Reflect false : ¬P →reflect P false .� �
For instance we can prove the following lemma:� �

Lemma andP : ∀b1 b2, reflect (b1 ∧b2) (b1 && b2).� �
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where && stands for the boolean conjunction, and ∧ for the logical one. Two

coercions have been inserted to make b1 ∧ b2 a well-typed term. Such a lemma,

bridging the gap between boolean and logical definitions is called a view lemma. By

convention the name of these view lemmas are postfixed with a capital P.

If we are to prove a goal of the form (x == y) && (z == t) →G, where ==

stands for the computational equality between booleans, the tactic move/andP; case

performs the conversion and the destruction, changing the goal into x == y ∧
z == t →G. The use of an intro-pattern allows to introduce and name the hy-

pothesis created move/andP⇒[Eq1 Eq2].

Views can be combined with most tactics, for example the previous operation

can also be performed with case/andP⇒Eq1 Eq2.

Suppose now that we have to prove the goal x == y && z == t. In order to split

this goal into two subgoals, we use a combination of two tactics: apply/andP; split.

The first tactic reflects the boolean conjunction into a logical one, the second tactic

can then perform the splitting. In fact we seldom use the /andP view in this way,

since directly rewriting boolean hypotheses (like (x == y) = true) in such a goal will

ultimately simplify it to z == t.

Another possible usage of views is to prove equalities by means of a double

implication. Assuming two unary boolean predicates p1 and p2, one could attack a

goal like ∀ x, p1 x = p2 x with� �
apply/view p1/view p2.� �

obtaining two goals: P1 x →P2 x and P2 x →P1 x where:� �
Lemma view p1 : ∀ x, reflect (P1 x) (p1 x)

Lemma view p2 : ∀ x, reflect (P2 x) (p2 x)� �
The / / syntax is convenient way of composing together the following lemmas:� �
Lemma introTF: ∀ (P2 : Prop) (c b : bool), reflect P2 c →

( if b then P2 else ¬P2) →b = c

Lemma equivPif: ∀ (P1 P2 : Prop) (b : bool), reflect P1 b →

(P2 →P1) →(P1 →P2) →if b then P2 else ¬P2� �
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Views also provides a convenient way to swap between several (logical) charac-

terisations of the same (computational) definition. One can prove a view lemma

per interpretation of the definition. Each different view applying to a same boolean

term gives indeed one of its logical interpretations.

A trivial example of this multiple interpretations possibility is given by the view

lemmas associated with n-ary boolean connectives. Fore instance, if andb3 b1 b2 b3

is defined as andb b1 (andb b2 b3), and and3 as its logical counterpart, then we can

prove the view lemma:� �
Lemma and3P :

∀b1 b2 b3, reflect (and3 b1 b2 b3) (and3b b1 b2 b3)� �
This lemma allows to decompose a triple boolean conjunction in a single opera-

tion : a goal of the form (and3b b1 b2 b3 →G) is transformed into (b1 →b2 →b3 →G)

by applying the case/and3P tactic. But it is also possible to use the case/andP tactic

in this case, and this will lead to the goal (b1 →b2 && b3 →G).

2.1.3 Libraries for decidable and finite types

SSReflect provides as a standard library a huge set of lemmas underlying the for-

mal proof of the Four Colour theorem. These ones build a hierarchy of structures to

handle conveniently the types equipped with a decidable equality, and a substantial

toolbox to work with finite sets.

The minimal requirements for the type of object to fit this framework is to be

equipped with a decidable relation which is Leibniz equality compliant. Such an

object is called an eqType structure.� �
Structure eqType : Type := EqType {

sort :> Type;

eq : sort →sort →bool;

eqP : ∀ x y, reflect (x = y)(eq x y)

}.� �
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The :> symbol declares sort as a coercion from an eqType to its carrier type.

In the type theory of Coq, the only relation that can be handled by rewriting is

the primitive (Leibniz) equality. When an other equivalence relation is the intended

notion of equality on a given type, the user usually needs to use the setoid [10, 25]

workaround. But setoid rewriting does not have the full power of primitive rewriting.

An eqType structure not only assumes the existence of a decidable equality: the eqP

requirement injects this equality into the Leibniz one, and makes it a rewritable

relation.

Finite sets can reasonably be formalised on top of eqType structures, since they

are equipped with a natural decidable equality which will satisfy eqP, for instance

as soon as the set is described by a non parametric inductive type. An elementary

example of such a structure can be built with the type of Peano natural numbers.

We will even declare this structure, called nat eqType as a Canonical Structure.

This feature of standard Coq allows to solve equations involving implicit arguments.

Namely, if the type inference algorithm needs to infer an eqType structure on the type

nat, it will choose as a default choice the nat eqType type. Another such example is

given by the bool eqType structure. By enlarging the set of implicit arguments Coq

can infer, canonical structures ease a lot the handling of the hierarchy of structures.

An eqType structure enjoys proof-irrelevance for the equality proofs of its ele-

ments: every such equality proof is convertible to a reflected boolean test.� �
Lemma eq irrelevance :

∀ (d : eqType) (x y : d) (E E’ : x = y), E = E’.� �
and in particular for the bool eqType structure. Note that here bool is lifted to

bool eqType by the canonical structure mechanism of Coq.� �
Lemma bool irrelevance :

∀ (x y : bool) (E E’ : x = y), E = E’.� �
An eqType structure should not be understood as a set itself. It merely gives a

domain, in which some sets involved in the formalisation will take their elements.
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Extensional sets are represented by their characteristic function and defining set

operations is done by providing the corresponding boolean functions.� �
Definition set (d : eqType) := d →bool.� �

The next step is to build lists, whose elements belong to a certain eqType struc-

ture. The terms list and sequence will be used with the same meaning in the

following. The decidability of the comparison between elements is central to the

programming of most basic operations on lists like membership and indexing. A

declared coercion between the type of lists seq, and the class of functions identifies

a sequence to the (finite) set of its elements.� �
Definition setU1 (d : eqType) (x : d) (a : set) : set d := fun y ⇒(x == y) || a y.

Fixpoint mem (d : eqType) (s : seq d) : set d :=

if s is Adds x s’ then setU1 x (mem s’) else set0.

Coercion mem : seq 7→set.� �
With setU1 x s we build the set corresponding to the union of the set s and the

singleton set containing only x. Lists are the cornerstone of the definition of finite

sets. A finType structure can be seen as a list of non redundant elements of a certain

eqType structure.� �
Structure finType : Type := FinType {

sort :> eqType;

enum : seq sort ;

enumP : ∀ x, count (set1 x) enum = 1

}.� �
The utility function count returns the number of elements in a sequence that

make a boolean predicate evaluate to true. set1 is a synonym for the computational

equality of an eqType: here it could be unfolded (making notation explicit) to:

eq sort x. A bunch of cardinality lemmas is proved in this library, for example

concerning the combination with set operations like union and intersection:� �
Lemma cardUI : ∀A B,
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card (A ∪ B) + card (A ∩ B) = card A + card B.� �
Since sets are characteristic function, the image of a set by an application is

simply the composition of the function and the set. If f is an application between

two finType structures, then:� �
Definition injective : Prop := ∀ x y : B, f x = f y →x = y.

Lemma card image : ∀ (d d’ : finType) (f : d →d’) (A : set d),

injective f →card (image f A) = card A.� �
We are not going to detail the implementation of card and image, but they are

clearly implementable with recursive functions since their domains are (subset of) a

finite domain, actually a finType, that embeds the canonical enumeration. Moreover

elements in a finType are also elements of an eqType, thus the mem coercion can

adjust the type of a sequence (namely the result of image) to a set.

As one may expect, lists whose elements lie in an eqType can be equipped with

a set of lemmas much richer that the standard Coq polymorphic lists. The SSRe-

flect library has around 300 lemmas concerning sequences, while standard Coq

has less that an half.

These lemmas are abstracted over a generic eqType, thus they can be used on

any type for which a boolean comparison function can be proved Leibniz compatible.

Moreover the canonical structure mechanism of Coq, allows the user to apply lemmas

to sequences of the base (non eqType) type (like bool or nat and let the system infer

the canonical, Leibniz compatible, comparison function needed by the lemma. The

same facility applies to finType.

2.2 Finite group theory

The author contributed to the formalisation described in this section during his in-

ternship in the Mathematical Components team at the INRIA-Microsoft Research

Lab in Orsay, Paris. The work has been published in the paper “A modular formal-

isation of finite group theory” [46].
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2.2.1 Groups domains and quotients

Just like eqType structures were introduced before defining sets, we introduce a

notion of (finite) group domain which is distinct from the one of groups. It is

modelled by a finGroupType record structure, packaging a carrier, a composition law

and an inverse function, a unit element and the usual properties of these operations.

Its first field is declared as a coercion to the carrier of the group domain, that

itself can be coerced to a Type, using the sort coercions of the finType and eqType

structures.� �
Structure finGroupType : Type := FinGroupType {

element :> finType;

unit : element;

inv : element →element;

mul : element →element →element;

unitP : ∀ x, mul unit x = x;

invP : ∀ x, mul (inv x) x = unit;

mulP : ∀ x1 x2 x3, mul x1 (mul x2 x3) = mul (mul x1 x2) x3

}.� �
In the group library, a first category of lemmas is formed by the identities being

valid on the whole group domain. For example:� �
Lemma invg mul : ∀ x1 x2 : elt, (x2 ∗ x1) -1 = x1 -1 ∗ x2 -1 .� �

One can also already define operations on arbitrary subsets of a group domain.

If A is such a subset, we can define for instance:� �
Definition conjg (g : finGroupType) (x y : g) := x -1 ∗ y ∗ x

Definition rcoset A x := {y, y ∗ x -1 ∈A}.

Definition sconjg A x := {y, y ˆ x -1 ∈A}. (∗ denoted A:ˆx ∗)

Definition normaliser A := {x, (A :ˆ x) ⊂ A}.� �
The notation {x,P} can be seen as (fun x ⇒P) for the moment, but when we will

switch to intensionally represented sets, it will slightly change.
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A second category of lemmas take inventory of the properties of these operations,

requiring only group domain subsets.

These definitions are as often as possible defined as boolean predicates, combining

the ones that are already available in the libraries. This leads to definitions that

may look less intuitive at first sight. The set of point-wise products of two subsets

of a group domain is for instance defined as:� �
Definition smulg A B := {xy, ∼disjoint {y, rcoset A y xy} B}.� �

A view lemma gives the natural characterisation of this object, where A :∗: B

stands for (smulg A B) :� �
Lemma smulgP : ∀A B z,

reflect (∃ x y, x ∈ A ∧y ∈ B ∧z = x ∗ y) (z ∈ A :∗: B).� �
Finally, a group is defined as a boolean predicate, satisfied by subsets of a given

group domain that contain the unit and are stable under product.� �
Definition group set A := 1 ∈A && (A :∗: A) ⊂ A.� �

It is very convenient to allow the possibility of attaching in a canonical way the

proof that a set has a group structure. Hence groups will themselves be declared as

structures:� �
Structure group(elt : finGroupType) : Type := Group {

set of group :> set elt ;

set of groupP : group set set of group

}.� �
We will declare a canonical structure of groups for objects like the normaliser

of a group or the kernel of a morphism so that they can be displayed as their set

carrier but benefit from an automatically inferred proof of a group structure when

needed. An example showing this technique is provided at the end of the section.

Two groups will share the same group domain, if they share the type of their

elements, the operations and unit. A new finGroupType construction is needed if

and only if one (which in general means all) of these ingredients vary.
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The boolean definition of groups enjoys the proof-irrelevance of such predicates.

Proving that two groups are equal hence boils down to proving the equality of their

carriers as sets in the same finType:� �
Lemma inj set of group :

∀ elt: finGroupType, injective (set of group elt ).� �
Performing case analysis over the two groups to be introduced, we obtain the

following goal:� �
elt : finGroupType

s1, s2 : set elt

s1G : group set ( elt :=elt) s1

s2G : group set ( elt :=elt) s2

E : s1 = s2

===================================

Group (elt:=elt) (set of group:=s1) s1G = Group (elt:=elt) (set of group:=s2) s2G� �
After the rewriting of the E hypothesis in s1G and in the current goal, we need

to prove that :� �
Group (elt:=elt) (set of group:=s2) s1G = Group (elt:=elt) (set of group:=s2) s2G� �

under the assumption that the terms s1G and s2G are proofs of the same boolean

predicate (group set ( elt :=elt) s2). We can then conclude by boolean proof-irrelevance.

The script realising this proof is the following:� �
case⇒ s1 s1G; case⇒s2 s2G /= E; rewrite E in s1G ` ∗.

by rewrite (bool irrelevance s1P s2P).� �
This proof irrelevance combined with the uniformity of group domains results

in a convenient framework to deal with different characterisations of a same mathe-

matical object. The reader may object that in an intensional type theory like CIC,

equations like E are in general not provable, since the sides of the equality are func-

tions and the extensionality rule for functions is not provable in CIC. In sections

2.2.2 and 2.2.3 an evidence of this problem and the adopted solution are discussed.
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Thanks to the above lemma and to the fact that they are sets on the same finType

domain, proving that the kernel of a morphism is a trivial group consists in proving

that the kernel set is equal to the singleton of the unit.

Now come the last kind of lemmas in the library, which state group properties.

For example, if H is a group, then:� �
Lemma groupMr : ∀ x y, x ∈H →(y ∗ x) ∈H = y ∈H.� �

In the above statement, the equality stands for Coq standard equality between

boolean values, since membership of H is a boolean predicate.

The canonical structure mechanism came again handy, since we declared groups

as canonical. For example the normaliser of a subset of a group can be proven to

be a group.� �
Variable elt : finGroupType

Theorem group set normaliser : ∀A : set elt, group set (normaliser A).

Canonical Structure group normaliser := Group group set normaliser.� �
The lemma groupMr can be rewritten in the following statement.� �

elt : finGroupType

A : set elt

Hx : x ∈ normaliser A

Hy : y ∈ normaliser A

===================================

(x ∗ y) ∈ normaliser A� �
The group set normaliser lemma will be inferred by Coq, changing the goal to� �

x ∗ y ∈Group (normaliser A) (group set normaliser A)� �
2.2.2 Quotients and the need for intentional sets

Let H and K be two groups in the same group domain. The group H is normal

in K, denoted H / K if all elements of K commute with all elements in H. More

formally:
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H / K
def
== ∀h ∈ H, k ∈ K, k−1 ∗ h ∗ k ∈ H

Given the definition of normaliser of the previous section:� �
Definition normal H K := K ⊂ (normaliser H).� �

Given a group H, in a group domain elt , all the well-formed quotients of the

form K / H will share the same group law, and unit. Such a quotient is well defined

as soon as H / K, and the group operation for the quotient is the multiplication

of H-cosets. The largest quotient on can build from a given group H is N(H)/H,

where N(H) is the normaliser of H.

In particular, left and right H-cosets are identical for all the elements of K.

Hence they will be called cosets. The set of these H-cosets of element in K is

denoted K/H, and one can define a product law on it which equips the set with a

group structure.

This construction requires anyway to build a new group domain structure since

the quotient group has a new domain and group operation. All the quotients of

the form ·/H will share the same carrier, the H-cosets, and the same operations

and unit. Since the largest possible quotient is N(H)/H, all the other well-defined

quotients are subsets of this one.

If H is a group in the group domain elt , let Hquo be the finGroupType giving the

group domain of the quotient by H. It is a new type, depending on elt and H.

Once again, we carefully stick to first order predicates to take as much benefit as

possible from the canonical structure mechanism. If necessary, side conditions are

embedded inside definitions by the mean of boolean tests. Like this, we avoid having

to add pre-conditions in the properties of these predicates to insure well-formedness.

The definition of cosets makes no restriction on its arguments:� �
Definition coset (A : set elt ) (x : elt ) := if (x ∈ (normaliser A)) then A :∗ x else A� �

The set of cosets of an arbitrary set A is the image of the whole group domain

by the coset operation. Here we define the associated sigma type:
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� �
Definition cosets (A : set elt ):= image (coset A) elt .

Definition cosetType (A : set elt):= eq sig (cosets A).� �
where eq sig is the type constructor for the sigma type associated to a set. This

cosetType type can be equipped with canonical structures of eqType and finType and

elements of this type are intentional sets.

The quotient of two groups of the same group domain can always be defined:� �
Definition A/B := image (coset of B) A.� �

where coset of : elt →(cosetType A) injects the value of (coset A x) in (cosetType A).

Thanks to the internal boolean test in coset, A/B defines in fact [A ∩N(B)]/B.

When H is equipped with a group structure, we define group operations on

(cosetType H) thanks to the following properties:� �
Lemma cosets unit : H ∈(cosets H).

Lemma cosets mul : ∀Hx Hy : cosetType H, (Hx :∗: Hy) ∈(cosets H).

Lemma cosets inv : ∀Hx : cosetType H, (Hx :-1) ∈(cosets H).� �
where A :-1 denotes the image of a set A by the inverse operation. Group properties

are provable for these operations: we can define a canonical structure of group do-

main on cosetType, depending on an arbitrary group object. Canonical structures

of groups, in this group domain, are defined for every quotient of two group struc-

tures. A key point in the readability of statements involving quotients is that the

./. notation is usable because it refers to a definition independent of proofs; the

type inference mechanism will automatically find an associated group structure for

this set when it exists.

Defining quotients has also been a place where we had to rework our formalisation

substantially using intensional sets instead of sets defined by their characteristic

function. In the library of finite group quotients, there are two kinds of general

results. The first one states equalities between quotients, like the theorems about

the kernel of quotient morphism. The second, often heavily relying on properties

of the first kind, builds isomorphisms between different groups, i.e. groups having
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distinct carriers (and hence operations). For example, this is the case for the so-

called three fundamental isomorphism theorems. The initial version of the quotients

was using sets defined by their characteristic function. Having sets for which function

extensionality does not hold had forced us to use setoid. For theorems with types

depending on setoid arguments, especially the ones stating equalities, we had to add

one extensional equality condition per occurrence of such a dependant type in the

statement of the theorem in order to make these theorems usable. The situation

was even worse since, in order to apply one of these theorems. The user had to

provide specific lemmas, proved before-hand, for each equality proof. This was

clearly unacceptable if quotients were to be used in further formalisations.

2.2.3 Function graphs and intensional sets

As mentioned in the previous section, defining set as CIC functions is handy but

makes it almost impossible to prove that two sets are equal. While it is still possible

to prove that they have the same elements, the extensionality rule for functions is not

provable in CIC, and thus it is not possible to rewrite sets with the primitive equality.

The setoids machinery ameliorates this problem, but still some extra conditions have

to be proved, making statements bigger and harder to apply.

Although combining CIC with the extensionality axiom for function results in a

consistent system, this time axioms can be avoided at all. Exploiting the fact that

the domains which we are interested in are usually finite, functions can be repre-

sented with their graph. The following type declaration packs together a sequence

of elements of type d2, the codomain of the function, and a proof that the length of

the sequence is equal to the cardinality of the domain d1.� �
Variables (d1 : finType) (d2 : eqType).

CoInductive fgraphType : Type :=

Fgraph (val : seq d2):( size val) = (card d1) →fgraphType.� �
The use of a coinductive type instead of a common record, actually coded as

single constructor inductive type, inhibits the, although automatic, generation of
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Figure 2.1: Using a function graph as a function

the elimination principle for fgraphType. This is done on purpose: since there is no

recursion in this data type we don’t need a recursor, we only need pattern match to

extract the sequence or the proof if needed.

With this representation of functions, and the coercion fun of fgraph we obtain

functions whose extensional equality implies the intentional one (lemma fgraphP),

allowing to rewrite them. The coercion fun of fgraph (see Figure 2.1) takes a graph

g and an element x of the domain, finds the position at which x occurs in the

canonical enumeration of the domain and returns the element of g occupying that

position (notice that the graph and the domain canonical enumeration have the

same length).� �
Definition fun of fgraph (g : fgraphType d1 d2) :=

fun x ⇒sub (fgraph default x g) ( fval g) (index x (enum d1)).

Coercion fun of fgraph : fgraphType 7→Funclass.

Lemma fgraphP: ∀ (f g : fgraphType d1 d2), ∀ x, f x = g x ↔f = g.� �
Here fval if the first projection of fgraphType, while index x (enum d1) returns

the position of x in the canonical enumeration of the finite type d1. The sub operator

selects the i-th element of the sequence s if i doesn’t exceeds s length. The technical

lemma fgraph default exhibits a default element in d2, given an element x of type d1

and a function graph g (whose length cannot be zero since x proves that d1 is not

empty).� �
Lemma fgraph default : ∀d1 d2, d1 →fgraphType d1 d2 →d2.� �
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To create a function graph given a regular function, we can use some standard

tools already available in the SSReflect library, namely maps and size maps. The

former maps a function over a sequence, while the latter is a lemma, stating that

maps does not alter the length of the mapped sequence. The fgraph of fun operator

composes maps and size maps allowing to obtain an intentional function writing

fgraph of fun (fun x ⇒ ...) .� �
Definition fgraph of fun (f : d1 →d2) := Fgraph (size maps f (enum d1)).� �

We can then form the eqType and finType of fgraphType. The former needs the

following lemma that states that comparing function graphs boils down to comparing

the two sequences.� �
Variables (d1 :finType) (d2 : eqType).

Lemma fgraph eqP : reflect eq (fun f1 f2 ⇒fval f1 == fval f2).

Proof.

move⇒ [s1 Hs1] [s2 Hs2]; apply: (iffP eqP) ⇒[/= Hs1s2|→ //].

by rewrite Hs1s2 in Hs1 ` ∗; rewrite /= (nat irrelevance Hs1 Hs2).

Qed.� �
The first move command introduces the two function graphs we are comparing,

breaking them in their sequences s1 and s2 and the proofs that these sequences have

the right length. After the application of ( iffP eqP) the following coimplication

remains to be proven:� �
fval (Fgraph s1 Hs1) = fval (Fgraph s2 Hs2) ↔Fgraph s1 Hs1 = Fgraph s2 Hs2� �

Proving the right-to-left part is trivial and the obligation is closed in the first line.

To prove the remaining goal, we again benefit of the proof irrelevance on equality

proofs over a decidable type like nat.

This lemma allows to declare the eqType of function graphs, that is declared to

be a canonical structure so that the system can infer fgraph eqP when an fgraph is

used as an eqType.� �
Canonical Structure fgraph eqType := EqType fgraph eqP.� �
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To define the finType of function graphs, we have to exhibit an enumeration of all

function graphs given the domain and codomain (when they are both finite). The

recursive functions to generate the enumeration are written on simple sequences and

lifted to function graphs later:� �
Variable d : finType.

Let seq2 x := seq (seq eqType x).

Let multes (e : d) (s : seq2 d) := maps (Adds e) s.

Let multss (s : seq d) (s1 : seq2 d) := foldr (fun x acc ⇒(multes x s1) @ acc) [] s .

Definition mkpermr length := iter length (multss (enum d)) [[]].� �
Here Adds is the curryfied constructor of sequences (usually Cons); we used []

and @ as a notation for the empty sequence and concatenation. The functions iter

and foldr are pretty standard.

In the following, d1 and d2 are variables of type finType and fgraphType has to

be considered instantiated on d1 as source and d2 as target.

To lift the enumeration of sequences of size (card d1) on a finite alphabet d2, we

have to lift it to an enumeration of function graphs.� �
Definition infgraph (s : seq d2) : option fgraphType :=

if size s =P (card d1) is Reflect true Hs

then Some (Fgraph Hs) else None.� �
The notation ( if c is K then a else b) is interpreted as a pattern match in which

the second branch matches (i.e. nothing is bound in that branch). The notation

=P hides the application of the eqP field of an eqType. In this case size returns an

inhabitant of nat, that is lifted to nat eqType by the canonical structures mechanism,

thus matched value has type� �
size s =P (card d1) : reflect ( size s = card d1) (eq nat eqType (size s) (card d1))� �

The function infgraph injects regular sequences into function graphs if they have

the right size. The infgraph spec will be used to specify the infgraph function, that

will be mapped on the result of mkpermr discharging empty (None) elements.
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� �
CoInductive infgraph spec (s : seq d2) : option fgraphType →Type :=

| Some tup u : size s = (card d1) →fval u = s →infgraph spec s (Some u)

| None tup: ¬( size s == (card d1)) →infgraph spec s None.

Lemma infgraphP : ∀ s, infgraph spec s (infgraph s).� �
The function infgraphseq filters out empty elements and is the real injection from

the enumeration of sequences to the enumeration of function graphs. To obtain the

finType of this enumeration the finfgraph enumP lemma has to be proved.� �
Definition infgraphseq : seq2 d2 →seq fgraph eqType :=

foldr (fun (s :seq d2) ts ⇒if infgraph s is Some u then u :: ts else ts) [].

Definition finfgraph enum := infgraphseq (mkpermr d2 (card d1)).

Lemma finfgraph enumP : ∀u, count (set1 u) finfgraph enum = 1.

Canonical Structure fgraph finType := FinType finfgraph enumP.� �
If d2 is instantiated with bool eqType, the fgraph finType presented above, can

be used to represent finite sets as their characteristic (and intentionally represented)

function. These objects, called setType can be rewritten using the standard equality

elimination principle.� �
CoInductive setType : Type :=

Sett : fgraphType d bool finType →setType.

Definition sval (s : setType) := match s with Sett g ⇒g end.

Lemma isetP: ∀ (a b : setType), ∀ x, a x = b x ↔a = b.

Lemma s2f : ∀ f x, iset of fun f x = f x.

Canonical Structure set eqType := EqType (can eq can sval).

Canonical Structure set finType := FinType (can uniq can sval).� �
The lemma isetP is provable and shows that we reached our objective of having

sets that validate the extensionality law for functions. Thus sets can be proved equal

comparing their elements but still be rewritable with the standard Leibniz equality.

The need for a type tag Sett and the lemmas can eq and can uniq will be discussed

in details in Section 2.3.1.
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The lemma s2f is extensively used in the whole Mathematical Components files

to switch from the intensional to extensional representation of sets. The type of the

lemma hides the fun of iset coercion, analog to fun of fgraph. For an usage example

look at the following example stating that the singleton intensional set on x contains

x:� �
Lemma iset11 : ∀G:finType, ∀ x:G, {: x} x.

Proof. move⇒ x; rewrite s2f; exact: eq refl. Qed.� �
The notation {: } is defined as follows (precedences and associativity are omit-

ted):� �
Notation ”{ x , P }” := (iset of fun (fun x ⇒P)).

Definition iset1 x : setType G := {y, x==y}.

Notation ”’{:’ x }” := (iset1 x).� �
The statement is thus understood by Coq as (displaying coercions):� �

Lemma iset11 : ∀G:finType, ∀ x:G,

is true ( fun of iset ( iset of fun (fun x ⇒x == y)) x).� �
Rewriting with fun of iset we obtain is true ((fun x ⇒x == y) x) and we can

thus let the system β-reduce the statement and close the obligation using the lemma

eq refl stating that the computational equality over an eqType rewrites to true if it

is comparing the same variable.

The “exact:” tactic is slightly more powerful then the standard exact tactic: it

refines the given term and calls done to close any goals left open.

2.2.4 Function spaces

The function graph construction does not lead only to the definition of finite sets

that play nicely with Leibniz equality, but is flexible enough to encode many other

mathematical objects.

Here we present the encoding of function spaces. The set of functions from a finite

domain d1 to a finite codomain d2 is expressed with the binary boolean function
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a : d1 →d2 →bool. This is general enough to describe the space of total function

to a subset of the codomain and the space of partial function (from a subset of the

domain). Partial function spaces are identified with an element of the codomain

they must map to when the input is outside the domain.

The function (actually a relation) a is not represented as a function graph, but as

a CIC function since there is no need to use rewriting on such objects here. Anyway,

what follows could be defined using function graphs with minor modifications.� �
Variables d1 d2 : finType.

Variable a : d1 →set d2.

Fixpoint prod seq (s1:seq d1) {struct s1} : set (seq d2) :=

match s1, s2 with

| Adds x1 s1’, Adds x2 s2’ ⇒a x1 x2 && prod seq s1’ s2’

| , ⇒true

end.

Definition fgraph prod (u : fgraph eqType d1 d2) : bool := prod seq (enum d1) (fval u).� �
The boolean predicate fgraph prod is specified by the following proposition, stat-

ing that the functions inside the function spaces are subset (seen as relations) of

a.� �
Lemma fgraph prodP: ∀u : fgraphType d1 d2, reflect (∀ x, a x (u x)) (fgraph prod u).� �

Some result about the cardinality of function spaces have been proved. All of

them are particular case of the following lemma:� �
Lemma card fgraph prod:

card fgraph prod = foldr (fun i m ⇒card (a i) ∗ m) 1 (enum d1).� �
Total function spaces are defined instantiating a with a relation that covers the

whole domain. With a2 we identify a subset of the codomain and with (fun x ⇒a2 x)

the relation for fgraph prod.� �
Variable a2 : set d2.

Definition tfunspace : set (fgraph eqType d1 d2) := (fgraph prod (fun ⇒a2 )).
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Lemma tfunspaceP : ∀u : fgraphType d1 d2, reflect (∀ x : d1, a2 (u x)) (tfunspace u).

Lemma card tfunspace : card tfunspace = (card a2) ˆ (card d1).� �
Partial function spaces are built with a restriction of the domain a1 and a re-

striction of the codomain a2. With a2’ we identify the singleton set containing only

y0 to which function should map elements outside a1.� �
Variable y0 : d2.

Variable a1 : d1 →bool.

Variable a2 : d2 →bool.

Let a2’ := {: y0}.

Definition pfunspace :=

@fgraph prod d1 (fun i ⇒if a1 i then a2 else a2’).

Lemma card pfunspace: card pfunspace = (card a2) ˆ (card a1).� �
To characterise the boolean predicate pfunspace we define the support boolean

predicate that checks if an element in the domain is mapped to y0. The predicate

sub set can be unfolded to ∀ s1 s2 x. s1 x = true →s2 x = true.� �
Definition support g (x : d1) : bool := g x != y0.

Lemma pfunspaceP : ∀ g : fgraphType d1 d2,

reflect (sub set (support g) a1 ∧ sub set (image g a1) a2) (pfunspace g).� �
Function spaces will be used, although not heavily, in the proof of the Cauchy

theorem in Section 2.2.7.

2.2.5 Tuples and rotations

Homogeneous tuples are a common mathematical object and, for example, will be

used in the proof of the Cauchy theorem presented in Section 2.2.7. An n-tuple

could be encoded directly as sequence of length n, but since we already have the

same machinery for function graphs we could try to reuse it. A tuple of elements

living in a type T can be seen as a function from a finite set of cardinality n to T.
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The standard SSReflect library already provides the finite type of an initial

segment of the natural numbers. The utility function (iota n m) generates the se-

quence of natural numbers starting from n of length m. ( subfilter P s), where P is

a boolean predicate, filters a sequence using P also injecting elements in the Σ-type

Σx: nat. P x = true.� �
Variable n : nat.

Definition ord enum := subfilter (fun m ⇒m < n) (iota 0 n).

Lemma ord enumP : ∀u, count (set1 u) ord enum = 1.� �
To complete the encoding we need an easy way of generating an element in the

domain of ordinals make ord and declare the type of n-tuples of elements in d with

fgraphType (ordinal n) d.� �
Definition make ord : ∀m, m < n →ordinal :=

fun m H ⇒EqSig H.

Definition ordinal := FinType ord enumP.

Variables (d : finType) (n : nat).

Definition tupleType := fgraphType (ordinal n) d.� �
Retrieving the n-th element is still a bit annoying since a proof that the index

is less then n has to be provided.

Instead of using an initial segment of the natural numbers we could use the

modulo operation to ensure that the indexing operation over a tuple makes sense.

We could for example think the domain of a tuple as the finite cyclic group Z/nZ

of order n (if n is greater that zero).

As a side-effect we have a cyclic operation defined on the domain of the tuple,

that allows, for example, an intuitive definition of rotations.� �
Let zp := zp group lt0n.

Definition zprot (f : fgraphType zp d) x := fgraph of fun (fun y : zp ⇒f (x ∗ y)).� �
Here ∗ is the group operation and x, as shown in the Figure 2.2, is an element

of Z/nZ describing the rotation.



Chapter 2. Mathematical components 41

Figure 2.2: Rotated tuple

By the group laws of ∗ we clearly have that (x ∗ y) is inside Z/nZ, thus indexing

f with it makes sense. We also have for free that the unit of the group performs

no rotation at all and that the rotation operation is associative. A coercions from

natural numbers to elements of the Z/nZ group can easily be declared using the

modulo operation properties, making indexing and rotations of tuples really easy to

write.

2.2.6 Actions

The group action concept is extremely recurrent in group theory, see for example

the Cauchy theorem of section 2.2.7.

The usual definition of group action is

Definition 2.1 ((right) group action) Given a group G and a set X, a (right)

group action if a function f : X → G→ X that validates the following equations:

• f(x, (g ∗ h)) = f(f(x, g), h)

• λx.f(x, g) is bijective for every g

where x ∈ X, g ∈ G, h ∈ G, 1 is the unit of the group G and ∗ is the group

operation.

The natural representation of such function is what follows
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� �
Variable (G : finGroupType) (S : finType).

Record action : Type := Action {

act f :> S →G →S;

act bij : bijective act f ;

act morph : ∀ (x y : G) z, act f z (x ∗ y) = act f ( act f z x) y

}.� �
This definition, although correct, hides an important problem. Actions are object

mathematicians usually build on the fly during proofs. This suggests that they must

be easy to define. To ease the definition of actions we choose another record type,

that is equivalent to the previous one, but requires less effort to be inhabited. It

is a well known result that the bijection property can be proved from the fact that

the function respects the unit and is a morphism. Thus the following definition is

equivalent to the previous one.� �
Record action : Type := Action {

act f :> S →G →S;

act 1 : ∀ x, act f x 1 = x;

act morph : ∀ (x y : G) z, act f z (x ∗ y) = act f ( act f z x) y

}.� �
As an example we prove that the function zprot define in Section 2.2.5 is an

action of Z/pZ over the set of tuples of length p. Here g2f is an alias for s2f, while

gsimpl is a custom tactic defined with Ltac [36] that performs automatic rewriting

using some basic equalities valid in any group.� �
Lemma zprot to1 : ∀ f, zprot f 1 = f.

Proof. by move⇒ f; apply/fgraphP⇒ i; rewrite /zprot g2f mul1g. Qed.

Lemma zprot to morph : ∀ x y f, zprot f (x ∗ y) = zprot (zprot f x) y.

Proof. move⇒ x y f; apply/fgraphP⇒ i; rewrite /zprot !g2f; gsimpl. Qed.

Canonical Structure zprot action := Action zprot to1 zprot to morph.� �
We again use the canonical structure mechanism to attach to the function zprot
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its action properties as we did for groups (see Section 2.2.1). This allows Coq to

infer these properties when needed.

2.2.7 A proof in SSReflect

The aim of this section is to show a “real” proof in SSReflect. So far, only two

lines long lemmas where proved. Here we present the proof of a statement that

actually has a name, the Cauchy theorem. Not all lemmas and definition used in

the theorem have been describe right now, and many of them will be explained

informally when needed.

We begin reporting the statement of the Cauchy theorem as well as the proof

that can be found on Planet Math1.

Theorem 2.1 (Cauchy) Let H be a finite group and let p be a prime dividing |H|.
Then there is an element of H of order p.

Proof: Let H be a finite group, and suppose p is a prime divisor of |H|. Consider

the set X of all p-tuples (x1, . . . , xp) for which x1 · · ·xp = 1. Note that |X| = |H|p−1

is a multiple of p. There is a natural group action of the cyclic group Z/pZ on X

under which m ∈ Z/pZ sends the tuple (x1, . . . , xp) to (xm+1, . . . , xp, x1, . . . , xm).

By the Orbit-Stabilizer Theorem, each orbit contains exactly 1 or p tuples. Since

(1, . . . , 1) has an orbit of cardinality 1, and the orbits partition X, the cardinality of

which is divisible by p, there must exist at least one other tuple (x1, . . . , xp) which

is left fixed by every element of Z/pZ. For this tuple we have x1 = . . . = xp, and so

xp1 = x1 · · ·xp = 1, and x1 is therefore an element of order p. 2

The hypothesis of the theorem, as well as some constructions, will be declared as

variables or local definitions. The context in which the theorem is proved is shown

in Figure 2.3.

Most hypothesis and local definitions are one to one with the pen and paper

proof. zp1 is the unit of the zp group domain. The function prod over zp takes

1http://planetmath.org/?op=getobj&from=objects&id=1569

http://planetmath.org/?op=getobj&from=objects&id=1569
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elt : finGroupType

H : group elt

p : nat

prime p : prime p

p divides H : dvdn p (card H)

lt1p := prime gt1 (p:=p) prime p : 1 < p

zp := zp.zp group (p:=p) (ltnW (m:=1) (n:=p) lt1p) : finGroupType

zp1 := make zp 1 : zp

prod over zp (f : zp →elt) :=

foldr (fun ( i : nat eqType) (x : elt ) ⇒f (zp1 ∗∗ i ) ∗ x) 1 (iota 0 p))

X := {t : fgraph finType zp elt , tfunspace (d2:=elt) H t && (prod over zp t == 1)}� �
Figure 2.3: Context of Cauchy theorem.

in input a function of type zp →elt (possibly a tuple over elt with p elements)

and computes Πp−1
i=0 fi. The operation ∗∗ is exponentiation on group elements (and

zp1 ∗∗ (n−1) gives the n-th element of zp). X is the set of tuples (whose elements

lay in H) such that the product of their element is 1. The lemma card X, proved

previously, states that card X = card H ˆ (p−1).

The whole proof script is reported in Figure 2.4 while a detailed explanation of

every line follows.

Line 3 proves an additional lemma that will be put in the context: the cardinality of

zp group is p. zp group, defined before, is an object of type group zp using the whole

group domain zp (i.e. the biggest group living in zp).

Line 4 uses the so called “mod p lemma” to show that modn (card X) p equals

modn (card Z) p where Z is set to ( act fix zprot action zp group)∩X, where modn is

modulus operation over natural numbers. The “mod p lemma” states that, given

a group H that acts with f on a finite set A, and a prime number p such that

the cardinality of H equals pˆn for some n, then the cardinality of modn (card A) p

equals to modn (card A∩(act fix to H)) p, where act fix to H is the set of points of A

invariants by the action f.
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1 Theorem cauchy: ∃ a, H a && (card (cyclic a) == p).

2 Proof.

3 have card zp: card zp group = p ˆ 1 by rewrite icard card card ordinal /= muln1.

4 have:= mpl prime p card zp zprot acts on X; set Z := setI .

5 rewrite card X −{1}(leq add sub lt1p) /= −modn mul (eqnP p divides H) /=.

6 pose t1 := fgraph of fun (fun : zp ⇒1 : elt ).

7 have Zt1: Z t1.

8 apply/andP; split; [| rewrite s2f; apply/andP; split].

9 by apply/act fixP⇒ x ; apply/fgraphP⇒ i; rewrite /t1 !g2f.

10 by apply/tfunspaceP⇒ u; rewrite g2f.

11 rewrite /prod over zp; apply/eqP; elim: (iota ) ⇒//= i s → {s}.

12 by rewrite g2f mul1g.

13 case: (pickP (setD1 Z t1)) ⇒[t | Z0]; last first .

14 by rewrite mod0n (cardD1 t1) Zt1 (eq card0 Z0) modn small.

15 case/and3P⇒ tnot1; move/act fixP⇒ fixt.

16 rewrite s2f; case/andP; move/tfunspaceP⇒ Ht prodt .

17 pose x := t 1; ∃ x; rewrite Ht /=.

18 have Dt: t = x by move⇒ u; rewrite /x −{2}(fixt u (isetAP )) g2f mulg1.

19 have: dvdn (orderg x) p.

20 rewrite orderg dvd −(eqP prodt) −(size iota 0 p) /prod over zp.

21 by apply/eqP; elim: (iota ) ⇒//= i s ←; rewrite Dt.

22 case/primeP: prime p ⇒ divp; move/divp; case/orP; rewrite eq sym //.

23 move/eqP⇒ Dx1; case/eqP: tnot1; apply/fgraphP⇒ i.

24 by rewrite Dt −(gexpn1 x) /t1 g2f −Dx1 (eqP (orderg expn1 )).

25 Qed.� �
Figure 2.4: Cauchy theorem proof.

Line 5 simplifies the previously introduced hypothesis to� �
modn (card H ˆ (p − 1)) p = modn (card Z) p� �

Then using the hypothesis lt1p the subterm (card H ˆ (p −1)) can be rewritten to
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(card H ∗ card H ˆ (p − 2)). Since p divides card H (by assumption p divides H) we

can conclude that (modn 0 p = modn (card Z) p).

