Tinycals: step by step tacticals

Claudio Sacerdoti Coen <sacerdot@cs.unibo.it>
Enrico Tassi <tassiecs.unibo.it>
Stefano Zacchiroli <zacchiroecs.unibo.it>

University of Bologna

21/08/2006

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

User-friendly structured procedural scripts

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

User-friendly structured procedural scripts

Cfr. Structured (i.e. syntax oriented) script editing
@ Takahashi, Hagiya. “Proving as editing HOL tactics”
@ Syme’s TKHOL

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

step by step tacticals

CtCoqg/Proof General Interaction Mode

@ An editable script window

@ A sequents window (for the current state)

@ Commands executed atomically and one at a time
@ Already executed commands are locked

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Declarative Proof Languages (Mizar/lsar/...)

@ Commands are meaningful to the user

@ The sequents window is not that useful
@ The “script” is fully structured by delimited blocks

@ e.g.. show P ... done
@ e.g..per cases on n case O ... case S
. done

@ The structure reflects (is?) the proof tree

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Procedural Proof Languages (LCF/Coqg/Isabelle/...)

@ Commands are meaningful to the system

@ The sequents window is fundamental
@ The script is not naturally structured

@ e.g. induction n. reflexivity. intros.
rewrite H. auto. assumption.

@ The structure does not reflect the proof tree

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Metavariables and Side Effects (1/2)

@ Formulae can contain metavariables
@ A metavariable is a non-linear and typed placeholder
@ eg.Vx,y.?n[x] < S x AP ?n[x]

e associated sequent: x:nat F 2?n : nat
@ Commands (e.g. tactics) can instantiate metavariables
@ e.g. x:nat F ?n : nat := S x

@ Instantiation acts on every sequent/branch (side effect)
@ Sequents to prove are also metavariables (Curry-Howard)

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Metavariables and Side Effects (2/2)

@ Proof branches are not independent (and cannot become
lemmas)

e Cfr. Takahashi, Hagiya. “Proving as editing HOL tactics”
@ Tactics acting on different sequents cannot be permutated

e e.g. when the first sequentis ?n[x] = 0is closed by
reflexivity and the second sequent P ?n[x] is
automatically closed

@ Sometimes sequents must be addressed in strange orders
to drive automation

e Cfr. Syme’s TKHOL (structured editing of HOL scripts by
juxtaposition of subscripts)

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Metavariables and Side Effects: Why?

@ Metavariables and side effects difficult to handle
@ Are they useful/necessary? (interesting question)
@ We do not care: we want to address the most difficult case

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

LCF Tacticals

@ Higher order tactics: sequencing, branching, repetition,
error recovery

@ Used to form atomic tactics

@ Make the script more robust and more synthetic (code
factorization)

@ Debugging is an issue

@ Sequencing and branching primary way to machine
understandable script structuring

@ A fully structured script is an atomic tactic

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

LCF Structured Scripts: Ul Issues

A fully structured script is an atomic tactic
@ Difficult and time consuming to write
@ Write a non-structured script;
make it structured if possible (side effects)
@ Add a tactic; execute the atomic script; undo;
repeat until finished
@ Difficult to replay
e Impossible to statically de-structure it
@ e.9.T1;T2 becomes T1. T2. T2.
e De-structure it bit by bit inserting executlon points
@ Difficult to debug

o It fails atomically
e Errors reported on hidden states

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

LCF Structured Scripts: No, Thanks (1/2)

@ Cog/lsabelle/. .. scripts usually not structured with LCF
tacticals

@ Indentation/blank lines used to structure the script
@ Users are happy. ..

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

LCF Structured Scripts: No, Thanks (2/2)

@ until they change the order of hypotheses in a lemma!

@ until they change the order of fields in a structure/record!

@ until they change the order of constructors of an inductive
definition!

o ...

@ No help by the system
@ We propose a solution that
o Is fully backward compatible
e Does not force the user to abandon their style
o No additional burden to write structured scripts; some
advantages
e Try it once, you won’t do without it!

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Matita Tinycals: branching and sequencing

@ Branching and sequencing can be expressed with more
fine grained sequential atomic operations (tinycals)

° becomes [7]

o After two sequents are selected at once
@ Tactics are executed in sequence on every selected sequent

O‘Tl ; [T2 | I3]‘becomes

EllnRE e
@ Each tinycal can be parsed and executed immediately
@ Requires an enriched proof status

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

More Tinycals: unstructured editing and accept

@ Embedding of unstructured script fragments allowed
e i.e.is atinycal

e e R mEI[] 0

@ Branches closed by side effects aknowledged by the user
to preserve the correspondence with the proof tree

o i.e.[accept |is a tinycal
° e.g.@[m accept

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

More Tinycals: out of order execution

@ Out of order execution of (multiple) branches
e the tinycal selects inner branches by position
o eg. [T1[0[2:]z2]| 1 |[3=](z3]| 1 |[za][T]

e special case: selects all the remaining inner branches

e user not obliged to close the branch before moving to the
next ones

@ Out of order execution of far away branches

° ‘focus ny, .. .n,-\... unfocus

e sometimes necessary for side effects
e the user is obliged to close the selected branches

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Are There More Tinycals?

@ Tinycals execution is efficient: tactics are not executed
twice
@ This is a constraint on the semantics of the tacticals to be
mimicked
@ e.g. sequencing can be implemented with tinycals since it is
left associative: T1;T2; T3 = (T1;T2); T3
e e.g. the right associative variant cannot be implemented
efficiently using tinycals (because of side effects)
@ Repetition and error recovery (try, first, OrElse)
cannot be split into tinycals

@ We allow atomic LCF tacticals as special cases of tactics

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

A Note on try/OrElse

try/OrElse used
@ Inside a repetition tactical (rare)
@ After sequencing to apply a tactic only to some goals
(frequent)
@ e.g. elim n; (trivial || (simplify ; try
auto))
some sequents (which ones?) are trivial; the other ones are
simplified and solved automatically if possible (which
ones?)
@ The frequent case is handled by selection of multiple
branches

° e.g. 1,3: ‘trivial‘m‘Z:‘
[simplified]|||[x3]

simplified

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Further Considerations

@ Code is not duplicated!

o LCF tacticals still necessary to implement tactics

e They can be implemented on top of tinycals to avoid code
duplication and semantics mismatch

o Not trivial: tactics work on a poorer proof status

e Requires a parametric implementation of tinycals on
abstract proof statuses with embedding/projections

@ We provide a small steps formal operational semantics
e Look for it in the paper
@ A procedural proof language can be implemented more
easily on top of tinycals

e Because the proof status has been enriched
e Tinycals reduce the gap between procedural and
declarative implementations

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Conclusions

@ LCF tacticals quite bad for proof structuring
@ LCF tacticals quite bad with metavariables and side effects
@ This is an user interface issue!

@ We propose fine grained atomic tinycals that destructure
LCF tacticals

@ We put some care on the issue of side effects

@ We provide a formal semantics and an efficient
implementation without code duplication

@ We show that the work cannot be extended any further

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

	State of the Art of Script Structuring
	Structuring Scripts with Tinycals
	Advanced Topics
	Conclusions

