
Matita NG Reduction and Type Checking Conclusions

Matita NG: reduction and type-checking

Andrea Asperti <asperti@cs.unibo.it>
Claudio Sacerdoti Coen <sacerdot@cs.unibo.it>

Enrico Tassi <tassi@cs.unibo.it>
Wilmer Ricciotti <ricciott@cs.unibo.it>

University of Bologna

Aussois, 12/05/2009

Matita NG Reduction and Type Checking Conclusions

Outline

1 Matita NG

2 Reduction and Type Checking

3 Conclusions

Matita NG Reduction and Type Checking Conclusions

Outline

1 Matita NG

2 Reduction and Type Checking

3 Conclusions

 0

 5

 10

 15

 20

T
ho

us
an

ds
 o

f l
in

es
 o

f c
od

e
(k

lo
cs

)

ke
rn

el

re
fin

er

pr
oo

f
re

pr
es

en
ta

tio
n

ba
si

c
ta

ct
ic

s

de
ci

si
on

pr
oc

ed
ur

es

au
to

m
at

io
n

co
nt

en
t &

no
ta

tio
n

m
an

ag
er

am
bi

gu
ity

m
an

ag
er

ve
rn

ac
ul

ar

gu
i &

 d
riv

er

ba
si

c
lib

ra
ry

m
an

ag
er

le
m

m
a

ge
ne

ra
to

r

in
de

xi
ng

 &
se

ar
ch

 e
ng

in
e

ut
ili

tie
s

only in Matita
Matita

only in Coq
Coq

Matita NG Reduction and Type Checking Conclusions

Towards Matita 1.xx (Matita NG)

Motivations:
smaller code size
simpler code size, easier to maintain and debug
fix wrong design decisions; improve design decisions;
try new design decisions
experiment with new features (e.g. proof irrelevance)
completely change the look&feel

Plan:
entirely re-implement the system from inside out
provide back&forth translation towards the old components
(for immediate testing)
side effect: generalize all logic independent components

Matita NG Reduction and Type Checking Conclusions

Towards Matita 1.xx (Matita NG)

Already done:
Reduction and Type Checking
code: 2,783/7,783 = 36%, functions: 62/100 = 62%
Special Issue on Interactive Proving and Proof Checking,
Sadhana

Almost done:
Unification and Refinement (Type Inference)
code: 2,572/4,885 = 53%, functions: 23/41 = 56%

Work in progress:
Tactic engine and tactics (huge improvement, but. . .)

Future work:
Library management, consistency management, session
management
User interface

Matita NG Reduction and Type Checking Conclusions

Outline

1 Matita NG

2 Reduction and Type Checking

3 Conclusions

Matita NG Reduction and Type Checking Conclusions

The Calculus of (Co)Inductive Constructions

t ::= λv : t .t | (t t) |Πv : t .t | Let v : t := t in t | x | s | c

| {i : t := k : t} | co{i : t := k : t}
| t .i | t .k | t .Match t return t with~t
| {f : t := t}.fi | co{g : t := t}.gi

| ?i [t]
s ::= Prop | Set | Typei

d ::= c : t := t | c : t

Universes: checked
Reduction: β + ζ + δ + ι+ unfold + co-unfold + meta-subst
Conversion:

structural for (co)inductive types and (co)recursive functions
(up to permutation); nominal for declarations;
none for definitions

Matita NG Reduction and Type Checking Conclusions

The Calculus of (Co)Inductive Constructions in Coq

t ::= λv : t .t | (t t) |Πv : t .t | Let v : t := t in t | x | s | c
| i | k | Match t in i return t with~t
| {f : t := t}.fi | co{g : t := t}.gi

| ?i [t]
s ::= Prop | Set | Max{Typeq|Succ(Typeq)}

d ::= c : t := t | c : t | λx : t .{i : t := k : t} | λx : t .co{i : t := k : t}

Universes: inferred (constraint programming), algebraic
Reduction: β + ζ + δ+ ι+ unfold + co-unfold + meta-substitution
Conversion (ignoring modules):

structural for (co)recursive functions (up to permutation)
nominal for (co)inductive types and declarations;
(none for definitions);

Matita NG Reduction and Type Checking Conclusions

The Calculus of (Co)Inductive Constructions in Matita

t ::= λv : t .t | (t t) |Πv : t .t | Let v : t := t in t | x | s | c
| i | k | Match t in i return t with~t
| fi | gi

| ?i [s, t] | ?i(s,n)

s ::= Prop | Set | Max{Typeu|Succ(Typeu)}

d ::= c : t := t | c : t | λx : t .{i : t := k : t} | λx : t .co{i : t := k : t}
| {f : t := t} | co{f : t := t}

Universes: checked, user declared, algebraic
Reduction: β + ζ + δ+ ι+ unfold + co-unfold + meta-substitution
Conversion:

nominal for declarations, (co)inductive types, (co)-recursive
functions; (none for definitions)

Matita NG Reduction and Type Checking Conclusions

Non first-order (co)recursive definitions

First-order recursive definitions:

(λx .{f : T := t}.fi) M B {f : T [M/x] := t [M/x]}.fi

Non first-order recursive definitions:

(λx .fi t [x]) M B fi t [M]

I.e. together with nominal conversion, this makes a closure!