Line 6 defines t1 as the p-tuple (1, . . . , 1).

Line 7 asserts that t1 is in Z. In line 8 the boolean intersection predicate is

reflected to the propositional conjunction, then the goal is split in two parts:

t1∈act fix zprot action zp group

and t1∈X. The second goal is suddenly simplified exposing the definition of X

(rewriting with s2f) and the resulting boolean conjunction is split after being re-

flected to the propositional one.

Line 9 uses the view lemma act fixP to switch from the boolean predicate act fix to

its propositional counterpart. Given an action a of a group G over a set T , we say

that t ∈ T is fixed by a if for every x ∈ G we have that a(t, x) = t. After the view

application, the goal is changed to� �
∀ x : zp, zp group x →zprot action t1 x = t1� �

Then x is introduced and the hypothesis x∈zp group is discharged with the book-

keeping command ⇒x . Since t1 is a tuple, that is also a function represented using

the function graph construction we built in Section 2.2.3, the extensionality rule for

functions, proved with fgraphP, holds and can be used as a view. Introducing i

we are left to prove zprot action t1 x i = t1 i. Then t1 is unfolded. Here we also

unfold zprot action and zprot to ease the understanding of the following step, but it

not strictly needed since these unfoldings are done automatically by SSReflect if

needed.� �
fgraph of fun (fun y : ordinal p ⇒fgraph of fun (fun : ordinal p ⇒1) (x ∗ y)) i =

fgraph of fun (fun : ordinal p ⇒1) i� �
Rewriting with g2f multiple times and reducing β-redexes leads to a trivial goal

1 = 1.

Line 10 proves that t1 belong to the total function space whose codomain is H

(actually a subset of elt). Since t1 is only composed by units, and since H is a

group, H (t1 u) is always true for every u in zp.
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Lines 11 and 12 prove that the product over t1 is 1. It is proved by induction over

iota 0 p, the sequences of indices that are used to index t1 in prod over zp.

Line 13 picks an element in Z different from t1 (actually picks an element from

the set Z {: t1}. The standard pickP predicate can be inhabited in two ways, one

that tells you that the set was empty and gives you no element, and the other that

gives you an element and proof that this element belongs to the set. The empty set

case is processed first.

Line 14 with the first three rewriting steps, reduces the goal to� �
0 = modn (1 + card (setD1 Z t1)) p →∃ a : elt, H a && (card (cyclic (G:=elt) a) == p)� �

The following step rewrites card (setD1 Z t1) to 0. Since 1 < p, the assumption is

false and the goal solved.

Line 15, using the view and3P on the new assumption that t is in the set setD1 Z t1,

obtains that: t1 != t, t is fixed by the action and t belongs to X. The first one

is introduced with name tnot1 while the second is introduced as fixt after being

reflected to its propositional counterpart with act fixP.

Line 16 goes further in manipulating the hypothesis on t, obtaining that t belongs to

the total function space built with H (Ht : ∀ x : zp, H (t x)) and that the product of

elements in t is 1 (called prodt). It also drops the hypothesis modn 0 p = modn (card Z) p.

Line 17 exhibits the witness of the existential statement that has to be proved.� �
H (t 1) && (card (cyclic (t 1)) == p)� �

Rewriting with Ht also solves the first part of the conjunction.

Line 18 proves that every element of t is equal to (t 1) (fact called Dt). Rewriting

with fixt and g2f leas to a goal t u = t (u ∗ 1) for u in zp.

Line 19 claims that p divides the order of (t 1). The order of (t 1) is the smallest

positive natural number n such that (t 1) ˆ n = 1.

Line 20 massages the previous claim, reducing it to� �
(t 1) ∗∗ size (iota 0 p) == prod over zp t� �
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Line 21 proves by induction over (iota 0 p) that (prod over zp t) and ∗∗ give the

same result.

Line 22 reasons on the new hypothesis (dvdn (order (t 1)) p): since p is prime

its set of divisors is {1, p}. We thus have two cases, the trivial one is solved in this

line and is where (order (t 1)) = p that is exactly what we want to prove (i.e. that

the cardinality of the cyclic group over (t 1) is p).

Line 23 and 24 cope with the absurd case, in which (order (t 1)) = 1, thus (t 1) = 1

and by Dt all elements in t are the same. This is in contrast with tnot1.

2.2.8 Considerations on the development

At the time of this writing the fragment of group theory formalized by the Math-

ematical Components team is already one of the most complete formalisation of

finite group theory. It almost covers the material that can be found in an introduc-

tory course on group theory. Very few standard results like the simplicity of the

alternating group are still missing.

The size of development amounts to 15000 lines of SSReflect vernacular that

generate more than 2000 distinct definitions and theorems. Only one third of the

total amount of lines is strictly related to group theory, the rest can be considered

part of the SSReflect base library, even if many notions like finite sets or homoge-

neous tuples have been added to ease the development of finite group theory. More

than 2000 lines are for the basic definitions and lemmas involving types equipped

with a decidable equality, finite types and sequences over these types.

2.3 Methodologies and Issues

During our internship we do not only developed definitions and theorems, but we

also put big efforts in maintaining the existing library of theorems. As any software,

Coq and SSReflect did not always fulfil our needs and we had to developed

workarounds. Moreover some best practices used in proof script development and

maintenance have been used and will be discussed.
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In this section we present some considerations concerning the tools and the

methodologies we used. We also discuss some workarounds we developed. In par-

ticular Section 2.3.1 develops a workaround for the type class matching algorithm

implemented in Coq that badly interacts with δ-reductions. In Section 2.3.2 we

make some consideration on the maintenance of a library of already proved theo-

rems. Section 2.3.3 is devoted to some additional consideration on the interface the

system offers to the library of known facts. In Section 2.3.4 we describe an issue of

the current Coq tactic language that makes working with SSReflect much more

painful that what it could be, namely the execution of tacticals in a big step fashion.

2.3.1 Control of coercions through type tagging

A coercion is a function, which is automatically applied to a term in order to create

a new term of the expected type when needed. By default, these functions are not

displayed to the user, hence this mechanism can model a notion of subtyping.

Coercions will be discussed in details in Chapter 5, what we do here is to develop

a scalable workaround for an issue of standard Coq. Fixing the system can not be

considered a possible solution, since it would have an impact on type inference

performances. Moreover, SSReflect is a self contained patch (just one .ml4 file)

that can be easily linked with standard Coq; changing the type inference algorithm

can not be done in the same smooth way.

Before introducing the problem a short introduction on the implementation of

coercions in Coq done by Saibi [84] is necessary. In the literature (see for exam-

ple [11]) coercions domain and codomain is usually computed up to conversion,

that is a coercion from A to B is used to explicitly cast an object whose type A′

lives in the same equivalence class, determined by β-reduction, of A. Reduction

is an expensive operation, and even if Coq has an efficient reduction algorithm for

closed terms [47], some restrictions have to be employed to make the problem com-

putationally tractable. Saibi implements coercions between type classes, dropping

δ-reduction (i.e. constant expansion) and looking only at the head constant of types.



50 Chapter 2. Mathematical components

We now show that some care is needed in combining coercions with structures

to avoid unexpected behaviours provoked by reduction. The following toy example

illustrates this issue. We pile two types. LowStruct defines the type of lists of natural

numbers. The record type HiStructDef compounds a Type with a dummy proof, and

its first field sort : HiStructDef →Type is declared as a coercion. The term HiStruct,

built with LowStruct, and the canonical proof I of the True proposition, is of type

HiStructDef.� �
Definition LowStruct := seq nat eqType.

Structure HiStructDef : Type := Hi { sort :> Type; prop : True }.

Definition HiStruct := Hi LowStruct I.

Definition sl : LowStruct := Seq 1 2 3.

Definition sh : HiStruct := sl .� �
The term sl has type (convertible to) sort HiStruct, and since sort is a coercion,

the above definition of sh is accepted by the system. We then define another coercion,

this time from LowStruct to nat :� �
Coercion sum (s : LowStruct) := foldr addn 0 s.� �

Now, (1 + sl) is well typed and evaluates to 7, as well as (1 + sum sh) and

(1 + (sh : LowStruct)), but (1 + sh) is rejected by the system. The type of sh is

expected to be nat. Since it is not, Coq tries to insert an available coercion. The

source of the coercion should match syntactically the type sort HiStruct of sh. If no

coercion is found, then the system computes the head normal form of the type and

tries again to find a suitable coercion. But “Eval hnf in (sort HiStruct)” computes

the value seq nat eqType, which does not fit any registered coercion source either.

Yet sort HiStruct and LowStruct are convertible. In our development we make an

extensive use of coercions, all modularity would be lost without the possibility of

piling structures.

This over-reduction phenomenon is inhibited by a general type-tagging method,

which consists in wrapping the lower structure in a single constructor coinductive

type.
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� �
CoInductive LowStruct : Type := Tag : seq nat eqType →LowStruct.

Definition untag (l : LowStruct) := match l with Tag s ⇒s end.� �
Note that untag, the projection associated to the wrapper, is not declared as a

coercion, thus a term of type LowStruct can not be coerced (nor reduced) to a term

of type nat eqType.

It is possible to prove once and for all the three lemmas allowing to build gener-

ically the tagged fin/eqType versions of an untagged fin/eqType. We need a tag

constructor, and an untag projection operator. These satisfy a (cancel untag tag)

condition, namely: ∀ x, tag (untag x) = x.

First we provide an eqP lemma to build the eqType structure:� �
Lemma can eq:

∀ (d : eqType) (tag d : Type),

∀ (tag : d →tag d) (untag : tag d →d),

cancel untag tag →

reflect eq (fun (x y : tag d) ⇒untag x == untag y).� �
Then we provide the enumP property required for building the finType. The

undup operator removes possible duplicates created by the mapping of the tag func-

tion over the elements of the initial finType, making the proof of the can uniq lemma

simpler.� �
Definition

uniqmap (d1 : finType) (d2 : eqType) (tag : d1 →d2)

:=

undup (maps tag (enum d1)).

Lemma can uniq:

∀ (d1 : finType) (d2 : eqType),

∀ (tag : d1 →d2) (untag : d2 →d1), cancel untag tag →

∀u : d2, count (set1 u) (uniqmap tag) = 1.� �
An example of tagged type is setType (see Section 2.2.3).
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2.3.2 Proof maintenance and automation

During our internship in the Mathematical Components team, automation has never

been used. The main reason was that it badly interacts with maintenance of a large

development. The issue is pretty clear, every form of automation responds differently

to changes in the definitions, and is usually hard to understand why a black box

complex tool like an automatic procedure fails. Moreover definitions have to be

carefully chosen to make the whole huge development run smoothly. Adding to that

already difficult choice the additional requirement that they must be automation

aware is probably too much.

When definitions are changed proofs break. SSReflect tries to make proof

fail as soon as possible, allowing the user to spot the exact step that does not work

anymore. It can be a rewriting that does not rewrite anymore, or an application

that fails, but in any case the step that used to work is clear. Unless the proof

is completely dependent on the definition that changed, a small patch can usually

be inserted quickly. Automation hides the step that, during the previous run, lead

successfully to a proof. Thus, when it fails the user has no context and no intuition

on how to fix the proof script. Sometimes the new definition does not even fit the

automatic procedure domain.

We believe that automation has first to be considered in a wider way, as a general

assisting tool integrated with searching technology, and then be implemented in a

way that gives back to the user the maximum amount of informations possible. In

our opinion an automatic tactic must give back to the user a, possibly nice, proof

script. That script will offer many benefits: it will execute faster than the automatic

tactic the next time the proof script is checked; if it breaks the user may find a quick

patch for it; it may use a lemma the searching facility found but that user was not

aware of (maybe because it was added to the library in the wrong place or with a

meaningless name).

Many users like the compactness of an auto command, but we believe this is

a user interface issue. Editors for programming language support folding functions

definitions for example, expanding them when requested. The same could be done
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here, allowing the editor to collapse the proof script generated by the automatic

tactic if the user wants so. Another common critic to that approach is that some

user like that fact that automatic tactic sometime succeed in finding a proof even if

some definitions or lemma changed, but explicit proofs always break. We believe that

this issue regards only the way the proof script is generated by the automatic tactic.

The proof script may be generated in such a way that if it fails the automatic tactic

is run (with the first tactical for example). As we will see in Chapter 6 Matita

has a syntactic distinction between commands that behave interactively and may

modify the script file and commands that can not, like auto and autobatch. The

former outputs a proof script, that may use autobatch (possibly tuning it with the

a-posteriori knowledge of the proof found) as a fallback.

We also think that automation and searching facilities has to assist the user all

the time. A simple example is the duplicate check Matita performs every time

the user starts the proof of a lemma. A duplicate may be found both looking for

a similar lemma using searching facilities and using automatic tactics with a very

limited time or step limit. If auto is able to prove a lemma in two steps (maybe

using lemmas in the library the user is not aware of), the user may like to be warned

that the result she wants to prove is not that interesting (if placed in the context

where auto succeeded in proving it). The same kind of check may be done when

re-executing a proof script. New lemmas added before a given result may make it

really useless or oversimplify its proof. This actually happened when many parts

of the Matita standard library where tried to be proved by means of automation,

revealing that some lemmas were obsolete. Moreover many of these check, that are

actually time consuming, may be performed only in interactive mode, and could be

switched on/off in response to a user request.

2.3.3 Naming and searching lemmas

When we joined the Mathematical Components group, we had no previous experi-

ence about using Coq. Everybody agrees that formal proofs are tricky, but in our

experience what really makes you feel lost is the library of available results.
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The interface to the prover used by the Mathematical Components team is Proof

General [5] that, at the time we used it, was missing some feature we consider

important. Both the Matita user interface and CoqIde give a quick idiom (single

click the former; select and click the latter) to reach and display the definition of an

object. The Print and Check commands badly interact with modules and implicit

argument, forcing the user to seldom try combinations of @ and . before having

the definition displayed.

The search command implemented by Georges Gonthier during our internship

has already been described in 2.1.1. Although this search facility is performed only

on modules (set of lemmas) that are explicitly required, it has shown to be extremely

useful. The overall design of Matita, that will be better analysed in Chapter 4,

allows to search the whole library and not only the loaded part. This can result

in a benefit if the library is huge and composed by modules the user does not see

and thus can not guess are worth being required. Moreover, the user usually prefers

a lemma that can be applied or an equation that can actually rewrite something.

Here, our wide view on automation, comes again to play. An automatic rewriting

tactic can be used, with a very small amount of time limit, to check if a lemma

returned by the searching facility can rewrite the goal, and rate it high if it can.

The same holds for applicative reasoning, and, for example, is already implemented

in the hint Matita command, that gives only lemmas that can be actually applied

successfully to the current goal.

Even if the user is assisted by searching facilities, a good naming policy for

lemmas ease the process of remembering (or even guessing) lemmas names. SS-

Reflect follows a good practice in the whole base library, that is not enforced by

the system. This results in extra modules not being sticky to that policy, especially

when written by people already having their own taste for lemmas names. We found

the naming schema really handy to use, and in some aspects even better then the

one that is implemented in Matita, that in our opinion suffers from enforcing long,

clearly meaningful, names. Matita has an hard-coded naming policy, enforced au-

tomatically by the system that warns the user when the chosen name does not fit
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the policy. We believe that the support of the system in spotting bad names is

essential, thus the policy has to be enforced by the system. For simplicity Matita

has an hard-coded policy described in [3], but a way to customise the policy should

really be implemented.

2.3.4 Complex commands and big step execution

The SSReflect extension allows to build complex commands out of simple op-

erations. Anyway, predicting the result of the execution of many commands at a

time is hard, thus these complex commands are built up piece by piece. Because

of the interaction model imposed by Proof-General to extend an already executed

command with an additional step the user needs to backtrack one step, edit the

command and re-execute it. This annoying behaviour tends to make the user learn

how to better predict the system output and increases her ability to write more

complex commands at once. Although this side effect can be considered positive

after all, the same behaviour is extremely painful when proofs are re-executed. Note

that a proof really has to be executed to understand what is going on, and that this

happen not only during demos or talks, but every time it breaks.

SSReflect commands are built on top of primitive ones, composing them using

Coq tactic language Ltac [36]. Ltac expressions are evaluated in a big step fashion,

making it impossible for the user interface to show intermediate steps. Moreover,

this behaviour has a general unpleasant impact on how proofs are structured in

standard Coq (see Section 4.3.2), usually resulting in completely unstructured proof

scripts. At the beginning of our PHD we developed a small step semantic for a

subset of LCF tacticals [81] that will be described in Chapter 4. The small step

approach solves the problems presented above, but needs some modifications to the

tactic language execution engine and parser to be implemented.
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During the last part of out PHD we contributed to the D.A.M.A. Project1, leaded

by Sacerdoti Coen and funded by the University of Bologna. The project has three

major goals:

• improvement and specialisation of the interactive theorem prover Matita

• development on top of Matita of a learning environment for students to verify

their advancement in doing mathematical proofs

• formalisation of abstract measure theory in Matita up to the Lebesgue’s

Dominated Convergence Theorem

We worked on the first and the last items. In this chapter we describe the formal-

isation we made pointing out which features of Matita allowed such formalisation.

These features will be analysed in details in the second part of the manuscript

(Chapter 5) where their implementation will also be described.

The formalisation work described in this chapter has not been published yet,

mainly because we obtained that result in the very last part of our PHD. Moreover,

we built all the base infrastructure of lemmas to attack Lebesgue dominated conver-

gence theorem, without proving it. We stopped, because of lack of time, at the well

known sandwich theorem, that proved to be a reasonable test case for our frame-

work and a cornerstone for the future formalisation of the dominated convergence

theorem.

3.1 Lebesgue dominated convergence theorem

Let f1, f2, f3, . . . denote a sequence of real-valued measurable functions on a measure

space (S,Σ, µ). Assume that the sequence converges pointwise and is dominated by

some integrable function g. Then the pointwise limit is an integrable function and∫
S

lim
n→∞

fn dµ = lim
n→∞

∫
S

fn dµ.

1http://dama.cs.unibo.it/

http://dama.cs.unibo.it/
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To say that the sequence is ”dominated” by g means that

|fn(x)| ≤ g(x)

for all natural numbers n and all points x in S. By integrable we mean∫
S

|g| dµ <∞

A σ-algebra over a set S is a nonempty collection Σ of subsets of S that is closed

under complementation and countable unions of its members. A measure space

(S,Σ, µ) contains a σ-algebra Σ over S and a function µ : Σ→ R.

This is the classic formulation of the theorem and its proof can be found in many

textbooks like the one by Rudin [79].

A more general formulation, see for example Fremlin [38], drops the σ-algebra

structure in favour of the study of more topological/algebraic structures like Riesz

spaces, also called vector lattice. These algebraic structures are ordered vector

spaces equipped with a norm where the ordered set forms a lattice. In this setting

it is relevant to study the convergence in terms of the order relation induced by the

lattice operations and in terms of the norm. Integration is thus an example of a

linear function from elements of the vector lattices to R.

An even more general, and still classic, approach is the one of Weber [50, 51] that

drops the vectorial lattice in favour of a metric lattice, and compares the convergence

in the sense of order relation given by the lattice and the convergence in the sense

of the metric.

On the constructive side we find works from Bishop and Bridges [17] and Spit-

ters [88] who follows the same approach of Fremlin, but proves only a corollary of

the Lebesgue dominated convergence theorem.

3.1.1 The constructive version developed in D.A.M.A.

The theoretical study for the D.A.M.A. Project has been done by Enrico Zoli, who

developed a complete constructive proof of the Lebesgue dominated convergence

theorem in a setting inspired by Weber. In Figure 3.1 the overall picture is presented.
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Some structures like excess and apartness are not widespread notions and in the

following paragraph we will only scketch their meaning; the interested reader can

find a good introduction, both historical and technical, in [9, 66].

An apartness is a structure equipped with a coreflexive, symmetric and cotran-

sitive relation that, when negated, generates an equivalence relation. An excess is a

structure equipped with a coreflexive and cotransitive relation that, when negated,

generates a partial order relation. Both relations, when used as primitive, sub-

tend a computational meaning: for example the apartness relation expresses how

far two objects are. Its negation hides that computational content, making the de-

rived equality notion suitable for settings in which equality between two objects is

in general undecidable (and thus must subtend no computational meaning). The

most relevant example is the set R of real numbers, that can be represented possibly

infinite sequences of digits. No procedure can state if two real numbers (essentially

functions from N to {0, . . . , 9}) are equal in a finitary time. On the contrary there

exists a procedure to semi-decide if two real numebrs differ, and this procedure can

also calculate their distance (for example the position of the first different digit).

In Figure 3.1 every box represents an algebraic structure, every double arrow

represents inheritance. Regular arrows represents coercions not used to mimic sub-

typing but stating that a structure is a models of another one, for example a lat-

tice induces an excess relation defining a � b ≡ a#a ∧ b. The semi metric space

structure, as well as the pre weighted lattice, is parametric over a totally ordered

divisible group; we omit additional arrows representing these dependencies for the

sake of readability. Inside boxes we report only the types and the operations defined

over them each structure embeds. We omit the properties these operations must

validate, again for the sake of readability.

The constructive proof developed by Zoli lives in the semi metric lattice structure,

but he also exhibits two models that are represented with boxes with a double border.

In the next section we will describe our formalisation in the Matita interactive

theorem prover of all the single border boxes, and we use these structures to state and

prove the sandwich theorem, a cornerstone of the dominated convergence theorem.
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Figure 3.1: Inheritance graph in DAMA

3.2 The formalisation in Matita

In the last months of our PHD we took up the formalisation of this topic. Although

previous attempts of formalisation were there, mainly concerning the classical ver-

sion and one of its variants, we started from scratch. These formalisations were

sketched, where Leibniz equality was used instead of a weaker one to speed up

development, but dropping all interesting model of the formalised results. More-
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over, these formalisations never reached a reasonable status, since they were worked

on when Matita was still unable to handle algebraic structures in a proper way.

From the experiences that came from these attempts we developed the technique we

adopted in the development, whose system-side counterpart is detailed in Chapter 5.

Another consideration, regarding setoids, has to be done. Since we work with

objects whose equality can not be assumed to be decidable, rewriting has to be

performed with weaker principles than the one validated by Leibniz equality. Sac-

erdoti developed in Coq the tactic Setoid Replace [25] to allow the user to perform

rewriting is such weaker framework with great simplicity. The tactic automatically

composes lemmas about morphisms to perform deep rewritings, an extremely te-

dious and uninteresting task. The porting of that tactic to Matita has not ended

yet, but we wanted to build the basement for an interesting development, thus we

dropped the use of Leibniz equality. To overcome most of the tediousness of deep

rewriting steps we used automation and some flavour of coercions from and to the

same type we will detail later.

Last, Matita offers notational support and we used it constantly, but lacks

automatic calculation of implicit arguments. In the proof scripts that will follow

many question marks will appear in place of arguments the system is able to infer.

The clear organisation of structures given in Figure 3.1 draws a clean path we

followed in the formalisation.

3.2.1 The excess relation

The first building block is the definition of the excess relation, the apartness relation

and the coercion from an excess relation to an apartness relation.� �
record excess : Type :={

exc carr:> Type;

exc relation : exc carr → exc carr →Type;

exc coreflexive : coreflexive ? exc relation ;

exc cotransitive : cotransitive ? exc relation

}.� �
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The cotransitive property is defined as follows using the higher order facilities

CIC offers:� �
definition cotransitive :=λC:Type.λ lt:C→C→Type.∀ x,y,z:C. lt x y → lt x z ∨ lt z y.� �

The excess relation, having a computational content, is used to define the usual

less or equal relation, not having a computational content. The ≤ relation is then

proved to be a partial order relation. Note that we will use � for the excess relation.� �
definition le :=λE:excess.λ a,b:E. ¬ (a �b).

lemma le reflexive: ∀E.reflexive ? ( le E).

lemma le transitive: ∀E.transitive ? ( le E).� �
The less or equal relation still misses the antisymmetric property, since to state

it we need to define the apartness relation and its negation, the equality. We will

use # for the apartness relation and ≈ for its negation.� �
record apartness : Type :={

ap carr:> Type;

ap apart: ap carr → ap carr →Type;

ap coreflexive : coreflexive ? ap apart;

ap symmetric: symmetric ? ap apart;

ap cotransitive : cotransitive ? ap apart

}.

definition eq :=λA:apartness.λ a,b:A. ¬ (a # b).

lemma le le eq: ∀E:excess.∀ a,b:E. a ≤b →b ≤ a → a ≈b.

lemma eq le le: ∀E:excess.∀ a,b:E. a ≈b → a ≤b ∧b ≤ a.

lemma le antisymmetric: ∀E:excess.antisymmetric ? (le E) (eq E).� �
To allow the system to accept the latter statement, we need to define the apart-

ness relation induced by the excess relation. This is done in the usual way, saying

that a is apart from b if a is is in excess over b or vice versa.� �
definition apart :=λE:excess.λ a,b:E. a �b ∨b � a.

definition apart of excess : excess → apartness.

coercion cic:/matita/excess/apart of excess.con.� �
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The ≈ relation can be proved to be an equivalence relation. This gives us the

possibility of building chains of equalities. Since we will use the transitivity property

almost everywhere, we defined a notational shortcut (mainly to hide many implicit

arguments).� �
lemma eq trans:∀E:apartness.∀ x,z,y:E.x ≈ y → y ≈ z → x ≈ z.

notation > ”’Eq’≈ ” non associative with precedence 50 for @{’eqrewrite}.

interpretation ”eq rew” ’eqrewrite = (cic:/matita/excess/eq trans.con ).� �
The flavour of proof script obtained using the Eq≈ notation is mostly declarative.

Consider the following sequent.� �
H1 : a ≈b

H2 : c ≈b

================

a ≈ c� �
The following proof lines are all valid:� �

apply (Eq≈ ? H1);

apply (Eq≈ (a≈b) ? H2);� �
The former command rewrites a into b by means of H1, the second line is much

trickier, since it involves the coercion eq sym. Since Eq≈ is applied to (a≈b) its

third argument is expected to be of type b≈c but is of type c≈b. The refiner (type

inference subsystem) of Matita tries to fix every ill typed application inserting

coercions. As it will be detailed in Chapter 5 Matita allows the user to declare

coercion from and to the same type. As in the implementation of coercive subtyping

made by Saibi [84] in Coq and by Bailey [7, 8] in Lego, the source and target type

of coercion is approximated with the head constant symbol, in that case, eq sym is

register as a coercion from ≈ to ≈. The expected type and the actual argument type

approximation match the target and source approximation of the eq sym coercion,

Matita tries to insert it. This trick is extensively used in the development, and

around sixteen coercions are declared from and to ≈.
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The next step is to declare the strictly less than relation and prove it is coreflexive

and transitive.� �
definition lt :=λE:excess.λ a,b:E. a ≤b ∧ a # b.

theorem lt to excess: ∀E:excess.∀ a,b:E. (a < b) → (b � a).� �
Then, a bunch of lemmas to support rewriting has to be proved and some nota-

tion is associate with it, for example the following snippet proves a lemma to rewrite

on the left hand side of the excess relation.� �
lemma exc rewl: ∀A:excess.∀ x,z,y:A. x ≈ y → y � z → x � z.

notation > ”’Ex’� ” non associative with precedence 50 for @{’excessrewritel}.

interpretation ”exc rewl” ’excessrewritel = (cic:/matita/excess/exc rewl.con ).� �
The syntax Op� and Op� has been declared for every Op in �, ≤ and # and

associated to their rewriting principles. Note that the interpretation command

declares some arguments as implicit (question marks are added on the fly for them).

The first non implicit argument in exc rewl is y, so that the user can specify the left

hand side of � after the rewriting.

Given the excess relation, and in particular the apartness relation, we can build

the hierarchy of groups.

3.2.2 The hierarchy of groups

The initial step is to define the group structure. We decided to start directly with

abelian groups, without defining groups in their full generality. We use additive

notation for the group operation, calling the identity 0. In our constructive setting,

the strong extensionality law holds for the operation the group is equipped with.

This property states that z + x # z + y → x # y for any x, y and z.� �
record abelian group : Type :={

carr:> apartness;

plus: carr → carr → carr;

zero: carr ;
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opp: carr → carr;

plus assoc : associative ? plus (eq carr );

plus comm : commutative ? plus (eq carr);

zero neutral : left neutral ? plus zero;

opp inverse : left inverse ? plus zero opp;

plus strong ext : ∀ z.strong ext ? (plus z)

}.� �
Note that the associative and commutative higher order predicates are abstracted

over the equality relation that is given as the last argument. Again, many lemma

useful for rewriting have been proved and some of them declared as coercions, for

example:� �
lemma feq plusl: ∀G:abelian group.∀ x,y,z:G. y ≈ z → x+y ≈ x+z.� �

This lemma allows to perform a rewriting in the context (x +·)

Here we say that the abelian group inherits from the apartness structure, since it

embeds an apartness and the coercion carr, automatically declared by the :> syntax,

allows to apply every lemma proved in the previous section to a group. For example

the same eq trans lemma can be used to rewrite group elements.

At that point the first structure inheriting from multiple structures can be de-

clared. Ordered groups inherit an excess relation and an abelian group. As a first

step we declare a technical structure, embedding both the excess relation and the

group, but inheriting only from the excess relation. Our objective is to declare a

structure that behaves as a group on whose elements an excess relation is defined.

Clearly, simply embedding both structures would have not worked, since the carrier

of the excess relation (the type of the objects on which the excess is defined) is

distinct from the carrier of the group. This makes it impossible to write formulas

like 0 < x since 0 has a type completely unrelated to the one < is defined on.� �
record pogroup : Type :={

og abelian group : abelian group;

og excess:> excess;



Chapter 3. D.A.M.A. 67

og with: carr og abelian group = apart of excess og excess

}.� �
The og with field states that the apartness derived from the excess relation is

equal to the apartness relation the abelian groups embed. Here the = symbol stands

for the Leibniz equality. For the sake of simplicity we declared the entire apartness

structures to be equal. This constraint could be relaxed to stating that the carrier

of both apartness relation is the same.

We then build the coercion that manifests the group structure embedded in the

pogroup structure. Since the objects of the group must be in the same type the

excess relation is defined on, we build a group whose carrier is not the one embedded

in og abelian group but is the apartness relation derived from og excess.� �
lemma og abelian group: pogroup → abelian group.

intro G; apply (mk abelian group G); [1,2,3: rewrite < (og with G)]

[apply (plus (og abelian group G));|apply zero;|apply opp]

cases (og with G); simplify;

[apply plus assoc|apply plus comm|apply zero neutral

|apply opp inverse|apply plus strong ext]

qed.� �
This script builds an abelian group with mk abelian group using the pogroup

named G (actually the apartness derived from its excess thanks to the apart of excess

coercion) as its apartness. Then it rewrites with the og with assumption the first

three goals. The syntax 1,2,3: is part of Matita tactic language, and groups

together some branches of a [ tactical. The full syntax and semantic of Matita

tacticals is described in Section 4.3.2.

These first three goals are the constants of the group, namely addition, identity

and inverse. Their type before the rewriting step was involving the carrier of the

group we are building, thus the apartness derived from the excess of G. After the

rewriting, their type involves only the carrier of the og abelian group structure, and

thus they can be inhabited with the constants of such structure. The remaining goals
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are the properties of the group, but can not be directly proved using the properties

of the group embedded in G (namely og abelian group ) since, in their type, appears

the rewriting made to close the first three goals. For example, when proving the

associativity of the group operation, instead of plus the user faces the following term:� �
eq rect apartness (carr (og abelian group G))

(λ a:apartness.ap carr a→ ap carr a→ ap carr a) (plus (og abelian group G))

( apart of excess (og excess G)) (og with G)� �
The cases (og with G) command performs pattern matching on the og with field

of G on every remaining goal. That behaves again as a rewriting step that also

replaces all occurrences of (og with G) with the constructor of the equality eq refl

that makes all eq rect applications compute away. After that, all properties can be

proved using the properties of the embedded group og abelian group .

Notice that, all steps involving a pattern match on (og with G) have been delayed

as long as possible. In this way the coercion builds a group structure whose first

four fields can be projected and actually compute to their content since reduction

is not blocked by a pattern match on a possibly abstracted term like og with. More

to the point, the system is now able to accept formulas like the following one:� �
lemma example: ∀G:pogroup . ∀ x,y:G. 0≈ x → y≈ x+y.� �

Here the partially ordered group G can be used both as an excess relation (thanks

to the og excess coercion) and as an abelian group thanks to just defined coercion.

Moreover, to accept the last part of the statement the return type of plus has to be

the same of the variable y (the left hand side of ≈). This is true since the coercion

we defined produces a group structure whose carrier is the type of y and computes

to it. Omitting notation, the last part of the statement is:� �
eq ( apart of excess (og excess G)) y (plus (og abelian group G) x y)� �

The return type of plus is thus ap carr (carr (og abelian group G)) that reduces

to ap carr ( apart of excess (og excess G)) that is exactly the input type of eq.
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The technique we use is explained in details in [27] and in Chapter 5 of this

thesis, here we assume the system is able to infer implicit arguments hidden by

notation.

We now define the real partially ordered group structure with its strong exten-

sionality property, that could not be declared before since it involves operations of

the group and the excess relation.� �
record pogroup : Type :={

og carr:> pogroup ;

plus cancr exc: ∀ f,g,h:og carr . f+h � g+h → f � g

}.� �
Then some interesting results are proved like the following lemma that is used

almost everywhere in the development.� �
lemma lt0plus orlt: ∀G:pogroup. ∀ x,y:G. 0 ≤ x → 0 ≤ y → 0 < x + y → 0 < x ∨ 0 < y.� �

To define the structure of totally (or linearly) ordered group is enough to inherit

from the partially ordered group structure adding the additional totality property.� �
record togroup : Type :={

tog carr:> pogroup;

tog total : ∀ x,y:tog carr .x� y → y < x

}.� �
Inside totally ordered groups, the following key lemma is valid.� �

lemma eqxxyy eqxy: ∀G:togroup.∀ x,y:G. x + x ≈ y + y → x ≈ y.� �
An N-division operation can be defined starting from exponentiation, that in an

additive group is usually written like a non commutative multiplication.� �
let rec gpow (G : abelian group) (x : G) (n : nat) on n : G :=

match n with [ O ⇒0 | S m ⇒x + gpow ? x m].� �
Then a divisible group is a group together with the property that for every

element x and natural number n there exists a y such that x is equal to S n ∗ y.
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This, when the existential is in Type, gives a division operation by a positive natural

number.� �
record dgroup : Type :={

dg carr:> abelian group;

dg prop: ∀ x:dg carr.∀n:nat.∃ y.S n ∗ y ≈ x

}.� �
To define totally ordered and divisible groups the same technique used for par-

tially ordered groups is adopted. Inside this algebraic structure the following lemmas

can be proved. The former is of fundamental importance for the sandwich theorem.� �
lemma divide preserves lt: ∀G:todgroup.∀ e:G.∀n.0<e → 0 < e/n.

lemma muleqplus lt:

∀G:todgroup.∀ x,y:G.∀n,m. 0<x → 0<y →S n ∗ x ≈S (n + S m) ∗ y → y < x.� �
3.2.3 The metric space and lattice hierarchy

The definition of lattices poses no new difficulty. The lattice structure embeds

and inherits an apartness relation, defines the meet and join operations and their

properties.� �
record lattice : Type :=

l carr :> apartness;

join : l carr → l carr → l carr ;

meet: l carr → l carr → l carr ;

join refl : ∀ x:l .(x ∨ x) ≈ x;

meet refl : ∀ x:l .(x ∧ x) ≈ x;

join comm: commutative ? join (eq l carr);

meet comm: commutative ? meet (eq l carr);

join assoc : associative ? join (eq l carr );

meet assoc: associative ? meet (eq l carr );

absorbjm: ∀ f,g:l . ( f ∨ (f ∧ g)) ≈ f ;

absorbmj: ∀ f,g: l . ( f ∧ (f ∨ g)) ≈ f ;
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strong extj : ∀ x:l. strong ext ? (λ y.x ∨ y);

strong extm: ∀ x:l.strong ext ? (λ y.x ∧ y)

}.� �
The next step is to equip the lattice with an excess relation induced by the

lattice operations. We follow [9] and define the excess relation as follows and prove

it validates the coreflexive and cotransitive properties defining a coercion from a

lattice structure to an excess relation.� �
definition excl :=λ l: lattice .λ a,b:l .a # (a ∧b).

lemma excess of lattice: lattice → excess.� �
The next step is to define what semi metric spaces are. We abstract them over

the codomain of the metric, requiring it to be at least an abelian divisible and totally

ordered group. We denote with δ x y the metric operation since it is impossible in

Matita to define the usual notation d(x, y), because parentheses are reserved.� �
record smetric space (R : todgroup) : Type := {

ms carr :>Type;

metric: ms carr →ms carr →R;

mpositive: ∀ a,b:ms carr. 0 ≤ δ a b;

mreflexive : ∀ a. δ a a ≈ 0;

msymmetric: ∀ a,b. δ a b ≈ δ b a;

mtineq: ∀ a,b,c:ms carr. δ a b ≤ δ a c + δ c b

}.� �
Note that we call this structure a semi metric space since the reflexivity property

is stated in weaker way of the usual δ a b ≈ 0 → a ≈b (that requires an already

existent apartness relation on the elements of the semi metric space).

A semi metric space induces an apartness relation in the following way.� �
definition apart smetric:= λR.λms:smetric space R.λ a,b:ms.0 < δa b.

lemma apart of smetric space: ∀R.smetric space R → apartness.� �
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To define a semi metric lattice we adopt the same technique we used for divisible

and ordered abelian groups. We first define the following technical structure.� �
record mlattice (R : todgroup) : Type :={

ml mspace : smetric space R;

ml lattice :> lattice;

ml with : ms carr ? ml mspace = ap carr (l carr ml lattice )

}.� �
This time we force the carrier of the semi metric space to be the same same type

of the carrier of the apartness embedded in the lattice. We then prove the missing

coercion and the final semi metric lattice structure.� �
lemma ml mspace: ∀R.mlattice R →metric space R.

record mlattice (R : todgroup) : Type :={

ml carr :>mlattice R;

ml prop1: ∀ a,b:ml carr. 0 < δ a b → a # b;

ml prop2: ∀ a,b,c:ml carr. δ (a∨b) (a∨ c) + δ(a∧b) (a∧ c) ≤ δb c

}.� �
The usual bunch of lemmas to rewrite under δ like x≈z→δ x y≈δ z y are then

proved. The following lemma is the key feature of the semi metric lattice structure,

relating the order relation induced by the lattice and the metric in a strong way.� �
lemma le mtri: ∀R.∀ml:mlattice R.∀ x,y,z:ml. x ≤ y → y ≤ z → δx z ≈ δx y + δy z.� �

We now have all the algebraic structures needed to prove the sandwich theorem.

3.2.4 The sandwich theorem

To attack the sandwich theorem we first have to define what we mean when we say

that a sequence tends to zero. We represent sequences with functions from natural

numbers to a space with an order relation, while we say that a sequence tends to

zero when given an e positive there exists a natural number N such that for every

natural number n greater than N the n-th point of the sequence is between -e and e.
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� �
definition sequence := λO:excess.nat →O.

definition tends0 :=

λO:pogroup.λ s:sequence O. ∀ e:O.0 < e →∃N.∀n.N < n →−e < s n ∧ s n < e.� �
In Figure 3.2 we report the complete proof of the sandwich theorem. It states

that given three sequences an, bn and xn such that for all n, ann ≤ xnn ≤ bnn then

if an and bn tends to an x, then xn also tends to that x.� �
theorem sandwich:

∀R.∀ml:mlattice R.∀ an,bn,xn:sequence ml.∀ x:ml.

(∀n. an n ≤ xn n ∧ xn n ≤bn n) → an ; x →bn ; x → xn ; x.� �
The proof style is pretty declarative, since we explicitly wrote the term to be

obtained in every rewriting step. Thanks to the semantic selection [3] facility of the

Matita user interface it is easy to select meaningful sub-terms of the current goal

with the mouse and paste them in the script file.

Lines 1-4 are uninteresting manipulation of the goal and hypothesis. From the fact

that an and bn tend to x we extract the witness n1 for an and n2 for bn using

e/2 as the chosen epsilon. Note that in our divisible group, division by zero was

syntactically forbidden applying the successor function to the divisor, thus e/2 has

to be read as e
3
. Also note that we use the aforementioned divide preserves lt lemma

to deduce that 0<e/2 from the fact that 0<e.

In line 5 the first proof step is done, we choose the witness n1 +n2 that will be used

to prove that xn tends to x. We thus obtain an n3 that is bigger than n1+n2 and

we are left to prove that -e<δ(xn n3) x and δ(xn n3) x<e.

