
Hints in unification

Enrico Tassi

University of Bologna - Department of Computer Science

13 May 2009

“Hints in Unification”, A.Asperti, W. Ricciotti, C. Sacerdoti
Coen, E. Tassi. Accepted for publication in the proceedings of
TPHOLs 2009

Context of the work
I Matita: ITP based on CIC
I Type-checking v.s. Type-inference

I conversion v.s. unification

≡

“Type
Inference”

Matita

Type
Checking

?≡

Kernel Refiner

I The user works all the time with the refiner, that is based
on an heuristic.

I Can the user customise/drive unification?!

Context of the work
I Matita: ITP based on CIC
I Type-checking v.s. Type-inference

I conversion v.s. unification

≡

“Type
Inference”

Matita

Type
Checking

?≡

Kernel Refiner

I The user works all the time with the refiner, that is based
on an heuristic.

I Can the user customise/drive unification?!

Context of the work
I Matita: ITP based on CIC
I Type-checking v.s. Type-inference

I conversion v.s. unification

≡

“Type
Inference”

Matita

Type
Checking

?≡

Kernel Refiner

I The user works all the time with the refiner, that is based
on an heuristic.

I Can the user customise/drive unification?!

(Ad hoc) mechanisms

Unification is an hard problem in CIC

t1
?≡ t2 find σ such that t1σ ≡ t2σ

Very common unification problems deserve ad-hoc mechanisms
to let the user drive the unification algorithm

I canonical structures

I coercions pullback

I . . .

Unification hints are a framework to let the user customise the
unification algorithm that generalise these mechanisms (and
little more. . .)

Outline

1. Unification hints by examples

2. (re) implementing ad-hoc mechanisms with hints

3. Unification hints and reification

4. Conclusions

Unification hints — an example

I Hints are pairs of convertible terms

I Unification algorithm U t1 t2

I U ′ t1 t2 =
try U t1 t2

with Fail⇒ hints t1 t2

Example: ?1+?2
?≡ S(x + y)

User-declared hint: x , y : N ` (S x) + y ≡ S(x + y)

hint
(S ?x)+?y ≡ S (?x+?y)

(S ?x)+?y
?

= ?1+?2 S(x + y)
?

= S (?x+?y)
hint

?1+?2
?≡ S (x + y)

Unification hints — an example

I Hints are pairs of convertible terms

I Unification algorithm U t1 t2

I U ′ t1 t2 =
try U t1 t2

with Fail⇒ hints t1 t2

Example: ?1+?2
?≡ S(x + y)

User-declared hint: x , y : N ` (S x) + y ≡ S(x + y)

hint
(S ?x)+?y ≡ S (?x+?y)

(S ?x)+?y
?

= ?1+?2 S(x + y)
?

= S (?x+?y)
hint

?1+?2
?≡ S (x + y)

Unification hints — an example

I Hints are pairs of convertible terms

I Unification algorithm U t1 t2

I U ′ t1 t2 =
try U t1 t2

with Fail⇒ hints t1 t2

Example: ?1+?2
?≡ S(x + y)

User-declared hint: x , y : N ` (S x) + y ≡ S(x + y)

hint
(S ?x)+?y ≡ S (?x+?y)

(S ?x)+?y
?

= ?1+?2 S(x + y)
?

= S (?x+?y)
hint

?1+?2
?≡ S (x + y)

Unification hints — an example

I Hints are pairs of convertible terms

I Unification algorithm U t1 t2

I U ′ t1 t2 =
try U t1 t2

with Fail⇒ hints t1 t2

Example: ?1+?2
?≡ S(x + y)

User-declared hint:

x , y : N ` (S x) + y ≡ S(x + y)

hint
(S ?x)+?y ≡ S (?x+?y)

(S ?x)+?y
?

= ?1+?2 S(x + y)
?