Matita NG Reduction and Type Checking Conclusions

Non first-order (co)recursive definitions

First-order recursive definitions:

{f : T := t}.fi k B ti [{f : T := t}/f] k
B M[{f : T [N[k]] := t [N[k]]}]

Non first-order recursive definitions:

fi M k B ti M k B L[tj P[k]]

Matita NG Reduction and Type Checking Conclusions

Non first-order (co)recursive definitions

Pros (so far):
Reduction machine with recursive environments (major
speed up, help the GC)
Greatly simplified conversion checks
No simplify tactic (URRAH!)
No artificial duplication of top-level mutual recursive
definitions (i.e. for all i , fi : Ti := {f : T := t}.fi)

Cons (so far):
Less conversion (seem useless)
No nested definitions (but difficult to reason on)

Matita NG Reduction and Type Checking Conclusions

Non first-order (co)recursive definitions

λ-lifting at work:

let rec f n := let rec g n f x :=
match n with match x with

O => O O => n
| S m => | S k => g k + f n m

let rec g x :=
match x with let rec f n :=

O => n match n with
| S k => g k + f m O => O

in | S m => g n f m
g m

But the r.h.s. is NOT accepted by Coq’s guardedness
conditions⇒ in Matita recursive definitions can be passed
around to other recursive definitions

Matita NG Reduction and Type Checking Conclusions

Non first-order (co)recursive definitions

can λ-lifting do this?

(f:(let rec g n :=
match n with O => O | S m => g m in g y) -> T)

(x: let rec g n :=
match n with O => O+O | S m => g m in g y)

⇓

let rec g k n :=
match n with O => k | S m => g n m

...
(f : g O y -> T) (x: g (O+O) y)

Matita NG Reduction and Type Checking Conclusions

Non first-order (co)recursive definitions

can λ-lifting do this (up to conversion)?

i.e.

M1 C (λx .let rec f n := ... in f) N1

M2 C (λx .let rec f n := ... in f) N2

Matita NG Reduction and Type Checking Conclusions

Non first-order (co)recursive definitions

Achievements:
1 Incomplete algorithm to map Coq λ-terms into new ones

Claim: we are functionally complete (???)
Is type-preserving λ-lifting a decidable problem?

2 Extended positivity checks to allow passing (co)recursive
functions around

Something I am ashamed of (at least in public. . .)
Accepts a (slightly) more understandable class of
definitions
Still some work (makes the code more complex) to accept a
reasonable class of (co)-recursive definitions over non
(co)-recursive types

Matita NG Reduction and Type Checking Conclusions

Checked, algebraic universes

Max{Typeu} : Max{Succ(Typeu)}

S : Max{u1} T : Max{u2}
Πx : S.T : Max{u1@u2}}

f : s2 → T x : s1 s1 ≤ s2

f x : T

Matita NG Reduction and Type Checking Conclusions

Checked, algebraic universes

∀i , j . ui � vj

Max{u} ≤ Max{v}

ui ≤ vj

Succ(ui) � Succ(vj)

u ≤ v
u � Succ(v)

u < v
Succ(u) � v

u ≤ u

u < w ∈ E w ≤ v
u ≤ v

u ≤ w ∈ E w ≤ v
u ≤ v

u < w ∈ E w ≤ v
u < v

u ≤ w ∈ E w < v
u < v

Aciclicity: @u, v . u < v ∧ v < u

Matita NG Reduction and Type Checking Conclusions

Checked, algebraic universes

Pros:
The universe graph is very small, aciclicity check very
quick and done once
Customazibale PTS (also w.r.t impredicativity,
computational content, etc.)
Universe errors are localized and immediately given
Major reduction in code size, complexity and efficiency
Makes predicative mathematicians (Sambin) happy
Easy to lift universes (at the library level only)
The user must care about universes

Cons:
The user must care about universes
Cannot take successor of non user provided universe

Matita NG Reduction and Type Checking Conclusions

Compacts local contexts (explicit substitutions) for
metavariables

Metasenv: Γi `?i : Ti
Subst: Γi `?i : Ti := ti
Occurrences: ∆ `?i [t] : Ti [t/x] where xi : ti ∈ Γi

Example:
`?1 : A→ B → C

intros (x y);
x : A, y : B `?2 : C
`?1 := λx : A.λy : B.?2[x , y]

Example: Example:
y : A `?1 : B y : A `?1 : A× A := (a,a)
(λx : A.?1[x]) MB?1[M] ?1[M] B (M,M)

Matita NG Reduction and Type Checking Conclusions

Compacts local contexts (explicit substitutions) for
metavariables

Canonical contexts (in the metasenv/subst) are usually large

Most of the time local contexts are [Rel k+1,. . . ,Rel k+n]

Major space/time optimization, improved sharing:
represent them as [k ,n]

Major drawback:
must efficient code, greater complexity and code size

Matita NG Reduction and Type Checking Conclusions

Outline

1 Matita NG

2 Reduction and Type Checking

3 Conclusions

Matita NG Reduction and Type Checking Conclusions

Conclusions (1/2)

Changes to the calculus:
nominal, top-level only (co)recursive definitions
(co)recursive definitions can be passed to other
(co)recursive definitions
algebraic universes (already in Coq)

Changes to the implementation:
checked algebraic universes
compact representation of explicit substitutions for
metavariables

Matita NG Reduction and Type Checking Conclusions

Conclusions (2/2)

Top-level (co)recursive definitions:
major reduction in code size
reduction/conversion speed-up
recursive environments for reduction machines
simplification under control

Checked algebraic universes:
major reduction in code size and simplification of data
structures
major speed up
customizable PTS
understandable and localized universe errors

Matita NG Reduction and Type Checking Conclusions

References

A.Asperti, W.Ricciotti, C.Sacerdoti Coen, E.Tassi.
A compact kernel for the calculus of inductive constructions.
In Special Issue on Iteractive Proving and Proof Checking of
the Academy Journal of Engineering Sciences (Sadhana) of
the Indian Academy of Sciences. SADHANA (BANGALORE).
vol. 34(1), pp. 71 - 144 ISSN: 0256-2499, 2009

	Matita NG
	Reduction and Type Checking
	Conclusions