Lines 6,7 and 8 further manipulate the hypothesis obtaining that δ (an n3) x < e/2,

δ (bn n3) x<e/2 and that an n3≤ xn n3≤bn n3.

We then proceed by means of forward reasoning, stating the main inequality involved

in the lemma:

δ xnn3 x ≤ δ bnn3 x+ 2 ∗ δ ann3 x
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1 intros (R ml an bn xn x H Ha Hb);

2 unfold tends0 in Ha Hb `%; unfold d2s in Ha Hb `%; intros (e He);

3 cases (Ha (e/2) ( divide preserves lt ??? He)) (n1 H1); clear Ha;

4 cases (Hb (e/2) ( divide preserves lt ??? He)) (n2 H2); clear Hb;

5 apply (ex introT ?? (n1+n2)); intros (n3 Lt n1n2 n3);

6 lapply (ltwr ??? Lt n1n2 n3) as Lt n1n3; lapply (ltwl ??? Lt n1n2 n3) as Lt n2n3;

7 cases (H1 ? Lt n1n3) ( daxe); cases (H2 ? Lt n2n3) ( dbxe);

8 cases (H n3) (H7 H8); clear Lt n1n3 Lt n2n3 Lt n1n2 n3 H1 H2 H n1 n2;

9 cut (δ (xn n3) x ≤ δ (bn n3) x + δ (an n3) x + δ (an n3) x) as main ineq; [2:

10 apply ( le transitive ???? (mtineq ???? (an n3)));

11 cut (δ(an n3) (bn n3)+ −δ(xn n3) (bn n3)≈ (δ(an n3) (xn n3))) as H11; [2:

12 lapply (le mtri ????? H7 H8) as H9; clear H7 H8;

13 lapply (feq plusr ? (−δ(xn n3) (bn n3)) ?? H9) as H10; clear H9;

14 apply (Eq≈ (0+δ(an n3) (xn n3)) ? (zero neutral ??));

15 apply (Eq≈ (δ(an n3) (xn n3) + 0) ? (plus comm ???));

16 apply (Eq≈ (δ(an n3) (xn n3)+(−δ(xn n3) (bn n3)+δ(xn n3) (bn n3))) ? (opp inv...

17 apply (Eq≈ (δ(an n3) (xn n3)+(δ(xn n3) (bn n3)+ −δ(xn n3) (bn n3))) ? (plus c...

18 apply (Eq≈ ?? (eq sym ??? (plus assoc ????))); assumption;]

19 apply (Le� (δ(an n3) (xn n3)+δ(an n3) x) (msymmetric ??(an n3)(xn n3)));

20 apply (Le� (δ(an n3) (bn n3)+ −δ(xn n3) (bn n3)+ δ(an n3) x) H11);

21 apply (Le� (−δ(xn n3) (bn n3)+δ(an n3) (bn n3)+δ(an n3) x) (plus comm ???));

22 apply (Le� (−δ(xn n3) (bn n3)+(δ(an n3) (bn n3)+δ(an n3) x)) (plus assoc ????));

23 apply (Le� ((δ(an n3) (bn n3)+δ(an n3) x)+ −δ(xn n3) (bn n3)) (plus comm ???));

24 apply lew opp; [apply mpositive] apply fle plusr;

25 apply (Le� ? (plus comm ???));

26 apply (Le� (δ(an n3) x+ δx (bn n3)) (msymmetric ????));

27 apply mtineq;]

28 split ; [ apply ( lt le transitive ????? (mpositive ????));

29 apply lt zero x to lt opp x zero ; assumption;]

30 apply ( le lt transitive ???? main ineq);

31 apply (Lt� (e/2+e/2+e/2)); [apply (divpow ?e 2)]

32 repeat (apply ltplus; try assumption);

33 qed.� �
Figure 3.2: Sandwich theorem proof.
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Line 10 uses the triangular inequality property of the order relation we defined on

the lattice to change the goal in

δ xnn3 ann3 + δ ann3 x ≤ δ bnn3 x+ 2 ∗ δ ann3 x

Next line asserts that

δ ann3 bnn3 − δ xnn3 bnn3 ≈ δ ann3 xnn3

that can be proved using the le mtri lemma shown in Section 3.2.3. We then obtain

δ ann1 bnn3 ≈ δ ann3 xnn3 + δ xnn3 bnn3

using the fact that ann3 ≤ xnn3 ≤ bnn3. This subproof is closed in line 18, only

algebraic manipulation involving the group properties of the semi metric co-domain

are used. Almost all rewriting steps are performed deeply, but thanks to coercion

trick we are allowed to simply write (opp inverse ??) instead of

(eq sym ??? (feq plusl ???? (opp inverse ??)))

Lines 19-27 use again trivial properties of the group structure of the semi metric co-

domain to perform some rewritings. The msymmetric lemma states that δ a b ≈ δ b a

for all a and b. The proof is closed by another application of the triangular inequality.

Lines 28 and 29 prove the easy part of the main conjecture, since the metric is always

greater then zero and e is positive, -e <δ(xn n3) x.

Last lines prove that δ(xn n3) x < e. The first transitivity step reduces the goal to

δ bnn3 x+ 2 ∗ δ ann3 x < e

Then the right hand side is rewritten to e
3

+ e
3

+ e
3
. Every addendum on the left is

smaller than every addendum on the right, thus the goal is proved.

Removing the algebraic steps performed rewriting with abelian groups axioms

one obtains the usual pen and paper proof, where first an adequate witness is chosen,

then thanks to various application of the triangular inequality and the properties of

the division operation the goal is solved.
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3.3 Methodologies and issues

In this small development we benefit from some features we implemented in Matita

during our PHD and that we detail in the second part of the manuscript. The

development is reasonably small, consisting of around 200 lemmas and 2000 proof

script lines, but is still a sensible test for the coercion subsystem. The number

of coercions declared amounts to 70 (counting also composite coercions generated

automatically by the system) that his already a high number considering that in the

whole fundamental theorem of algebra development [34] the number of coercions

amounts to 50.

Coercions have been adopted for two very different purposes: to mimic subtyping

between algebraic structures and to overcome the complexity arising from the lack

of setoids support in the tactic engine of Matita.

3.3.1 Coercion and inheritance

Figure 3.3 shows the final coercion graph regarding algebraic structures where tran-

sitive arrows have been removed.

In the graph there are three diamonds. To make these records behave correctly

the system has been modified to exploit the information given by the coercion graph

during unification. All the details will be detailed in Chapter 5 but is worth to give

the overall intuition here. Consider a formula where both the division operation

(defined only on divisible groups) and the less or equal relation, defined only on

partially ordered group, appear. The less or equal relation expects an ordered group

G as its first argument and elements in og carr G as its second and third argument.

One of these arguments can be a complex expression whose head constant is the

division, taking a group Q, a natural number and an element of type dg carr Q. The

output type of the division operation has to be unified with the input type of the

less or equal relation. Thus the following unification problem arise:

dg carr ?1
?≡ og carr ?2
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Figure 3.3: Coercion graph in DAMA, transitively reduced
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Note that the groups are hidden by the notation, thus they are implicit arguments

the system must infer. This unification problem falls in the rigid versus rigid case (δ-

expansion is usually avoided as much as possible during conversion/unification since

it is too expensive in terms of memory and computational resources). Since the head

constants are different a regular unification algorithm would fail. Intuition suggests

that the unification problem has to be read as: “Is there an algebraic structure

such that it contains a divisible group and an ordered group whose carriers are the

same?”. The answer is that, if the coercion graph admits a pullback (in categorical

sense) for the ordered group and the divisible group then this is the structure we are

looking for. Thus the system reduces the former unification problem to the following

one:

dg carr (todg division ?3)
?≡ og carr (tog carr (todg order ?3))

If the todgroup structure has been declared such that the projections todg division

and todg order return convertible terms (actually types), the unification problem is

solved.

The unification algorithm, together with the practice of building structures with

multiple inheritance as explained in this chapter, allows to declare complex algebraic

hierarchies in an extremely natural way.

3.3.2 Coercion and proof search

During the development, the lack of proper support for setoids in the tactic engine

of Matita was leading to incredibly verbose proof scripts where almost one line

over two was to elide the context to perform a deep rewriting. Since our PHD was

drawing to an end and since the porting of the Setoid Replace Coq tactic was still

in progress we decided to abuse the coercion mechanism to perform some steps of

proof search.

We do believe that our trick does not scale up as a proper setoid mechanism does.

The main cause is that coercions are indexed using only the head constant and thus

all lemmas of the form x≈y→C[x]≈C[y] are indistinguishable and the type inference
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algorithm has to blindly attempt to apply them until one succeeds. Nevertheless,

the trick was sufficient to successfully complete this development.

Moreover we think that some of the coercions we declared do really ease life in

every formalisation, for example declaring the symmetry property of a predicate as

a coercion allows the user to omit from the proof script uninteresting steps. The

coercion that most helped is the function law for the group operation a ≈ b →
a + c ≈ b + c and its variants, that allows to perform deep rewritings under the

context (·+ c).

3.3.3 Searching and algebraic structures

We already argued that searching facilities are a necessary feature for a user, espe-

cially a newcomer. As we will detail in Section 4.3.1 Matita integrates powerful

searching facilities. These searching facilities are exploited by many components of

the system, one of them being automation. Automatic tactics search the library

for relevant lemmas, and use them directly, without requiring the user to list them.

The searching algorithm is based on signature similarity. The signature of a goal is

the set of constants appearing in the goal itself, and in the context. If the signature

contains inductive types it is closed with their constructors, if it contains construc-

tors it is closed with their types. This closure criteria worked pretty nicely until

algebraic structures, encoded as records, were used. For example, consider a group,

and a goal in which the identity (actually the constant function that projects the

identity element) does not appear. Following the criteria just described, no lemmas

regarding the identity of the group were found, since the identity was not appearing

in the goal signature. Moreover, if the current goal mentions ordered groups, no

lemma about abelian group is found since the record type of abelian groups appears

nowhere.

We implemented a slightly different algorithm to calculate the signature: when a

record projection is found in the goal or in the context, the record type itself and all

its projections are also included, and recursively all other record mentioned. This
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closes the set of lemmas including at least all axioms regarding the algebraic struc-

ture under analysis and all the axioms regarding structures from which it inherits.

This follows the intuition that every lemma regarding abelian groups can be used

on a more specialised structure like ordered groups.

Without this modification, that makes searching facilities aware of the inher-

itance graph of the algebraic structures, all automatic tactics were pretty useless

when coping with algebraic structures.
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We devoted most of the PHD to the design and implementation of the Matita

interactive theorem prover. When our PHD began, Matita was a bit more then

just a nice name for such a tool. It will be described in details in Section 4.1 that

many of the fundamental components were almost ready, but there was no usable

interface built on top of these functionalities, no real proof was ever formalised with

the tool before.

At the very beginning of our PHD we worked closely with S. Zacchiroli [96] to

obtain a working interface, a language for writing proofs and tools for managing the

library of proved theorems. After this “bootstrapping” phase we mostly dedicated

our PHD activity to some aspects of the refinement (type inference) process and

automation. Chapter 5 is dedicated to the coercion synthesis mechanism we imple-

mented inside the refiner and the use of that facility in formalising mathematics.

Chapter 6 is dedicated to the automatic tactics that we designed and implemented.

The architecture of the system has been described in the published paper “Craft-

ing a Proof Assistant”. An overview of the architecture will be given in Section 4.2.

The user interface and the facilities that Matita provides to the user has been

described in the paper “ User Interaction with the Matita Proof Assistant” that

we coauthored (see [3]).

Section 4.3.2 details the small step semantic of the Matita tactic language,

to which the author contributed significantly. The paper “Tinycals: Step by Step

Tacticals” is the result of such work [81].

Last section (4.4) is dedicated to the problem that afflicted Matita from its early

stage: the difficulty to deliver the system to users. We made a strong contribution

to that problem, developing a live-CD that was successfully used during the Types

Summer School 2007. Moreover a package suitable for the Debian and Ubuntu Linux

distributions has been prepared.
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4.1 History

Matita is an interactive theorem prover being developed by the Helm team at the

University of Bologna, under the direction of Prof. Asperti. It may be downloaded

at http://matita.cs.unibo.it.

The origins of Matita go back to 1999 when the Helm team was mostly in-

terested in developing document-centric technologies to enhance accessibility on the

WWW of distributed libraries of formalised mathematics. At the end of the Euro-

pean project IST-2001-33562 MoWGLI (leaded by Bologna) the following compo-

nents were ready:

• an XML specification for the Calculus of (Co)Inductive Constructions (CIC),

an exportation module for the Coq proof assistant [92], and an independent

parser for the exported documents. The exportation of Coq library consists

in about 40’000 distinct mathematical objects [80];

• metadata specifications and an innovative tool (Whelp) to index and query

the XML knowledge base [1];

• a proof checker Web service (the future kernel of Matita) to check subsets of

the distributed library [95];

• a sophisticated term parser able to deal with potentially ambiguous and in-

complete information, typical of the mathematical notation [82];

• a refiner component, i.e. a type inference system, based on partially specified

terms and unification, used by the disambiguating parser above [80];

• complex transformation algorithms for proof rendering in natural language [33];

• an innovative MathML Presentation rendering widget supporting high-quality

bidimensional rendering and visual selection [71].

What was missing to obtain Matita was to integrate these functionalities, add

library management, a proof language, and an authoring interface.

http://matita.cs.unibo.it
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The author began his PHD when the MoWGLI project was almost over. Before

that time, his main contribution was the addition of the predicative hierarchy of

universes to the proof-checker [91] and some speedup optimisations to the Whelp

search engine.

In the following three years the team developed a graphical interface [96, 3]

to glue existing components together; support for user defined notation [72] was

added; a vernacular of commands for writing and structure proofs was designed and

implemented (see Section 4.3.2); automatic tactics (described in Chapter 6) were

developed; support for implicit coercions was added (see Chapter 5) and a base

library with some interesting result in number theory and typed lambda calculi was

developed.

Recently a declarative vernacular [26] has been implemented, and the possibility

of generating proof scripts, both declarative and procedural, starting from proof

objects is currently under development.

In the last months, a release candidate of the system has been successfully de-

livered to the students of the Types Summer School through a live CD (see 4.4.2),

and the first official version of the system has been released.

4.1.1 Motivations

Our interest and motivation in the development of Matita relies in the challenging

software complexity of this kind of applications. We believe that the interactive

theorem proving domain deserves more systems in direct competition to test new

ideas and solutions, reaching a critical mass of research teams working in the field.

It also looks interesting to have more tools based on similar, partially or totally

compatible foundational systems, for exactly the same reason we are interested, say,

in different implementations of the same programming language. Finally, several

tools as Coq, NuPRL or Mizar have been around for more than 20 years, and their

original design has undergone numerous modifications and extensions, often con-

strained by backward compatibility issues, suggesting that a redesign from scratch

can be beneficial.
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Mostly due to the circumstances of its origins than to a deliberate choice, Matita

shares the same foundational dialect of Coq, the same implementation language, and

it can also directly use results from its library; so Matita looks like (and partly is)

a Coq clone. Then, we deliberately entered in direct competition with Coq adopting

the same interaction style of Coq and a similar proof language. However, no code is

shared by the two systems and the architectural design as well as the implementative

solutions are often different. The result is essentially a lightweight version of Coq,

probably very similar to the way Coq itself would look like if entirely rewritten from

scratch.

The fact that Matita and Coq share the same foundational calculus makes them

an example (probably the first) of interactive theorem prover that are actually inter-

operable. Matita can check Coq proofs and vice versa. This mutually increase the

confidence on these systems, following the third-party validation principle: proofs

done in a system must be verifiable by a third party tool.

4.2 Architecture

Here we give a brief overview on structure of the software to identify the components

that will be discussed in this dissertation. The interested reader can find a precise

presentation of the overall architecture of Matita in [2].

Formulae and proofs are the main data handled by an interactive theorem prover.

Both have several possible representations according to the actions performed on

them. Each representation is associated with a data type, and the components

that constitute an interactive theorem prover can be classified according to the

representations they act on. In this section we analyse the architecture of Matita

according to this classification.

The proof and formulae representations used in Matita as well as its general

architecture have been influenced by some design commitments:

1. Matita is heavily based on the Curry-Howard isomorphism. Execution of

procedural and declarative scripts produce proof terms that are kept for later
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Figure 4.1: Matita components with thousands of lines of code (klocs)
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processing. Even incomplete proofs are represented as λ-terms with typed

linear placeholders for missing subproofs.

2. The whole library, made of definitions and proof objects only, is searchable

and browsable at any time. During browsing proof objects are explained in

pseudo-natural language.

3. Proof authoring is performed editing either procedural or declarative scripts.

Formulae are typed using ambiguous mathematical notation. Overloading is

not syntactically constrained nor avoided using polymorphism.

According to the above commitments, in Matita we identified 5 term repre-

sentations: presentation terms (concrete syntax), content terms (abstract syntax

trees with overloaded notation), partially specified terms (λ-terms with placehold-

ers), completely specified terms (well typed λ-terms), metadata (approximations of

λ-terms).

Figure 4.1 shows the components of Matita organised according to the term

representation they act on. For each component we show the functional dependencies

on other components and the number of lines of source code. Dark gray components

are either logic independent or can be made such by abstraction. Dashed arrows

denote abstractions over logic dependent components. A normal arrow from a logic

dependent component to a dark gray one is meant to be a dependency over the

component, once it has been instantiated to the logic of the system.

We describe now each term representation together with the components of

Matita acting on them.

4.2.1 Completely Specified Terms

Formalising mathematics is a complex and onerous task and it is extremely impor-

tant to develop large libraries of “trusted” information to rely on. At this level,

the information must be completely specified in a given logical framework in or-

der to allow formal checking. In Matita proof objects are terms of the Calculus
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of Inductive Constructions (CIC); terms represent both formulae and proofs. The

proof-checker, implemented in the kernel component, is a CIC type-checker. Proof

objects are saved in an XML format that is shared with the Coq Proof Assistant so

that independent verification is possible.

Mathematical concepts (definitions and proof objects) are stored in a distributed

library managed by the file manager, which acts as an abstraction layer over the

concept physical locations.

Concepts stored in the library are indexed for retrieval using metadata. We con-

ceived a logic independent metadata-set that can accommodate most logical frame-

works. The logic dependent indexing component extracts metadata from mathe-

matical concepts. The logic independent searching tools are described in the next

section.

Finally, the library manager component is responsible for maintaining the coher-

ence between related concepts (among them automatically generated lemmas) and

between the different representations of them in the library (as completely specified

terms and as metadata that approximate them).

The actual generation of lemmas is a logic dependent activity that is not directly

implemented by the library manager, that is kept logic independent: the component

provides hooks to register and invoke logic dependent lemma generators, whose

implementation is provided in a component that we describe later and that acts on

partially specified terms.

4.2.2 Metadata

An extensive library requires an effective and flexible search engine to retrieve con-

cepts. Examples of flexibility are provided by queries up to instantiation or gener-

alisation of given formulae, combination of them with extra-logical constraints such

as mathematical classification, and retrieval up to minor differences in the matched

formula such as permutation of the hypotheses or logical equivalences. Effectiveness

is required to exploit the search engine as a first step in automatic tactics. For

instance, a paramodulation based procedure, described in Chapter 6, must first of
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all retrieve all the equalities in the distributed library that are likely to be exploited

in the proof search. Moreover, since search is mostly logic independent, we would

like to implement it on a generic representation of formulae that supports all the

previous operations.

In Matita we use relational metadata to represent both extra-logical data and

a syntactic approximation of a formula (e.g. the constant occurring in head posi-

tion in the conclusion, the set of constants occurring in the rest of the conclusion

and the same information for the hypotheses). The logic dependent indexing com-

ponent, already discussed, generates the syntactic approximation from completely

specified terms. The metadata manager component stores the metadata in a rela-

tional database for scalability and handles, for the library manager, the insertion,

removal and indexing of the metadata. The search engine component [1] implements

the approximated queries on the metadata that can be refined later on, if required,

by logic dependent components. More detail on the integrated searching facilities

will be discussed in Section 4.3.1

4.2.3 Partially Specified Terms

In partially specified terms, subterms can be omitted replacing them with untyped

linear placeholders (called implicit arguments) or with typed metavariables (in the

style of [43, 65]). The latter are Curry-Howard isomorphic to omitted subproofs

(conjectures still to be proved).

Completely specified terms are often highly redundant to keep the type-checker

simple. This redundant information may be omitted during user-machine com-

munication since it is likely to be automatically inferred by the system replacing

conversion with unification [89] in the typing rules (that are relaxed to type infer-

ence rules). The refiner component of Matita implements unification and the type

inference procedure, also inserting implicit coercions [11] to fix local type-checking

errors. Coercions are particularly useful in logical systems that lack subtyping [58]

and Chapter 5 is dedicated to this argument. The already discussed library manager
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is also responsible for the management of coercions, that are constants flagged in a

special way.

Subproofs are never redundant and if omitted require tactics to instantiate them

with partial proofs that have simpler omitted subterms. Tactics are applied to

omitted subterms until the proof object becomes completely specified and can be

passed to the library manager. Higher order tactics, usually called tacticals and

useful to create more complex tactics, are also implemented in the tactics component.

The current implementation in Matita is based on tinycals [81], which supports

a step-by-step execution of tacticals (usually seen as “black boxes”) particularly

useful for proof editing, debugging, and maintainability. Tinycals are implemented

in Matita in a small but not trivial component that is completely abstracted on

the representation of partial proofs. A brief description of the small-step operational

semantic of tynicals is given in Section 4.3.2.

The lemma generator component is responsible for the automatic generation of

derived concepts (or lemmas), triggered by the insertion of new concepts in the

library. The lemmas are generated automatically computing their statements and

then proving them by means of tactics or by direct construction of the proof objects.

4.2.4 Content Level Terms

The language used to communicate proofs and especially formulae with the user

must also exploit the comfortable and suggestive degree of notational abuse and

overloading so typical of the mathematical language. Formalised mathematics can-

not hide these ambiguities requiring terms where each symbol has a very precise and

definite meaning.

Content level terms provide the (abstract) syntactic structure of the human-

oriented (compact, overloaded) encoding. In the content component we provide

translations from partially specified terms to content level terms and the other way

around. The former translation, that loses information, must discriminate between

terms used to represent proofs and terms used to represent formulae. Using tech-

niques inspired by [32, 33], the former are translated to a content level representation



Chapter 4. The proof assistant Matita 93

of proof steps that can in turn easily be rendered in natural language. The repre-

sentation adopted has greatly influenced the OMDoc [70] proof format that is now

isomorphic to it. Terms that represent formulae are translated to MathML Content

formulae [62].

The reverse translation for formulae consists in the removal of ambiguity by fix-

ing an interpretation for each ambiguous notation and overloaded symbol used at

the content level. The translation is obviously not unique and, if performed locally

on each source of ambiguity, leads to a large set of partially specified terms, most

of which ill-typed. To solve the problem the ambiguity manager component imple-

ments an algorithm [82] that drives the translation by alternating translation and

refinement steps to prune out ill-typed terms as soon as possible, keeping only the re-

finable ones. The component is logic independent being completely abstracted over

the logical system, the refinement function, and the local translation from content

to partially specified terms. The local translation is implemented for occurrences of

constants by means of call to the search engine.

The translation from proofs at the content level to partially specified terms is

being implemented by means of special tactics following previous work [52, 94] on

the implementation of declarative proof styles for procedural proof assistants.

4.2.5 Presentation Level Terms

Presentation level captures the formatting structure (layout, styles, etc.) of proof

expressions and other mathematical entities.

An important difference between the content level language and the presentation

level language is that only the former is extensible. Indeed, the presentation level

language has a finite vocabulary comprising standard layout schemata (fractions,

sub/superscripts, matrices, . . . ) and the usual mathematical symbols.

The finiteness of the presentation vocabulary allows its standardisation. In par-

ticular, for pretty printing of formulae we have adopted MathML Presentation [62],

while editing is done using a TEX-like syntax. To visually represent proofs it is

enough to embed formulae in plain text enriched with formatting boxes. Since the
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language of boxes is very simple, many similar specifications exist and we have

adopted our own, called BoxML (but we are eager to cooperate for its standardisa-

tion with other interested teams).

The notation manager component provides the translations from content level

terms to presentation level terms and the other way around. It also provides a

language [72] to associate notation to content level terms, allowing the user to extend

the notation used in Matita. The notation manager is logic independent since the

content level already is.

The remaining components, mostly logic independent, implement in a modular

way the user interface of Matita, that is heavily based on the modern GTK+

toolkit and on standard widgets such as GtkSourceView that implements a pro-

gramming oriented text editor and GtkMathView that implements rendering of

MathML Presentation formulae enabling contextual and controlled interaction with

the formula.

The graph browser is a GTK+ widget, based on Graphviz, to render dependency

graphs with the possibility of contextual interaction with them. It is mainly used

in Matita to explore the dependencies between concepts, but other kind of graphs

(e.g. the DAG formed by the declared coercions) are also shown.

The library browser is a GTK+ window that mimics a web browser, providing a

centralised interface for all the searching and rendering functionalities of Matita.

It is used to hierarchically browse the library, to render proofs and definitions in

natural language, to query the search engine, and to inspect dependency graphs

embedding the graph browser.

The GUI is the graphical user interface of Matita, inspired by the pioneering

work on CtCoq [12] and by Proof General [5]. It differs from Proof General because

the sequents are rendered in high quality MathML notation, and because it allows

to open multiple library browser windows to interact with the library during proof

development.

The hypertextual browsing of the library and proof-by-pointing [14] are both

supported by semantic selection. Semantic selection is a technique that consists
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in enriching the presentation level terms with pointers to the content level terms

and to the partially specified terms they correspond to. Highlight of formulae in

the widget is constrained to selection of meaningful expressions, i.e. expressions

that correspond to a lower level term, that is a content term or a partially or fully

specified term. Once the rendering of an upper level term is selected it is possible

for the application to retrieve the pointer to the lower level term. An example of

applications of semantic selection is semantic copy & paste: the user can select an

expression and paste it elsewhere preserving its semantics (i.e. the partially specified

term), possibly performing some semantic transformation over it (e.g. renaming

variables that would be captured or λ-lifting free variables).

Commands to the system can be given either visually (by means of buttons

and menus) or textually (the preferred way to input tactics since formulae occurs

as tactic arguments). The textual parser for the commands is implemented in the

vernacular component, that is obviously system (and partially logic) dependent.

To conclude the description of the components of Matita, the driver compo-

nent, which does not act directly on terms, is responsible for pulling together the

other components, for instance to parse a command (using the vernacular compo-

nent) and then triggering its execution (for instance calling the tactics component

if the command is a tactic).

4.3 Peculiarities

Even if Matita can be seen as Coq rewritten from scratch, it includes many dis-

tinctive features. While coercions and automation will be described in detail in

Section 5 and Section 6 since they are major contributions of the author, here we

give a short description of some other peculiarities. A subsection is dedicated to

the proof structuring language of Matita, tinycals, to which the author of this

dissertation contributed and that is related to some issues the author mentioned in

Chapter 2 Section 2.3.4, but that has been already described in details in [96].
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4.3.1 Integrated searching facilities

The first peculiar feature of Matita, already mentioned in 2.3 is the system-wide

integration of the searching facilities of the Whelp [1] search engine.

The metadata model used in Whelp for indexing mathematical notions is es-

sentially based on a single ternary relation sRp t stating that an object s refers an

object t at a given position p. A minimal set of positions is used to discriminate the

hypotheses (Hyp), from the conclusion (Concl) and the proof (Proof) of a theorem

(respectively, the type of the input parameters, the type of the result, and the body

of a definition). Moreover, in the hypothesis and in the conclusion the root position

(Main-Hyp and Main-Concl, respectively) is different from deeper positions (that,

in a first order setting, essentially amounts to distinguish relational symbols from

functional ones).

For example consider the statement:

∀m,n : N.m ≤ n→ m < (S n)

its metadata are described by the following table:

Symbol Position

N Main-Hyp

≤ Main-Hyp

< Main-Concl

S Concl

On this metadata model some queries have been implemented. They are mostly

independent from the logic (CIC) of Matita, but some of them actually use some

logic dependent functionality of the system (like convertibility) to refine the search

result. The most relevant queries are:

match takes as input a type and returns a list of objects (definitions or proofs)

inhabiting it. The type of these objects must have the same metadata set as

the input type
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hint aims to find objects that can be used to prove a given goal in backward fashion.

The idea behind this query is to use the metadata model to find, given a goal

g, all objects whose type t1 → t2 → · · · → tn → t such that there exists a

substitution σ that makes the following equation valid: tθ = g. A necessary

condition, if we do not consider reduction, is that the set of constants in t must

be a subset of those in g. In terms of our metadata model, the problem consists

to find all s such as {x|Ref(C, s, x)} ⊆ A where A is the set of constants in g.

The interested reader can find a more detailed description of this query in [1].

locate implements a simple “lookup by name” for library notions. Once fed with

an identifier i, the query returns the list of all objects whose name is i. The

query support wild cards, allowing to query for objects whose name contains

a given string or ends with a given suffix. This query does not exploit the

metadata model previously described, but just the fact that all objects are

listed in one single place (the database actually).

The match query is triggered when, in interactive mode, the user defines a new

objects (or claims a new result). The resulting objects types are compared (actually

converted) with the type specified by the user. This implements a duplicate check,

that warns the user that his claim is already proved in the library. The user can

declare her intention to prove again an already existing object (actually generating

what is called a variant) and in this case the system does not complain.

hint is both available as an interactive command, that the user can run to know

the list of lemmas that can be applied to the current goal, and a batch procedure

that has been used to implement Prolog style automatic tactics.

The locate tactic, in conjunction with a consistent naming policy, thanks to the

wild cards facility, can really be effective. Moreover it can be automatically used to

inform the user that lemmas with the same (or similar) name are already part of

the library.

All these searching facilities are integrated in the system, that stores (and re-

moves) metadata in a relational database when the user defines (or deletes) an
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object.

Using the same metadata model some other facilities have been implemented.

For example the user may ask to know all objects that are using the notion he is

currently pondering if it is worth modifying.

4.3.2 Tinycals

tinycals [81] can be seen an alternative to a subset of LCF tacticals, that being

executed in small step fashion, allow the user to better read and structure her proof

script.

We already commented on the bad impact the commonly implemented big step

execution of tacticals interacts with the good practice of structuring scripts an re-

reading them in Section 2.3.4.

What follows is a rework with minor improvements of the formal semantic de-

scribed in [81].

Syntax and semantics

The grammar of tinycals is reported in Table 4.1, where 〈L〉 is the top-level non-

terminal generating the script language. 〈L〉 is a sequence of statements 〈S〉. Each

statement is either an atomic tactical 〈B〉 (marked with “tactic”) or a tinycal.

Note that the part of the grammar related to the tinycals themselves is com-

pletely de-structured. The need for embedding the structured syntax of LCF tac-

ticals (nonterminal 〈B〉) in the syntax of tinycals is due to the fact that not all

LCF tacticals can be executed in a small step fashion, thus for some of them, and

the ones that are combined by means these big step tacticals, the syntax has to be

structured. See the end of Section 4.3.2 for the explanation for this limitation.

For the time being, the reader can suppose the syntax to be restricted to the

case 〈B〉 ::= 〈T 〉.

We will now describe the semantics of tinycals which is parametric in the proof

status tactics act on and also in their semantics (see Table 4.2).
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Table 4.1: Abstract syntax of tinycals and core LCF tacticals.

〈S〉 ::= (statements)

“tactic” 〈B〉 (tactic)

| “.” (dot)

| “;” (semicolon)

| “[” (branch)

| “|” (shift)

| i1,. . ., in“:” (projection)

| “ ∗ :” (wild card)

| “skip” (acknowledge)

| “]” (merge)

| “focus” [g1;· · ·; gn] (selection)

| “done” (de-selection)

〈L〉 ::= (language)

〈S〉 (statement)

| 〈S〉 〈S〉 (sequence)

〈B〉 ::= (tacticals)

〈T 〉 (tactic)

| “try” 〈B〉 (recovery)

| “repeat” 〈B〉 (looping)

| 〈B〉“;”〈B〉 (composition)

| 〈B〉“;[” (branching)

〈B〉“|” . . . “|”〈B〉“]”

〈T 〉 ::= . . . (tactics)

A proof status is the logical status of the current proof. It can be seen as the

current proof tree, but there is no need for it to actually be a tree. Matita for

instance just keeps the set of conjectures to prove, together with a proof term where

meta-variables occur in place of missing subparts. From a semantic point of view

the proof status is an abstract data type. Intuitively, it must describe at least the

set of conjectures yet to be proved. A Goal is another abstract data type used to

index conjectures.

Table 4.2: Semantics parameters.

proof status: ξ

proof goal: goal

tactic application: apply tac : T → ξ → goal → ξ × goal list× goal list

The function apply tac implements tactic application. It consumes as input a
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tactic, a proof status, and a goal (the conjecture the tactic should act on), and

returns as output a proof status and two lists of goals: the set of newly opened goals

and the set of goals which have been closed. This choice enables our semantics to

account for side-effects, that is: tactics can close goals other than that on which they

have been applied, a feature implemented in several proof assistants via existential

or meta-variables [43, 65]. The proof status was not directly manipulated by tactics

in LCF because of the lack of meta-variables and side effects.

In the rest of this section we will define the semantics of tinycals as a transition

(denoted by −→ ) on evaluation status. Evaluation status are defined in Table 4.3.

Table 4.3: Evaluation status.

task = int× (Open goal | Closed goal) (task)

Γ = task list (context)

τ = task list (“todo” list)

κ = task list (dot’s continuations)

ctxt tag = B | F (stack level tag)

ctxt stack = (Γ× τ × κ× ctxt tag) list (context stack)

code = 〈S〉 list (statements)

status = code × ξ × ctxt stack (evaluation status)

The first component of the status (code) is a list of statements of the tinycals

grammar. The list is consumed, one statement at a time, by each transition. This

choice has been guided by the un-structured form of our grammar and is the heart

of the fine-grained execution of tinycals.

The second component is the proof status, which we enrich with a context stack

(the third component). The context stack, a representation of the proof history so

far, is handled as a stack: levels get pushed on top of it either when the branching

tinycal “[” is evaluated, or when “focus” is; levels get popped out of it when the

corresponding closing tinycals are (“]” for “[” and “done” for “focus”). Since

the syntax is un-structured, we can not ensure statically proper nesting of tinycals,
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therefore each stack level is equipped with a tag which annotates it with the creating

tinycal (B for “[” and F for “focus”). In addition to the tag, each stack level has

three components Γ, τ and κ respectively for active tasks, tasks postponed to the

end of branching and tasks postponed by “.”. The role of these components will be

explained in the description of the tinycals that acts on them. Each component is

a sequence of numbered tasks. A task is an handler to either a conjecture yet to be

proved, or one which has been closed by a side-effect. In the latter case the user will

have to confirm the instantiation with “skip”.

Each evaluation status is meaningful to the user and can be presented by slightly

modifying preexisting user interfaces.

Figure 4.2: Matita user interface in the middle of a proof

Our presentation choice is described is can be seen in Figure 4.2, where the

interesting part of the proof status is presented as a notebook of conjectures to

prove, and the conjecture labels represent the relevant information from the context

stack by means of: 1) bold text (for conjectures in the currently selected branches,
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targets of the next tactic application; they are kept in the Γ component of the top

of the stack); 2) subscripts (for not yet selected conjectures in sibling branches; they

are kept in the Γ component of the level below the top of the stack).

The rest of the information hold in the stack does not need to be shown to the

user since it does not affect immediate user actions.

We describe first the semantics of the tinycals that do not involve the creation

of new levels on the stack. The semantics is shown in Tables 4.4 and 4.5.

Table 4.4: Basic tinycals semantics (1 of 2).

〈“tactic” 〈T 〉 ::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξn, S ′〉 n ≥ 1

where [g1;· · ·; gn] = get open goals in tasks list(Γ)

and



〈ξ0, G
o
0, G

c
0〉 = 〈ξ, [ ], [ ]〉

〈ξi+1, G
o
i+1, G

c
i+1〉 = 〈ξi, Go

i , G
c
i〉 gi+1 ∈ Gc

i

〈ξi+1, G
o
i+1, G

c
i+1〉 = 〈ξ′, (Go

i \Gc) ∪Go, Gc
i ∪Gc〉 gi+1 6∈ Gc

i

where 〈ξ′, Go, Gc〉 = apply tac(T, ξi, gi+1)

and S ′ = 〈Γ′, τ ′, κ′, t〉 ::close tasks(Gc
n, S)

and Γ′ = mark as handled(Go
n)

and τ ′ = remove tasks(Gc
n, τ)

and κ′ = remove tasks(Gc
n, κ)

〈“;”::c, ξ, S〉 −→ 〈c, ξ, S〉

The utility functions used in the description of the semantic are reported at the

end of Section 8.2.

Tactic application Consider the first case of the tinycals semantics of Table 4.4.

It makes use of the first component (denoted Γ) of a stack level, which represent

the “current” goals, that is the set of goals to which the next tactic evaluated will

be applied.
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Table 4.5: Basic tinycals semantics (2 of 2).

〈“skip”::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξ, S ′〉

where Γ = [〈j1, Closed g1〉; · · · ; 〈jn, Closed gn〉] n ≥ 1

and Gc = [g1;· · ·; gn]

and S ′ = 〈[ ], remove tasks(Gc, τ), remove tasks(Gc, κ), t〉
:: close tasks(Gc, S)

〈“.”::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξ, 〈[l1], τ, [l2;· · ·; ln] ∪ κ, t〉 ::S〉 n ≥ 1

where get open tasks(Γ) = [l1;· · ·; ln]

〈“.”::c, ξ, 〈Γ, τ, l ::κ, t〉 ::S〉 −→ 〈c, ξ, 〈[l], τ, κ, t〉 ::S〉

where get open tasks(Γ) = [ ]

When a tactic is evaluated, the set Γ of current goals is inspected (expecting

to find at least one of them), and the tactic is applied in turn to each of them in

order to obtain the final proof status. At each step i the two sets Co
i and Gc

i of

goals opened and closed so far are updated. This process is atomic to the user

(i.e. no feedback is given while the tactic is being applied to each of the current

goals in turn), but she is free to cast off atomicity using branching. After the tactic

has been applied to all goals, the new set of current goals is created containing all

the goals which have been opened during the applications, but not already closed.

They are marked (using the mark as handled utility) so that they do not satisfy the

unhandled predicate, indicating that some tactic has been applied to them. Goals

closed by side effects are removed from τ and κ and marked as Closed in S. The

reader can find a detailed description of this procedure at the end of Section 8.2.

Sequential composition Since sequencing is handled by Γ, the semantics of “;”

is simply the identity function. We kept it in the syntax of tinycal for preserving

the parallelism with LCF tacticals.
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Side-effects handling “skip” (first case in Table 4.5) is a tinycal used to deal

with side-effects. Consider for instance the case in which there are two current goals

on which the user branches. It can happen that applying a tactic to the first one

closes the second, removing the need of the second branch in the script. Using

tinycals the user will never see branches she was aware of disappear without notice.

Cases like the above one are thus handled marking the branch as Closed (using the

close tasks utility) on the stack and requiring the user to manually acknowledge what

happened on it using the “skip” tinycal, preserving the correspondence between

script structure and proof tree.

Consider the following script:� �
apply trans eq; [ apply H | apply H1 | skip ]� �

where the application of the transitivity property of equality to the conjecture L = R

opens the three conjectures ?1 : L=?3, ?2 : ?3=R and ?3 : nat. Applying the hypoth-

esis H instantiates ?3, implicitly closing the third conjecture, that thus has to be

acknowledged.

Local de-structuring Structuring proof scripts enhances their readability as long

as the script structure mimics the structure of the intuition behind the proof. For

this reason, authors do not always desire to structure proof scripts down to the most

far leaf of the proof tree.

Consider for instance the following script snippet template:� �
tac1;

[ tac2. tac3.

| tac4; [ tac5 | tac6 ] ]� �
Here the author is trying to mock-up the structure of the proof (two main

branches, with two more branches in the second one), without caring about the

structure of the first branch.

Lcf tacticals do not allow un-structured scripts to be nested inside branches. In

the example, they would only allow to replace the first branch with the identity
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tactic, continuing the un-structured snippet “tac2. tac3.” at the end of the out-

ermost branching tactical, but this way the correspondence among script structure

and proof tree would be completely lost. The semantics of the tinycal “.” (last two

cases of Table 4.5) accounts for local use of un-structured script snippets.

