
Tinycals: step by step tacticals

Claudio Sacerdoti Coen <sacerdot@cs.unibo.it>

Enrico Tassi <tassi@cs.unibo.it>
Stefano Zacchiroli <zacchiro@cs.unibo.it>

University of Bologna

21/08/2006

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Objective

User-friendly structured procedural scripts

Cfr. Structured (i.e. syntax oriented) script editing
Takahashi, Hagiya. “Proving as editing HOL tactics”
Syme’s TkHOL

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Objective

User-friendly structured procedural scripts

Cfr. Structured (i.e. syntax oriented) script editing
Takahashi, Hagiya. “Proving as editing HOL tactics”
Syme’s TkHOL

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Outline

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

CtCoq/Proof General Interaction Mode

An editable script window
A sequents window (for the current state)
Commands executed atomically and one at a time
Already executed commands are locked

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Declarative Proof Languages (Mizar/Isar/...)

Commands are meaningful to the user
The sequents window is not that useful
The “script” is fully structured by delimited blocks

e.g.: show P ... done
e.g.: per cases on n case O ... case S
... done

The structure reflects (is?) the proof tree

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Procedural Proof Languages (LCF/Coq/Isabelle/...)

Commands are meaningful to the system
The sequents window is fundamental
The script is not naturally structured

e.g. induction n. reflexivity. intros.
rewrite H. auto. assumption.

The structure does not reflect the proof tree

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Metavariables and Side Effects (1/2)

Formulae can contain metavariables
A metavariable is a non-linear and typed placeholder

e.g. ∀x,y.?n[x] ≤ S x ∧ P ?n[x]
associated sequent: x:nat ` ?n : nat

Commands (e.g. tactics) can instantiate metavariables
e.g. x:nat ` ?n : nat := S x

Instantiation acts on every sequent/branch (side effect)
Sequents to prove are also metavariables (Curry-Howard)

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Metavariables and Side Effects (2/2)

Proof branches are not independent (and cannot become
lemmas)

Cfr. Takahashi, Hagiya. “Proving as editing HOL tactics”
Tactics acting on different sequents cannot be permutated

e.g. when the first sequent is ?n[x] = O is closed by
reflexivity and the second sequent P ?n[x] is
automatically closed

Sometimes sequents must be addressed in strange orders
to drive automation

Cfr. Syme’s TkHOL (structured editing of HOL scripts by
juxtaposition of subscripts)

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Metavariables and Side Effects: Why?

Metavariables and side effects difficult to handle
Are they useful/necessary? (interesting question)
We do not care: we want to address the most difficult case

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

LCF Tacticals

Higher order tactics: sequencing, branching, repetition,
error recovery
Used to form atomic tactics
Make the script more robust and more synthetic (code
factorization)
Debugging is an issue
Sequencing and branching primary way to machine
understandable script structuring
A fully structured script is an atomic tactic

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

LCF Structured Scripts: UI Issues

A fully structured script is an atomic tactic
Difficult and time consuming to write

1 Write a non-structured script;
make it structured if possible (side effects)

2 Add a tactic; execute the atomic script; undo;
repeat until finished

Difficult to replay
Impossible to statically de-structure it

e.g. T1;T2 becomes T1. T2. ... T2.

De-structure it bit by bit inserting execution points
Difficult to debug

It fails atomically
Errors reported on hidden states

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

LCF Structured Scripts: No, Thanks (1/2)

Coq/Isabelle/. . . scripts usually not structured with LCF
tacticals
Indentation/blank lines used to structure the script
Users are happy. . .

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

LCF Structured Scripts: No, Thanks (2/2)

until they change the order of hypotheses in a lemma!
until they change the order of fields in a structure/record!
until they change the order of constructors of an inductive
definition!
. . .
No help by the system
We propose a solution that

Is fully backward compatible
Does not force the user to abandon their style
No additional burden to write structured scripts; some
advantages
Try it once, you won’t do without it!

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Matita Tinycals: branching and sequencing

Branching and sequencing can be expressed with more
fine grained sequential atomic operations (tinycals)

T1 ; T2 becomes T1 ; T2

After ; two sequents are selected at once
Tactics are executed in sequence on every selected sequent

T1 ; [T2 | T3] becomes

T1 ; [T2 | T3]

Each tinycal can be parsed and executed immediately
Requires an enriched proof status

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

More Tinycals: unstructured editing and accept

Embedding of unstructured script fragments allowed
i.e. . is a tinycal
e.g. T1 ; [T2 . T3 . T4 | T5]

Branches closed by side effects aknowledged by the user
to preserve the correspondence with the proof tree

i.e. accept is a tinycal

e.g. T1 ; [T2 | accept]

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

More Tinycals: out of order execution

Out of order execution of (multiple) branches
the tinycal n1,...,ni: selects inner branches by position

e.g. T1 ; [2: T2 | 3: T3 | T4]

special case: *: selects all the remaining inner branches
user not obliged to close the branch before moving to the
next ones

Out of order execution of far away branches
focus n1,...ni . . . unfocus

sometimes necessary for side effects
the user is obliged to close the selected branches

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Are There More Tinycals?

Tinycals execution is efficient: tactics are not executed
twice
This is a constraint on the semantics of the tacticals to be
mimicked

e.g. sequencing can be implemented with tinycals since it is
left associative: T1;T2;T3 = (T1;T2);T3
e.g. the right associative variant cannot be implemented
efficiently using tinycals (because of side effects)

Repetition and error recovery (try, first, OrElse)
cannot be split into tinycals
We allow atomic LCF tacticals as special cases of tactics

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

A Note on try/OrElse

try/OrElse used
Inside a repetition tactical (rare)
After sequencing to apply a tactic only to some goals
(frequent)

e.g. elim n; (trivial || (simplify ; try
auto))
some sequents (which ones?) are trivial; the other ones are
simplified and solved automatically if possible (which
ones?)

The frequent case is handled by selection of multiple
branches
e.g. elim n ; [1,3: trivial | 2:

simplified | *: simplified ; auto]

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Further Considerations

Code is not duplicated!
LCF tacticals still necessary to implement tactics
They can be implemented on top of tinycals to avoid code
duplication and semantics mismatch
Not trivial: tactics work on a poorer proof status
Requires a parametric implementation of tinycals on
abstract proof statuses with embedding/projections

We provide a small steps formal operational semantics
Look for it in the paper

A procedural proof language can be implemented more
easily on top of tinycals

Because the proof status has been enriched
Tinycals reduce the gap between procedural and
declarative implementations

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

Conclusions

LCF tacticals quite bad for proof structuring
LCF tacticals quite bad with metavariables and side effects
This is an user interface issue!
We propose fine grained atomic tinycals that destructure
LCF tacticals
We put some care on the issue of side effects
We provide a formal semantics and an efficient
implementation without code duplication
We show that the work cannot be extended any further

Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli Tinycals: step by step tacticals

	State of the Art of Script Structuring
	Structuring Scripts with Tinycals
	Advanced Topics
	Conclusions