= S (?x+?y)
hint

?1+?2
?≡ S (x + y)

Unification hints — an example

I Hints are pairs of convertible terms

I Unification algorithm U t1 t2

I U ′ t1 t2 =
try U t1 t2

with Fail⇒ hints t1 t2

Example: ?1+?2
?≡ S(x + y)

User-declared hint:

x , y : N ` (S x) + y ≡ S(x + y)

hint
(S ?x)+?y ≡ S (?x+?y)

(S ?x)+?y
?

= ?1+?2 S(x + y)
?

= S (?x+?y)
hint

?1+?2
?≡ S (x + y)

Unification hint — recursion

What is used to solve
?

= ? U or U ′?

Another example: ?1+?2
?≡ S (S (x + y))

. . . S (S (x + y))
?

= S (?x+?y)
hint

?1+?2
?≡ S (S (x + y))

Problems generated by hints need U ′

Possible (new) source of divergence. . .

Unification hint — recursion

What is used to solve
?

= ? U or U ′?

Another example: ?1+?2
?≡ S (S (x + y))

. . .

S (

S (x + y)

)

?
=

S (

?x+?y

)

hint
?1+?2

?≡ S (S (x + y))

Problems generated by hints need U ′

Possible (new) source of divergence. . .

Unification hint — recursion

What is used to solve
?

= ? U or U ′?

Another example: ?1+?2
?≡ S (S (x + y))

. . .

S (

S (x + y)

)

?
=

S (

?x+?y

)

hint
?1+?2

?≡ S (S (x + y))

Problems generated by hints need U ′

Possible (new) source of divergence. . .

Unification hint — recursion

What is used to solve
?

= ? U or U ′?

Another example: ?1+?2
?≡ S (S (x + y))

. . .

S (

S (x + y)

)

?
=

S (

?x+?y

)

hint
?1+?2

?≡ S (S (x + y))

Problems generated by hints need U ′

Possible (new) source of divergence. . .

Unification hint — indexing

How to efficiently index (many) hints?

We could use discrimination trees (nets):

(S) + , S (+) 7→ hint
(S ?x)+?y ≡ S (?x+?y)

The first example is OK:

The second example is KO:

Some subterms (where U ′ may be needed) can confuse
indexing

Unification hint — indexing

How to efficiently index (many) hints?
We could use discrimination trees (nets):

(S) + , S (+) 7→ hint
(S ?x)+?y ≡ S (?x+?y)

The first example is OK:

The second example is KO:

Some subterms (where U ′ may be needed) can confuse
indexing

Unification hint — indexing

How to efficiently index (many) hints?
We could use discrimination trees (nets):

(S) + , S (+) 7→ hint
(S ?x)+?y ≡ S (?x+?y)

The first example is OK: ?1+?2
?≡ S (x + y)

The second example is KO:

Some subterms (where U ′ may be needed) can confuse
indexing

Unification hint — indexing

How to efficiently index (many) hints?
We could use discrimination trees (nets):

(S) + , S (+) 7→ hint
(S ?x)+?y ≡ S (?x+?y)

The first example is OK: + , S (+)

The second example is KO:

Some subterms (where U ′ may be needed) can confuse
indexing

Unification hint — indexing

How to efficiently index (many) hints?
We could use discrimination trees (nets):

(S) + , S (+) 7→ hint
(S ?x)+?y ≡ S (?x+?y)

The first example is OK: + , S (+)

The second example is KO: ?1+?2
?≡ S (S (x + y))

Some subterms (where U ′ may be needed) can confuse
indexing

Unification hint — indexing

How to efficiently index (many) hints?
We could use discrimination trees (nets):

(S) + , S (+) 7→ hint
(S ?x)+?y ≡ S (?x+?y)

The first example is OK: + , S (+)

The second example is KO: + , S (S (+))

Some subterms (where U ′ may be needed) can confuse
indexing

Unification hint — indexing

How to efficiently index (many) hints?
We could use discrimination trees (nets):

(S) + , S (+) 7→ hint
(S ?x)+?y ≡ S (?x+?y)

The first example is OK: + , S (+)

The second example is KO: + , S (S (+))

Some subterms (where U ′ may be needed) can confuse
indexing

Unification hints

The correct version of the hint:

x , y : N, z := x + y ` (S x) + y ≡ S z

Application

(S ?x)+?y
?