When “.” is applied to a non-empty set of current goals, the first one is selected

and become the new singleton current goals set Γ. The remaining goals are remem-

bered in the third component of the current stack level (dot’s continuations, denoted

κ), so that when the “.” is applied again on an empty set of goals they can be re-

called in turn. The locality of “.” is inherited by the locality of dot’s continuation

κ to stack levels.

Table 4.6: Branching tinycals semantics (1 of 2).

〈“[”::c, ξ, 〈[l1;· · ·; ln], τ, κ, t〉 ::S〉 −→ 〈c, ξ, S ′〉 n ≥ 2

where renumber branches([l1;· · ·; ln]) = [l′1; · · · ; l′n]

and S ′ = 〈[l′1], [ ], [ ], B〉 ::〈[l′2; · · · ; l′n], τ, κ, t〉 ::S

〈“|”::c, ξ, 〈Γ, τ, κ, B〉 ::〈[l1;· · ·; ln], τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S ′〉 n ≥ 1

where S ′ = 〈[l1], τ ∪ get open tasks(Γ) ∪ κ, [ ], B〉 ::〈[l2;· · ·; ln], τ ′, κ′, t′〉 ::S

〈i1,. . ., in“:”::c, ξ, 〈[l], τ, [ ], B〉 ::〈Γ′, τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S ′〉

where unhandled(l)

and ∀j = 1 . . . n, ∃lj = 〈j, sj〉, lj ∈ l ::Γ′

and S ′ = 〈[l1; · · · ; ln], τ, [ ], B〉 ::〈(l ::Γ′) \ [l1; · · · ; ln], τ ′, κ′, t′〉 ::S

Tables 4.6 and 4.7 describe the semantics of tinycals that require a stack disci-

pline.

Branching Support for branching is implemented by “[”, which creates a new level

on the stack for the first of the current goals. Remaining goals (the current branching

context) are stored in the level just below the freshly created one. There are three
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Table 4.7: Branching tinycals semantics (2 of 2).

〈“ ∗ :”::c, ξ, 〈[l], τ, [ ], B〉 ::〈Γ′, τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S ′〉

where unhandled(l)

and S ′ = 〈l ::Γ′, τ, [ ], B〉 ::〈[ ], τ ′, κ′, t′〉 ::S

〈“]”::c, ξ, 〈Γ, τ, κ, B〉 ::〈Γ′, τ ′, κ′, t′〉 ::S〉 −→ 〈c, ξ, S ′〉

where S ′ = 〈τ ∪ get open tasks(Γ) ∪ Γ′ ∪ κ, τ ′, κ′, t′〉 ::S

〈“focus” [g1;· · ·; gn] ::c, ξ, 〈Γ, τ, κ, t〉 ::S〉 −→ 〈c, ξ, S ′〉

where gi ∈ get open goals in status(S)

and S ′ = 〈mark as handled([g1; · · · ; gn]), [ ], [ ], F〉

::close tasks(〈Γ, τ, κ, t〉 ::S)

〈“done”::c, ξ, 〈[ ], [ ], [ ], F〉 ::S〉 −→ 〈c, ξ, S〉

different ways of selecting them. Repeated uses of “|” consume the branching context

in sequential order. i1,. . ., in“:” enables multiple positional selection of goals from

the branching context. “∗:” recall all goals of the current branching context as the

new set of current goals. The semantics of all these branching tacticals is shown in

Table 4.6 the first case of Table 4.7.

Each time the user finishes working on the current goals and selects a new goal

from the branching context, the result of her work (namely the current goals in

Γ) needs to be saved for restoring at the end of the branching construct. This is

needed to implement the LCF semantics that provides support for snippets like the

following:� �
tac1; [ tac2 | tac3 ]; tac4� �

where the goals resulting by the application of tac2 and tac3 are re-flowed

together to create the goals set for tac4.

The place where we store them is the second component of stack levels (todo list,
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denoted τ). Each time a branching selection tinycal is used the current goals set

(possibly empty) is appended to the todo list for the current stack level.

When “]” is used to finish branching (second rule of Table 4.7), the todo list τ

is used to create the new set of current goals Γ, together with the goals not handled

during the branching (note that this is a small improvement over LCF tactical

semantics, where leaving not handled branches is not allowed).

Since “[” already provides for the creation of the first branch, in Table 4.6 there

is some additional machinery to distinguish fresh goals (goals on which the user has

not acted yet) from non-fresh one. This distinction is used to decide whether to drop

the current branch form the branching context when “|” or i1,. . ., in“:” are used.

Focusing The pair of tinycals “focus”. . . “done” is similar in spirit to the pair

“[”. . . “]”, but is not required to work on the current branching context. With

“focus”, goals located everywhere on the stack can be recalled to form a new set

of current goals. On this the user is then free to work as she prefer, for instance

branching, but is required to close all of them before invoking “done”.

The intended use of “focus”. . . “done” is to deal with meta-variables and side

effects. The application of a tactic to a conjecture with meta-variables in the conclu-

sion or hypotheses can instantiate the meta-variables making other conjectures false.

In other words, in presence of meta-variables conjectures are no longer independent

and it becomes crucial to consider and close a bunch or dependent conjectures to-

gether, even if in far away branches of the proof. In these cases “focus”. . . “done”

is used to select all the related branches for immediate work on them. Alternatively,

“focus”. . . “done” can be used to jump on a remote branch of the tree in order

to instantiate a meta-variable by side effects before resuming proof search from the

current position.

Note that using “focus”. . . “done”, no harm is done to the proper structuring

of scripts, since all goals the user is aware of, if closed, will be marked as Closed

requiring her to manually “skip” them later on in the proof.
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Digression on other tacticals

Of the basic LCF tacticals, we have considered so far only sequential composition

and branching. It is worth discussing the remaining ones, in particular try, || (or-else)

and repeat.

The try T tactical, that never fails, applies the tactic T , behaving as the identity

if T fails. It is a particular case of the or-else tactical: T1||T2 behaves as T1 if T1

does not fail, as T2 otherwise. Thus try T is equivalent to T ||id.

The try and or-else tacticals occur in a script with two different usages. The most

common one is after sequential composition: T1; try T2 or T1;T2||T3. Here the idea is

that the user knows that T2 can be applied to some of the goals generated by T1 (and

T3 to the others in the second case). So she is faced with two possibilities: either use

branching and repeat T2 (or T3) in every branch, or use sequential composition and

backtracking (encapsulated in the two tacticals). Tinycals offer a better solution to

either choice by means of the projection and wild card tinycals: T1; [i1, . . . , in : T2|∗ :

T3]. The latter expression is not also more informative to the reader, but it is also

computationally more efficient since it avoids the (maybe costly) application of T2

to several goals.

The second usage of try and or-else is inside a repeat tactical. The repeat T

tactical applies T once, failing if T fails; otherwise the tactical recursively applies

T again on every goal opened by T until T fails, in which case it behaves as the

identity tactic.

Is it possible to provide an un-structured version of try T , T ||T ′, and repeat T in

the spirit of tinycals in order to allow the user to write and execute T step by step

inspecting the intermediate evaluation status? The answer is negative as we can

easily see in the simplest case, that of try T . Consider the statement T ; try (T1;T2)

where sequential composition is supposed to be provided by the corresponding tiny-

cal. Let T open two goals and suppose that “try” is executed atomically so that the

evaluation point is just before T1. When the user executes T1, T1 can be applied as

expected to both goals in sequence. Let ξ be the proof status after the application

of T and let ξ1 and ξ2 be those after the application of T1 to the first and second
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goal respectively. Let now the user execute the identity tinycal “;” followed by T2

and let T2 fail over the first goal. To respect the intended semantics of the tactical,

the status ξ2 should be partially backtracked to undo the changes from ξ to ξ1,

preserving those from ξ1 to ξ2.

If the system has side effects the latter operation is undefined, since T1 applied to

ξ could have instantiated meta-variables that controlled the behaviour of T1 applied

to ξ1. Thus undoing the application of T1 to the first goal also invalidates the

previous application of T1 to the second goal.

Even if the system has no side effects, the requirement that proof status can be

partially backtracked is quite restrictive on the possible implementations of a proof

status. For instance, a proof status cannot be a simple proof term with occurrences

of meta-variables in place of conjectures, since backtracking a tactic would require

the replacement of a precise subterm with a meta-variable, but there would be no

information to detect which subterm.

As a final remark, the simplest solution of implementing partial backtracking

by means of a full backtrack to ξ followed by an application of T1 to the second

goal only does not conform to the spirit of tinycals. With this implementation, the

application of T1 to the second goal would be performed twice, sweeping the waste of

computational resources under the rug. The only honest solution consists of keeping

all tacticals, except branching and sequential composition, fully structured as they

are now. The user that wants to inspect the behaviour of T ; try T1 before that

of T ; try (T1;T2) is obliged to do so by executing atomically try T1, backtracking

by hand and executing try (T1;T2) from scratch. A similar conclusion is reached

for the remaining tacticals. For this reason in the syntax given in Table 4.1 the

production 〈B〉 lists all the traditional tacticals that are not subsumed by tinycals.

Notice that atomic sequential composition and atomic branching (as implemented

in the previous section) are also listed since tinycals cannot occur as arguments of

a tactical.
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4.3.3 Other peculiarities

All the peculiarities described so far had a contribution from the author of this

dissertation. Here we briefly describe other features that characterise the system.

The MoWGLI project developed rendering techniques for mathematical docu-

ments. These have been reused in Matita. Figure 4.3 shows the Math-ML render-

ing widget (supporting bi-dimensional notations) used in the sequent window. This

Figure 4.3: Matita main window

widget also support semantic selection (only structurally meaningful sub-terms can

be be selected) and hyperlinks, allowing the user to reach the definition of an object

with just one click.

Another feature inherited from the MoWGLI project is the natural language

rendering of proof objects. While the user builds a proof with tactics a window

can display the rendering of the proof object constructed so far in natural language.

This (pseudo) natural language gave the basis for a declarative language, currently
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under development [26], that can be executed by the system as well as generated

using the aforementioned natural language rendering facility. We will use this facility

in Chapter 6 to obtain a nice proof script from the proof object generated by an

automatic tactic that performs rewriting. The possibility of generating a procedural

proof script starting from a proof object is also under development [49].

4.4 Delivering the system

Matita always suffered the problem of being hard to deliver to the users (like

students or researchers). The main cause of that problem is the fact that Matita

uses a relational database management system (DBMS) to store metadata. The

second difficulty is that Matita has been written reusing many components already

available, thus depends on many external libraries.

During the MoWGLI project a huge set of metadata, corresponding to the whole

Coq library (contributions included), was used. The amount of indexed objects

was around 40,000 and the biggest relation (briefly explained in 4.3.1) counted more

than 850,000 entries. Due to the size of such dataset a scalable relational DBMS

was adopted, namely MySQL. When this technology was integrated in Matita it

implied a dependency over MySQL, that is a complex tool that needs a proper

configuration to work. This has always hindered the delivery of the system.

Although installing external libraries (like the Math-ML rendering widget) is just

a matter of time, the high number of such dependencies has always been a deterrent

for users interested to give the system a try. Moreover, the system has always been

developed on computers running the Debian GNU/Linux operating system. The

author of this thesis and another team component (Stefano Zacchiroli) are Debian

developers, and contributed to the packaging of all needed libraries. This allows an

easy and smooth installation of all that libraries on a computer running Debian.

Not surprisingly, this has proven not to be a complete solution to that problem,

since Debian has never been a widespread distribution for personal Desktop/Laptop

computers.
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When our advisor Andrea Asperti decided to organise the 2007 Types Summer

School in Bologna1, obviously giving some lectures on Matita, these issues had

to be solved once for all. In addition to that, many other systems developed by

the Types community suffer from similar problems, requiring uncommon libraries

of specific versions of some external softwares to run properly.

To solve the first issue regarding Matita we reworked the database related

subsystem (see Section 4.4.1). To solve the second issue, that regards not only

Matita but is generically related to all systems, we developed ITPLive!. ITPLive!2

is a CD that contains a bootable operating system that runs from within the CD,

without requiring any installation on the hard drive. This allowed to prepare a good

execution environment for all the systems presented at the summer school: Matita,

Coq, Isabelle, Mizar, Agda and Epigram.

4.4.1 The database issue

The solution to the database related issue comes from the observation that, although

the Whelp technology was developed on an enormous data set, the way it used in

Matita does not need all this dataset. Matita has its own standard library, and

even if it can use Coq objects, it is unlikely that the user interested in installing

Matita wants to install also the XML exportation of all Coq contributions (more

than 1,5 gigabytes). Moreover, the architecture of Matita was designed to be

network transparent [80]: a so called getter components allows to fetch objects from

remote hosts as if they were local. The existence of an embeddable and efficient

SQL database3 completes the picture.

As we mentioned before the DBMS is used to store also metadata of objects

created by the user. This metadata are much less stable than the ones that are

in the standard library, since the are frequently deleted or modified. This suggests

the first distinction between the metadata set the user manipulates and the dataset

1http://typessummerschool07.cs.unibo.it/
2http://mowgli.cs.unibo.it/~tassi/types/itplive/
3http://www.sqlite.org

http://typessummerschool07.cs.unibo.it/
http://mowgli.cs.unibo.it/~tassi/types/itplive/
http://www.sqlite.org
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that composes the library officially distributed with the system. Both metadata has

to be stored in a database, but they may be different. Moreover, since DBMS like

MySQL accept connections through the network, they don’t even need to be placed

on the same host. Anyway, for performance and availability reasons, the standard

library should be of quick access and available even if the user is working offline.

After doing all these consideration we reworked the database related subsystem of

Matita as follows.

Metadata set — front-ends

Matita distinguishes three kinds of metadata set. The one related to the user

development where metadata related to objects defined by the user are stored. The

library metadata set contains the metadata relative to the objects belonging to the

standard library of the system; they are not changed by the user but will be heavily

used. The third, and last, metadata set is the legacy one. It is again a read-only data

set, unlikely to be heavily used by the common user but of interest for consultation.

DBMS — back-ends

Matita supports two different, interchangeable, DBMS back-ends. The original

MySQL, that can work across a network link, and the lightweight Sqlite. To make

the latter work with Matita effectively we had to enhance the OCaml bindings4,

allowing the declaration of user defined predicates (mainly for regular expression

matching) to fill the gap between the SQL dialects spoken by the two different

DBMS.

The database subsystem

Currently Matita supports one instance of every kind of front-end that can be

attached to any kind of back-end. The usual configuration is to keep both the user

4http://www.ocaml.info/home/ocaml_sources.html

http://www.ocaml.info/home/ocaml_sources.html
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and library metadata set local, handled by the configuration-pain free Sqlite back-

end. The third metadata set, can be optionally activated, making the back-end point

to the MySQL server properly configured available at the University of Bologna. If

the remote metadata set is activated, the getter has also to be instructed where to

find the XML representation of the objects whose metadata is available remotely.

Before this substantial re-design of the database subsystem of Matita all SQL

queries were performed through a single DBMS on a single metadata set. Queries

have been rewritten using only the intersection of the SQL dialects spoken by the

two supported DBMS. Moreover all search queries are now performed on all active

metadata set and the union is returned.

Picture 4.4 shows the internal architecture of the database subsystem when the

default configuration is used. Dotted lines are related to the configuration file.

Figure 4.4: Database subsystem with default configuration
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The main point of this design is to allow Matita to still benefit from fast and

scalable DBMS while reducing the effort needed by a user to perform a simple

installation.

Limitation of this approach are that the metadata set activated as front-ends

have to be disjoint. This limitation could be partially avoided using a priority

policy, but in practice the simpler implemented approach of allowing only disjoint

dataset proved to be effective and sufficient to most common needs.

4.4.2 A live CD for interactive theorem provers

ITPLive! is a live CD providing a desktop environment with many interactive (and

some automatic) theorem provers already installed and ready to be used.

Live CDs are nowadays widespread medium for quick software evaluation, usually

shipped with magazines to let the reader try a software product without the burden

of installing it.

Interactive theorem provers are often hard to install, sometimes requiring un-

common dependencies to be satisfied. Moreover they usually need to be properly

configured. We were also involved in the organisation of the 2007 Types Summer

School, with around 80 participants. Writing an how-to and assisting them in the

installation on their own computer would have been a huge amount of work. We

thought that the live CD approach was suitable for interactive theorem provers.

We chose to base the live CD on the Debian GNU/Linux, because all interactive

theorem prover works under a Unix operating system and because we master the

details of that Linux distribution.

The technology behind a live CD can be dived into two parts: the one in kernel

space and the one in user space. Both are described in the following sections.

The technology for a live CD

The first technology, continuously improved in the last few years after the success

of the Knoppix distribution, accounts to an highly compressed file system and to an
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extremely flexible file system indirection layer. Cause the limited amount of space

on a CD media, it is necessary to heavily compress the content of the file system to

make all necessary software fit. In addition to that, CD are read only media and a

live CD has to install nothing on the hard drive. Applications are usually developed

having in mind the most common use case, where a writable file system is available.

Thus most applications create temporary files, or populate the users home directory

with configuration files or even use the hard drive as a cache for remote contents.

The technology used to solve the compression related issue is squashfs5, a kernel

module and user space tool to create and mount compressed file system images.

It uses a slightly modified version of the well known Ziv-Lempel LZ77 [97] algo-

rithm that 30 years after its discovery still represent a good compromise between

(de)compression performances and compression ratio. It performed incredibly well

with the so huge Mizar library, composed of around 300 mega bytes of text files.

The uncompressed size of the whole file system, comprising the operating system,

a graphical user interface and all the provers amounts to more than two gigabytes

and was compressed down to around six hundred megabytes.

To solve the read only media problem the extremely powerful file system in-

direction layer unionfs6 was adopted. It allows to merge a writable and a read

only filesystem such that every modification to the read only one is recorded in the

writable one. Modern computers have huge main memory, and few megabytes can

be safely used to create a ramdisk. This writable virtual drive can be formatted

with a regular file system and be used together with the read only one provided by

the CD thanks to unionfs. All application can thus work without modification, they

are free to write on the CD media as they used to do on the hard drive: all their

modification are stored in main memory.

5http://squashfs.sourceforge.net/
6http://www.unionfs.org/

http://squashfs.sourceforge.net/
http://www.unionfs.org/
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The tools for a live CD

The combination of unionfs and squashfs is enough to make live CD possible, but

without an handy tool to create the file system image it would be an incredibly time

consuming activity.

The debian-live7 project, although still on it early stage of development, was

adopted to drive the generation of the file system image to put on the live CD. We

contributed with a quite huge number of bug reports and patches to the project,

that constantly improved and fixed the utility.

What debian-live allows to do is to specify a list of Debian packages that will

be available when running the live CD. It also handles a customised boot sequence

(thanks to the live-initramfs utility) more suitable for the live CD. It makes it easy

to add on top of that automatically generated file system image ad-hoc software

that is not available as a Debian package and to customise the user desktop adding

startup icons for the installed provers.

Having that utility allowed us to generate many tentative live CD in batch mode,

quickly improving the quality of the product.

The contents of ITPLive!

The version of the live CD given to the 2007 Types summer School attenders can

be download in the website of the school.

It provides recent versions of Matita, Coq, Isabelle, Mizar, Agda and Epi-

gram. In addition to these interactive theorem provers it provides the why [42] and

krakatoa [61] software verification tools. It also ships some automatic provers why

can use, like simplify [37], ergo [28] and yices [39].

After the database related issue of Matita was solved reworking the database

subsystem, we made a Debian package for the tool that is used to install it on the live

CD. Since some attenders the conference were using the Ubuntu Linux distribution,

that shares with Debian the same package management system, they successfully

7http://debian-live.alioth.debian.org/

http://debian-live.alioth.debian.org/
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installed the package on their laptops. Ubuntu is a really widespread distribution

for personal desktops/laptops, we thus look forward in making the Matita Debian

package part of the official Debian distribution. The whole official Debian distribu-

tion is available as part of the Universe repository to all Ubuntu users.
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The refiner is a fundamental component in an interactive theorem prover like

Matita. Looking back at the data driven architecture description of Section 4.2,

the refiner handles incomplete terms. This kind of data is usually the result of the

user input, that must be validated possibly adjusting it inferring implicit piece of

information.

A refiner has always been part of Matita, even before the user interface was

written. It was developed during the Mowgli project, as part of the algorithm that

efficiently disambiguates mathematical formulae [82, 83] where constant names are

overloaded.

Even if the refiner was already working [80], no support for implicit coercions

was available. We developed it as part of our PHD, with two main motivations:

• implicit notation support

• formalisation of algebraic structures

When we started developing coercion support in the refiner, Matita was equipped

with no notational support, not even infix operators. However, the implementation

of explicit notational support was planned, many common practices in pen & paper

do not fit in this category and need implicit notation. The less interesting one,

but still emblematic of the implicitness of some notations is for example the formula

3x+5 = 0 that silently misses the ∗ operation on 3 and x. A more interesting example

in which an implicit notation is usually adopted is when an object has multiple

aspects, like an abelian group that is also a set of objects or another algebraic

structure like a monoid. Many of these interesting use cases fall in the subtyping

category, that may not be supported by the logic framework implemented by the

interactive theorem prover. CIC, the calculus implemented in Matita is an example

of such framework. The most commonly used encoding of algebraic structures in

a type theory like CIC is to use inductive telescopes (i.e. generalised Σ-types) to

model structures and implicit coercions to model the subtyping relation.

Although these are the main motivations of our work, the flexible handling of

metavariables Matita employs allowed us to further extend the coercion mecha-
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nism. It is for example possible to declare subset coercions, like nat of Z : ∀n:Z.n≥0.nat,

that, when inserted around a term n of type Z, opens the conjecture n≥0. To fully

exploit this feature some additional operations have to be implemented (like coer-

cion propagation under term constructors see 5.4.1), allowing to declare coercions

to Σ-types that may leave the propositional part to be proved. This implements

the core functionality of the Russell [87] system available in Coq or the predicate

subtyping feature of PVS [85] that allows to specify functional programs in a very

intuitive way that also plays nice with code extraction.

This chapter is structured as follows: Section 5.1 introduces various aspects co-

ercions, from their role in the encoding of mathematical structure in type theory

to their formal presentation and implementation. Section 5.2 describes the design

choice we made and details the implementation of coercions in the Matita re-

finer. An extended rework of the paper “Working with Mathematical Structures in

Type Theory” [27] accepted for publication in the TYPES 2007 post proceedings

is reported in Section 5.3. It gives a technical presentation of the issues of coding

mathematical structures with a notion of subtyping in type theory, explaining the

solutions adopted in Matita. In the last Section 5.4 an overview of some features,

like subset coercions to Σ-types, is given.

5.1 The many faces of coercions

Coercions have been widely studied in the literature from very heterogeneous points

of view. The theoretical approach lead to nice results defining correspondences be-

tween languages with subtyping and languages that simulate that feature through

the application of coercions. Implementation of coercions in interactive theorem

provers usually deeply differs from the theoretical presentation, mostly for perfor-

mance reasons. Restrictions are usually performed on the category of functions

allowed to be coercions and the typing rules that insert coercions have stronger

premises than the ones usually presented in theoretical studies. Applicative studies

concerning the formalisation of algebraic structures in type theory used them as an
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handy gadget to mimic subtyping between algebraic structures.

Our work concentrated on the implementation of the coercions mechanism in the

interactive theorem prover Matita, tuning this mechanism to ease the formalisation

of a hierarchy of algebraic structures.

Here we give a brief introduction to all the three aspects of coercions.

5.1.1 Theoretical properties

Theoretical aspects of coercions have been extensively studied by Luo [57, 58], Luo

and Soloviev [59, 55], Barthe [11] and Chen [22, 23].

Luo and Soloviev base the study on a typed version of Martin-Löf Logical Frame-

work (see [57] for the full set of rules) and they relate two extensions of the frame-

work, the first obtained equipping the theory with a subtyping notion, and the sec-

ond obtained adding coercions as mean of an abbreviational mechanism. They define

the notion of coherence of the coercion graph declarations and, under such assump-

tion, they prove the conservativity of the latter extension over the former. Luo and

Soloviev [59] generalise the work done in [57] considering not only simple coercions,

but also the parametrised and dependent case. An example of parametrised coercion

is the one that maps vectors (of any given length) to lists: V2L : ∀n.Vector n → List

An example of the more interesting dependent coercion is the dual one, mapping lists

to vectors of a length that depends on the input: L2V : ∀ l : List . Vector (length l )

The coherence condition, as expressed in [59], states that two coercions from the

same target to equal types are equal:

Coherence condition

Γ ` x : A
c→ B[x] : Type Γ ` x : A

c′→ B′[x] : Type

Γ ` a : A Γ, a : A ` B[a] = B′[a]

⇒ Γ ` c a = c′ a : B

Judgements of the form Γ ` x : A
c→ B[x] : Type are used to state the declaration of

a dependent coercion from A to B. Although in [57] Luo does not consider coercions
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between equal types, in the subsequent paper [59] he does and in conjunction with

the coherence condition he is able to deduce that if Γ ` A
c→ A : Type then

Γ ` c = λx : A.x : A→ A.

The conservativity property intuitively states that each derivation in the logical

framework extended with coercive subtyping that does not contain coercive appli-

cations can be mapped to a derivation in the original logical framework. This result

is established in [59] for the most complicated case of dependent coercions.

Barthe [11] works inside a Pure Type System equipped with βη-equivalence and

studies coercions as a relation between a system with a fully explicit syntax and one

with implicit syntax. The system equipped with implicit syntax has an extra rule

to introduce coercions into a set ∆ that annotates every type judgement rule. The

side conditions for that rule are shown to be sufficient to prove the conservativity

of the system with implicit syntax over the other one. A notion of ε-reduction,

that makes coercions explicit, is used to formulate the conservativity and coherence

statements: given a judgement Γ `∆ M : T in the system with implicit syntax,

ε∆(Γ) ` ε∆(M) : ε∆(T ) is provable in the explicit syntax system. Moreover if M1 and

M2 are ε-normal forms of M , M1 =β M2. Restrictions on the coercion declaration

rules are similar to the ones made by Luo and Soloviev, different coercive paths

between the same types have to be β-convertible. Barthe also does not investigate

transitivity in details, refusing to add to the coercion set a new coercion from vectors

over B to a lists over B when a coercion from A to B and a coercion from vectors

over A and lists over A are declared.

Chen [22, 23] investigates the transitivity related problem and develops an ex-

tension of the calculus of constructions where multiple, different, paths of implicit

coercions between equal types are allowed. He develops a coercion inference algo-

rithm, using the calculation of the least upper bound [6] to chose the coercion to

insert. This allows him to prove that the algorithm produces the minimal well typed

coercive extension of an ill typed term. His rule for application always inserts co-

ercions, and the least upper bound calculation allows him to assume that they are

identities (always declared as coercions) if the types are convertible.
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All these works give a clean formal presentation of type systems (or type system

frameworks) equipped with a syntax for implicit coercions, and prove important

results over them. Although the requirements they put on coercions are too strong

for practical usage. The coherence condition is in general undecidable in the setting

of Luo and Soloviev [59]. Moreover a coercion c : A → B is chosen to cast a term

of type A’ when A and A’ are βη-convertible, that can lead in general to extremely

expensive conversion tests during type checking (or the coercion inference phase if

type checking is performed on the system with explicit syntax). The implementa-

tions made by Bailey and Saibi for Lego and Coq described in the next section

tackle this problem adding some restrictions to the coercion application rules.

5.1.2 Implementations

Two rather similar implementations of coercive subtyping have been made by Saibi [84]

for Coq and by Bailey [7, 8] for Lego. The first drift from the theoretical treatment

of Luo and Soloviev [59] is that they implement coercive subtyping in a specific

type theory and not as a generic abbreviation mechanism in a logical framework.

They also adopt stronger limitations than Barthe [11] and Chen [23] since they

perform only syntactic (by name) matching of types. The main reason for such a

limitation is that searching a possibly large graph of coercions using convertibility is

too expensive to be adopted in practice. In particular they identify the source and

target of coercion with the head constant (usually a type constructor) name, thus

the coercion graph is searched by means of a cheap label comparison. As spotted

by Luo [57] coherence checking is unfeasible in practice, and Saibi circumvents the

problem disallowing the declaration of multiple paths between the same labels. Saibi

make additional restrictions on the types coercions can have called uniform inheri-

tance. Let C and D be type constructors with respectively n and m parameters. A

coercion from C to D can be declared if it has type of the form

∀ x1: A1.. . .xn: An. c : C x1. . .xn. D u1. . .um
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This allows him to easily infer all the parameters xi just looking at the actual type

C v1 · · ·vn of the coerced term. Bailey allows C not to be uniform on its arguments

and uses the type inference mechanism of Lego to try to infer the parameters of c

(that always succeeds if the type of the coercion respects the uniform inheritance

condition).

Both Saibi and Bailey identify three different kind of coercions, the most intuitive

one is between types, one from types to sorts and another one from types to the

product space. The rules they use to insert coercions in [84, 8] are very similar.

Rules as formulated by Saibi follow. ∆ is a graph of coercions, Γ a regular context

of variables declarations. The⇒ symbol is used to represent the refinement function.

si ranges over allowed sorts and ∆D(t : C) is the coercion lookup from C to D where

D may be Π or SORT to look for coercions to dependent products or sorts. R is the

function calculating the new sort of a product (note that in CIC all quantifications

are allowed and the PTS is functional thus in the general case R return the second

input, unless both inputs are Typei/j where Typemax(i,j) is returned). The first rule

defines the relation
s⇒ that ensures that the right hand side is a sort.

BS-sort
∆,Γ ` A⇒ A′ : T

∆,Γ ` A s⇒ ∆SORT(A′ : T ) : Type

BS-prod
∆,Γ ` T s⇒ T ′ : s1 ∆,Γ;x : T ′ ` U s⇒ U ′ : s2

∆,Γ ` Πx : T.U ⇒ Πx : T ′.U ′ : R(s1, s2)

BS-lam

∆,Γ ` T s⇒ T ′ : s ∆,Γ;x : T ′ ` t⇒ t′ : U ∆,Γ ` Πx : T ′.U
s⇒ V : s

∆,Γ ` λx : T.t⇒ λx : T ′.t′ : V

BS-app

∆,Γ ` t⇒ t′ : T ∆,Γ ` u⇒ u′ : U ∆Π(t′ : T ) = Πx : A.B

∆,Γ ` (t u)⇒ (∆Π(t′ : T ) ∆A(u′ : U)) : B[∆A(u′ : U)/x]

The coercion lookup function ∆D(t : C) returns the term t unchanged if D and

C are convertible, while returns c p1· · ·pnt where pi is a parameter of the coercion c.
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Note that the uniform inheritance condition enforced in the implementation by Saibi

gives a complete algorithm to obtain each pi, while the implementation of Bailey

uses the refinement procedure to infer them.

Callaghan [20] implements in the experimental interactive theorem prover Plas-

tic [21] a more flexible flavour of coercions, dropping the limitation of syntactic

type matching for coercion search. He drops this requirement to allow a deeper

experimentation of coercions, considering this the main aim of Plastic.

An interesting feature of its implementation is the computation of an approxi-

mation of the transitive closure of the coercion graph. Consider the case in which c

is declared as a coercion. The following set of coercions (when they are well typed)

is added to ∆.

{ci ◦ c ◦ cj|ci ∈ ∆ ∧ cj ∈ ∆} ∪ {c ◦ cj|cj ∈ ∆} ∪ {ci ◦ c|ci ∈ ∆}

In general this algorithm computes only an approximation of the closure of the

graph, that could be infinite. Coercions not generated automatically can always be

declared by hand. The lookup function does not try to generate new coercions on

the fly.

An interesting mechanism to ameliorate this last limitation is a limited form of

transitivity, that allows to declare coercions parametric over coercions like

∀A,A’,B.∀f̄ : A →A’. A×B →A’×B

where ·̄ is used to state that f must be a coercion. In this way he can generate some

coercions on the fly in a lazy fashion.

All these implementations provide a useful tool for formalising structures with

inheritance in a type theory without subtyping. In our experience, at least one

additional feature is needed to effectively formalise structure with inheritance: the

possibility of sharing substructures.

In the next section we describe Pollack’s work on the encoding of mathematical

structures with manifest fields (thus possibly shared) in type theory. He obtains

extremely good results using induction-recursion.
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5.1.3 Encoding mathematical structures

In [74] Pollack shows how to interpret dependently typed records with and without

manifest fields in a simpler type theory having only primitive Σ-types and primitive

Ψ-types. A Σ-type (Σ x:T.P x) is inhabited by heavily typed couples 〈w,p〉T,P where

w is an inhabitant of the type T and p is an inhabitant of (P w). The heavy type

annotation is required for type inference. A Ψ-type (Ψx:T.p) is inhabited by heavily

typed singletons 〈w〉T,P,p where w is an inhabitant of the type T and p is a function

mapping x of type T to a value of type (P x). The intuitive idea is that 〈w, p[w]〉T,P
and 〈w〉T,P,λx:T.p[x] should represent the same couple, where in the first case the value

of the second component is opaque, while in the second case it is made manifest (as

a function of the first component). However, the two representations actually are

different and morally equivalent inhabitants of the two types are not convertible,

against intuition.

We will denote by .1 and .2 the first and second projection of a Σ/Ψ-type.

The syntax “Σ x:T.P x with .2 = t[.1]” can now be understood as syntactic sugar

for “Ψx:T.t[x]”. The illusion is completed by declaring a coercion from Ψx:T.p to

Σ x:T.P x so that 〈w〉T,P,p is automatically mapped to 〈w, p w〉T,P when required.

Most common mathematical structure are records with more than two fields.

Pollack explains that such a structure can be understood as a sequence of left-

associating1 nested heavily typed pairs/singletons. For instance, the record

r ≡〈nat, list nat, @〉R of type R := {C : Type; T := list C; app: T → T → T}, where

the second field is explicit, is represented as

T0≡ΣC : Unit. Type

r0≡〈 (), Type〉Unit, λC:Unit.Type

T1≡Ψy:T0. list y.1

r1≡〈r0〉T0 , λx:T0.Type1 , λy:T0.list y.1

r ≡〈r1, @〉T1 , λx:T1. x.2→x.2→x.2

1In the same paper he also proposes to represent a record type with a right-associating sequence

of Σ/Φ types, where a Φ type looks like a Ψ type, but makes it first fields manifest. However, in

Sect. 5.2.2 he also argues for the left-associating solution.
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of type Σ x:(Ψy:(Σ C: Unit. Type). list y .1). x.2 → x.2 → x.2.

However, the deep heavy type annotations are actually useless and make the term

extremely large and its type checking inefficient. The interpretation of with also

becomes more complex, since the nested Σ/Ψ types must be recursively traversed

to compute the new type.

In [74], Pollack shows that dependently typed records with uniform field pro-

jections and with can be implemented in a type theory extended with inductive

types and the induction-recursion principle [40]. However, induction-recursion is

not implemented in most proof assistants. In Section 5.3 we propose a solution in a

simpler framework where we only have primitive records (or even simply primitive

telescopes), but no induction recursion.

5.2 Implementation of coercions in Matita

Matita is a relatively small and young system. The type inference subsystem (that

we will call refiner) has always been extremely flexible allowing an uniform treatment

of metavariables (see [80]). The design choices we made when we implemented

coercions have been inspired by the work of Saibi [84], Bailey [7] and Callaghan [20].

We followed the approach of Saibi and Bailey regarding the syntactic match of

coercion types, but completely relaxing all limitations like the uniform inheritance

condition. Moreover we adopted the same approach to the (partial) transitive closure

of the coercions graph that is used in [20]. We also allow multiple incoherent paths

between the same types. This choice allows to better handle parametric inductive

types, that may differ only by parameters and are collapsed to the same node by the

coarse syntactic (by name) comparison. Some examples of coercions allowed thanks

to these relaxed constraints are the following:� �
definition z2nat : ∀ x : Z. x ≥ 0 → nat.

definition l2lnnil : ∀ l : list . length l > 0 → { l : list , l 6= nil}.

definition morphonlist : morph A B → list A → list B.

definition morphontree : morph C D →tree C → tree D.� �
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The former example allows to cast integers to natural number provided a proof

that the integer is grater than zero. It clearly breaks the uniform inheritance con-

dition. The second example uses the same technique to inject an object in a sigma

type letting to be proved, as a side condition, that the object validates the predicate

identifying the sigma type.

The latter two examples are both from the syntactic label morph to the special

class of products, but are clearly incoherent. If C and A are not convertible (or D

and B) then these coercions clearly relates different types, but are usually rejected

by systems not allowing multiple incoherent paths between the same labels. Al-

though it seems reasonable to allow both coercions to be declared, since is A and C

are not convertible, only one of the two coercions can actually be applied. What has

been observed in the every day usage is that the coarse label approximation of types

can lead to multiple results when a search is performed, but the subsequent unifica-

tion step always makes the choice of the coercion to apply deterministic (i.e. only

one coercion application is effectively well typed). Clearly the user can construct

an example in which this does not always happen, but we found no non-artificial

examples that suffers from an arbitrary choice of the inserted coercion.

We may also declare coercions like the following one, that allows to always use a

list disregarding the type of its elements, letting the user to later provide a function

mapping the two types.� �
definition maplist : ∀A,B. ∀ f : A → B. list A → list B.� �

In general this coercion is too weak, since no requirements on f are made. Requiring

f to be a bijection, can make this coercion really handy when working up to type

isomorphisms.

5.2.1 Syntax and notation

Here we give a syntax for CIC terms and the notation we will use to describe the

refinement algorithm. In CIC, proofs and types live in the same syntactic category.

Terms are described in Table 5.2.1, coinductive types/fixpoints are not presented
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t ::= x identifiers

| c constants

| I inductive types

| k inductive constructors

| Prop | Type(j) sorts

| t t application

| λx : t.t λ-abstraction

| let x := t in t local definitions

| Πx : t.t dependent product

| match t in I return t [ case analysis

k1 x1 ⇒ t | . . . | kn xn ⇒ t

]

| letrec fn1(x1 : t) · · · (xkn,1 : t) : t on ln1 := t and . . .

and fnm(x1 : t) · · · (xkn,m : t) : t on lnm := t in fjj recursive definitions

| ? implicit arguments

| ?j[t ; . . . ; t] metavariable occurrence

Table 5.1: CIC terms syntax

since they will play no role in this presentation. We reserve j, l,m, n for integers,

t,M,N for terms, T, S,Q for types (i.e. terms used as types), x, y, z for variables, i

will be used as the index of iterations. I is reserved for inductive types.

In Table 5.2.1 lnm is lesser or equal kn,m and represents the argument of the

recursive definition that is expected to syntactically decrease in every recursive call.

(y1 : t) · · · (ykn,m : t) is a possible empty sequence of variables bound in the body

of the function. As usual, Πx : T1.T2 is abbreviated in T1 → T2 when x is not a

free variable in T2. The inductive type I in the pattern matching constructor is

redundant, since distinct inductive types have distinct constructors; it is given for

the sake of readability. The term introduced with the return keyword will be used

to obtain the return type of the pattern matching. Variables xi are abstracted in
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the right hand side terms of ⇒.

Implicit arguments, written ? are placeholders for missing (untyped) terms and

occur linearly. Metavariable occurrence, represented with ?j[t ; . . . ; t], are missing

typed terms living a specific context and are equipped with a local substitution (that

may be omitted if not interesting). The CIC calculus extended with metavariables

has been studied in [65] and the flavour of metavariables implemented in Matita

is described in [80].

The syntax presented in Table 5.2.1 is extremely similar to the concrete syntax

of Matita, that simply relaxes all typing informations (making them optional and

replacing them with implicit arguments, see Section 4.2). The return type of the

pattern matching construct can be omitted as well. Notational facilities, although

supported by Matita (see [72]) are not considered here.

5.2.2 Preliminary definitions

To describe the refinement algorithm we need to define some structures and oper-

ations over them. Following the naming convention of [80, 89] we define what a

problem P is.

Definition 5.1 (Proof problem) A proof problem P is a finite list of typing

judgement of the form Γ?j `?j : T?j where for each metavariable that occurs free

in P there exists a corresponding sequent in P.

A proof problem, as well as a CIC term, can refer to constants, that usually live

in an environment that decorates every typing rule. In the following presentation

we consider a global well formed environment E where all constants and inductive

types are associated with their types. No typing rules will modify this environment.

The implementation of this environment in Matita is in fact lazy, and constants

are added only when it is strictly necessary. Related theory is studied in [24, 80],

and plays no role in this presentation. We thus omit the environment E almost

everywhere.
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Proof problems do not only declare missing proofs (i.e. not all T?j have sort

Prop) but also missing terms. For example the coercion maplist shown before, when

applied, will generate a proof problem that can be closed by providing an inhabitant

of A → B that has sort Type.

Definition 5.2 (Metavariables of term/context (M)) Given a term t, M(t)

is the set of metavariables occurring in t. Given a context Γ, M(Γ) is the set of

metavariables occurring in Γ.

