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Context of the work
I Matita: ITP based on CIC
I Type-checking v.s. Type-inference

I conversion v.s. unification

≡

“Type
Inference”

Matita

Type
Checking

?≡

Kernel Refiner

I The user works all the time with the refiner, that is based
on an heuristic.

I Can the user customise/drive unification?!
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(Ad hoc) mechanisms

Unification is an hard problem in CIC

t1
?≡ t2 find σ such that t1σ ≡ t2σ

Very common unification problems deserve ad-hoc mechanisms
to let the user drive the unification algorithm

I canonical structures

I coercions pullback

I . . .

Unification hints are a framework to let the user customise the
unification algorithm that generalise these mechanisms (and
little more. . . )
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Unification hints — an example

I Hints are pairs of convertible terms

I Unification algorithm U t1 t2

I U ′ t1 t2 =
try U t1 t2

with Fail⇒ hints t1 t2

Example: ?1+?2
?≡ S(x + y)

User-declared hint: x , y : N ` (S x) + y ≡ S(x + y)

hint
(S ?x)+?y ≡ S (?x+?y )

(S ?x)+?y
?

= ?1+?2 S(x + y)
?

= S (?x+?y )
hint

?1+?2
?≡ S (x + y)
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Unification hint — recursion

What is used to solve
?

= ? U or U ′?

Another example: ?1+?2
?≡ S (S (x + y))

. . . S (S (x + y))
?

= S (?x+?y )
hint

?1+?2
?≡ S (S (x + y))

Problems generated by hints need U ′

Possible (new) source of divergence. . .
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Unification hint — indexing

How to efficiently index (many) hints?

We could use discrimination trees (nets):

(S ) + , S ( + ) 7→ hint
(S ?x)+?y ≡ S (?x+?y )

The first example is OK:

The second example is KO:

Some subterms (where U ′ may be needed) can confuse
indexing
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Unification hints

The correct version of the hint:

x , y : N, z := x + y ` (S x) + y ≡ S z

Application

(S ?x)+?y
?

= A B
?

= S ?z ?z
?≡ ?x+?y

myhint
A

?≡ B



Unification hints

The correct version of the hint:

?z ≡?x+?y
myhint

(S ?x)+?y ≡ S ?z

Application

(S ?x)+?y
?

= A B
?

= S ?z ?z
?≡ ?x+?y

myhint
A

?≡ B



Hints for canonical structures

In presence of records like

Z : Group := {gcarr := Z; . . .}

The canonical structure mechanism allows the user to specify
a canonical solution for ?g :

gcarr ?g
?≡ Z ⇒ ?g := Z

By declaring the following hint, the user obtains the same
result

hint-for-group-Z
gcarr Z ≡ Z



Coercions pullback

The user inputs:

x ∗ (y + z)

Arguments of ∗ must have
the same type:

gcarr ?g
?≡ mcarr ?m

�� ���� ��ring
r group

{{vvvvvvvvv r monoid

$$IIIIIIIII

�� ���� ��group

gcarr $$HHHHHHHHH
�� ���� ��monoid

mcarrzzttttttttt

Type

The solution is the pullback of gcarr and mcarr.

?g := r group ?r

?m := r monoid ?r

The graph must be coherent!



Hints for pullbacks

Problems have many similar forms:

I f1 ?1
?≡ g1 ?2

I f1 (f3 ?1)
?≡ g1 ?2

I . . .

All diamonds must be declared as hints, but
smaller ones should be preferred.

hint-1
f1 (f2 ?c) ≡ g1 (g2 ?c)

hint-2
f1 (f3 ?d) ≡ g1 (g3 ?d)

D

f3

����������������

g3

��--------------

h
��

C

f2����������

g2
��<<<<<<<<

A

f1 ��<<<<<<<< B

g1
����������

T



Reflexive tactics — reification with hints
When we build a reflexive tactic, we need a syntactic
representation of the input that cannot be obtained inside the
calculus (usually built in L-tac, OCaml, . . . )� �
inductive Expr : Type :=
| Eunit : Expr
| Emult : Expr →Expr →Expr
| Einv : Expr →Expr
| Evar : N →Expr.� �� �

let rec [[e : Expr; Γ : list (gcarr g)]](g:group) on e : gcarr g :=
match e with
[ Eunit ⇒ 1g

| Emult x y ⇒ [[x ; Γ]]g ∗ [[y ; Γ]]g
| Einv x ⇒ [[x ; Γ]]−1

g

| Evar n ⇒ Γ(n) ].� �



Reflexive tactics — reification with hints

The unification problem for reification with sharing is:

[[?1; ?2]]?3

?≡ x ∗ (x−1 ∗ y)

Unification hints follows:

?m ≡ [[?x ; ?Γ]] ?n ≡ [[?y ; ?Γ]]
h-times

[[Emult ?x ?y ; ?Γ]]?g ≡?m∗?n

h-unit
[[Eunit; ?Γ]]?g ≡ 1

?o ≡ [[?z ; ?Γ]]?g
h-inv

[[Einv ?z ; ?Γ]]?g ≡?−1
o



Reflexive tactics — reification with hints

The tricky part is the set of hints to reify variables

h-var-base
[[Evar 0; ?r ::?Θ]]?g ≡?r

?q ≡ [[Evar ?p; ?∆]]?g
h-var-rec

[[Evar (S ?p); ?s ::?∆]]?g ≡?q



Conclusion

I Unification hints are a general framework to let the user
drive the unification algorithm

I Unification hints are general enough to express canonical
structures and coercions pullback

I (not so) unexpectedly they can drive the unification
algorithm in performing reification

I Future works: pragmatic study of divergence.

Thanks for your attention!
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