= A B
?

= S ?z ?z
?≡ ?x+?y

myhint
A

?≡ B

Unification hints

The correct version of the hint:

?z ≡?x+?y
myhint

(S ?x)+?y ≡ S ?z

Application

(S ?x)+?y
?

= A B
?

= S ?z ?z
?≡ ?x+?y

myhint
A

?≡ B

Hints for canonical structures

In presence of records like

Z : Group := {gcarr := Z; . . .}

The canonical structure mechanism allows the user to specify
a canonical solution for ?g :

gcarr ?g
?≡ Z ⇒ ?g := Z

By declaring the following hint, the user obtains the same
result

hint-for-group-Z
gcarr Z ≡ Z

Coercions pullback

The user inputs:

x ∗ (y + z)

Arguments of ∗ must have
the same type:

gcarr ?g
?≡ mcarr ?m

�� ���� ��ring
r group

{{vvvvvvvvv r monoid

$$IIIIIIIII

�� ���� ��group

gcarr $$HHHHHHHHH
�� ���� ��monoid

mcarrzzttttttttt

Type

The solution is the pullback of gcarr and mcarr.

?g := r group ?r

?m := r monoid ?r

The graph must be coherent!

Hints for pullbacks

Problems have many similar forms:

I f1 ?1
?≡ g1 ?2

I f1 (f3 ?1)
?≡ g1 ?2

I . . .

All diamonds must be declared as hints, but
smaller ones should be preferred.

hint-1
f1 (f2 ?c) ≡ g1 (g2 ?c)

hint-2
f1 (f3 ?d) ≡ g1 (g3 ?d)

D

f3

����������������

g3

��--------------

h
��

C

f2����������

g2
��<<<<<<<<

A

f1 ��<<<<<<<< B

g1
����������

T

Reflexive tactics — reification with hints
When we build a reflexive tactic, we need a syntactic
representation of the input that cannot be obtained inside the
calculus (usually built in L-tac, OCaml, . . .)� �
inductive Expr : Type :=
| Eunit : Expr
| Emult : Expr →Expr →Expr
| Einv : Expr →Expr
| Evar : N →Expr.� �� �

let rec [[e : Expr; Γ : list (gcarr g)]](g:group) on e : gcarr g :=
match e with
[Eunit ⇒ 1g

| Emult x y ⇒ [[x ; Γ]]g ∗ [[y ; Γ]]g
| Einv x ⇒ [[x ; Γ]]−1

g

| Evar n ⇒ Γ(n)].� �

Reflexive tactics — reification with hints

The unification problem for reification with sharing is:

[[?1; ?2]]?3

?≡ x ∗ (x−1 ∗ y)

Unification hints follows:

?m ≡ [[?x ; ?Γ]] ?n ≡ [[?y ; ?Γ]]
h-times

[[Emult ?x ?y ; ?Γ]]?g ≡?m∗?n

h-unit
[[Eunit; ?Γ]]?g ≡ 1

?o ≡ [[?z ; ?Γ]]?g
h-inv

[[Einv ?z ; ?Γ]]?g ≡?−1
o

Reflexive tactics — reification with hints

The tricky part is the set of hints to reify variables

h-var-base
[[Evar 0; ?r ::?Θ]]?g ≡?r

?q ≡ [[Evar ?p; ?∆]]?g
h-var-rec

[[Evar (S ?p); ?s ::?∆]]?g ≡?q

Conclusion

I Unification hints are a general framework to let the user
drive the unification algorithm

I Unification hints are general enough to express canonical
structures and coercions pullback

I (not so) unexpectedly they can drive the unification
algorithm in performing reification

I Future works: pragmatic study of divergence.

Thanks for your attention!

Conclusion

I Unification hints are a general framework to let the user
drive the unification algorithm

I Unification hints are general enough to express canonical
structures and coercions pullback

I (not so) unexpectedly they can drive the unification
algorithm in performing reification

I Future works: pragmatic study of divergence.

Thanks for your attention!

	Intro