The function M is at the base of the order relation defined between metavari-

ables.

Definition 5.3 (Metavariables order relation (�P )) Let P be a proof prob-

lem. Let <P be the relation defined as: ?n1 <?n2 iff ?n1 ∈M(Γ?n2)∪M(T?n2). Let

�P be the transitive closure of <P .

Definition 5.4 (Valid proof problem) A proof problem P is a valid proof prob-

lem if and only if �P is a strict partial order (or, equivalently, if and only if �P is

an irreflexive relation).

The intuition behind�P is that the smallest ?j (or one of them since there may

be more than one) does not depend on any other metavariable (e.g. M(Γ?j) = ∅
and M(T?j) = ∅ where Γ?j `?j : T?j ∈ P). Thus instantiating every minimal ?j

with a metavariable free term will give a new P in which there is at least one ?j not

depending on any other metavariable (or P is empty).

Since we do not consider environments E in our typing rule the definition of

well-formed proof problem is slightly simpler then the one given in [80].

Definition 5.5 (Well formed proof problem) A valid proof problem P is a well-

formed proof problem if an only if for all (Γ?j `?j : T?j) ∈ P we have P ,Γ?j ` T?j : s

and s is a sort. The judgementWF(P) states that the valid proof problem P is well-

formed.
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The typing judgement used in the previous definition is an extension of the

regular typing judgement.

Definition 5.6 (Typing judgement) Given a term t not containing implicit ar-

guments and given a well formed proof problem P that contains all metavariables in

t we write

P ,Γ ` t : T

to state that t is well typed. This typing judgement is an extension of the standard

one for CIC where:

• Substitution is extended with the following rule

?i[t1, . . . , tn]σ =?i[t1σ, . . . , tnσ]

• Convertibility relation is enlarged allowing reduction to be performed inside

metavariables explicit substitution.

Γ ` ti ↓ t′i i ∈ {1 . . . n}
Γ `?j[t1 ; . . . ; tn] ↓?j[t′1 ; . . . ; t′n]

• The following typing rules are added

y1 : T1 ; . . . ; yn : Tn `?j : T?j ∈ P
Γ ` ti : Ti[y1/t1 ; . . . ; yi−1/ti−1] i ∈ {1 . . . n}

Γ ` WF(?j, [t1, . . . , tn])

(y1 : T1 ; . . . ; yn : Tn `?j : T?j) ∈ P Γ ` WF(?j, [t1, . . . , tn])

Γ `?j[t1, . . . , tn] : T?j[y1/t1 ; . . . ; yn/tn]

We used WF(?j, [t1, . . . , tn]) to state that a metavariable occurrence is well

formed in Γ.

Definition 5.7 ((Valid) Instantiation) An instantiation ι is a function from metavari-

ables to terms. It is valid if Dom(ι) ∩M(ι(Dom(ι)) = ∅
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The instantiation operation is recursively performed over a term. It behaves as

the identity in every case except when a metavariable belonging to its domain is

encountered.

ι(?j[t1; . . . ; tn]) = ι(?j)[ι(t1); . . . ; ι(tn)]

Metavariable instantiations seen as functions is an elegant theoretical approach,

but using closure to represent substitutions is not efficient. Interactive theorem

prover usually implement a mechanism to pack substitutions together, allowing to

postpone their application as much as possible.

Definition 5.8 (Metavariable substitution environment) A metavariable sub-

stitution environment Σ (called simply substitution when non ambiguous) is a list of

couples metavariable-term.

Σ = [?1 := t1; . . . ; ?n := tn]

The operation Σ(t) is defined as ιn(. . . ι1(t) . . .) where ιi is the function mapping

?i to ti. It is extended to contexts Γ in the following way

Σ(x1 : T1 ; . . . ; xn : Tn) = x1 : Σ(T1) ; . . . ; xn : Σ(Tn)

Valid substitutions do apply also to well formed proof problems. Consider that what

the user sees of an ongoing proof is exactly the proof problem, thus all instantiations

collected so far have to be made explicit.

Σ(Γ?j `?j : T?j) = Σ(Γ) `?j : Σ(T?j) (for each ?j ∈ P)

What in Section 4.2 and [2] is called partially specified term falls in the syntactic

category of Table 5.2.1.

Definition 5.9 (Raw term) A raw term is a term possibly containing implicit

arguments.
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Raw terms are a subclass of partially specified terms (using the terminology

introduced in Section 4.2. Raw terms are incomplete, potentially ill-typed. They

are the result of the user input, where all the syntax allowed to be optional by

the concrete syntax and omitted (like types) is replaced with implicit arguments.

Notational conventions have already been processed, thus raw terms completely fall

in the syntactic category described in Table 5.2.1.

The concrete syntax of Matita allows to type in a metavariable and its ex-

plicit substitution directly, but is mainly used for debugging purposes. We can thus

consider raw terms t where M(t) = ∅.

Definition 5.10 (Refined term) A refined term is a term t together with a, pos-

sibly empty, proof problem P and a substitution Σ such that it is well typed

Σ(P), [] ` Σ(t) : Σ(T )

.

Refined terms are the output of the refinement process and do not contain im-

plicits (e.g. all implicits have been turned into metavariables typed in P).

Definition 5.11 (Refiner) The refiner is an algorithm taking in input a raw term

and giving in output a refined term or raising an error. The refinement process is

identified using the following notation

P , Σ, Γ ` t R
; t′ : T, P ′, Σ′

where t′ is the result of the refinement process and is well typed of type T in P ′, Σ′

and Γ:

Σ′(P), Σ′(Γ) ` Σ′(t′) : Σ′(T )

Since refinement deals with terms containing flexible parts, conversion tests are

replaced with unification tests. In a higher order and dependently typed calculus like

CIC unification is in the general case undecidable. What is usually implemented in

interactive theorem provers is an essentially fist order unification algorithm, handling
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only some simple higher order cases in an ad-hoc manner. A notable exception is

Isabelle [54] that performs full second order unification using Huet’s algorithm. The

unification algorithm implemented in Matita is not explained here in details, the

interested reader can find more details in [80].

Definition 5.12 (Unification) The process of unifying two terms is denoted with

P , Σ, Γ ` N ?≡M
U
; P ′, Σ′

Unification performs only metavariables instantiations, and the resulting Σ′ is

such that Σ′(N) is convertible with Σ′(M) in context Σ′(Γ) and proof problem

Σ′(P ′). Coercions come to play when unification fails (i.e. an explicit cast is needed).

The substitution application operation is seldom used explicitly, since all judgement

take in input and give back a substitution. Another operation used in the operational

presentation of rules in [80] is whd, performing weak head βζι-reduction. The syntax

presented in Table 5.2.1 does not include local definitions, thus ζ-reduction can

not be performed. On the contrary ι-reduction, concerning fixpoint and pattern

matching, is present and will be used. In this presentation head βι-reduction and

substitution application are considered implicitly used when needed. For example

when an unification of a type with a dependent product is performed, βι-reduction

as well as metavariable instantiation is performed if needed.

Definition 5.13 (Explicit (optional) cast) The explicit cast of a term M of type

T1 to the type T2 is denoted by the following notation

P , Σ, Γ `M : T1
?≡ T2

C
; M ′, P ′, Σ′

Explicit casts can modify a term inserting coercions when needed. The graph of

coercions is considered part of a global state since refinement rules do not modify

it. We will refer to it with ∆.

Definition 5.14 (Coercion lookup) Coercion lookup is denoted as follows

P , Γ ` T1 � T2
∆
; k, c ?1 . . . ?k . . . ?n, P ′
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Where T1 and T2 are CIC terms (types actually) but the lookup considers only the

head constant of them. T2 can also be FunClass and SortClass, two pseudo-terms

used to represents the type of dependent products and the type of sorts.

The lookup operation gives back the coercion constant c as well as a possibly

enriched proof problem P ′. The number of metavariables generated to which c is

applied to are defined when the coercion is declared. The position of the casted

argument is user defined as well, and is returned by the lookup operation. The

coerced term has then to be unified with ?k. Since we allow coercion arguments not

to be inferred automatically (like proof obligations) their type may depend on the

coerced term (e.g. the proof that the coerced integer is greater than zero has an

instance of the coerced integer in its type, and the corresponding metavariable will

have index greater then k).

5.2.3 Refinement algorithm

The, essentially first order, unification algorithm presented in [80] is extended with

the two following rules that are applied when the second term is the pseudo-term

FunClass or SortClass.

Unif-with-FunClass

P , Σ, Γ ` Πx :?.?
R
; Πx :?j.?k : s, P ′, Σ′

P ′, Σ′, Γ ` T ?≡ Πx :?j.?k
U
; P ′′, Σ′′

P , Σ, Γ ` T ?≡ FunClass
U
; P ′′, Σ′′

Unif-with-SortClass

P , Σ, Γ ` T ?≡ Type(j)
U
; P ′, Σ′ (j fresh) ∨

P , Σ, Γ ` T ?≡ Prop
U
; P ′, Σ′

P , Σ, Γ ` T ?≡ SortClass
U
; P ′, Σ′

The rules for the explicit (optional) casts insertions are the following two. In the

former one no coercion is inserted, since unification between T1 and T2 is successful.
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Coerce-to-something-ok

P , Σ, Γ ` T1
?≡ T2

U
; P ′, Σ′

P , Σ, Γ `M : T1
?≡ T2

C
; M, P ′, Σ′

In the following rule the coercion c is applied to its argument M unifying it with

?k. The returned term M ′ can still contains metavariables: ?1 . . .?k− 1 may appear

in the type of ?k, thus unifying ?k with M may instantiate them (since in the case

of dependent types the unification of the types is probably a necessary condition for

the unification of the two terms, as claimed by Strecker [89]), but ?k + 1 . . .?n can

not appear in the type of ?1 . . .?k, thus they will be probably left in P . Relaxing of

the uniform inheritance condition allows to implement subset coercions.

Coerce-to-something-ko

P , Σ, Γ ` T1 6
?≡ T2

P , Γ ` T1 � T2
∆
; k, c ?1 . . . ?k . . . ?n, P ′

P ′, Σ, Γ `?k
?≡M

U
; P ′′, Σ′

P ′′, Σ′, Γ ` c ?1 . . . ?k . . . ?n
R
; M ′ : T ′2, P ′′′, Σ′′

P ′′′, Σ′′, Γ ` T2
?≡ T ′2

U
; P ′′′′, Σ′′′

P , Σ, Γ `M : T1
?≡ T2

C
; M ′, P ′′′′, Σ′′′

The part of the refinement process that mostly interacts with coercions is the

rule for application. The first rule we give is used when the type of the head of

an application is completely flexible. This happens frequently during the disam-

biguation process of Matita, that begins giving a completely flexible type to every

constant appearing in the term and progressively instantiates them (see [82]).

We consider n-ary applications, thus a list of arguments M1 . . .Mn is processed

at once. This choice is also a novelty w.r.t. [80] and is closer to the actual imple-

mentation of the refiner in Matita.
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Refine-appl-flexible

P , Σ, Γ ` N R
; N ′ : ?j, P1, Σ1

P i, Σi, Γ `Mi
R
; M ′

i : Ti, P i+1, Σi+1 i ∈ {1 . . . n}
P ′′ = Pn+1 ∧ Γ;x1 : T1; . . . ;xn : Tn `?l : Type ∧ Γ;x1 : T1; . . . ;xn : Tn `?k : ?l;

P ′′, Σn+1, Γ `?j
?≡ Πx1 : T1. . . .Πxn : Tn.?k

U
; P ′′′, Σ′′′

P , Σ, Γ ` N M1 . . . Mn
R
; N ′ M ′

1 . . . M ′
n : ?k[x1/M ′

1; . . . ;xn/M ′
n], P ′′′, Σ′′′

The line building P ′′ could be replaced by

Pn+1, Σn+1, Γ ` Πx1 : T1. . . .Πxn : Tn.?
R
; Q : T, P ′′, Σ′′

and then ?j could be unified with Q. We did not adopted that solutions since

refining again the whole product type is much more expensive that just generating

two fresh metavariables.

The following two rules are used when the head of the application has a type

(possibly wrong).

Refine-appl-base

P , Σ, Γ ` N R
; N ′ : Πx1 : T1. . . .Πxk : Tk.T, P1, Σ1

P i, Σi, Γ `Mi
R
; M ′

i : T ′i , P ′i, Σ′i

P ′i, Σ′i, Γ `M ′
i : T ′i

?≡ Ti
C
; M ′′

i , P i+1, Σi+1

 i ∈ {1 . . . n}

σ = [x1/M
′′
1 ; . . . ;xn/M

′′
n ]

T ′ = Πxn+1 : Tn+1σ. . . . .Πxk : Tkσ.Tσ

P , Σ, Γ ` N M1 . . . Mn
R
; N ′ M ′′

1 . . . M ′′
n : T ′, Pn+1, Σn+1

(k >= n)

Note that the first line hides a possible weak head normalisation phase to check

if the type of N ′ has the shape of a product.



140 Chapter 5. Coercive subtyping in Matita

Refine-appl-rec

P , Σ, Γ ` N R
; N ′ : Πx1 : T1. . . .Πxk : Tk.T, P1, Σ1

P i, Σi, Γ `Mi
R
; M ′

i : T ′i , P ′i, Σ′i

P ′i, Σ′i, Γ `M ′
i : T ′i

?≡ Ti
C
; M ′′

i , P i+1, Σi+1

 i ∈ {1 . . . k}

T ′ = T [x1/M
′′
1 ; . . . ;xk/M

′′
k ]

Pk+1, Σk+1, Γ ` N ′ M ′′
1 . . . M ′′

k : T ′
?≡ FunClass

C
; N ′′, P ′, Σ′

P ′, Σ′, Γ ` N ′′ Mk+1 . . . Mn
R
; N ′′′ : T ′′, P ′′, Σ′′

P , Σ, Γ ` N M1 . . . Mn
R
; N ′′′ : T ′′′, P ′′, Σ′′

(k < n)

Note that a cast is always attempted, but the rule Coerce-to-something-ko

inserts a coercion only if needed.

Next two rules insert coercions to adjust the type of abstractions, in case they

are not types but terms (and thus their sort is not a sort but a type).

Refine-prod

P , Σ, Γ ` T1
R
; T ′1 : s1, P ′, Σ′

P ′, Σ′, Γ ` T ′1 : s1
?≡ SortClass

C
; T ′′1 , P ′′, Σ′′

P ′′, Σ′′, Γ;x : T ′′1 ` T2
R
; T ′2 : s2, P ′′′, Σ′′′

P ′′′, Σ′′′, Γ;x : T ′′1 ` T ′2 : s2
?≡ SortClass

C
; T ′′2 , P ′′′′, Σ′′′′

s3 = Obtained using the PTS rule on the type of T ′′1 and the type of T ′′2

P , Σ, Γ ` Πx : T1.T2
R
; Πx : T ′′1 .T

′′
2 : s3, P ′′′′, Σ′′′′

Refine-lambda

P , Σ, Γ ` T1
R
; T ′1 : s, P ′, Σ′

P ′, Σ′, Γ ` T ′1 : s
?≡ SortClass

C
; T ′′1 , P ′′, Σ′′

P ′′, Σ′′, Γ;x : T ′′1 `M
R
; M ′ : T, P ′′′, Σ′′′

P , Σ, Γ ` λx : T1.M
R
; λx : T ′′1 .M

′ : Πx : T ′′1 .T, P ′′′, Σ′′′

The following rules are stated for completeness, but play no role in the process

of inserting coercions. The fix point and pattern matching cases will be used, and

extended, in Section 5.4.
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Refine-var
(x : T ) ∈ Γ

P , Σ, Γ ` x R
; x : T, P , Σ

The following rule is expressed in the case of a constant c but is exactly the same

if, instead of c, an inductive type constructor k is used.

Refine-constant/constructor

(c : T ) ∈ E
P , Σ, Γ ` c R

; c : T, P , Σ

Inductive type declarations are stored in the environment E together with the

number of family parameters (called l) and the number of parameters (called r).

The arity of the inductive type is thus l+ r. The environment lookup operation for

inductive types I is thus:

l, r, (I : Πx1 : F1. . . .Πxl : Fl.Πxl+1 : Pl+1. . . .Πxl+r : Pl+1.s) ∈ E

Refining implicit arguments involves the generation of metavariables. The local

substitution attached to each metavariable occurrence is generated here and depends

on the context under which the implicit argument is refined. We thus define the

following recursive function that generates a list of terms (actually a list of variables,

the identity local substitution) taking in input a context.

ρ(Γ) =

 [] if Γ = []

x :: ρ(Γ′) if Γ = x : T ; Γ′

Refine-implicit

P ′ = P ∧ Γ `?lρ(Γ) : Type ∧ Γ `?kρ(Γ) : ?lρ(Γ) ∧ Γ `?jρ(Γ) : ?kρ(Γ)

P , Σ, Γ `?
R
; ?j : ?k, P ′, Σ

The following rule is used to refine the object of a pattern matching application.

It returns not only the refined term but some additional information regarding its

inductive type.
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Refine-case-step-indtype

l, r, (I : Πx1 : F1. . . .Πxl : Fl.Πxl+1 : Pl+1. . . .Πxl+r : Pl+r.s) ∈ E
P , Σ, Γ ` t R

; t′ : T, P ′, Σ′

P ′, Σ′, Γ ` I
l︷ ︸︸ ︷

? . . . ?

r︷ ︸︸ ︷
? . . . ?

R
; I ?u1 . . . ?ul+r : s, P ′′, Σ′′

P ′′, Σ′′, Γ ` I ?u1 . . . ?ul+r
?≡ T

U
; P ′′′, Σ′′′

P ′′′, Σ′′′, Γ;x1 :?v1; . . . ;xi−1 :?vi−1 `?ui :?vi ∈ P ′′′ i ∈ {1 . . . l + r}

P , Σ, Γ ` t
REI
; t′, l, r, u, v,P ′′′,Σ′′′

The last line of the previous rule makes explicit that ?vi types ?ui. Note that

the sort of the inductive type and the sort of I ?u1 . . . ?ul+r are forced to be the

same. In case they are both Type they may be distinct universes but having the

same constraints with the types Fi and ?vi respectively.

The next rule is used to refine the typing function associated with each pattern

matching construct.

Refine-case-step-typef

P , Σ, Γ ` T R
; T ′ : A, P ′, Σ′

B = Πxl+1 :?vl+1. . . . .Πxl+r :?vl+r.Πx : I ?u1 . . . ?ul xl+1 . . . xl+r.?

P ′, Σ′, Γ ` B R
; B′ : Q, P ′′, Σ′′

P ′′, Σ′′, Γ ` A ?≡ B′
U
; P ′′′, Σ′′′

P , Σ, Γ ` T RI,l,ru,v
; T ′,P ′′′,Σ′′′

The following rule is used to infer the terms R that appear as parameters of

the inductive type I if inhabited by the constructor ki when applies to the fam-

ily parameters ?u1 . . .?ul and to free metavariable representing the p constructor

parameters.

Refine-case-constructor

P , Σ, Γ ` ki
R
; ki : Πx1 : F1. . . . .Πxl : Fl.Πy1 : T1. . . . .Πyp : Tp.I x1 . . . xl Q1 . . . Qr, P , Σ

P , Σ, Γ ` ki ?u1 . . .?ul

p︷ ︸︸ ︷
? . . .?

R
; ki ?u1 . . .?ul ?w1 . . .?wp : I ?u1 . . .?ulR1 . . . Rr, P ′, Σ′

P , Σ, Γ ` ki
RIu,p
; w, R, P ′, Σ′
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The rules Refine-case-step-indtype, Refine-case-step-typef and Refine-

case-constructor are used only by the Refine-case rule.

Refine-case

P , Σ, Γ ` t
REI
; t′, l, r, u, v,P1,Σ1 P1, Σ1, Γ ` T RI,l,ru,v

; T ′, P2
1, Σ2

1

P2
i , Σ2

i , Γ ` ki
RIu,p
; w, R, P3

i , Σ3
i

P3
i , Σ3

i , Γ ` ti ?w1 . . .?wpi
R
; t′i : Ti, P4

i , Σ4
i

P4
i , Σ4

i , Γ ` T ′R1 . . . Rr (ki ?u1 . . .?ul ?w1 . . .?wpi)
?≡ Ti

U
; P2

i+1, Σ2
i+1


i ∈

{1 . . . n}

M = match t′ in I return T ′ [ k1 x11 . . . xp1 ⇒ t′1 | . . . | kn x1n . . . xpn ⇒ t′n ]

P , Σ, Γ `


match t in I return T

[k1 x11 . . . xp1 ⇒ t1 | . . .
|kn x1n . . . xpn ⇒ tn]

 R
;M: T ′ ?ul+1 . . .?ul+r t′, P2

n+1, Σ2
n+1

Recursive definitions are processed with the following rule.

Refine-letrec

P1 = P Σ1 = Σ

P i, Σi, Γ ` Πxi,1 : Ti,1. . . .Πxi,pi : Ti,pi .Ti,pi+1
R
; Ti : si, P i+1, Σi+1 i ∈ {1 . . . n}

P ′1 = Pn+1 Σ′1 = Σn+1

P ′i, Σ′i, Γ; f1 : T1; . . . ; fn : Tn ` ti
R
; t′i : T ′i , P ′′i , Σ′′i

P ′′i , Σ′′i , Γ ` Ti
?≡ T ′i

U
; P ′i+1, Σ′i+1

 i ∈ {1 . . . n}

P1, Σ1, Γ `

 letrec f1(x1,1 :T1,1) . . . (x1,p1 :T1,p1) :T1,p1+1 on l1 := t1 and . . .

and fn(xn,1 :Tn,1) . . . (xn,pn :Tn,pn) :Tn on ln := tn in fj

 R
; letrec f1(x1,1 :T ′1,1) . . . (x1,p1 :T ′1,p1) :T ′1,p1+1 on l1 := t′1 and . . .

and fn(xn,1 :T ′n,1) . . . (xn,pn :T ′n,pn) :T ′n on ln := t′n in fj

 : T ′j , P ′i+1, Σ′i+1

Note that the types of the functions fi live in context Γ while their bodies live in

Γ; f1 : T1; . . . ; fn : Tn. Although the unification step

P ′′i , Σ′′i , Γ ` Ti
?≡ T ′i

U
; P ′i+1, Σ′i+1

is performed in context Γ, thus the types of the bodies T ′i can not depend on the

functions fi.
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5.2.4 Partial transitive closure

The transitive closure of the coercion graph may lead to an infinite graph. For

this reason many implementations drop that idea, and compute long paths of co-

ercions on the fly. This approach, used by Saibi [84] and Bailey [7] for Coq and

Lego, has been successfully used in the formalisation of the fundamental theorem

of algebra [34]. From the user point of view, since coercions are usually hidden,

having long chain of coercions or just one is exactly the same. Looking at how

the typechecker/refiner of Matita works: having just one coercion is much faster.

The typechecking algorithm of Matita reconstructs the environment (containing

all constants appearing the typechecked term) on the fly [24, 80]. Objects are loaded

when required and some sort of trusting mechanism is usually employed. Objects

previously typechecked and stored on disk are not typed again when loaded, they de-

clare their type that has been previously certified. This allows, unless a δ-reduction

step is involved in a conversion test, not to load the constants used by an object in

its proof (or body, if it is a definition).

Our approach, similar to the one used by Callaghan [20], is to compute a partial

transitive closure of the coercions graph. This algorithm can not be complete, but

composite coercions not generated automatically by the system can be manually

added, and an ad-hoc tactic called compose eases this task. The judgement

P , Γ ` T1 � T2
∆
; k, c ?1 . . . ?k . . . ?n, P ′

used in the extended unification rules does not recursively look for a path longer

than one step from T1 to T2. Ideally, if the coercion graph is transitively closed, this

simple search is sufficient. This search is in general faster than the recursive one,

since all paths are precomputed.

This approach, in combination with the choice of allowing multiple paths be-

tween the same types, clearly leads to new problems that arise when typechecking is

performed (since terms are fully specified, with no missing information like in [11]).

For example, consider the coherent coercion graph of Figure 5.1, where Φ = φ1 ◦ φ2

and Ψ = ψ1 ◦ ψ2.
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Figure 5.1: Simple (coherent) coercion graph

Unification may face the following problem:

P , Σ, Γ ` Φ ?j
?≡ φ1 ?k

U
; P ′, Σ′

Since both Φ and φ1 are rigid term in weak head normal form unification can fail,

not performing a possibly expensive δ-expansion. The unification algorithm usually

knows nothing about coercions, thus unfolding Φ can not be considered an hint.

Another example is

P , Σ, Γ ` φ1 ?j
?≡ ψ1 ?k

U
; P ′, Σ′

Both φ1 and ψ1 are rigid terms already in weak head normal form. Again unification

fails, since it is not aware of the coherence property of the coercion graph. We give a

better explanation of these problems in Section 5.3.4 and we propose an extension to

the unification algorithm that has been implemented and effectively used in Matita

to solve these problems.

Generation of composite coercions

Following Callaghan’s proposal, every time a coercion c is declared by the user we

extend the coercion graph ∆ adding the following, informally defined, set:

{ci ◦ c ◦ cj|ci ∈ ∆ ∧ cj ∈ ∆} ∪ {c ◦ cj|cj ∈ ∆} ∪ {ci ◦ c|ci ∈ ∆}

Clearly not all ci and cj in ∆ are good candidates for a composition with c. A

coarse filtering can be done looking at the source and target types (actually their
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label approximation). We try to generate all composite coercions that match that

criteria, except the ones that have as source and target the same non parametric

type. For example, when a coercion from natural numbers to integers is declared

together with a (subset) coercion from integers to natural numbers we never generate

a composite coercion from and to natural numbers. In case this coercion makes sense

the user can declare it by hand, but in our experience this filtering policy drops only

coercions that make little sense. The description of this process for generating

composite coercions is a novelty to the author’s knowledge.

Let coercions c and d be defined as follows:

∅, [] ` S xs1 . . . xsm � Q xQ1 . . . xQn
∆
; kc, c ?c1 . . . ?co , P

∅, [] ` Q yQ1 . . . yQn � T xT1 . . . xTp
∆
; kd, d ?d1 . . . ?dq , P ′

To obtain the composite coercions c ◦ d the following refinement is performed.

∅, [], [] `
kd+o︷ ︸︸ ︷

λx1 : ?. . . . λxv : ?. d

kd︷ ︸︸ ︷
? . . . ? (c

o︷ ︸︸ ︷
? . . . ?)

R
;

λx1 : ?1. . . . λxv : ?v.d ?(v + 1) . . . ?w (c ?(w + 1) . . . ?(w + o)), P , Σ

Note that v = kd+o, w = 2∗kd+o, P contains more than w+o metavariables since

it also contains their type and Σ may be not empty. For example, consider the two

following simple coercions:� �
definition L2V : ∀ l : List .Vector (length l)

definition V2N : ∀n : nat.Vector n → nat� �
We build nat OF List := L2V◦V2N since the label for the target type of L2V is

Vector, the same for the input type of V2N. The composed coercions, before the

refinement operation, is� �
definition nat OF List := λ l :?.λ n:?. V2N ? (L2V ?)� �

Some heuristic is used to guess the names in the lambda spine such that they

are possibly similar to the ones used in the two coercions types.

This term is refined obtaining the following term (where the substitution Σ has

been applied).
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� �
definition nat OF List :=

λ l :?4[]. λ n:?7[ l ]. V2N (len ?13[l ; n ; A]) (L2V ?13[l ; n ; A])� �
Note that Σ instantiated the first argument of V2N with (length ?13). The result-

ing proof problem P , substituted with Σ follows. Note that metavariables appearing

as types of the abstracted variables have no constraints at all and the refiner just

created a pile of metavariables to type them. At the top of that pile there is a fresh

universe Type.� �
` ?4: ?3[]

` ?3: ?2[]

` ?2: Type

l : ?4[] ` ?7: ?6[l]

l : ?4[] ` ?6: ?5[]

` ?5: Type

` ?13: List� �
We now build a substitution for the metavariables that appear in the body of

the composed coercion and their types to the initial segment of the λ spine. We use

the order relation �P to topologically sort them and decide which has to be bound

to the first abstraction and so on.

skip lambdas(n, t) =

 skip lambdas(n+ 1, b) if t = λx : T.b

n, t otherwise

In Matita variables are represented with De Bruijn indexes, thus the function

rel(j) is the name of the variable bound at distance j.

mksubs(j, P) =

 [] if P is empty

?k := rel(j) :: mksubs(j − 1, P ′) if P = Γ `?k : T?k :: P

Thus the complete algorithm to create the substitution for the term t living

in P and Σ is the following pseudo-code (where filter is the function that filters
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a proof problem according to a predicate and M is the function that collects the

metavariables occurring in a term given in Definition 5.2).

let n, t = skip lambdas(Σ(t)) in

let P ′ = filter(P , λ(Γ `?j : T ).j ∈M(t)) in

mksubst(n, topological sort(P ′, �P))

In our example only ?13 appears in the body of the composed coercion and its

type is closed, thus ?13 will be bound to the first abstraction l.

We then refine again the term and we prune unused lambdas obtaining the

following term:� �
nat OF List : List → nat := λ l : List .V2N (length l) (L2V l)� �

We now need to calculate the k value for nat OF Vector. It represent the abstrac-

tion that bounds the input of the newly generated coercion. We have to look at the

parameters of the inner coercion and find to which lambda the parameter occupying

the k position (of that coercion) is bound. In our example k is trivially one.

This procedure is not complete since the refinement process is not complete itself

depending on higher order unification. Composing total coercions works pretty well

according to our experience, what still needs to be tuned is the composition of

subset coercions. An heuristic to avoid polluting the coercion graph is to never

automatically compose two subset coercions. This implementation of coercions is

currently used in the ongoing formalisation of the Lebesgue’s dominated convergence

theorem, a part of the D.A.M.A.2 project.

5.3 Implementing mathematical structures

It is well known that formalising mathematical concepts in type theory is not

straightforward, and one of the most used metrics to describe this difficulty is the

gap (in lines of text) between the pen&paper proof, and the formalised version. A

2Dimostrazione Assistita per la Matematica e l’Apprendimento (D.A.M.A.).

http://dama.cs.unibo.it/

http://dama.cs.unibo.it/
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motivation for that may be that many intuitive concepts widely used in mathe-

matics, like graphs for example, have no simple and handy representation (see for

example the complex hypermap construction used to describe planar maps in the

four colour theorem [44]). On the contrary, some widely studied fields of mathemat-

ics do have a precise and formal description of the objects they study. The most

well known one is algebra, where a rigorous hierarchy of structures is defined and

investigated. One may expect that formalising algebra in an interactive theorem

prover should be smooth, and that the so called De Bruijn factor should be not so

high for that particular subject.

Many papers in the literature [34] give evidence that this is not the case. In

this paper we analyse some of the problems that arise in formalising a hierarchy of

algebraic structures and we propose a general mechanism that allows to tighten the

distance between the algebraic hierarchy as is conceived by mathematicians and the

one that can be effectively implemented in type theory.

In particular, we want to be able to formalise the following informal piece of

mathematics3 without making more information explicit, expecting the interactive

theorem prover to understand it as a mathematician would do.

Example 5.1 Let k be an ordered field. An ordered vector space over k is a vector

space V that is also a poset at the same time, such that the following conditions are

satisfied

1. for any u, v, w ∈ V , if u ≤ v then u+ w ≤ v + w,

2. if 0 ≤ u ∈ V and any 0 < λ ∈ k, then 0 ≤ λu.

Here is a property that can be immediately verified: u ≤ v iff λu ≤ λv for any

0 < λ. �

We choose this running example instead of the most common example about

rings[34, 74, 11] because we believe the latter to be a little deceiving. Indeed, a

ring is usually defined as a triple (C,+,∗) such that (C,+) is a group, (C,∗) is a

3PlanetMath, definition of Ordered Vector Space.
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semigroup, and some distributive properties hold. This definition is imprecise or at

least not complete, since it does not list the neutral element and the inverse function

of the group. Its real meaning is just that a ring is an additive group that is also

a multiplicative semigroup (on the same carrier) with some distributive properties.

Indeed, the latter way of defining structures is often adopted also by mathematicians

when the structures become more complex and embed more operations (e.g. vector

spaces, Riesz spaces, integration algebras).

Considering again our running example, we want to formalise it using the fol-

lowing syntax, and we expect the proof assistant to interpret it as expected:� �
record OrderedVectorSpace : Type := {

V:> VectorSpace; (∗ we suppose that V.k is the ordered field ∗)

p:> Poset with p.CApo = V.CAvs;

add le compat: ∀u,v,w:V. u ≤ v → u + w ≤ v + w;

mul le compat: ∀u:V.∀α :k. 0 ≤ u → 0 < α→ 0 ≤ α ∗ u

}.

lemma trivial: ∀R.∀u,v:R. (∀α . 0 < α→ α ∗ u ≤ α ∗ v) → u ≤ v.� �
The first statement declares a record type. A record type is a labelled telescope.

A telescope is just a generalised Σ-type. Inhabitants of a telescope of length n are

heavily typed n-tuples 〈x1, . . ., xn〉T1,...,Tn where xi must have type Tix1. . .xi-1. The

heavy types are necessary for type reconstruction. Inhabitants of a record type with

n fields are just labelled n-tuples 〈x1, . . ., xn〉R where R is a reference to the record

type declaration, which declares once and for all the types of fields. Thus terms

containing inhabitants of records are smaller and require less type-checking time

than their equivalents that use telescopes.

Beware of the differences between our records — which are implemented, at least

as telescopes, in most systems — and dependently typed records “à la Betarte/Ta-

sistro/Pollack” [16, 15, 31]:

1. there is no “dot” constructor to uniformly access by name fields of any record;

however, we suppose that ad-hoc projections are automatically declared by

the system;
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2. there is no structural subtyping relation “à la Betarte/Tasistro” between records;

however, ad-hoc coercions “à la Pollack” can be declared by the user; in partic-

ular, we suppose that when a field is declared using “:>”, the relative projection

is automatically declared as a coercion by the system;

3. there are no manifest fields “à la Pollack”; the with notation is usually under-

stood as syntactic sugar for declaring on-the-fly a new record with a manifest

field; however, having no manifest fields in our logic, we will need a different

explanation for the with type constructor.

When lambda-abstractions and dependent products do not type their variable,

the type of the variable must be inferred by the system during type reconstruction.

Similarly, all mathematical notation (e.g. “∗”) hides the application of one projec-

tion to a record (e.g. “?.∗” where ? is a placeholder for a particular record). The

notation “x:R” can also hide a projection R.CA from R to its carrier.

All projections are monomorphic, in the sense that different structures have

different projections to their carrier. All placeholders in projections must be in-

ferred during type reconstruction. This is not a trivial task: in the expression

“α ∗ u ≤ α ∗ w” both sides of the inequation are applications of the scalar product

of some vector space R (since u and v have been previously assigned the type R.CA);

since their result are compared, the system must deduce that the vector space R

must also be a poset, hence an ordered vector space.

In the rest of this section we address the problem of representing mathematical

structures in a proof assistant which: 1) is based on a type theory with dependent

types, telescopes and a computational version of Leibniz equality; 2) implements

coercive subtyping, accepting multiple coherent paths between type families; 3) im-

plements a restricted form of higher order unification and type reconstruction. Lego,

Coq, Plastic and Matita are all examples of proof assistants based on such theories.

In the next sections we highlight one by one the problems that all these systems

face in understanding the syntax of the previous example, proposing solutions that

require minimal modifications to the implementation.
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5.3.1 Telescopes and computational Leibniz equality

In the following we implement our construction using telescopes and computational

Leibniz equality.

Telescopes can be implemented over non recursive CIC inductive types with a

single constructor, and syntactic sugar for them is supported by Matita.

Computational Leibniz equality is such that a rewriting step may compute under

certain conditions. Rewriting steps in CIC are usually applications of that term:� �
eq rect : ∀A:Type.∀ x:A. ∀P:A →Type.(P x) →∀ y:A. x=y → (P y) :=

λA:Type.λ x:A.λP:A →Type.λ f:P x.λ y:A.λ e:x=y. match e with [ refl ⇒f ]� �
When e is a closed term, since = can only be inhabited by refl , the rewriting step

computes to the rewritten term (f here). It also works for open proofs over types with

a decidable equality. We will benefit from this computational behaviour because of

the conversion rule that can identify a term and its rewritten if the equality proof

is closed.

5.3.2 Weakly manifest telescopes

We drop Σ/Ψ types in favour of primitive records, whose inhabitants do not require

heavy type annotations. However, we are back at the problem of manifest fields:

every time the user declares a record type with n fields, to follow closely the approach

of Pollack the system should declare 2n record types having all possible combinations

of manifest/opaque fields.

To obtain a new solution for manifest fields we exploit the fact that manifest

fields can be declared using with and we also go back to the intuition that records

with and without manifest fields should all have the same representation. That is,

when x ≡3 (x is definitionally equal to 3) and p: P x, the term 〈x, p〉R should be both

an inhabitant of the record R := { n: nat; H: P n} and of the record R with n = 3.

Intuitively, the with notation should only add in the context the new “hypothesis”

x ≡3. However, we want to be able to obtain this effect without extending the type

theory with with and without adding at run time new equations to the convertibility
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check. This is partially achieved by approximating x ≡3 with an hypothesis of type

x = 3 where “=” is Leibniz polymorphic equality.

To summarise, the idea is to represent an inhabitant of R := {n: nat; H: P n} as

a pair 〈x, p〉R and an inhabitant of R with n=3 as a couple 〈c, q〉R,λc:R.c.n=3 of type

Σ c:R. c.n=3. Declaring the first projection of the Σ-type as a coercion, the system

is able to map every element of R with n=3 into an element of R.

However, the illusion is not complete yet: if c is an inhabitant of R with n=3,

c .1. n (that can be written as c.n because .1 is a coercion) is Leibniz-equal to 3

(because of c.2), but is not convertible to 3. This is problematic since terms that were

well-typed in the system presented by Pollack are here rejected. Several concrete

example can already be found in our running example: to type u + w ≤ v + w (in the

declaration of add le compat), the carriers p.CApo and V.CAvs must be convertible,

whereas they are only Leibniz equal. In principle, it would be possible to avoid

the problem by replacing u + w ≤ v + w with [u+w]p.2≤[v+w]p.2 where [ ] is the

constant corresponding to Leibniz elimination, i.e. [x]w has type Q[M] whenever

x has type Q[N] and w has type N=M. However, the insertion of these constants,

even if done automatically with a couple of mutual coercions, makes the terms much

larger and more difficult to reason about.

5.3.3 Manifesting coercions

To overcome the problem, consider c of type R with n=3 and notice that the lack of

conversion can be observed only in c .1. n (which is not definitionally equal to 3) and

in all fields of c.1 that come after n (for instance, the second field has type P c.1.n

in place of P 3). Moreover, the user never needs to write c.1 anywhere, since c.1 is

declared as a coercion. Thus we can try to solve the problem by declaring a different

coercion such that c .1. n is definitionally equal to 3. In our example, the coercion4

is� �
definition knR : ∀m : nat. R with n=m → R :=

4The name of the coercion is knR verbatim, R and n are not indexes.
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λm:nat. λ x:Σc:R.c.n=m. 〈m, [x.1.H]x.2〉R� �
Once knR is declared as a coercion, c.H is interpreted as (knR 3 c).H which has type

P (knR 3 c).n, and that is now definitionally equal to P 3. Note also that (knR 3 c).H

is definitionally equal to [c .1. H]c.2 that is definitionally equal to c .1. H when c.2 is

a closed term of type c .1. n = 3. When the latter holds, c .1. n is also definitionally

equal to 3, and the manifest type information is actually redundant, according to

the initial intuition. The converse holds when the system is proof irrelevant, or,

with minor modifications, when Leibniz equality is stated on a decidable type [53].

Coming back to our running example regarding ordered vector spaces, u + w ≤ v + w

can now be parsed as the well-typed term

u (V.+) w ((kCApo

Poset V.CAvs p).≤) v (V.+) w

Things get a little more complex when with is used to change the value of a

field f1 that occurs in the type of a second field f2 that occurs in the type of a

third field f3. Consider the record type declaration R := { f1: T; f2: P f1; f3: Q f1 f2}

and the expression R with f1= M, interpreted as Σ c:R. c. f1= M. We must find a

coercion from R with f1= M to R declared as follows� �
definition kf1

R : ∀M:T. R with f1 = M → R :=

λM:T. λ x:Σc:R.c.f1=M. 〈M, [c.1.f2]c.2, w〉� �
for some w that inhabit Q M [c.1.f2]c.2 and that must behave as c .1. f3 when c .1. f1≡M.

Observe that c .1. f3 has type Q c.1. f1 c.1.f2, which is definitionally equivalent to

Q c.1. f1 [c .1. f2]reflT c.1.f1 , where refl T c.1.f1 is the canonical proof of c .1. f1= c.1. f1.

Thus, the term w we are looking for is simply [[ c .1. f3]]c.2 which has type Q M [c.1.f2]c.2

where [[ ]] is the constant corresponding to computational dependent elimination for

Leibniz equality:� �
lemma [[ ]]p : Q x (reflA x) →Q y p.

where x : A, y : A, p : x = y, Q : (∀ z. x = z → Type) and [[M]]reflA x ≡ M.� �
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To avoid handling the first field differently from the following, we can always use

[[ ]] in place of [ ] .

The following derived typing and reduction rules show that our encoding of with

behaves as expected.

Phi-Start

` ∅ valid

Phi-Cons

` Φ valid R, l1, . . . , ln free in Φ

Ti : Πl1 : T1. . . . .Πli−1.Ti−1.T ype i ∈ {1, . . . , n}
` Φ, R = 〈l1 : T1, . . . , ln : Tn〉 : Type valid

Form

` Φ valid (R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ Γ, l1 : T1, . . . , li−1 : Ti−1 ` a : Ti
Γ ` R with li = a : Type

Intro

` Φ valid (R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ Γ ` R with li = a : Type

Γ `Mk : Tk M1 . . . Mi−1 a Mi+1 . . . Mk−1 k ∈ {1, . . . , i− 1, i+ 1, . . . , n}
Γ ` 〈〈M1, . . . ,Mi−1, a,Mi+1, . . . ,Mn〉R, reflA a〉R,λr:R.a=a : R with li = a

Coerc

` Φ valid (R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ

Γ ` R with li = a : Type Γ ` c : R with li = a

Γ ` kliR a c : R

Coerc-Red

` Φ valid (R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ

Γ ` kliR a 〈〈M1, . . . ,Mn〉R, w〉R,s � 〈M1, . . . ,Mi−1, a, [[Mi+1]]w, . . . , [[Mn]]w〉R

Proj

` Φ valid (R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ

Γ ` R with li = a : Type Γ ` c : R with li = a

Γ ` (kliR a c).lj : Tj (kR a c).l1 . . . (kR a c).lj−1
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Proj-Red1

` Φ valid (R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ

Γ ` (kliR a 〈〈M1, . . . ,Mn〉R, w〉R,s).lj �Mj

j < i

Proj-Red2
` Φ valid (R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ

Γ ` (kliR a c).li � a

Proj-Red3

` Φ valid (R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ

Γ ` (kliR a 〈〈M1, . . . ,Mn〉R, w〉R,s).lj � [[Mj]]w
i < j

5.3.4 Carrier sharing and unification

Following the ideas from the previous section, we can implement with as syntactic

sugar: R with f = M is parsed as Σ c:R.c. f = M and our special coercion kf
R re-

specting definitional equality is defined from Σ c:R. c. f=M to R. The scope of the

special coercion should be local to the scope of the declaration of a variable of type

R with f=M. When with is used in the declaration of one record field, as in our

running example, the scope of the coercion extends to the following record fields,

and also to the rest of the script.

As our running example shows, one important use of with is in multiple inher-

itance, in order to share multiply imported sub-structures. For instance, a ordered

vector space inherits from a partially ordered set and from a vector space, under the

hypothesis that the two carriers (singleton structures) are shared. Since sub-typing

is implemented by means of coercions, multiple inheritance with sharing induces

multiple coercion paths between nodes in the coercion graph (see Figure 6.1, dotted

lines hide intermediate structures like groups and monoids). When the system needs

to insert a coercion to map an inhabitant of one type to an inhabitant of a super-

type, it must choose one path in the graph. In order to avoid random choices that

lead to unwanted interpretations and to type errors (in systems having dependent

types), coherence of the coercion graph is usually required [58, 11]. The graph is

coherent when the diagram commutes according to βη-conversion. However in the

following we drop η-conversion which is not supported in Matita.
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Figure 5.2: Inheritance graph from the library of Matita

One interesting case of multiple coherent paths in a graph is constituted by co-

herent paths between two nodes and the arcs between them obtained by composition

of the functions forming one path. Indeed, it is not unusual in large formalisation

as CoRN [34] to have very deep inheritance graphs and to need to cast inhabitants

of very deep super-types to the root type. For instance, the expression ∀ x: R should

be understood as ∀ x: k R where k is a coercion from the ordered, archimedean, com-

plete field of real numbers to its carrier. Without composite coercions, the system

needs to introduce a coercion to ordered, archimedean fields, then another one to

ordered fields, another one to fields, and then to rings, and so on, generating a very

large term and slowing down the type-checker.

If coherent DAGs of coercions pose no problem to conversion, they do for uni-

fication, although this aspect has been neglected in the literature. In particular,

consider again our running example, whose coercion graph is shown in Fig. 6.1.

Suppose that the user writes the following (false) statement: ∀ x.-x ≤x where -x is

just syntactic sugar for -1 ∗ x. The statement will be parsed as ∀ x:?1.-1 ?4.∗ x ?5.≤ x

and the type reconstruction engine will produce the following two unification con-

straints: ?1
?≡?4.CAvs (since x is passed to ?4.∗) and ?4.CAvs

?≡?5.CApo (since -1 ∗ x is

passed to ?5.≤). The first constraint is easily solved, “discovering” that x should be

an element of a vector space, or a element of one super-structure of a vector space

(since ?4 can still be instantiated with a coercion applied to an element of a super-

structure). However, the second constraint is problematic since it asks to unify two
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applications (?4.CAvs and ?5.CApo) having different heads. When full higher-order

unification is employed, the two heads (two projections) are unfolded and unification

will eventually find the right unifier. However, unfolding of constants during unifi-

cation is too expensive in real world implementations, and higher order unification

is never implemented in full generality, preferring an incomplete, but deterministic

unification strategy.

Since expansion of constants is not performed during unification, the constraint

to be solved is actually a rigid-rigid pattern with two different heads. To avoid

failure, we must exploit the coherence of the coercion graph. Indeed, since the

arguments of the coercions are metavariables, they can still be instantiated with any

possible path in the graph (applied to a final metavariable representing the structure

the path is applied to). For instance, ?4.CAvs can be instantiated to ?6.p.CAvs where

?6 is a ordered vector space and the vector space ?4 is obtained from ?6 forgetting

the poset structure.

Thus the unification problem is reduced to finding two coherent paths in the

graph ending with CAvs and CApo. A solutions is given by paths ?6.V.CApo and

?6.p.CAvs. Another one by ?7.r.V.CApo and ?7.r.p.CAvs where ?7 is an f-algebra.

Among all solutions the most general one corresponds to the pullback in cate-

gorical terms) of the two coercions, when it exists. In the example, the pullback is

given by V and p. All other solutions (e.g. r .V and r .p) factor through it.

If the pullback does not exist (i.e. there are different solutions admitting anti-

unifiers), the system can just pick one solution randomly, warning the user about the

arbitrary choice. Coercion graphs for algebraic structures usually enjoy the property

that there exists a pullback for every pairs of coercions with the same target.

Finally, note that the Coq system does not handle composite coercions, since

these would lead to multiple paths between the same types. However, long chains of

coercions are somehow problematic for proof extraction. According to private com-

munication, an early experiment in auto-packing chains of coercions was attempted,

but dropped because of the kind of unification problems just explained. After im-

plementing the described procedure for unification up to coherence in Matita, we
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were able to implement coercion packing.

5.3.5 Type reconstruction

Syntactic de-sugaring of with expression for a large hierarchy of mathematical struc-

tures has been made by hand in Matita, proving the feasibility of the approach.

In particular, combining de-sugaring with the unification up to coherence procedure

described in the previous paragraph, we are able to write the first part of our running

example in Matita.

The statement of the trivial lemma, however, is not accepted yet. The type

reconstruction algorithm has been described in Section 5.2.3. Insertion of coercions

interacts badly with open types. Consider, for instance, the following example and

assume a coercion from natural numbers to integers.� �
∀P : int → Prop. ∀Q : nat → Prop. ∀b. P b ∧Q b.� �
Here P b is processed before Q b. The rules Refine-appl-base and Refine-appl-

rec never apply a cast around arguments with a flexible types, since the Coerce-

to-something-ok rule always apply. Then Q b is processed, but now b has type

int, int 6 ?≡ nat and there is no coercion from int to nat. The problem here is that a

coercion was needed around the first occurrence of b but since its type was flexible

Coerce-to-something-ko was not triggered.

To solve the problem, one important step is the realization that rules that insert

coercions and rules that do not are occurrences of the same rule when identities

are considered as coercions. In [22, 23], Chen proposes an unified set of rules that

also employes least upper bounds (LUB) in the coercion graph to compute less

coerced solutions. Chen’s rule for application adapted with metavariables in place

of coercions is the following:

Chen-appl-always-coerce

P , Σ, Γ ` f R
; f ′ : C, P ′, Σ′ P ′′ = P ′, Σ, Γ `?ci : C

LUB→ Πx : A.B

P ′′, Σ′, Γ ` a R
; a′ : A′, P ′′′, Σ′′ P ′′′′ = P ′′′,Γ `?cj : A′ → A

P , Σ, Γ ` f a R
; (?ci f

′) (?cj a
′) : B[(?cj a

′)/x]P ′′′′, Σ′′
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Metavariables marked with �c can only be instantiated with coercions. Adopting

this rule, the problematic example above is accepted since it is understood as:� �
∀P : int → Prop. ∀Q : nat → Prop. ∀b: ?1. (?c2 P) (?c3 b) ∧(?c4 Q) (?c5 b)� �

where ?1 can be instantiated with nat, ?c3 with the coercion from nat to int and all

other ?c metavariables with the identity.

From this example it is clear that Chen’s rule modified with metavariables is able

to type every term generating a large number of constraints that must inefficiently

be solved at the very end looking at the coercion graph.

Note, however, that rule Chen-appl-always-coerce in its full generality is not

required to accept our running example. We believe this not to be a coincidence.

Indeed, most formulae in the algebraic domain are of a particular shape:

1. universal quantifications are either on structure types (e.g. ∀G : Group) or

elements of some structure (e.g. ∀g : G to be understood as ∀g : G.CA);

2. functions either take structures in input (e.g. G × G); or they manipu-

late structure elements whose domain is left implicit (e.g. exponentiation

: M.CA → nat → M.CA for some monoid M). In particular, all opera-

tions in a structure are functions of the second kind.

Under this assumption, rule Chen-appl-always-coerce can be relaxed to our

Refine-appl-*, in which
C
; is replaced with

CLUB
; . Moreover new rules for explic-

itly and implicitly typed universal quantification are added. We will mark metavari-

ables with �s to state that they can be instantiated only with sorts.

The rule Refine-lambda is replaced by the following two rules: the former one

is used only when the type of the abstracted variable is an implicit.

Refine-new-lambda-implicit

P , Σ, Γ `?
R
; ?j : ?sk, P ′, Σ′

P ′, Σ′, Γ;x :?j `M
R
; M ′ : T, P ′′, Σ′′

P , Σ, Γ ` λx :?.M
R
; λx :?j.M ′ : Πx :?j.T, P ′′, Σ′′
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Refine-new-lambda-explicit

P , Σ, Γ ` T1
R
; T ′1 : s, P ′, Σ′

P ′′ = P ′ ∧ Γ `?sk : Type ∧ Γ `?cj : s→?sk

P ′′, Σ′, Γ;x :?ci T
′
1 `M

R
; M ′ : T, P ′′′, Σ′′

P , Σ, Γ ` λx : T1.M
R
; λx :?cj T

′
1.M

′ : Πx :?cj T
′
1.T, P ′′′, Σ′′

The rule Refine-prod is replaced with the following two rules, the former one is

applied only when the type of the quantified variable is an implicit.

Refine-new-prod-implicit

P , Σ, Γ `?
R
; ?j : ?sk, P ′, Σ′

P ′, Σ′, Γ;x :?j ` T
R
; T ′ : s2, P ′′, Σ′′

P ′′, Σ′′, Γ;x :?j ` T ′ : s2
?≡ SortClass

C
; T ′′, P ′′′, Σ′′′

s3 = Obtained using the PTS rule on the type of ?j and the type of T ′′

P , Σ, Γ ` Πx :?.T
R
; Πx :?j.T ′ : s3, P ′′′′, Σ′′′′

Refine-new-prod-explicit

P , Σ, Γ ` T1
R
; T ′1 : s1, P ′, Σ′

P ′′ = P ′ ∧ Γ `?sk : Type ∧ Γ `?cj : s1 →?sk

P ′′, Σ′, Γ;x :?cj T
′
1 ` T2

R
; T ′2 : s2, P ′′′, Σ′′

P ′′′, Σ′′, Γ;x :?cj T
′
1 ` T ′2 : s2

?≡ SortClass
C
; T ′′2 , P ′′′′, Σ′′′

s3 = Obtained using the PTS rule on the type of ?j and the type of T ′′2

P , Σ, Γ ` Πx : T1.T2
R
; Πx :?cj T

′
1.T
′′
2 : s3, P ′′′′, Σ′′′

The rules for application are the original Refine-appl-base and Refine-appl-

rec in which
C
; is replaced with

CLUB
; .

Coerce-to-something-lub

P , Γ ` T1 � T2
∆LUB
; k, c ?1 . . . ?k . . . ?n, P ′

P ′, Σ, Γ `?k
?≡M

U
; P ′′, Σ′

P ′′, Σ′, Γ ` c ?1 . . . ?k . . . ?n
R
; M ′ : T ′2, P ′′′, Σ′′

P ′′′, Σ′′, Γ ` T2
?≡ T ′2

U
; P ′′′′, Σ′′′

P , Σ, Γ `M : T1
?≡ T2

CLUB
; M ′, P ′′′′, Σ′′′
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The auxiliary function
∆LUB
; returns the same informations that

∆
; returns:

an index k, a term c ?1 . . . ?k . . . ?n and a new P such that the type T ′2 is the least

upper bound of all solutions in the coercion graph.

In case we are casting to FunClass (the head of the application) the term T ′2

must be of the form Πx : A.B and among all possible products
∆LUB
; choses the

least upper bound. Note that, according to the restrictions we made, the type of

the head of the application cannot be a flexible term. Thus the computation of the

least upper bound is as in Chen (that actually refers to the work of Aspinall and

Compagnoni [6] for the LUB calculation).

In case we are casting to a type (the arguments of an application)
CLUB
; the term

c ?1 . . . ?(k − 1) must be such that the type Πx : T ′1.Πx : Tk+1. . . .Πx : Tn.T
′
2 is

the least upper bound of the solutions in the coercion graph. The
CLUB
; function is

defined according to the restriction on functions in the algebraic language. Indeed,

by hypothesis we must only consider the following two cases corresponding to the

two kind of functions f in our language, and the argument a:

1. f has type S → T for some structure type S and some type T and a has type

?1 or it has type R for some structure type R. In the first case the LUB is the

identity coercion and ?1 is unified with S. In the second case the LUB is the

coercion from R to S in the coercion graph.

2. f has type ?1.CAR → T and a has type ?2 or it has type ?2.CAS. In both

cases the LUB is the identity coercion and the type of a is unified with ?1.CAR

exploiting the coercion graph as explained in Section 5.3.4.

Finally, as expected, our rules are not complete outside the fragment we choose.

For instance, assume a coercion from natural numbers to integers and consider the

following statement:� �
lemma broken : ∀ f : (∀A : Type. A →A → Prop). f ?j 3 -2 ∧f ?j -2 3.� �
Here the type of f is completely specified, and the rule Refine-new-prod-explicit is

applied. The term f ?j, which is outside our fragment, has type ?j → (?j → Prop)
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and it is passed an argument of type nat the first time and an argument of type int

the second time. No backtracking free algorithm would be able to type this term.

5.3.6 More on the “with” construct

The with construct presented in Section 5.3.3 was only applied to the outermost

structure. Moreover only one with constructor was present. Here we give a brief

overview on how deep with constructs as well as nested with constructs can be

implemented. We conclude with come considerations on with commutation that is

not valid with our constructions.

Deep “with” construction

In order to interpret the with type constructor on “deep” fields, it is sufficient to

follow the same schema, changing the coercion to make their sub-records manifest.

Formally, when Q := {f: T; l : U} and R := {q: Q; s: S}, we interpret R with q.f = M

with Σ c:R. c.q. f = M and we declare the coercion:� �
definition kq.f

R : ∀M:T. R with q.f = M → R :=

λM:T. λ x:(Σc:R. c.q.f=M).

kqR (kfQ M 〈x.1.1, x.2〉Q,λq:Q.q.f=M)

(match x with 〈〈〈a, l〉Q, s〉R, w〉R,λr:R.r.q.f=M ⇒

〈〈〈a, l 〉Q, s〉R, [[reflQ 〈a, l〉Q]]w〉R,λr:R.r.q=kf
Q M 〈〈a,l〉Q, w〉Q,λq:Q.q.f=M

)� �
Note that the computational rule associated to the computational dependent elimi-

nation of Leibniz equality is necessary to type the previous coercion:

〈〈〈a, l 〉Q, s〉R, [[reflQ〈a, l〉Q]]w〉R,λr:R.r.q=kf
QM〈〈a,l〉Q,w〉Q,λq:Q.q.f=M

is well typed since refl Q 〈a, l〉Q has type 〈a, l 〉Q= 〈a, l〉Q that is equivalent to

〈a, l 〉Q= kfQ a 〈〈a, l〉Q, reflT a〉Q,λq:Q.q.f=q.f

Thus [[ refl Q 〈a, l〉Q]]w has type 〈a, l 〉Q= kfQ M 〈〈a, l〉Q, w〉Q,λq:Q.q.f=M.

As expected, (kq.f
R M c).q.f � M for all c of type R with q.f = M.
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Nested “with” constructions

Finally, from the derived typing and reduction rules it is not evident that a type

R with la=M with lb=N can be formed. Surprisingly, this type poses no additional

problem. The system simply de-sugars it as

Σ d: (Σ c:R.c. la=M). (klaR M d).lb=N

and, as explained in the next section, automatically declares the composite coercion

kla,lb
R := λM,N,c.klbR N (klaR M c) as a coercion from R with la=M with lb=N to R such

that: (kla,lb
R M N c).la�M and (kla,lb

R M N c).lb�N and

(kla,lb
R M N 〈〈〈M1,. . ., Mn〉R, wa〉, wb〉).li�{{Mi}}wa,wb

where {{Mi}}wa,wb is Mi (if i<a and i<b), [[ Mi]]wa (if a < i < b), [[ Mi]]wb (if b < i < a),

[[[[ Mi]]wa ]]wb (if a < b < i or b < a < i).

Signature strengthening and “with” commutation

To conclude our investigation of record types with manifest fields in type theory,

we consider a few additional properties, which are signature strengthening and with

commutation.

An important typing rule for dependently typed records with manifest fields is

signature strengthening: a record c of type R must also have type R with f = R.f and

the other way around. In our setting R with f = R.f is interpreted as

Σ c:R. c. f = c.f and we can couple the coercion kf
R from R with f = R.f to R with a

dual coercion ιR from R to R with f = R.f such that: ∀w. kf
R(ιR(w)) ≡w, ∀w.ιR(kf

R(w)) = w

and the latter Leibniz equality is strengthened to definitional equality when w.2 is a

closed term or the system is proof irrelevant. The same can be achieved with minor

modifications when the equality on the type of the f field is decidable.

with commutation is the rule that states the definitional equality of

R with f=M with g=N and R with g=N with f=M when both expressions are well-

typed. In our interpretation, the two types are not convertible since they are rep-

resented by different nestings of Σ-types. Moreover, for any label l that follows
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f and g in R, the l projection of two canonical inhabitants of the two types built

from the same terms are provable equal, but not definitionally equal: in the first

case we obtain a term [[[[ M]]wf ]]wg for some wf and wg, and in the second case we

obtain a term [[[[ M]]wg ]]wf . A proof of their equality is simply [[[[ refl T M]]wf ]]wg .

Definitional equality holds when wf or wg are canonical terms — in particular when

they are closed terms — or if at least one of the two types has a decidable equal-

ity. In practice, with commutation can often be avoided declaring a pair of mutual

coercions between the two commutated types.

5.3.7 Remarks on code extraction

Algebra has been a remarkable testing area for code extraction, see the constructive

proof developed in [34] for example. The encoding of manifest fields presented in

the previous sections behave nicely with respect to code extraction. The manifest

part of a term is encoded in the equality proof, that is erased during extraction,

projections like kf
R, are extracted to functions that simply replace one field of the

record in input. All occurrences of [[ ]] are also erased.

5.4 Coercions to sub-types

A recent work by Matthieu Sozeau [87] describes a language, Russell, that can be

used to specify software. That language allows the user to write programs inside

Coq using simple types, as if it was an ML program, and a specification using depen-

dent types. Is up to Russell to generate the proof obligations needed to prove that

the program satisfies the specification. For example look at the following program

written in Matita.� �
definition find :=

λ p : nat → bool.

let rec aux (l : list nat) :=

λ l : list nat. match l with [ nil ⇒None | cons x tl ⇒

match p x with [ true ⇒Some x | false ⇒aux tl]]
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in aux� �
The program find takes in input a test function p and returns the first element of

the list l such that p l = true. It is essentially an ML program and use of complex

types is avoided. The type of find is (nat → bool) → list nat → option nat. A

possible specification for that program is the following� �
definition find spec :=

λ p,l.λ res:option nat.

match res with

[ None ⇒∀ y. mem ? eqb y l = true →p y = false

| Some x ⇒mem ? eqb x l = true ∧p x = true ∧

∀ y.mem ? eqb y l = true → p y = true → x 6= y →

∃ l1,l2 , l3 . l = l1 @ [x] @ l2 @ [y] @ l3.� �
The constant mem tests the natural number comparison function eqb partially ap-

plied to y, in the first case and x in the second case, against all elements in l. The

specification states that, if the result of find is None no elements of the list satisfy

p; if the result is an x then it is the fist element of the list satisfying p. We could

have written find with a type like� �
∀p:nat → bool.∀ l: list nat. { o : option nat | find spec p l o}� �

But a program like that one needs all proof obligations concerning its return type to

be proved inside the program code. Then, being irrelevant for the computation, a

code extraction algorithm (or even a compiler) would have discharged all this infor-

mation to obtain an efficient program. The approach proposed by Sozeau (already

successfully exploited in PVS [75]) is to separate (at least to the users eyes) the code

and the proof obligations, allowing him to write programs using a simple fragment

of the functional language of CIC and to specify it using the full power of dependent

types.

This approach is strictly related with coercions, especially with the flexible

flavour implemented in Matita. Consider the coercion tosigma that injects a term
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x of types option nat to Σ x : option nat, P x letting open then conjecture P x. This

coercion can not be directly applied since our term (the find program) has type

(nat → bool) → list nat → option nat.

If the tosigma coercion is propagated to the three distinct leaves of the find pro-

gram (None, Some x and aux tl) then it will be applicable, since they both have type

option nat. Moreover this propagation allows the user to attack proof obligations in

the right context:

• in the first case l = [] and find returns None, thus the specification is

∀ y. mem ? eqb y [] = true → p y = false

• in the second case l = x :: tl and p x = true the specification to be proved is

the conjunction of mem ? eqb x (x::tl) = true with p x = true and

∀ y.mem ? eqb y l = true → p y = true → x 6= y → ∃ l1,l2 , l3 . l = l1@[x]@l2@[y]@l3.

The first simplifies to eqb x x || mem ? eqb x tl = true. The fist and second

obligations are trivial, the third can be solved providing an empty l1.

• in the third case the find algorithm returns the recursive call. After the inser-

tion of the coercion the recursive call returns a term enriched with its property

(the specification itself applied to the recursive call). This step intuitively cor-

responds to the inductive step of the proof.

In the next section the propagation of coercions under lambda abstraction, pat-

tern matching and recursive definitions is described.

5.4.1 Coercions propagation

Here we describe the implementation of coercion propagation we made in the refiner

of Matita. The main motivation for implementing that is to better stress the

usage of coercions. We never aimed at implementing the Russell language in its full

complexity. Nevertheless we obtained a working prototype of such tool exploiting

the flexibility of subset coercions we implemented.
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Moving under λ

Consider a term t of type A→ B. In our previous example of the find function we

where casting only the output, but in general the input can be coerced too. Consider

thus two coercions c : A′ → A and d : B → B′. The term we want to obtain is

λx : A′.d (t (c x)) : A′ → B′. Note that, if t has the form of a lambda abstraction

λy.b[y] a β-redex is generated and the resulting term λx : A′.d ((λy.b)(c x)) can be

reduced to λx : A′.d b[y/c x] obtaining a single lambda abstraction (that is why this

operation is called propagation under lambda abstraction).

In the more general case of dependent products we use the following rule

Coerce-to-something-prod

P , Σ, Γ;x : A′ ` x : A′
?≡ A

C
; x′, P ′, Σ′

P ′, Σ′, Γ;x : A′ ` t x′ : B[x/x′]
?≡ B′

C
; t′, P ′′, Σ′′

t′′ = λx : A′.t′

P , Σ, Γ ` t : Πx : A.B
?≡ Πx : A′.B′

C
; t′′, P ′′, Σ′′

Note that the type B lives in a context where x has type A, thus to put it under

a context where x : A′ we replace every free occurrence of x in B with x′.

Moving under recursive definitions

The idea is similar to the lambda abstraction but formal notation makes it too heavy,

we thus give an informal explanation of the steps involved. Consider the following

recursive block:

letrec f1(x1,1 :T1,1) . . . (x1,p1 :T1,p1) :T1,p1+1 on l1 := t1 and . . .

and fn(xn,1 :Tn,1) . . . (xn,pn :Tn,p′n) :Tn on ln := tn in fj

Its type is:

Πxj,1 : Tj,1 . . . xj,pj :Tj,pj .Tj

The bodies of recursive functions ti are usually refined in a context where all recursive

function types appear and fj has type Πxj,1 : Tj,1 . . . xj,pj : Tj,pj .Tj (we will refer
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to that type with inferred-type). This recursive block is then casted to the type

Πxj,1 : Sj,1 . . . xj,pj :Sj,pj .Sj (we will refer to that type with expected-type).

The first step is to generate a context in which all recursive function type appear

but the variable fj is associated to the expected-type.

Γ = f1 : Πx1,1 : T1,1 . . . x1,p1 :T1,p1 .T1; . . . ;

fj : Πxj,1 : Sj,1 . . . xj,pj :Sj,pj .Sj; . . . ;

fn : Πxn,1 : Tn,1 . . . xn,pn :Tn,pn .Tn

In that context the variable fj is cast to the inferred-type (the same operation done

for x in the rule for propagation under lambda abstraction). The result of this cast

f ′j is replaced in the body of every recursive function in place of fj. Then, the

body of fj is casted to the expected-type (eventually using the rule Coerce-to-

something-prod).

Moving under pattern matching

We first start with the basic approach, then we will refine it a bit.

Consider the following match construct:

M =

match t in I return T

[k1 x11 . . . xp1 ⇒ t1 | . . .
|kn x1n . . . xpn ⇒ tn]

Consider also its type and the following declarations regarding the inductive type I:

l, r, (I : Πx1 : P1. . . .Πxl : Pl.Πxl+1 : Pl+1. . . .Πxl+r : Pl+r.s) ∈ E
T : Πxl+1 : Pl+1. . . . .Πxl+r : Pl+r.Πx : I p1 . . . pl xl+1 . . . xl+r.Q

t : I p1 . . . pl pl+1 . . . pl+r

M : T pl+1 . . . pl+r t

To reuse our previous code to propagate the coercion under lambda abstractions we

need to build the new typing function and the type of every branch. If the new type

to which the pattern matching construct has to be casted is S, the following terms
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have to be constructed:

T ′ = Πxl+1 : Pl+1. . . . .Πxl+r : Pl+r.Πx : I p1 . . . pl xl+1 . . . xl+r.S

ki : Πx1 : P1. . . . .Πxl : Pl.Πy1 : Pi,1. . . . .Πypi : Pi,pi .I p1 . . . pl pi,l+1 . . . pi,l+r

Ti = Πy1 : Pi,1. . . . .Πypi : Pi,pi .T pi,l+1 . . . pi,l+r (ki p1 . . . pl pi,l+1 . . . pi,l+r)

T ′i = Πy1 : Pi,1. . . . .Πypi : Pi,pi .T
′ pi,l+1 . . . pi,l+r (ki p1 . . . pl pi,l+1 . . . pi,l+r)

Then each ti can be coerced from Ti to T ′i and the typing function can be substituted

with T ′.

This preliminary implementation already works and coercions (to Σ-types) are

applied deep enough in the recursive function to present to the user the proper

assertions.

Sadly, in practical cases it is not enough. Consider the following sequent:� �
l : list nat

H : ∀n.mem ? eqb n l = false

=============================================

l = []� �
Here proceeding by case analysis on l leads to two goals: [] = [] and ∀ x,l1. x :: l1 = [].

The second one is not provable, since in the hypothesis H the term l has not been

replaced by x :: l1. What the user does, is to generalise the goal w.r.t H before

proceeding by case analysis. With the generalisation the resulting proof term is a

pattern matching construct where every branch takes in input an additional param-

eter H, and all occurrences of l in its type will be then decomposed by the pattern

matching construction in every branch.

Another possibility, more involving for the user, but easier to implement is to

generalise the goal on the term eq refl l and then on all occurrences of l except the

first, obtaining:� �
∀ l2 : list nat. l = l2 → l2 = []� �
Then case analysis is performed on l2, and every branch of the pattern matching

will have an additional hypothesis linking the decomposed l2 to l. In our example,
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in the second branch, the additional hypothesis would be l = x :: l1, that is exactly

what is needed to solve the goal by means of H.

In our proof of concept implementation we adopted that trick, thus every branch

is enriched with an additional lambda abstraction for the equality and the whole

pattern matching is applied to the reflexivity proof.

This is the case where our implementation is more distant from Russell. More to

the point, when pattern matching is performed over a term having a parametric in-

ductive type, Leibniz equality is not able to state the link between the matched term

and its instances (since the resulting equality may result to be ill typed). The usual

solution to that kind of problems is to use a weaker equality, that relates terms whose

types are not convertible. Since we were not interested in a full implementation of

Russell we decided to not support this case.
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Chapter 6

Automation and interactiveness in Matita
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A huge part of our PHD has been dedicated to the development of automatic

tactics for Matita. Modern interactive theorem provers usually integrate many

domain specific tactics that are almost automatic, like Coq omega and ring [48]

tactics. In the following we will consider only general automation, like Coq auto

or auto rewrite tactics, since we focused on non-domain specific automatic tactics.

Moreover, many domain specific automatic tactic are complete decision procedures,

thus many considerations we will make do not apply.

The main motivation to work on automatic tactics is that the lack of comfortable

automation has always been perceived as a grave deficiency by interactive theorem

prover users, especially when the conjecture to prove is trivial (e.g. it is solvable

using a lemma part of the library). We already observed in Section 2.3.2 that most

automatic tactics tend not to scale very well to large developments, due to their

black box nature. Changes to definitions break proof scripts, and automation usually

hides the real cause of breakage, making the already tedious operation of mending

the proof script harder. Moreover, after closing a conjecture using automation no

trace of the found proof is left in the proof script file. Re-executing the proof script

requires to execute again the automatic tactic, and this may take some time.

Things are considered to be automatic when they work without user intervention.

On the contrary interactiveness is usually conceived as a continuous exchange of

information between the user and the software assistant. We believe that the benefits

these two different approaches bring are hard to get if techniques belonging to the two

areas are not used in synergy. Modern computers are fast, but the user’s intuition

is still far behind what a calculator can “argue” by brute force. On the contrary a

computer has no competitors in the manipulation of a huge dataset (just think to

search engine, that nowadays index more than a billion of pages and are still able

to give relevant answers).

Technologies developed by the automatic theorem proving community, although

they showed their effectiveness in many occasions [35, 86], can hardly be considered

user/interaction friendly, again due to their black box nature. We believe the in-

tegration of technologies developed by the automatic theorem proving community



Chapter 6. Automation and interactiveness in Matita 175

with modern interactive theorem provers can be a fruitful and challenging research

objective, if some user interaction related requirements are satisfied.

We identified some requirements we think are necessary for a fruitful usage of

automation inside interactive tools, and we developed two tactics for the Matita

interactive theorem prover that, to some extent, fulfil these requirements. The

former tactic (auto paramodulation from now on) performs automatic rewriting

according to the superposition calculus [69], and has performed reasonably well

against the huge TPTP problem set. The latter tactic (auto) performs applicative

reasoning and has been designed to allow great user interaction.

The requirements we identified are:

• Integration of the searching facilities with automatic tactics.

Automatic theorem provers are usually run on a predefined (small) set of

assumptions. Interactive theorem provers are tools to author a library of

proved theorems. That library is potentially huge, written by different users

possibly not sharing the same office. These users may not (and usually do not)

know all the contents of the library. Moreover, the more a library grows, the

harder it is to have a strong control over it.

Matita integrates the Whelp [1] search engine, this facility must be em-

ployed to help the user benefit from the library of already proved theorems.

• Interactive theorem provers are authoring tools thus they must help the user to

maintain his work in a good shape. We already described in Section 2.3.2 why

automatic tactic were avoided by the Mathematical Components team: their

black box behaviour badly interacts with huge developments, since scripts

are harder to mend if they break because of automation. Moreover, proof

searching is an expensive operation and every time a proof script is check it

is performed again. No reusable trace of a previous successful proof search is

left in the script file.

In our vision, automation has to be integrated with the authoring tool in such

a way that these problems do not grow to the point of making it completely
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unusable.

• Interactive theorem provers have an heterogeneous set of users, that ranges

from shy students to brilliant “hackers” that know every detail of the system.

Black box automation makes both kind of users fall in the same category, since

they have no easy way to tune it.

A novice user can not feed an automatic tactic with the set of lemmas that are

relevant, because he is not aware of such lemmas. He may like a non obscure

procedure that shows him a set of possibilities, letting him inspect all of them,

step by step learning what can be used to solve a given problem. A trained

user can as well benefit from a clean proof searching procedure if the ongoing

status of the search can be effectively displayed. Her intuition can drive the

procedure in a smarter way than what an heuristic can do.

Automation has thus to give clean feedback to the user, and possibly be tuned

by him on the fly.

From these observations we formulated some proposals we think can solve some

of these issues and that we followed in the implementation of the two automatic

tactics auto and auto paramodulation:

• Automatic proof searching procedures must produce not only proof objects

but proof scripts. This allows a fast re-execution of the proof script since

proof steps are recorded in the script itself. This also allows to quickly mend a

proof script, making it clear where the automatic procedure fails. If, after the

rework of a definition, automation is not able to solve the goal anymore, the

user still has the old proof script and can mend it by hand, a usually quicker

operation than finding a new proof from scratch.

• Automatic proof searching procedure must be able to use efficient searching

facilities to find by themselves which lemmas are relevant, since the user can

not be always supposed to know the library she is working with.
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• Tactics may allow user intervention and inspection, thus internal data struc-

tures have to be designed in such a way that a snapshot of the current status

can be effectively presented to the user. Moreover the searching procedure it-

self must be designed to allow user intervention. Many algorithms have a shape

that allows user intervention, since at some point they perform a choice. They

employ cute heuristics but the user must be allowed to tune them, possibly on

the fly.

Our view of automation is clearly biased by the interactiveness of tools like

Matita. When we began our PHD there were already two prototypes of automatic

tactics, one performing rewriting using a restriction of the superposition calculus

and another one doing Prolog like proof search using the hint whelp query (see

Section 4.3.1).

We worked on the rewriting tactic making it pretty efficient and we developed

a procedure to build nice proof objects (and as a consequence nice proof scripts)

starting from a lightweight proof trace left by the automatic tactic. This work

ended with the publication of the paper “Higher order Proof Reconstruction from

Paramodulation-Based Refutations: The Unit Equality Case” [4]. This tactic has

been tuned for performances using the huge TPTP library of problems of automatic

theorem provers. Although these problems, in all their variants, seem to be mostly

artificial we found them an invaluable test suite, and the tactic, optimised for such

use case, proved to be quite efficient even when tackling real life conjectures. When

we worked on this tactic our view on automation and interactiveness was not com-

plete and we did not put efforts in allowing the procedure to be user driven, but we

believe that the given clause algorithm that the tactic adopts can easily be made

interactive. We left that as a future work.

During the last year of our PHD we reworked the tactic prototype that performs

backward proof search, designing its code in such a way that the user can drive the

procedure interactively. Together with our advisor we designed a graphical interface

(that will be detailed later, the curious reader can peek Figure 6.4) that allows the

user to follow the computation of the procedure, eventually interrupting or driving
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it. This tactic produces proof scripts and can use the search engine Whelp to

automatically find interesting lemmas.

This chapter is organised in three sections. In the former we analyse the problems

concerning the cooperation of the search engine and the automatic tactics. We will

then describe the auto paramodulation tactic and detail the procedure to obtain nice

proof objects from a lightweight proof trace left by the proof search engine. This

section is an extract of the paper [4] we authored together with Andrea Asperti.

Our main contribution of this work is the procedure to reconstruct the proof, while

the implementation of the tactic itself has been done in full collaboration. The third

chapter describes the auto tactic, dedicating special attention to the infrastructure

to allow the user drive the proof search. Again the tactic, and its long and tedious

tuning, is a joint work with our advisor, while the reworked implementation that

allows user intervention is our contribution. The graphical user interface to drive

the tactic, although designed together with our advisor, is our contribution.

6.1 Automation and searching

Interactive theorem provers are tools made to create a library of certified theorems.

The effort to formalise a piece of mathematics is well known to be big. The so

called De Bruijn factor, comparing the length in lines of a pen and paper proof with

its formalised counterpart, was found to be ten. For this reason many users will

probably collaborate when formalising some non trivial results, possibly parallelising

as much as possible the work.

For that reason we believe that who designs interactive theorem provers must

take into account the fact that users will probably not know all the details of the

formalisation they are working on. Moreover, one expects to base any new devel-

opment on possibly huge libraries of already formalised results, making it really

impossible for a single user to know all the available facts.

We thus believe that these systems must help the user in finding relevant facts,

and that automatic tactics must work up to the knowledge of the library of existing
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formalised results.

Anyway, the bigger the library is, the lower the probability that a given fact is

pertinent to the user development is. We thus distinguish a subset of the library,

that we will call the local context. The local context is the part of the library the

user is actually working on (i.e. the theorems proved in files he is actually editing or

that he references directly) and has to be treated with special care, since we believe

it contains theorems strictly related to what the user is doing. This part of the

library is smaller, and fitting into the main memory, can be indexed using extremely

efficient data structures like discrimination trees.

In the following two sections we describe how our automatic tactics do find rele-

vant facts in the whole library (Section 6.1.1) and in the local context (Section 6.1.2).

Last section is dedicated to the tuning we made as a consequence of our formalisation

experience regarding algebraic structures described in Chapter 3.

6.1.1 Searching the library

The Whelp search engine has been described in [1] that we co-author. Our main

contribution in the development of whelp has been the tuning of the queries and

the reorganisation of the SQL table to obtain reasonably good performances. This

work has been done at the very beginning of our PHD.

Libraries of formalised theorems can be huge. For example the library of the

Coq interactive theorem prover (together with all its third party contributions)

amounts to 40,000 theorems and definitions. In such a setting where the amount

of data makes it impossible to work in main memory, relational database are the

obvious choice. The metadata model we store in the database has been briefly

described in Section 4.3.1 and amounts to a ternary relation s Rp t stating that an

object s refers an object t at a given position p. A minimal set of positions is used

to discriminate the hypotheses (Hyp), from the conclusion (Concl) and the proof

(Proof) of a theorem (respectively, the type of the input parameters, the type of the

result, and the body of a definition). Moreover, the hypothesis and in the conclusion

the root position (Main-Hyp and Main-Concl, respectively) is distinguished from
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deeper positions (that, in a first order setting, essentially amounts to distinguish

relational symbols from functional ones).

On that simple metadata model we developed two kind of queries, to retrieve

facts that can used to rewrite a given term or whose conclusion has good chances

to unify with a given term.

Searching for unifiables

We start defining the basic operation µ.

Definition 6.1 (Constants of (µ)) Given a lambda term t defined by the syntax

of Table 5.2.1, µ(t) is computed by recursion over t collecting all c (constants), I

(inductive types) and k (inductive constructors).

Note that constants, inductive types and inductive constructors are all repre-

sented by name (actually a path in the general form of a URL like cic:/...).

The operation µ is extended to contexts Γ and to proof problems P . In the syntax

of CIC presented in 5.2.1 there are no local definitions (let-in) for simplicity, but

they are used in the implementation of Matita. Local definitions (when appearing

in a context) have a special treatment, if the sort of the defined term is Prop, its

body is skipped, while constants appearing in its body are collected by µ if it has

sort Type.

Given a term g we are interested in lemmas, available in the library, whose type

t1 → t2 → · · · → tn → t is such that there exists a substitution θ that unifies t with

g.

A necessary condition for that, which provides a very efficient filtering of the

solution space, is that the set of constants in t must be a subset of those in g. This

is clearly an approximation, since in CIC reduction can unfold constants, but in

practice this approach shown to be sufficient.

In terms of our metadata model, the problem consists to compute all s such that

{x|s Rp x for some p} ⊆ µ(g) (6.1)
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Iterating that for every s is clearly too expensive. The previous condition clearly

holds only if there is a subset of µ(g) whose cardinality is equal to the cardinality

of {x|s Rp x} for some s (and p). Note that the cardinality of {x|s Rp x} can be

precomputed for every s and that the cardinality of µ(g) is usually small. Thus the

set of s satisfying the following condition con be computed by a relational database

with a join ∧
a∈µ(g)

s Rp a ∧ |µ(g)| = |{x|s Rp x}| (6.2)

The condition 6.1 is not sufficient to ensure that lemmas in resulting set have a

conclusion that unifies with the goal. An additional unification step is performed

(for example in the hint query) to filter the results. On the contrary, when we are

interested in using this procedure to retrieve interesting lemmas, excessively filtering

them is dangerous since the goal they may be applied to is not exactly the one that

is used to perform the query.

Searching for equations or lemmas

In the previous section we introduced the overall idea employed to find theorems

whose conclusion can hopefully unify with a given term. Here we give more details

regarding the actual implementation of such search.

In Table 6.1 we report the procedure to collect the signature of a goal i (i is the

index of a metavariable in the proof problem P).

µ(i) = µ(Γi) ∪ µ(T ) Γ `?i : T ∈ P
s = µ(i) ∪ {µ(T )|t ∈ µ(i)∧ ` t : T}

Table 6.1: Signature of goal

Note that s is closed with respect to the constants appearing in its types (e.g. if

the successor function is in s then the type Nat is also in s).

Predicate symbols are filtered out of s, building sP and sT (respectively the

predicates subset of s and its complement). The predicate symbols are used to
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refine query 6.2 with the following condition, where P ∈ sP .

{x| . . . ∧ x RMain−Concl P}

In case we are looking for equations, P is forced to be eq (the inductive type of

Leibniz equality).

6.1.2 Searching the local context

The local context is a small subset of the library of probable interest for the user.

It is defined by the user explicitly, with the include statement that ensures that a

given part of the library is available before proceeding. Anyway this set of lemma

has to be compactly represented in memory in a data structure that also offers good

searching facilities.

Discrimination trees are a widely studied data structure that has been adopted

in many automatic theorem provers like Waldmeister [56]. They are essentially a

tree structure, sharing common prefixes. All terms having a constant c as the prin-

cipal symbol will share that node in the tree, making the in memory representation

extremely compact. Moreover operations like pattern matching or unification have

a linear (in the size of the input term) approximation visiting the tree.

An implementation of such structure was available in Matita as part of the

prototype of the tactic performing automatic rewriting. It is not a perfect discrim-

ination tree, thus the result of a search in the tree is not a set of terms together

with a substitution but a set of terms that have a good chance to unify (or be a

generalisation) of the input term. A proper handling of variables (like occur check)

in not performed while searching the tree. Moreover there is no ad-hoc treatment of

commutative symbols or more advanced techniques like the compilation of the tree

into an efficiently interpretable language like in [77].

We use that code, letting any performance related improvement as a future

objective. Anyway this simple implementation is already pretty fast. The main

issue of using such data structure is that it is meant for a first order language, while

CIC is higher order.
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Discrimination trees and higher order logic

Discrimination trees shown to be an extremely efficient data structure to handle huge

set of terms [68] but have been developed in a setting where variables represent never

appear in the head position of an application. While this is perfect for the first order

setting of most automatic theorem provers, CIC terms can have (meta)variables in

head position. Moreover function definition can appear inside terms, and is in

general undecidable if two of them are the same. The prototype of the automatic

tactic was born having in mind to treat only problems trivially embedded in the

first order fragment, that is a simple fragment already capturing many interesting

theorems.

Anyway, to fruitfully employ the discrimination tree data structure we had to

write a simple embedding of CIC terms into a first order syntax suitable for the

already available data structure.

The following data type has been used to represent first order terms.� �
type fo node =

Constant of uri | Bound of int | Variable | Proposition | Datatype | Dead� �
First order term are thus represented with list of fo node. Dead represents terms

that are never considered equal (that is Dead <> Dead). Sorts are collapsed to

Proposition for Prop and Datatype for every Type(j). Metavariables are considered

Variable (i.e. subterms that can be instantiated by the pattern matching or unifica-

tion query). Bound (de Bruijn indexes) are variables bound in the context and are

considered fixed, equals only to themselves like constants (that are uniquely iden-

tified with a name instead of a integer). All Variables are the same, since we are

interested in an approximation of unification or pattern matching. A subsequent

refinement of the result will prune false matches.

The following function performs the conversion from CIC terms to the corre-

sponding fo node list.� �
let fo node of cic = function

| Cic.Meta →Variable
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| Cic.Rel i →Bound i

| Cic.Sort (Cic.Prop) →Proposition

| Cic.Sort →Datatype

| Cic.Const | Cic.MutInd | Cic.MutConstruct as t →Constant (uri of term t)

| Cic.LetIn | Cic.Lambda | Cic.Prod | Cic.Cast

| Cic.MutCase | Cic.Fix | Cic.CoFix →Dead

| Cic.Appl →assert false (∗ should not happen ∗)

in

let rec fo term of cic term = function

| Cic.Appl (Cic.Meta as hd:: ) →[ fo node of cic hd]

| Cic.Appl l →List. fold left ( l t →l @ fo term of cic term t) [] l

| t →[ fo node of cic t ]� �
Higher order metavariables are collapsed together with their arguments to vari-

ables.

6.2 Equational reasoning

In this section we give a description of the automatic tactic auto paramodulation.

Although the tactic is based on a prototype that was already available when

our PHD begun, the amount of work needed to obtain a fully working and efficient

tactic amounts to slightly less than one year. This tactic, and all the work to make

it comply with our interactiveness related requirements, is our contribution. This

work ended with the publication of the paper “Higher order Proof Reconstruction

from Paramodulation-Based Refutations: The Unit Equality Case” [4] we co-author

with our advisor prof. Andrea Asperti. What follows is partially an extract of that

paper.

6.2.1 Superposition rules

Paramodulation [69] is precisely the management of equality by means of rewriting:

given a formula (clause) P (s), and an equality s = t, we may conclude P (t). What
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makes paramodulation a really effective tool is the possibility of suitably constraining

rewriting in order to avoid redundant inferences without loosing completeness. This

is done by requiring that rewriting always replace big terms by smaller ones, with

respect to a special ordering relation� among terms, that satisfies certain properties,

called the reduction ordering. This restriction of the paramodulation rule is called

superposition.

Equations are traditionally split in two groups: facts (positive literals) and goals

(negative literals). We have two basic rules: superposition right and superposition

left. Superposition right combines facts to generate new facts: it corresponds to a

forward reasoning step. Superposition left combines a fact and a goal, generating a

new goal: logically, it is a backward reasoning step, reducing a goal G to a new one

G′. The fragment of proof that can be associated to this new goal G′ is thus not a

proof of G′ , but a proof of G depending on proof of G′ (i.e. a proof of G′ ` G).

We shall use the following notation: an equational fact will have the shape

` M : e, meaning that M is a proof of e; an equational goal will have the shape

α : e ` M : C, meaning that in the proof M of C the goal e is still open, i.e. M

may depend on α.

Given a term t we write t|p to denote the subterm of t at position p, and t[r]p

for the term obtained from t replacing the subterm t|p with r. Given a substitution

σ we write tσ for the application of the substitution to the term, with the usual

meaning.

The logical rules, decorated with proofs, are the following:

Superposition left
` h : l =A r α : t =B s `M : C

β : t[r]pσ =B sσ `Mσ[R/ασ] : Cσ

if σ = mgu(l, t|p), t|p is not a variable, lσ � rσ and tσ � sσ; and

R : tσ =B sσ

Superposition right
` h : l =A r ` k : t =B s

` R : t[r]pσ =B sσ
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if σ = mgu(l, t|p), t|p is not a variable, lσ � rσ and tσ � sσ; and

R : t[r]pσ =B sσ

Equality resolution
α : t =A s `M : C

`M [R/α] : C

if there exists σ = mgu(t, s) and R : tσ = tσ

All proofs generated by the application of the three rules, named R, are omitted

here, and will be described in Section 6.2.3.

The main theorem is that, given a set of facts S, and a goal e, an instance e′ of e is

a logical consequence of S if and only if, starting from the trivial axiom α : e ` α : e

we may prove `M : e′ (and in this case M is a correct proof term).

Simplification rules such as tautology elimination, subsumption and especially

demodulation can be added to the systems, but they do not introduce major con-

ceptual problems, and hence they will not be considered here.

6.2.2 Implementation

The automatic proof search procedure is a component of Matita, but is essentially

orthogonal to the rest of the system.

CIC terms are translated into first order terms by a forgetful procedure that

simply erases all type information, and transforms into opaque constants all terms

not belonging to the first order framework as explained in 6.1.2

The inverse transformation takes advantage by the so called refiner, that is a type

inference procedure typical of higher order interactive provers, detailed in Chapter 5.

Given the three superposition rules of Section 6.2.1, proof search is performed

using the “given clause” algorithm (see [76, 78]). The algorithm keeps all known

facts and goals split in two sets: active, and passive. At each iteration, the algorithm

carefully chooses an equation (given clause) from the passive set; if it is a goal (and

not an identity), then it is combined via superposition left with all active facts; if it

is a fact, superposition right is used instead. The selected equation is added to the
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(suitable) active set, while all newly generated equations are added to the passive

set, and the cycle is repeated.

As the reader may imagine a huge number of equations is generated during

the proof search process, but only few of them will be actually used to prove the

goal. Even if demodulation and subsumption are effective tools to discard equations

without loosing completeness, all automatic theorem provers adopt clever techniques

to strike down the space consumption of each equation. This usually leads to an

extensive use of sharing in the data structures, and to drop the idea of carrying

a complete proof representation in favour of recording a minimal and lightweight

proof trace. The latter choice is usually not a big concern for ATP systems, since

proofs are mainly used for debugging purposes, but for an interactive theorem prover

that follows the independent verification principle like Matita, proof objects are

essential and thus it must be possible to reconstruct a complete proof object in CIC

from the proof trace.

In our implementation the proof trace is composed by two slightly different kind

of objects, corresponding to the two superposition steps. Superposition right steps

are encoded with the following tuple, in OCaml syntax:� �
type rstep = ident ∗ ident ∗ direction ∗ substitution ∗ predicate� �

The two identifiers are unambiguous names for the equations involved (h and k in the

former presentation of the superposition rule), direction can be either Left or Right,

depending if h has been used left to right or right to left (i.e. if a symmetry step

has to be kept into account). The substitution and the predicate are respectively

the σ (i.e. the most general unifier between l and t|p) and the predicate used to

build the proof R, that is essentially a representation of the position |p identifying

the subterm of t that has been rewritten with r once l and t|p were unified via σ.

This representation of the predicate is not optimal in terms of space consumption;

we have chosen this representation mainly for simplicity, and left the implementation

of a more compact coding as a future optimisation.

The representation of a superposition left step is essentially the same, but the



188 Chapter 6. Automation and interactiveness in Matita

second equation identifier has been removed, since it implicitly refers to the goal.

We will call the type of these steps lstep.

A map Σ : ident → (pos literal ∗ rstep) from identifiers to pairs of positive

literal (i.e. something of the form ` a =A b) and proof step represents all the

forward reasoning performed during proof search, while a list Λ of lstep together

with the initial goal (a negative literal) represent all backward reasoning steps.

Derivate tactics

The core of the auto paramodulation tactics implements many procedures that are

of some interest even in other contexts.

For example, the demodulation simplification phase, directly connected with the

search engine, is exported to the user under the name of demodulate tactic. When

issued, it looks for interesting equations and tries to reduce the size of the goal

(i.e. rewriting sub terms to smaller ones). The tactic never performs backtracking,

simply rewrites until a minimum, according to the ordering relation between terms

implemented. This minimum it thus not granted to be absolute. The intended usage

it to support the simplify tactic, performing reduction steps internal to the logic.

The usual example of a term the user may want to simplify but that is let untouched

by the simplify tactic is x + 0 (when addition is defined by recursion on the first

argument). The equation ∀n.n+0 = n is like to be part of the standard library, and

the hint rewrite query is able to find it. Demodulate reads this equation left to right

(considering n less then n+ 0) and rewrites with it. Note that other equations, like

∀n,m.n+m = m+ n are not properly oriented, thus are not used by demodulate.

Another derived tactic is smart apply. The apply tactic tries to unify the con-

clusion of a given lemma to the current goal. Going back to our previous example,

if the goal is P (n+0) and the lemma to be applied is P (n) the user can not apply it

directly (because unification works up to conversion and metavariable instantiation,

not rewriting). Smart apply, when facing the previous problem, generates a goal

P (n) = P (n + 0) (that is an equation over propositions) and uses it to rewrite the

current goal to the one the lemma is able to prove. Then auto paramodulation is
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used to solve the new goal. In that case the new goal can be easily proved rewriting

the right hand side with the equation ∀n.n + 0 = n. This gives, to some extents,

the illusion of having temporary extended the conversion rule with some (previously

proved) equations.

6.2.3 Proof reconstruction

Here we address the problem of reconstructing a nice proof script from the proof

trace left by the automatic procedure described in the previous section. First we

need to introduce which CIC fragment will be used to represent such proofs, then

we will describe the proof reconstruction procedure itself.

In the calculus of inductive constructions, equality is not a primitive notion,

but it is defined as the smallest predicate containing (induced by) the reflexivity

principle.

Inductive eq (A : Type) (x : A) : A→ Prop
def
== refl eq : eq A x x.

For the sake of readability we will use the notation a1 =A a2 for (eq A a1 a2).

As a consequence of this inductive definition, and similarly to all inductive types,

it comes equipped with an elimination principle named eq ind that, for any type A,

any elements a1, a2 of A, any property P over A, given a proof h of (P a1) and a

proof k that a1 =A a2 gives back a proof of (P a2).

h : P a1 k : a1 =A a2

(eq ind A a1 P h a2 k) : P a2

Similarly, we may define a higher order elimination principle eq ind r such that

h : P a2 k : a1 =A a2

(eq ind r A a2 P h a1 k) : P a1

These are the building blocks of the proofs we will generate. With this definition of

equality standard properties like reflexivity, symmetry and transitivity can be easily

proved and are part of the standard library of lemmas available in Matita.

We can now describe the R terms that were appearing in the proofs decorating

the superposition rules.
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Superposition left
` h : l =A r α : t =B s `M : C

β : t[r]pσ =B sσ `Mσ[R/ασ] : Cσ

where σ = mgu(l, t|p) and R = (eq ind r A rσ (λx : A.t[x]p =B s)σ β lσ hσ) :

tσ =B sσ

Superposition right
` h : l =A r ` k : t =B s

` R : t[r]pσ =B sσ

where σ = mgu(l, t|p) and R = (eq ind A lσ (λx : A.t[x]p =B s)σ kσ rσ hσ) :

t[r]pσ =B sσ

Equality resolution
α : t =A s `M : C

`M [R/α] : C

where σ = mgu(t, s) and R = refl eq A t : t =A t.

The functions defined in Table 6.2 build a CIC proof term given the initial goal

g, Σ and Λ. We use the syntax “let (` l =A r, πh) = Σ(h) in” for the irrefutable

pattern matching construct “match Σ(h) with (` eq A l r), πh ⇒”.

The function φ produces proofs corresponding to application of the superposition

right rule, with the exception that if h is used right to left and eq ind r is used to

represent the hidden symmetry step. ψ builds proofs associated with the application

of the superposition left rule, and fires φ to build the proof of the positive literal h

involved.

Unfortunately this simple structurally recursive approach has the terrible be-

haviour of inlining the proofs of positive literals even if they are used non linearly.

This may (and in practice does) trigger an exponential factor in the size of proof

objects. The obtained proof object is thus of a poor value, because type checking it

would require an unacceptable amount of time.

As an empirical demonstration of that fact we report in Figure 6.1 a graphical

representation of the proof of problem GRP001-4 available in the TPTP[90] library

version 3.1.1. Axioms are represented in squares, while positive literals have a

circular shape. The goal is an hexagon.
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φ(Σ, (h, k, dir, σ, P )) =

let (` l =A r, πh) = Σ(h) and (` t =B s, πk) = Σ(k) in

match dir with

| Left⇒ eq ind A lσ Pσ φ(Σ, πk)σ rσ φ(Σ, πh)σ

| Right⇒ eq ind r A rσ Pσ φ(Σ, πk)σ lσ φ(Σ, πh)σ

ψ′(Σ, (h, dir, σ, P ), (t =B s, πg)) =

let (` l =A r, πh) = Σ(h) in

match dir with

| Left⇒ (P r)σ, eq ind A lσ Pσ πgσ rσ φ(Σ, πh)σ

| Right⇒ (P l)σ, eq ind r A rσ Pσ πgσ lσ φ(Σ, πh)σ

ψ(g, Λ, Σ) =

let (t =B s) ` = g in

snd(fold right(λx.λy.ψ′(Σ, x, y), (t =B s, refl eq A s), Λ))

τ
def
== term

φ : (ident→ (pos literal ∗ rstep)) ∗ rstep→ τ

ψ′ : (ident→ (pos literal ∗ rstep)) ∗ lstep ∗ (τ ∗ τ)→ τ

ψ : neg literal ∗ lstep list ∗ (ident→ (pos literal ∗ rstep))→ τ

fold right : (lstep ∗ (τ ∗ τ)→ (τ ∗ τ)) ∗ (τ ∗ τ) ∗ lstep list→ (τ ∗ τ)

Table 6.2: Proof reconstruction

Every positive literal points to the two used as hypothesis in the corresponding

application of the superposition right rule. In this example a, b, c and e are constants,

the latter has the identity properties (axiom H2). The thesis is that a group (axioms

H3, H2) in which the square of each element is equal to the unit (axiom H1) is

abelian (compose H with the goal to obtain the standard formulation of the abelian

predicate). Equation 127 is used twice, 58 is used three times (two times by 127 and

one by 123), consequently also 36 is not used linearly. In this scenario, the simple

proof reconstruction algorithm inflates the proof term, replicating the literals marked
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Figure 6.1: Proof representation (shared nodes)

with a dashed line.

The benchmarks reported in Table 6.3 show that this exponential behaviour

makes proof objects practically intractable. The first column reports the time the

automatic procedure spent in searching the proof, and the second one the number of

iterations of the given clause algorithm needed to find a proof. The amount of time

necessary to typecheck a non optimised proof is dramatically bigger then the time

that is needed to find the proof. With the optimisation we describe in the following

paragraph typechecking is as fast as proof search for easy problems like the ones

shown in Table 6.3. As one would expect, when problems are more challenging, the

time needed for typechecking the proof is negligible compared to the time needed

to find the proof.

Fortunately CIC provides a construct for local definitions LetIn : ident ∗ term ∗
term→ term that is type checked efficiently: the type of the body of the definition

is computed once and then stored in the context used to type check the rest of the

term.
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We can thus write a function that, counting the number of occurrences of each

equation, identifies the proofs that have to be factored out. In Table 6.4 the function

γ returns a map from identifiers to integers. If this integer is greater than 1, then

the corresponding equation will be factorised. In the example above, 127 and 58

should be factorised, since γ evaluates to two on them, and they must be factorised

in this precise order, so that the proof of 127 can use the local definition of 58. The

right order is the topological one, induced by the dependency relation shown in the

graph.

Every occurrence of an equation may be used with a different substitution, that

can instantiate free variables with different terms. Thus it is necessary to factorise

closed proofs obtained λ-abstracting their free variables, and applying them to the

same free variables where they occur before applying the local substitution. For ex-

ample, given a proof π whose free variables are x1 . . . xn respectively of type T1 . . . Tn

we generate the following let in:

LetIn h
def
== (λx1 : T1, . . . λxn : Tn, π) in

and the occurrences of π will look like (h x1 . . . xn)σ where σ will eventually differ.

Problem Search Steps
Typing Proof size

raw opt raw opt

BOO069-1 2.15 27 79.50 0.23 3.1M 29K

BOO071-1 2.23 27 203.03 0.22 5.4M 28K

GRP118-1 0.11 17 7.66 0.13 546K 21K

GRP485-1 0.17 47 323.35 0.23 5.1M 33K

LAT008-1 0.48 40 22.56 0.12 933K 19K

LCL115-2 0.81 52 24.42 0.29 1.1M 37K

Table 6.3: Timing (in seconds) and proof size
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δ′(Σ, h, f) =

let g = (λx.if x = h then 1 + f(x) else f(x)) in

if f(h) = 0 then

let ( , πh) = Σ(h) in

let (k1, k2, , , ) = πh in

δ′(Σ, k1, δ
′(Σ, k2, g))

else g

δ(Σ, (h, , , ), f) = δ′(Σ, h, f)

γ(Λ, Σ) = fold right(λx.λy.δ(Σ, x, y), λx.0, Λ)

δ′ : (ident→ (pos literal ∗ rstep)) ∗ ident ∗ (ident→ int)→ (ident→ int)

δ : (ident→ (pos literal ∗ rstep)) ∗ lstep ∗ (ident→ int) → (ident→ int)

γ : lstep list ∗ (ident→ (pos literal ∗ rstep))→ (ident→ int)

Table 6.4: Occurrence counting

Digression on dependent types and algebraic structures

The proof searching procedure we described operates in a first order setting, where

all variables have the same type. CIC provides dependent types, meaning that in the

previous example the type Tn can potentially depend on the variables x1 . . . xn−1,

thus the order in which free variables are abstracted is important and must be

computed keeping dependencies into account.

Consider the case, really common in formalisations of algebraic structures, where

a type, functions over that type and properties of these operations are packed to-

gether in a structure. For example, defining a group, one will probably end up
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having the following constants:

carr : Group→ Type inv : ∀g : Group, carr g → carr g

e : ∀g : Group, carr g mul : ∀g : Group, carr g → carr g → carr g

id l : ∀g : Group, ∀x : carr g,mul g (e g) x = x

Saturation rules work with non abstracted (binder free) equations, thus the id l

axiom is treated as (mul x (e x) y = y) where x and y are free. If these free

variables are blindly abstracted, an almost ill typed term can be obtained:

λy :?1, λx :?2,mul x (e x) y = y

where there is no term for ?1 such that ?1 = (carr x) as required by the dependency

in the type of mul: the second and third arguments must have type carr of the first

argument. In the case above, the variable y has a type that depends on x, thus

abstracting y first, makes it syntactically impossible for its type to depend on x. In

other words ?1 misses x in its context.

When we decided to integrate automatic rewriting techniques like superposition

in Matita, we were attracted by their effectiveness and not in studying a generali-

sation of these techniques to a much more complex framework like CIC. The main,

extremely practical, reason is that the portion of mathematical problems that can

be tackled using first order techniques is non negligible and for some problems intro-

duced by dependent types, like the one explained above, the solution is reasonably

simple. Exploiting the explicit polymorphism of CIC, and the rigid structure of

the proofs we build (i.e. nested application of eq ind) it is possible to collect free

variables that are used as types, inspecting the first arguments of eq ind and eq:

these variable are abstracted first. Even if this simple approach works pretty well

in practice and covers the probably most frequent case of type dependency, it is

not meant to scale up to the general case of dependent types, in which we are not

interested.
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6.2.4 Proof refinement

Proofs produced by paramodulation based techniques are very difficult to under-

stand for a human. Although the single steps are logically trivial, the overall design

of the proof is extremely difficult to grasp. This need is also perceived by the ATP

community; for instance, in order to improve readability, the TPTP[90] library, pro-

vides a functionality to display proofs in a graphical form (called YuTV), pretty

similar to the one in Fig. 6.1.

In the case of purely equational reasoning, mathematicians traditionally organise

the proof as a chain of rewriting steps, each one justified by a simple side argument

(an axiom, or an already proved lemma). Technically speaking, such a chain amounts

to a composition of transitivity steps, where as proof leaves we only admit axioms

(or their symmetric variants), possibly contextualized.

Formally, the basic components we need are provided by the following terms:

trans : ∀A : Type.∀x, y, z : A.x =A y → y =A z → x =A z

sym : ∀A : Type.∀x, y : A.x =A y → y =A x

eq f : ∀A,B : Type.∀f : A→ B.∀x, y : A.x =A y → (f x) =B (f y)

The last term (function law) allows to contextualize the equation x =A y in an

arbitrary context f .

The normal form for equational proofs we are interested in is described by the

following grammar:

Definition 6.2 (Proof normal form)

π = eq f B C ∆ a b axiom

| eq f B C ∆ a b (sym B b a axiom)

| trans A a b c π π

We now prove that any proof build by means of eq ind and eq ind r may be

transformed in the normal form of definition 6.2. The transformation is defined in

two phases. In the first phase we replace all rewriting steps by means of applica-

tions of transitivity, symmetry and function law. In the second phase we propagate

symmetries towards the leaves.
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6.2.5 Phase 1: transitivity chain

The first phase of the transformation is defined by the ρ function of Table 6.5. We

use ∆ and Γ for contexts (i.e. unary functions). We write Γ[a] for the application of

Γ to a, that puts a in the context Γ, and (∆ ◦Γ) for the composition of contexts, so

we have (∆ ◦Γ)[a] = ∆[Γ[a]]. The auxiliary function ρ′ takes a context ∆ : B → C,

a proof of (c =B d) and returns a proof of (∆[c] =C ∆[d]).

ρ(π) ; ρ′(λx :C.x, π) when π : a =C b

ρ′(∆, eq ind A a (λx.Γ[x] =B m) π1 b π2) ;

trans C (∆ ◦ Γ)[b] (∆ ◦ Γ)[a] ∆[m]

(sym C (∆ ◦ Γ)[a] (∆ ◦ Γ)[b] ρ′(∆ ◦ Γ, π2)) ρ′(∆, π1)

ρ′(∆, eq ind r A a (λx.Γ[x] =B m) π1 b π2) ;

trans C (∆ ◦ Γ)[b] (∆ ◦ Γ)[a] ∆[m] ρ′(∆ ◦ Γ, π2) ρ′(∆, π1)

ρ′(∆, eq ind A a (λx.m =B Γ[x]) π2 b π1) ;

trans C ∆[m] (∆ ◦ Γ)[a] (∆ ◦ Γ)[b] ρ′(∆, π2) ρ′(∆ ◦ Γ, π1)

ρ′(∆, eq ind r A a (λx.m =B Γ[x]) π1 b π2) ;

trans C ∆[m] (∆ ◦ Γ)[a] (∆ ◦ Γ)[b]

ρ′(∆, π1) (sym C (∆ ◦ Γ)[b] (∆ ◦ Γ)[a] ρ′(∆ ◦ Γ, π2))

ρ′(∆, π) ; eq f B C ∆ a b π when π : a =B b and ∆ : B → C

Table 6.5: Transitivity chain construction

In order to prove that ρ is type preserving, we proceed by induction on the size of

the proof term, stating that if ∆ is a context of type B → C and π is a term of type

a =B b, then ρ′(∆, π) : ∆[a] =C ∆[b].

Theorem 6.1 (ρ′ injects) For all B and C types, for all a and b of type B, if

∆ : B → C and π : a =B b, then ρ′(∆, π) : ∆[a] =C ∆[b]

Proof: We proceed by induction on the size of the proof term.
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Base case By hypothesis we know ∆ : B → C, and π : a =B b, thus a and b have

type B and (eq f B C ∆ a b π) is well typed, and proves ∆[a] =C ∆[b]

Inductive case (We analyse only the first case, the others are similar)

By hypothesis we know ∆ : B → C, and

π = (eq ind A a (λx.Γ[x] =B m) π1 b π2) : Γ[b] =B m

From the type of eq ind we can easily infer that π1 : Γ[a] =B m, π2 : a =A b,

Γ : A→ B, m : B and both a and b have type A. Since ∆ : B → C, ∆ ◦ Γ is

a context of type A→ C. Since π2 is a subterm of π, by inductive hypothesis

we have

ρ′(∆ ◦ Γ, π2) : (∆ ◦ Γ)[a] =C (∆ ◦ Γ)[b]

Since (∆ ◦Γ) : A→ C and a and b have type A, both (∆ ◦Γ)[a] and (∆ ◦Γ)[b]

live in C. We can thus type the following application.

π′2
def
== (sym C (∆ ◦ Γ)[a] (∆ ◦ Γ)[b] ρ′(∆ ◦ Γ, π2)) : (∆ ◦ Γ)[b] =C (∆ ◦ Γ)[a]

We can apply the induction hypothesis also on π′1
def
== (ρ′ ∆ π1) obtaining

that is has type (∆ ◦ Γ)[a] =C ∆[m]. Since ∆[m] : C, we can conclude that

π3
def
== (trans C (∆ ◦ Γ)[b] (∆ ◦ Γ)[a] ∆[m] π′2 π

′
1) : (∆ ◦ Γ)[b] =C ∆[m]

Expanding ◦ we obtain π3 : ∆[Γ[b]] =C ∆[m]

2

Corollary 6.1 (ρ is type preserving)

Proof: Trivial, since the initial context is the identity. 2



Chapter 6. Automation and interactiveness in Matita 199

θ(sym A b a (trans A b c a π1 π2)) ;

trans A a c b θ(sym A c a π2) θ(sym A b c π1)

θ(sym A b a (sym A a b π)) ; θ(π)

θ(trans A a b b π1 π2) ; θ(π1)

θ(trans A a a b π1 π2) ; θ(π2)

θ(trans A a c b π1 π2) ;

trans A a c b θ(π1) θ(π2)

θ(sym B ∆[a] ∆[b] (eq f A B ∆ a b π)) ;

eq f A B ∆ b a (sym A a b π)

θ(π) ; π

Table 6.6: Canonical form construction

6.2.6 Phase 2: symmetry step propagation

The second phase of the transformation is performed by the θ function in Table 6.6.

The third and fourth case of the definition of θ are merely used to drop a redundant

reflexivity step introduced by the equality resolution rule.

Theorem 6.2 (θ is type preserving) For all A type, for all a and b of type A, if

π : a =A b, then θ(π) : a =A b

Proof: We proceed by induction on the size of the proof term analysing the cases

defining θ. By construction, the proof is made of nested applications of sym and

trans; leaves are built with eq f. The base case is the last one, where θ behaves

as the identity and thus is type preserving. The following cases are part of the

inductive step, thus we know by induction hypothesis that θ is type preserving on

smaller terms.

First case By hypothesis we know that

(sym A b a (trans A b c a π1 π2)) : a =A b
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thus π1 : b =A c and π2 : c =A a. Consequently (sym A c a π2) : a =A c and

(sym A b c π1) : c =A b and the induction hypothesis can be applied to them,

obtaining θ(sym A c a π2) : a =A c and θ(sym A b c π1) : c =A b. From that

we obtain

(trans A a c b θ(sym A c a π2) θ(sym A b c π1)) : a =A b

Second case We know that (sym A b a (sym A a b π)) : a =A b, thus (sym A a b π) :

b =A a and π : a =A b. Induction hypothesis suffices to prove θ(π) : a =A b

Third case Since (trans A a b b π1 π2) : a =A b we have π1 : a =A b. Again, the

induction hypothesis suffices to prove θ(π1) : a =A b

Fourth case Analogous to the third case

Fifth case By hypothesis we know that

(sym B ∆[a] ∆[b] (eq f A B ∆ a b π)) : ∆[b] =B ∆[a]

Thus π : a =A b and (eq f A B ∆ a b π) : ∆[a] =B ∆[b]. Hence (sym A a b π) :

b =A a and

(eq f A B ∆ b a (sym A a b π)) : ∆[b] =B ∆[a]

Sixth case Follows directly from the inductive hypothesis

2

6.2.7 Proof script generation

In Figure 6.2 we show an example of the kind of rendering obtained relative to the

proof of GRP001-4 after all the previously described transformations are applied

(i.e. the proof is in normal form).
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Figure 6.2: Natural language rendering of the (refined) proof object of GRP001-4

The pretty printing facility used to generate that output was already part of

Matita and has been inherited from the MoWGLI project. The declarative lan-

guage developed by Sacerdoti [26] is able to interpret that output, and the execution

of the generated proof script produces the same proof object (the proof object we

generated is the fix point of the composition of the pretty printing function and the

execution function). The result is shown in Table 6.7.

In the implementation of the declarative language Sacerdoti used another tactic

we implemented on top of the auto paramodulation core. The tactic, called solve

rewriting, takes a goal, a set of lemmas (usually one) and a number of steps (usually

one). It finds, using demodulation and backtracking, a solution of the goal (i.e. a

rewrite sequence that leads to an identity) using only the given lemmas the number
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theorem prove b times a is c:

∀ a,b,c : T.

∀H0 : a ∗ b = c.

∀H1 : ∀ x:T. x ∗ x = 1.

∀H2 : ∀ x:T. 1 ∗ x = x.

∀H3 : ∀ x,y,z:T. (x ∗ y) ∗ z = x ∗ (y ∗ z).

b ∗ a = c.

intros.

(∗∗ auto paramodulation. ∗)

we need to prove (∀X2:T.∀X1:T.X1=X2∗(X2∗X1)) (H57).

assume X2:T.

assume X1:T.

conclude X1= (1∗X1) by (H2 X1).

= (X2∗X2∗X1) by (H1 X2).

= (X2∗(X2∗X1)) by (H3 X2 X2 X1)

done.

we need to prove (∀X1:T.X1=X1∗1) (H125).

assume X1:T.

conclude X1= (X1∗(X1∗X1)) by (H57 X1 X1).

= (X1∗1) by (H1 X1)

done.

conclude (b∗a)= (c∗(c∗b)∗a) by (H57 c b).

= (c∗(a∗b∗b)∗a) by (H).

= (c∗(a∗(b∗b))∗a) by (H3 a b b).

= (c∗(a∗1)∗a) by (H1 b).

= (c∗a∗a) by (H125 a).

= (c∗(a∗a)) by (H3 c a a).

= (c∗1) by (H1 a).

= c by (H125 c)

done.

(∗ end auto(Revision : 7586) proof: TIME=0.11 ∗)

qed.� �
Table 6.7: Proof script for GRP001-4



Chapter 6. Automation and interactiveness in Matita 203

of times specified. The tactic is not meant for direct user consumption, but is the

implementation of the declarative statements of the script. The lemma is specified

on the right, but without the limitation given by the number of steps and the set of

lemmas, calling the automatic tactic in its full power to solve the single equations

may produce a different proof. This can mainly happen because the original input

of the tactic were the first and the latter terms of the equality chain, intermediate

step were proved in different context (e.g. having a different set of active equations).

6.2.8 The TPTP test case

We run the paramodulation tactic on 698 unit equality problems of the TPTP library

version 3.2.0. The outcome is shown in the Appendix, in Table 8.1.

The number of problems successfully solved in less than ten minutes (the stan-

dard CASC timeout) is 510 on a relatively old Athlon microprocessor at 1.5 GHz.

More than 350 of these problems were solved in less than ten seconds.

All the proofs found by the automatic tactic can be browsed online in the TPTP

website, that runs Matita on the same set of problems (with slightly better results

since the hardware was faster). All proofs are successfully typechecked by the kernel

of Matita after the set of transformations described in the previous section.

These benchmarks are reported in the appendix and can be browser online

at this url: http://www.cs.miami.edu/~tptp/cgi-bin/DVTPTP2WWW/view_file.

pl?Category=Problems

6.3 Applicative reasoning

After the successful experience with auto paramodulation that proved to be rea-

sonably fast and able to produce good proof scripts, we decided to put additional

efforts on the interactiveness of automatic tactics.

The main motivations were that the debugging phase of the paramodulation

tactic had been extremely difficult, mainly because the impossibility to easily drive

the computation towards a case that was suspected of being buggy. Moreover the

http://www.cs.miami.edu/~tptp/cgi-bin/DVTPTP2WWW/view_file.pl?Category=Problems
http://www.cs.miami.edu/~tptp/cgi-bin/DVTPTP2WWW/view_file.pl?Category=Problems
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long tuning of the tactic running it on the TPTP library made clear that there is no

good heuristic except the one that already knows on which goal the tactic will be

called. Some automatic provers, like Waldmeister [56], provide the user a language

to described patterns to which a particular set of options, meant to tune a prover,

is associated. Almost every problem in the TPTP library has been classified in

that language associating with it the best order relation over constants for example.

We experimented many heuristics but the only result was to decrease the overall

time to prove (or fail proving) all TPTP problems, but at the cost of continuous

fluctuations of the time needed to prove every problem. We thought that being able

to interactively drive the proof searching procedure would have made the debugging

phase much simpler, and that it could have been of some use to the final user.

A prototype for a Prolog like proof searching procedure performing only back-

ward reasoning steps was already available in Matita, as a result of a master thesis.

This tactic is essentially a recursive procedure performing backtracking: it tries to

apply one of the lemmas an oracle provides, recursively solving newly generated

goals. In case it fails, because the oracle produced no applicable lemmas or because

a time (or step) limit is exceeded, backtracking is performed and the oracle is asked

for an alternative solution (if any) for the previous problem.

The next section describes the algorithm and some optimisations, while Sec-

tion 6.3.2 describes the data structure used to store all informations regarding the

state of the algorithm. Section 6.3.3 describes the user interface and how the internal

data structure described in Section 6.3.2 is processed to obtain a user friendly pre-

sentation of the tactic status. Last section describes how we produce a procedural

proof script starting from the proof object generated by the tactic.

6.3.1 Backward reasoning

The computation performed by the algorithm can be represented as an and-or tree

that is visited (and built) with a depth first policy. Figure 6.3 shows a sample.

Here G1 is the initial goal, to which three lemmas were applicable. The applicable

lemmas are alternatives (thus represent an or branching) respectively producing
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Figure 6.3: Sample and-or tree representing an auto computation

the proof problems P1, P2 and P3. The former proof problem has only one open

conjecture, while P2 has two open conjectures. Both have to be solved to consider

the application of the second lemma successful, thus this is an and branching. The

depth first visiting policy already inspected G2 that can be solved by means of two

alternatives, respectively P4 and P5.

Note that if P4 fails P1 can still be solved successfully proving P2. The same

holds for G1 that can not be considered not provable (by the tactic) until P3 fails.

No automatic prover adopt this proof searching algorithm, mainly because the

depth first policy that may lead to extremely long computations in the wrong direc-

tion. Anyway, the depth first policy is the one that better fits our needs. Even if the

tree grows fast, the upper levels will probably be reasonably stable. The user has

thus the time to look at what the prover is doing, possibly asking it to proceed on P3

first for example. This intuition alone does not lead to interactiveness. The easiest

way to write such proof searching algorithm is by recursion, having a decreasing

parameter (for example the depth bound) to enforce termination. Not surprisingly,

this recursion is not tail recursion, since we need the outcome of G3 (for example)

before proceeding on G4. Thus, the information regarding the tree level n is avail-

able only in the n-th stack frame. OCaml does not allow to inspect the current call

stack (only few interpreted language do). To give the user feedback of what is going
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on, we must be able to do snapshot of the current and-or tree. Maintaining this

information in an imperative way is possible, but we considered it too error prone.

A continuation passing style algorithm can do the job, but the higher order nature

of the parameters has the same black-box nature of the call stack.

In addition to that requirement, the possibility of caching intermediate successes

or failures has to be kept into account to obtain reasonable performances. The main

difficulty in handling a cache is to have enough information to recognize a failure.

For example, going back to the example in Figure 6.3, a failure for the intermediate

goal G2 can be cached when G7 or G8 fail (note that they can fail only after that G6

failed, since the tree is visited using a depth first policy). On the contrary, a success

(and a proof) for the intermediate goal G2 can be cached as soon as G6 is solved

(or G7 and G8). Going back to the name we gave to that tree (and-or) is clear that

a goal G can be considered solved when one of its children is solved (or branching)

but can be considered unsolvable only when all of its children are failed (not or

branching). Drawing a parallel with programming languages implementation, the

former condition is computed as a lazy connective.

The data structure we adopted to describe a computation, allowing tail recursion

(thus a stack-less iteration) but containing enough information to reconstruct the

tree and properly handle caching is explained in the next section.

6.3.2 The data structure and the algorithm

The data structure we used is not straightforward, we thus first introduce it infor-

mally with an example, then we move to an operational description of the structure

and its manipulation.

The simple idea that is at the base of the data structure is to project the tree of

Figure 6.3 on its base. Every or branching generates a number of new list elements as

its branching factor. Every subsequent and branching distributes over the previous

(upper) or branching elements. The obtained list is the following:

(P4, [G6]) :: (P5, [G7;G8]) :: (P2, [G3;G4]) :: (P3, [G5]) :: []
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Every element of that list can be considered a complete or branch (solving one of

these elements leads to a solution of the initial problem). Note that the depth fist

policy we use to build the tree needs to examine only the first element of the list, let-

ting the tail unmodified. Moreover every element has its own proof problem, making

it in some sense complete (no need to use information stored in other elements to

process it).

This simple structure is not enough to reconstruct the tree and to perform

caching, thus every element is enriched with more information. Every goal is marked

with D (to do) or with S (save success). These marks are interpreted as instructions,

if the first item in the goals list is a D then the goal is processed trying to solve it,

if it is a S operations regarding caching are performed. Our example, enriched with

this information becomes:

(P4, [DG6 ;SG2 ;SG1 ]) :: (P5, [DG7 ;DG8 ;SG2 ;SG1 ]) ::

(P2, [DG3 ;DG4 ;SG1 ]) :: (P3, [DG5 ;SG1 ]) :: []

To understand how this structure works, we execute one step. The step will produce

the just shown element list, starting from the previous state. Consider the tree

where the subtree rooted in G6 is removed. We build the same enriched structure

and obtain:

(P1, [DG2 ;SG1 ]) :: (P2, [DG3 ;DG4 ;SG1 ]) :: (P3, [DG5 ;SG1 ]) :: []

when processing the first element, it generates in one step the two head elements:

(P4, [DG6 ;SG2 ;SG1 ]) (P5, [DG7 ;DG8 ;SG2 ;SG1 ])

The item DG2 (representing that G2 has to be processed) can be solved with two

lemmas, thus the element is duplicated and the processed item is replaced by a

list of D ending with an S, with a D item for each newly opened goal. When the

processing of a D item produces no new goals, the subsequent and corresponding S

item is processed, saving in cache the proof found for that goal. Note that the proof

problems Pi we considered here are enriched with some information (a substitution
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environment Σ) that allow to reconstruct the proof of every conjecture not appearing

anymore open in the proof problem.

This additional information is necessary to properly cache successes, what is still

missing is the possibility to cache failures. Every elements of the list is enriched with

a third component listing the goals that has to be considered failed when the element

(actually the head D item of the element) fails. This information is inherited by the

rightmost element generated when an or branching is performed.

Operational description of the tactic

To describe formally how this structure is employed we need to define the following

abstract objects.

Definition 6.3 (Cache) A cache θ is a partial function from terms (actually types)

to terms. Its domain can be extended with the operation θ[T 7→ t]. All terms in θ

live in the same context.

We also define the following function to extract from a substitution environment

the proof a given goal.

Definition 6.4 (Proof of goal) Given a goal (metavariable number) g and a sub-

stitution environment Σ, the proof of g denoted with Σ(g) is the least fixed point of

Σ(·) starting from ?g.

We use the notation θ[T 7→ Σ(g)] to update θ associating the proof of g with T .

We use ⊥ to represent failures, thus θ[T 7→ ⊥] extends θ with the information that

T has no proof.

Since P and Σ are always coupled, we call them P from now on (of type P ).

Definition 6.5 (Element) We call an element a tuple of type (in OCaml notation)

P ∗ oplist ∗ goallist where goal is the type of metavariable indexes and op is the

algebraic type with the D and S constructors. D taking in input a goal, S a goal

and a term.
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Finally, the function to find lemmas that can be applied to a given goal is cands.

Definition 6.6 (Candidates (of the environment E)) Let g be a goal, P a proof

problem and Σ a substitution environment. Let Γ `?g : T ∈ P. cands((P ,Σ), g)

returns a list of elements (t, (P ′,Σ′), g1 . . . gn) such that:

• t ∈ E

• [] ` t : T1 → . . .→ Tn → T ′

• P , Σ, Γ ` T ?≡ T ′
U
; P ′, Σ′

• Σ′(Γ) `?gi : Σ′(Ti) ∈ P ′

Note that cands can easily be extended to look for t not only in E but also in θ

since all elements in θ live in the same context as T .

In Table 6.8 we define the step function mapping a list of elements to a new list

of elements. This is the core of the auto tactic.

The functions sort and purge have not been defined, for the moment both can

be considered to be the identity. The step function is not defined for the status

([], θ) since it represent complete failure: the elems list can be considered to list all

alternatives to prove the initial goal, being empty means that all alternatives have

been explored with a negative result.

The annotation t in Stg is not used in the operational semantic, and t represents

the lemma that was applied to g. Remember we have to show the user the history of

lemmas applied so far (the lemmas that annotate the arrows in the tree of Figure 6.3).

An element ((P, St1 :: . . . :: Stn , f l), θ) represents a tree where all goals have been

solved.

As we stated in the informal description of the algorithm, the procedure can be

limited to a certain depth, and even a number of nodes. To efficiently keep track of

the depth or size of the tree, the element structure is enriched with that information:

every time a D item is processed, the depth limit (as well as the size) is decreased.
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(((P ,Σ) as P, Stg :: tl, f l) :: el, θ)
step−→ ((P, tl, f l) :: el′, θ′)

where θ′ = θ[T 7→ Σ(g)] and Γ `?g : T ∈ P and el′ = purge(el)

and when M(T ) = ∅

(((P ,Σ) as P, Stg :: tl, f l) :: el, θ)
step−→ ((P, tl, f l) :: el, θ)

where Γ `?g : T ∈ P
and when M(T ) 6= ∅

((P,Dg :: tl, f l) :: el, θ)
step−→ ((P ′1, l1@tl, []) :: . . . :: (P ′m, lm@tl, g :: fl) :: el, θ) (∗)

where cands(P, g) = (t1, P
′
1, g1,1 . . . g1,ni) :: . . . :: (tm, P

′
m, gm,1 :: . . . :: gm,nm)

and li = sort([Dgi,1 . . . ;Dgi,ni
]) :: [Stig ] for i ∈ {1 . . .m}

((P,Dg :: tl, f l) :: el, θ)
step−→ ((P, [], f l) :: el, θ′)

when cands(P, g) = []

(((P ,Σ) as P,Dg :: tl, f l) :: el, θ)
step−→ ((P, [], f l) :: el, θ) (∗∗)

when θ = θ′[T 7→ ⊥] and Γ `?g : T ∈ P

((P, [], f l) :: el, θ)
step−→ (el, θ′)

where θ′ = θ and Γg `?g : Tg ∈ xP for g ∈ fl and θ′ = θ[Tg 7→ ⊥] for g ∈ fl

([], θ)
step−→ (Failure)

Table 6.8: Auto tactic operational description

When an S item is processed the depth is increased again. The additional following

rule is then added to the operational description:

((P, items, fl, depth, size) :: elems, θ)
step−→ ((P, [], f l, depth, size) :: elems, θ)

when depth < 0 ∨ size < 0

The cache θ is still not optimal, since a goal g of type T can be associated with

⊥ because the algorithm run out of depth (or size). If the algorithm encounter again
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the same goal type T with a greater depth, it could retry. To fix this problem, goals

have to be paired together with the depth at which they have been encountered in

the failure (fl) list, and the ⊥ symbol annotated with that depth in the rule for

elements with an empty item list (((P, [], f l), θ)). Then the rule (**) can be replaced

with

(((P ,Σ) as P,Dg :: tl, f l, depth, size) :: elems, θ)
step−→ ((P, [], f l, depth, size) :: elems, θ)

when θ = θ′[T 7→ ⊥n] and Γ `?g : T ∈ P and depth ≤ n

The sort function can be used to implement an heuristics to choose which alter-

native the next step computation should attack. The simplest heuristic is to count

the number of newly generated goals (the length of li in the rule (*)).

The purge function is more sophisticated and is used to drop alternatives (broth-

ers in the tree). It is used only if the type of the goal is free of metavariables. If it

contains metavariables, every different proof may instantiate them in a different way

and that may make other goals false. In that case, we do not cache the solution.

If the goal type is metavariable free, we cache the proof and remove all its

brothers. They can be identified (in the flat elem list) comparing the list of items:

since the tl is inherited by all brothers (in rule (*)).

6.3.3 Driving automation

In Figure 6.4 the window to drive the automatic tactic is shown. On the back-

ground there is the main window of Matita, showing the current open conjecture

(conjecture fifteen). The window is divided in three columns:

• the leftmost shows the progressive number of open conjectures, the number of

the conjecture examined and the depth left (with standard parameters auto

has a bound of three);

• the column in the middle displays the current conjecture;

• the rightmost column lists all lemmas that can be applied to the conjecture.
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Figure 6.4: Auto interaction window

To attack conjecture fifteen the automatic tactic found a bunch of lemmas that

can be applied. The former, witness, has already been applied and is thus coloured

in gray. All its alternatives are shown on its right. The application of the witness

lemma to a goal of the form n|m opens two conjectures: the former (number 52) is

that for a certain ?, m = n∗? and the latter (number 51) is the witness ? itself. The

next step performed by auto is to find relevant lemmas for the conjecture displayed

in the second line, place them in the rightmost column, gray the former and display

the result of its application. In case one application fails, the next alternative is

attempted. In case there are no alternatives left, the next alternative of the previous

line it considered. Thus, if no lemmas can be applied to conjecture 52, both line one

and two are removed together with the witness lemma that generated them and the

lemma div mod spec to divides is applied.



Chapter 6. Automation and interactiveness in Matita 213

The user can execute the tactic step by step with the next button, and switch

between the running status and the paused one with the buttons pause and play.

To drive the proof searching algorithm the user can interact with the lemmas in

the rightmost column. In Figure 6.4 the user just clicked on the transitive divides

lemma, opening the list of allowed actions. The prune action simply removes the

lemma for the list of alternatives, the follow action makes all alternatives before the

one selected immediately fail.

Information reconstruction

The window shown in Figure 6.4 is able to render the content of the following data

structure, that is almost isomorphic to what is displayed:� �
type auto status =

(int ∗ Cic.term ∗ int ∗ ( int ∗ Cic.term) list ) list ∗

( int ∗ Cic.term ∗ int) list� �
The fields of the first components are respectively the number of the goal, its type

and the depth at which it is being processed. The int ∗ Cic.term list represents the

alternatives for the goal, the term being the lemma, while the number is an identifier

that can be used to drive the automation (following or dropping the alternative).

The second component represents the list of goals of the first element (the one being

processed). The first integer is the goal identifier, the term is its type and the last

integer is the depth.

The procedure to generate such data starting from a list of elements is not of

particular interest, but is reported for the sake of completeness.

The second component can be easily generated from the oplist component of the

first element (P, oplist, f l), filtering out all S elements. The first component is harder

to build. The list of elements is projected dropping all but the oplist and filtering

out items marked with D and adding the depth component to every new item. The

obtained structure has thus the following type: (goal ∗ Cic.term ∗ int) list list .



214 Chapter 6. Automation and interactiveness in Matita

This list is processed, in reverse order starting with an empty accumulator, with the

following function:� �
let rec eat all rows = function

| [] →rows

| elem:: or list as l →

match List.rev elem with

| ((goal,cand,depth):: →

let eaten, l = eat in parallel goal l in

let rows = rows @ [goal, depth, List .rev eaten] in

eat all rows l

| [] → eat all rows or list

in

eat all []� �
The idea is to reconstruct the tree from its root. Going back to Figure 6.3,

the last element will be the one relative to P3, (P3, [DG5 ;S
lemma3
G1

]), that has been

preprocessed to (G5, lemma3, depth). The function eat in parallel will thus remove

all elements (starting from the tail) that have G5 as the first component, collecting

all the lemmas (the second component). The resulting row will thus be:

[G5, depth, [lemma1; lemma2; lemma3]]

The recursive call will then eat all elements having G2 as the first component,

collecting lemma4 and lemma5.

The utility function eat in parallel is reported below and simply eats the last

element of each list accumulating some components of the eaten elements.� �
let eat in parallel id l =

let rec aux (eaten, new l as acc) = function

| [] →acc

| l :: tl →

match eat tail if eq id l with

| None, l →aux (eaten, new l@[l]) tl
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| Some t,l →aux (eaten@[t], new l@[l]) tl

in

aux ([],[]) l� �
The utility function eat tail if eq eats all elements having the first component

equal to its first argument. Note that the lists in input are already reversed.� �
let eat tail if eq id l =

let rec aux (s, l ) = function

| [] →s, l

| (id1,c,depth):: tl when id = id1 →

(match s with None →aux (Some c,l) tl | Some →assert false)

| (id1,c,depth):: tl →aux (s, e :: l ) tl

in

let c, l = aux (None, []) l in c, List .rev l� �
6.3.4 Proof reconstruction

As we already mentioned in Chapter 4 the facility of producing a declarative proof

script [26] starting from a proof object is now part of Matita, but the procedure

for producing a procedural proof scripts is not finished yet (and its implementation

was not even in progress when we worked on the tactic). Since we were interested in

obtaining a procedural proof script, that we believe more appealing for a computer

scientist used to programming languages, we had to implement an had hoc procedure

to obtain a reasonable proof script.

Since proofs are found with a simple backward reasoning algorithm, they have a

rigid structure, essentially an initial spine of lambda abstractions and then nested

applications. This structure corresponds to an application of the intros tactic and

a sequence of properly nested call to the apply tactic.

The head of every application corresponds to an apply command, and every

argument whose sort is Prop has to be processed recursively as a nested apply

command.
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What follows is the proof script generated by the auto tactic on the goal described

in Section 6.3.3.� �
(∗∗ auto. ∗)

apply ( transitive divides (nth prime (max prime factor n)) n m ? ?);

[apply (Hcut).

|apply (H2).

]� �
As one can see, the dependency of types to terms is not kept into account,

since all the arguments of transitive divides can be inferred from the successive

applications. This kind of optimisation was out of our scope, since we were interested

only in providing a working procedural script. Guidi in [49] develops a full featured

procedural pretty printer for proof objects, that will be substituted to that proof of

concept in the near future.
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In this thesis we describe our experiences and research results as a user and as a

developer of interactive theorem provers.

In the first part of the thesis we describe two distinct formalisation experiences on

two different interactive theorem provers, giving a detailed analysis of the method-

ologies we used and the issues we faced.

The first one describes the work we made during our internship in the Mathe-

matical Components team leaded by Georges Gonthier. Our work consisted in the

formalisations of some results of finite group theory, with particular care in the de-

sign of basic definitions and data types. We defined finite-intensional sets, group

actions and function spaces, with particular care, since they are concepts that are

widely used in the Feit-Thompson theorem proof the team is attacking. Our research

results have been published in [46] we co-author with the rest of the Mathematical

Components team. In this thesis we also analysed the methodologies we followed

and the main issue we encountered in our formalisation experience using the SSRe-

flect Coq extension. Some of these considerations directly influenced some of the

work we made as a developer of the Matita interactive theorem prover.

In the second Chapter we describe a formalisation experience we did in the very

last part of our PHD, in which we used many of the features we implemented in

Matita. We formalised the sandwich theorem, a relevant part of the wider objective

of the D.A.M.A. Project, leaded by Claudio Sacerdoti. The project aims to exhibit a

constructive proof of the Lebesgue dominated convergence theorem. The sandwich

lemma is one of the main components of such proof. This formalisation extensively

tests the coercion mechanism we implemented in Matita, building hierarchies of

algebraic structures with multiple inheritance. We also describe the methodologies

we adopted to overcome some missing features of Matita, like a proper support for

setoids in the tactic engine.

The second part of the thesis is dedicated to our experience as a developer of

the Matita interactive theorem prover. We worked on many aspects of the system,

from its tactic language design and implementation to the integration of searching

facilities (Chapter 4), but in this manuscript we concentrate on the refiner (type
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inference) subsystem and automation.

In Chapter 5 we describe the work we did in the refiner subsystem of Matita to

support coercive subtyping and multiple inheritance in an hierarchy of structures.

The user is allowed to declare multiple coercive paths from/to the same types.

This generates diamonds in the coercion graph, a figure associated with multiple

inheritance where common substructures have to be shared. We also describe in

details the discipline the user can follow to use fruitfully this technology. This

technique has been published in [27] and used to declare the groups and lattices

hierarchy for the D.A.M.A. Project described in Chapter 3. When multiple coherent

coercive paths are declared, uncommon unification problem arise and we propose

a solution that exploits, in the unification algorithm, the information given by the

coercion graph. We also implemented support for subset coercions. These coercions

are used in the spirit of PVS subtype predicates to specify software written using

simple (ML like) types with properties expressed using a richer (dependently) typed

language.

The other subsystem we analyse in this dissertation is automation. We developed

a tactic that performs rewriting according to the superposition calculus restricted to

the unit equality case, tuning it for performances using the huge TPTP [90] library.

The obtained results are browsable on the TPTP website, and amount to more than

500 successes on a test suite of 700 problems, of which 350 have been solved in

less then ten seconds. Another tactic, performing backward reasoning (Prolog style

proof search), has been designed with user interaction in mind. It allows the user

to drive the tactic, following or dropping computations. Both tactics are integrated

with the searching facilities Matita offers and are able to produce not only CIC

proof objects but also proof scripts. The quality of proof scripts is influenced by

the proof object the tactic produces, and in the paper [4] we published the proof

reconstruction and refinement algorithm used by the former tactic.

During our PHD we put a considerable amount of effort to deliver Matita,

reworking the database subsystem to allow an easier installation of the system.

We then developed a live CD that allows users to evaluate the system without
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even installing it on the hard drive. This technology has been successfully used

by the students of the Types Summer School 2007. The live CD can also be used

without rebooting the computer, since free emulators like VirtualBox1 and Qemu2

are able to run the live CD in a virtual machine (actually a regular window on

the user’s desktop) with a very small slowdown. These emulators are available at

no cost for Windows, Mac OS X and Linux based operating systems, the former

being straightforward to use. This allows to use Matita on operating systems,

like Windows, to which it has not been ported. Additionally we created a Debian

package for Matita that is easily installable on computers running the Debian

GNU/Linux distribution or any of its derivatives like the widespread Ubuntu Linux

distribution.

A future direction we intend to follow in the short term is to continue the formal-

isation of the Lebesgue dominated convergence theorem. That activity will further

stress Matita and its refinement subsystem, contributing to its consolidation.

More in general we believe the Matita interactive theorem prover has reached

a stage in its development that really allows to use it fruitfully to perform formal

verification. The system is now pretty easy to install, or run from the live CD,

and this is essential to attract users. Thus, seems reasonable to put effort in using

the system, possibly formalising relevant results to convince potential users that the

system is ready for them.

1http://www.virtualbox.org
2http://fabrice.bellard.free.fr/qemu/

http://www.virtualbox.org
http://fabrice.bellard.free.fr/qemu/
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8.1 TPTP benchmarks

The following long table reports the result obtained by the auto paramodulation

tactic on the problems falling in the unit equality category of the TPTP library.

The table reports only the time (in seconds) in case of success, found proofs can

be inspected browsing the TPTP website at this url: http://www.cs.miami.edu/

~tptp/cgi-bin/DVTPTP2WWW/view_file.pl?Category=Problems

Problem Time Problem Time Problem Time Problem Time

ALG005-1 72.61 ALG006-1 7.07 ALG007-1 8.76 BOO001-1 0.54

BOO002-1 6.47 BOO002-2 9.59 BOO003-2 0.78 BOO003-4 0.48

BOO004-2 0.2 BOO004-4 0.16 BOO005-2 0.32 BOO005-4 0.19

BOO006-2 1.05 BOO006-4 0.7 BOO007-2 31.65 BOO007-4 27.51

BOO008-2 24.61 BOO008-4 146.41 BOO009-2 1.28 BOO009-4 0.26

BOO010-2 0.96 BOO010-4 0.32 BOO011-2 0.08 BOO011-4 0.02

BOO012-2 0.41 BOO012-4 2.11 BOO013-2 0.31 BOO013-4 2.78

BOO014-2 20.42 BOO014-4 114.97 BOO015-2 15.38 BOO015-4 96.29

BOO016-2 0.85 BOO017-2 1.7 BOO018-4 0.02 BOO021-1 0.02

BOO022-1 65.58 BOO023-1 141.4 BOO024-1 17.84 BOO025-1 37.02

BOO026-1 17.55 BOO028-1 FAIL BOO029-1 17.53 BOO031-1 FAIL

BOO034-1 0.89 BOO067-1 FAIL BOO068-1 2.99 BOO069-1 2.85

BOO070-1 2.76 BOO071-1 3.18 BOO072-1 62.23 BOO073-1 FAIL

BOO074-1 99.57 BOO075-1 4.04 BOO076-1 FAIL COL001-1 356.14

COL001-2 4.21 COL002-1 4.18 COL002-4 FAIL COL002-5 FAIL

COL003-1 FAIL COL004-1 FAIL COL004-3 0.02 COL006-1 FAIL

COL006-5 FAIL COL006-6 FAIL COL006-7 FAIL COL007-1 0

COL008-1 0.01 COL009-1 3.16 COL010-1 1.59 COL011-1 FAIL

COL012-1 0 COL013-1 0.01 COL014-1 0 COL015-1 0.02

COL016-1 0.01 COL017-1 0.01 COL018-1 0 COL019-1 1.65

COL020-1 FAIL COL021-1 0.03 COL022-1 0.05 COL023-1 FAIL

http://www.cs.miami.edu/~tptp/cgi-bin/DVTPTP2WWW/view_file.pl?Category=Problems
http://www.cs.miami.edu/~tptp/cgi-bin/DVTPTP2WWW/view_file.pl?Category=Problems


Chapter 8. Appendix 223

Problem Time Problem Time Problem Time Problem Time

COL024-1 0.01 COL025-1 0.05 COL026-1 FAIL COL027-1 FAIL

COL029-1 0 COL030-1 0.18 COL031-1 0.01 COL032-1 0.05

COL033-1 4.71 COL034-1 0.51 COL035-1 FAIL COL036-1 FAIL

COL037-1 FAIL COL038-1 FAIL COL039-1 5.87 COL041-1 0.65

COL042-1 FAIL COL042-6 FAIL COL042-7 FAIL COL042-8 FAIL

COL042-9 FAIL COL043-1 FAIL COL043-3 FAIL COL044-1 FAIL

COL044-6 FAIL COL044-7 FAIL COL044-8 FAIL COL044-9 FAIL

COL045-1 0.22 COL046-1 FAIL COL048-1 0.06 COL049-1 5.11

COL050-1 0.01 COL051-1 0.01 COL052-1 FAIL COL053-1 0.01

COL056-1 0.04 COL057-1 FAIL COL058-1 0.32 COL058-2 0.02

COL058-3 0.01 COL059-1 FAIL COL060-1 23.48 COL060-2 0

COL060-3 0 COL061-1 477.77 COL061-2 0 COL061-3 0

COL062-1 FAIL COL062-2 0 COL062-3 0 COL063-1 FAIL

COL063-2 0 COL063-3 0 COL063-4 0 COL063-5 0

COL063-6 0 COL064-1 FAIL COL064-2 0 COL064-3 0

COL064-4 0 COL064-5 0 COL064-6 0 COL064-7 0

COL064-8 0 COL064-9 0 COL065-1 FAIL COL066-1 FAIL

COL066-2 2.51 COL066-3 2.07 COL070-1 FAIL COL075-2 0.16

COL083-1 0 COL084-1 0 COL085-1 0 COL086-1 0

GRP001-2 0.03 GRP001-4 0.18 GRP002-2 31.68 GRP002-3 347.29

GRP002-4 67.57 GRP010-4 0.05 GRP011-4 0.25 GRP012-4 0.04

GRP014-1 50.29 GRP022-2 0.01 GRP023-2 0.01 GRP024-5 FAIL

GRP114-1 215.54 GRP115-1 0.05 GRP116-1 0.15 GRP117-1 0.06

GRP118-1 0.17 GRP119-1 54.79 GRP120-1 41.58 GRP121-1 37.22

GRP122-1 38.77 GRP136-1 0.1 GRP137-1 0.1 GRP138-1 4.32

GRP139-1 0.09 GRP140-1 3.11 GRP141-1 0.21 GRP142-1 0.04

GRP143-1 0.05 GRP144-1 0.04 GRP145-1 0.05 GRP146-1 0.09

GRP147-1 4.68 GRP148-1 3.4 GRP149-1 0.24 GRP150-1 0.04
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Problem Time Problem Time Problem Time Problem Time

GRP151-1 0.06 GRP152-1 0.04 GRP153-1 0.05 GRP154-1 0.1

GRP155-1 0.08 GRP156-1 0.13 GRP157-1 0.08 GRP158-1 0.13

GRP159-1 0.28 GRP160-1 0.05 GRP161-1 0.03 GRP162-1 0.29

GRP163-1 0.43 GRP164-1 FAIL GRP164-2 FAIL GRP165-1 54.54

GRP165-2 51.75 GRP166-1 261.59 GRP166-2 FAIL GRP166-3 62.82

GRP166-4 52.29 GRP167-1 124.19 GRP167-2 300.19 GRP167-3 311.96

GRP167-4 250.37 GRP167-5 19.53 GRP168-1 0.09 GRP168-2 0.09

GRP169-1 107.13 GRP169-2 114.44 GRP170-1 307.4 GRP170-2 318.68

GRP170-3 339.79 GRP170-4 325.63 GRP171-1 6.36 GRP171-2 6.96

GRP172-1 10.72 GRP172-2 6.19 GRP173-1 15.46 GRP174-1 21.49

GRP175-1 33.68 GRP175-2 41.46 GRP175-3 41.14 GRP175-4 41.87

GRP176-1 0.11 GRP176-2 0.08 GRP177-2 FAIL GRP178-1 282.09

GRP178-2 297.82 GRP179-1 FAIL GRP179-2 FAIL GRP179-3 FAIL

GRP180-1 FAIL GRP180-2 FAIL GRP181-1 FAIL GRP181-2 FAIL

GRP181-3 547.55 GRP181-4 FAIL GRP182-1 0.06 GRP182-2 0.05

GRP182-3 0.04 GRP182-4 0.05 GRP183-1 FAIL GRP183-2 FAIL

GRP183-3 FAIL GRP183-4 FAIL GRP184-1 FAIL GRP184-2 FAIL

GRP184-3 FAIL GRP184-4 39.14 GRP185-1 FAIL GRP185-2 FAIL

GRP185-3 FAIL GRP185-4 FAIL GRP186-1 FAIL GRP186-2 FAIL

GRP186-3 0.21 GRP186-4 0.13 GRP187-1 FAIL GRP188-1 0.03

GRP188-2 0.05 GRP189-1 0.06 GRP189-2 0.07 GRP190-1 88.61

GRP190-2 81.56 GRP191-1 106.88 GRP191-2 89.87 GRP192-1 0.69

GRP193-1 70.37 GRP193-2 50.43 GRP195-1 FAIL GRP196-1 FAIL

GRP200-1 FAIL GRP201-1 FAIL GRP202-1 FAIL GRP203-1 FAIL

GRP205-1 FAIL GRP206-1 0.18 GRP403-1 8.97 GRP404-1 51.68

GRP405-1 33.55 GRP406-1 128.4 GRP407-1 240.49 GRP408-1 243.34

GRP409-1 10.16 GRP410-1 22.28 GRP411-1 19.42 GRP412-1 19.16

GRP413-1 100 GRP414-1 62.5 GRP415-1 342.07 GRP416-1 400.72
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Problem Time Problem Time Problem Time Problem Time

GRP417-1 388.08 GRP418-1 FAIL GRP419-1 FAIL GRP420-1 FAIL

GRP421-1 3.56 GRP422-1 150.83 GRP423-1 76.62 GRP424-1 11.61

GRP425-1 11.2 GRP426-1 20.01 GRP427-1 31.94 GRP428-1 36.6

GRP429-1 50.34 GRP430-1 17.74 GRP431-1 16.07 GRP432-1 15.53

GRP433-1 4.91 GRP434-1 5.55 GRP435-1 8.83 GRP436-1 36.79

GRP437-1 35.27 GRP438-1 38.97 GRP439-1 13.91 GRP440-1 28.28

GRP441-1 36.2 GRP442-1 163.86 GRP443-1 169.09 GRP444-1 139.87

GRP445-1 0.48 GRP446-1 0.1 GRP447-1 1.11 GRP448-1 0.33

GRP449-1 0.1 GRP450-1 1.05 GRP451-1 0.15 GRP452-1 1.64

GRP453-1 2.88 GRP454-1 0 GRP455-1 0.05 GRP456-1 0.24

GRP457-1 0 GRP458-1 0.06 GRP459-1 0.25 GRP460-1 0

GRP461-1 0.02 GRP462-1 0.31 GRP463-1 0 GRP464-1 0.02

GRP465-1 0.4 GRP466-1 0.1 GRP467-1 0.67 GRP468-1 1.07

GRP469-1 116.49 GRP470-1 123.5 GRP471-1 48.37 GRP472-1 41.32

GRP473-1 37.76 GRP474-1 53.59 GRP475-1 51.86 GRP476-1 37.8

GRP477-1 41.41 GRP478-1 18.96 GRP479-1 19.22 GRP480-1 21.92

GRP481-1 0.03 GRP482-1 0.05 GRP483-1 1.16 GRP484-1 0.11

GRP485-1 0.23 GRP486-1 1.23 GRP487-1 0.04 GRP488-1 1.17

GRP489-1 2.53 GRP490-1 0.06 GRP491-1 0.08 GRP492-1 0.36

GRP493-1 0.03 GRP494-1 0.06 GRP495-1 0.27 GRP496-1 0.01

GRP497-1 0.19 GRP498-1 0.46 GRP499-1 7.75 GRP500-1 4.26

GRP501-1 87.52 GRP502-1 161.64 GRP503-1 248.32 GRP504-1 247.37

GRP505-1 FAIL GRP506-1 FAIL GRP507-1 FAIL GRP508-1 FAIL

GRP509-1 143.03 GRP510-1 0.78 GRP511-1 8.71 GRP512-1 0.17

GRP513-1 57.79 GRP514-1 0.17 GRP515-1 0.31 GRP516-1 0.17

GRP517-1 1.38 GRP518-1 0.13 GRP519-1 0.46 GRP520-1 0.18

GRP521-1 0.12 GRP522-1 0.09 GRP523-1 2.7 GRP524-1 0.19

GRP525-1 0.14 GRP526-1 0.04 GRP527-1 9.44 GRP528-1 0.19
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Problem Time Problem Time Problem Time Problem Time

GRP529-1 0.15 GRP530-1 0.06 GRP531-1 2.91 GRP532-1 0.15

GRP533-1 0.01 GRP534-1 0.03 GRP535-1 2.82 GRP536-1 0.09

GRP537-1 0.01 GRP538-1 0.02 GRP539-1 2.45 GRP540-1 0.13

GRP541-1 0 GRP542-1 0.02 GRP543-1 0.67 GRP544-1 0.05

GRP545-1 0 GRP546-1 0.01 GRP547-1 1.7 GRP548-1 0.06

GRP549-1 0 GRP550-1 0.02 GRP551-1 0.75 GRP552-1 0.03

GRP553-1 0.13 GRP554-1 0.11 GRP555-1 1.03 GRP556-1 0.09

GRP557-1 0.16 GRP558-1 0.1 GRP559-1 3.08 GRP560-1 0.25

GRP561-1 0.14 GRP562-1 0.07 GRP563-1 6.03 GRP564-1 0.16

GRP565-1 0.09 GRP566-1 0.06 GRP567-1 28.2 GRP568-1 0.36

GRP569-1 0.07 GRP570-1 0.06 GRP571-1 26.98 GRP572-1 0.24

GRP573-1 0.06 GRP574-1 0.1 GRP575-1 46.52 GRP576-1 0.35

GRP577-1 0.21 GRP578-1 0.43 GRP579-1 1.66 GRP580-1 0.46

GRP581-1 0.04 GRP582-1 0.3 GRP583-1 2.94 GRP584-1 0.23

GRP585-1 0.11 GRP586-1 0.09 GRP587-1 FAIL GRP588-1 1.47

GRP589-1 0.5 GRP590-1 0.12 GRP591-1 0.64 GRP592-1 0.28

GRP593-1 2.56 GRP594-1 1.16 GRP595-1 0.24 GRP596-1 0.29

GRP597-1 0.62 GRP598-1 0.28 GRP599-1 2.33 GRP600-1 0.36

GRP601-1 3.56 GRP602-1 0.44 GRP603-1 0.56 GRP604-1 0.77

GRP605-1 1.75 GRP606-1 1.62 GRP607-1 FAIL GRP608-1 2.11

GRP609-1 2.03 GRP610-1 0.5 GRP611-1 0.24 GRP612-1 0.32

GRP613-1 0.78 GRP614-1 0.3 GRP615-1 1.73 GRP616-1 0.32

LAT006-1 38.21 LAT007-1 97.83 LAT008-1 0.82 LAT009-1 341.28

LAT010-1 FAIL LAT011-1 FAIL LAT012-1 4.82 LAT013-1 90.79

LAT014-1 0 LAT017-1 FAIL LAT018-1 FAIL LAT019-1 FAIL

LAT020-1 FAIL LAT021-1 FAIL LAT022-1 FAIL LAT023-1 FAIL

LAT026-1 20.28 LAT027-1 13.64 LAT028-1 17.73 LAT031-1 0.99

LAT032-1 27.63 LAT033-1 0 LAT034-1 0 LAT038-1 FAIL
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Problem Time Problem Time Problem Time Problem Time

LAT039-1 0.07 LAT039-2 0.05 LAT040-1 36.21 LAT042-1 1.93

LAT043-1 158.67 LAT044-1 FAIL LAT045-1 0.17 LAT070-1 FAIL

LAT072-1 FAIL LAT074-1 FAIL LAT075-1 FAIL LAT076-1 FAIL

LAT077-1 FAIL LAT078-1 FAIL LAT079-1 FAIL LAT080-1 84.86

LAT081-1 FAIL LAT082-1 FAIL LAT083-1 89 LAT084-1 FAIL

LAT085-1 FAIL LAT086-1 573.47 LAT087-1 588.84 LAT088-1 0.06

LAT089-1 1.68 LAT090-1 0.14 LAT091-1 16.44 LAT092-1 82.68

LAT093-1 320.09 LAT094-1 97.53 LAT095-1 474.76 LAT096-1 162.98

LAT097-1 115.99 LAT138-1 FAIL LAT139-1 FAIL LAT140-1 FAIL

LAT141-1 FAIL LAT142-1 FAIL LAT143-1 FAIL LAT144-1 FAIL

LAT145-1 FAIL LAT146-1 FAIL LAT147-1 FAIL LAT148-1 FAIL

LAT149-1 FAIL LAT150-1 FAIL LAT151-1 FAIL LAT152-1 FAIL

LAT153-1 FAIL LAT154-1 FAIL LAT155-1 FAIL LAT156-1 FAIL

LAT157-1 FAIL LAT158-1 FAIL LAT159-1 FAIL LAT160-1 FAIL

LAT161-1 FAIL LAT162-1 FAIL LAT163-1 FAIL LAT164-1 FAIL

LAT165-1 FAIL LAT166-1 FAIL LAT167-1 FAIL LAT168-1 190.3

LAT169-1 FAIL LAT170-1 FAIL LAT171-1 250.07 LAT172-1 FAIL

LAT173-1 FAIL LAT174-1 FAIL LAT175-1 FAIL LAT176-1 FAIL

LAT177-1 FAIL LCL109-2 FAIL LCL109-6 FAIL LCL110-2 1.67

LCL111-2 5.31 LCL112-2 1.81 LCL113-2 1.39 LCL114-2 1.9

LCL115-2 1.41 LCL116-2 5.72 LCL132-1 0.02 LCL133-1 0.04

LCL134-1 0.05 LCL135-1 0.05 LCL138-1 FAIL LCL139-1 1.81

LCL140-1 1.45 LCL141-1 2.09 LCL153-1 1.36 LCL154-1 10.65

LCL155-1 0.14 LCL156-1 1.38 LCL157-1 1.13 LCL158-1 1.87

LCL159-1 131.67 LCL160-1 FAIL LCL161-1 0.1 LCL162-1 FAIL

LCL163-1 10.1 LCL164-1 0.15 LDA001-1 0.13 LDA002-1 22.3

LDA007-3 0.08 RNG007-4 0.06 RNG008-3 17.75 RNG008-4 18.52

RNG008-7 47.63 RNG009-5 FAIL RNG009-7 FAIL RNG011-5 0.14



228 Chapter 8. Appendix

Problem Time Problem Time Problem Time Problem Time

RNG012-6 114.29 RNG013-6 132.92 RNG014-6 145.08 RNG015-6 127.35

RNG016-6 133.38 RNG017-6 120.96 RNG018-6 116.44 RNG019-6 FAIL

RNG019-7 FAIL RNG020-6 FAIL RNG020-7 FAIL RNG021-6 FAIL

RNG021-7 FAIL RNG023-6 0.09 RNG023-7 0.11 RNG024-6 0.09

RNG024-7 0.11 RNG025-4 FAIL RNG025-5 FAIL RNG025-6 FAIL

RNG025-7 FAIL RNG026-6 FAIL RNG026-7 FAIL RNG027-5 FAIL

RNG027-7 FAIL RNG027-8 FAIL RNG027-9 FAIL RNG028-5 FAIL

RNG028-7 FAIL RNG028-8 FAIL RNG028-9 FAIL RNG029-5 FAIL

RNG029-6 FAIL RNG029-7 FAIL RNG035-7 FAIL ROB001-1 FAIL

ROB002-1 0.1 ROB003-1 0.72 ROB004-1 66.26 ROB005-1 FAIL

ROB006-1 FAIL ROB006-2 FAIL ROB008-1 80.62 ROB009-1 0.07

ROB010-1 0.03 ROB013-1 0.02 ROB022-1 FAIL ROB023-1 FAIL

ROB026-1 FAIL ROB030-1 0.44 ROB031-1 FAIL ROB032-1 FAIL

SYN080-1 0 SYN083-1 0

8.2 Tinycals utility functions

The goal automatically selected by “[” or “|” is called unhandled until a tactic is

applied to it. Unhandled goals are just postponed (not moved into the todo list

τ) by i1,. . ., in“:”. Goals opened by a tactic are marked with mark as handled to

distinguishing them from unhandled goals. Goals marked with Closed are always

considered unhandled. The function renumber branches is used by “[” to name

branches.

unhandled(l) =

 true if l = 〈n, Open g〉 ∧ n > 0 ∨ l = 〈 , Closed g〉
false otherwise

mark as handled([g1; · · · ; gn]) = [〈0, Open g1〉; · · · ; 〈0, Open gn〉]

renumber branches([〈i1, s1〉; · · · ; 〈in, sn〉]) = [〈1, s1〉; · · · ; 〈n, sn〉]
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The next three functions returns open goals or tasks in the status or parts of it.

Open goals are those corresponding to conjectures still to be proved.

get open tasks(l) =
[ ] if l = [ ]

〈i, Open g〉 ::get open tasks(tl) if l = 〈i, Open g〉 :: tl

get open tasks(tl) if l = hd :: tl

get open goals in tasks list(l) =
[ ] if l = [ ]

g :: get open goals in tasks list(tl) if l = 〈 , Open g〉 :: tl

get open goals in tasks list(tl) if l = 〈 , Closed g〉 :: tl

get open goals in status(S) =
[ ] if S = [ ]

get open goals in tasks list(Γ@τ@κ)

@get open goals in status(tl) if S = 〈Γ, τ, κ, 〉 :: tl

To keep the correspondence between branches in the script and ramifications in the

proof, goals closed by side-effects are marked as Closed if they are in Γ (that keeps

track of open branches). Otherwise they are silently removed from postponed goals

(in todo list τ or dot continuation κ). Closed branches have to be accepted by the

user with “skip”.

close tasks(G,S) =
[ ] if S = [ ]

〈closeaux (G,Γ), τ ′, κ′, t〉 ::close tasks(G, tl) if S = 〈Γ, τ, κ, t〉 :: tl

where τ ′ = remove tasks(G, τ)

and κ′ = remove tasks(G, κ)

closeaux (G, l) =
[ ] if l = [ ]

〈i, Closed g〉 ::closeaux (G, tl) if l = 〈i, Open g〉 :: tl ∧ g ∈ G
hd ::closeaux (G, tl) if l = hd :: tl
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remove tasks(G, l) =
[ ] if l = [ ]

remove tasks(G, tl) if l = 〈i, Open g〉 :: tl ∧ g ∈ G
hd ::remove tasks(G, tl) if l = hd :: tl
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