Higher order proof reconstruction from paramodulation-based refutations: the unit equality case

Andrea Asperti and Enrico Tassi

Department of Computer Science, University of Bologna

28-30 June 2007

Context

What we had:

- Matita is an ITP developed at the university of Bologna
- Lack of automation is one of the most reported issues of ITPs
- ► ATP are effective tools, but usually do not provide a proof object, sometimes a minimalistic trace mainly for efficiency (both space and time).
- Matita follows the independent verification principle: we need a real CIC proof
- ▶ We implemented our own first order paramodulation based automatic theorem prover (that, of course, provides a good trace), restricted to the unit equality case.

Context

What we had:

- Matita is an ITP developed at the university of Bologna
- Lack of automation is one of the most reported issues of ITPs
- ATP are effective tools, but usually do not provide a proof object, sometimes a minimalistic trace mainly for efficiency (both space and time).
- Matita follows the independent verification principle: we need a real CIC proof
- We implemented our own first order paramodulation based automatic theorem prover (that, of course, provides a good trace), restricted to the unit equality case.
- Why your own prover?

Context

What we had:

- Matita is an ITP developed at the university of Bologna
- ▶ Lack of automation is one of the most reported issues of ITPs
- ATP are effective tools, but usually do not provide a proof object, sometimes a minimalistic trace mainly for efficiency (both space and time).
- Matita follows the independent verification principle: we need a real CIC proof
- We implemented our own first order paramodulation based automatic theorem prover (that, of course, provides a good trace), restricted to the unit equality case.
- ▶ Why your own prover? For fun :-)

Aim

What we want:

- ▶ To be able to read the proofs:
 - ▶ To understand what the automatic procedure did.
 - Nice natural language rendering using MoWGLI tech.

```
a = b by lemma 1
= c by lemma 2
= d by lemma 3
```

Aim

What we want:

- ▶ To be able to read the proofs:
 - To understand what the automatic procedure did.
 - Nice natural language rendering using MoWGLI tech.

```
a = b by lemma 1
= c by lemma 2
= d by lemma 3
```

- Save earth from overheating
 - ► Fast to typecheck
 - Not re-doing proof search every time we compile a file

Plan

The plan:

- 1. Start from the trace of the prover
- 2. Transform it into a CIC object
- 3. Apply type preserving transformations to obtain a nice proof object suitable for point 4.
- 4. Render it in natural language (re-using MoWGLI/Matita rendering facility)
- Thanks to C. Sacerdoti Coen declarative language, the printed proof is a re-executable script (PLMMS talk).

Outline

- ► Equality in CIC
- ► Superposition rules
- ▶ Proof reconstruction
- Demo
- Conclusion

Equality in CIC

Not built in, but an inductive predicate with one constructor:

$$refl_eq: x =_A x$$

► As any inductive type, comes with an eliminator in two flavours:

$$\frac{h: P \ a_1}{(\text{eq_ind } A \ a_1 \ P \ h \ a_2 \ k): P \ a_2}$$

$$\frac{h: P \ a_2}{(\text{eq_ind_r} A \ a_2 \ P \ h \ a_1 \ k): P \ a_2}$$

Superposition rules

Superposition left (backward reasoning)

$$\frac{\vdash I =_A r \qquad t =_B s \vdash C}{t[r]_p \sigma =_B s \sigma \vdash C \sigma}$$

Superposition right (forward reasoning)

$$\frac{\vdash I =_{A} r \qquad \vdash t =_{B} s}{\vdash t[r]_{p}\sigma =_{B} s\sigma}$$

$$\frac{t =_{A} s \vdash C}{\vdash C\sigma}$$

Superposition left (backward reasoning)

$$\frac{\vdash \quad I =_{A} r \qquad \qquad t =_{B} s \vdash \quad C}{t[r]_{p} \sigma =_{B} s \sigma \vdash} \qquad C \sigma$$

Superposition right (forward reasoning)

$$\frac{\vdash \quad I =_{A} r \quad \vdash \quad t =_{B} s}{\vdash \quad t[r]_{p} \sigma =_{B} s \sigma}$$

$$t =_{A} s \vdash C$$

$$\vdash C\sigma$$

Superposition left (backward reasoning)

$$\frac{\vdash h: I =_A r \qquad \alpha: t =_B s \vdash M: C}{\beta: t[r]_p \sigma =_B s \sigma \vdash M \sigma[R/\alpha \sigma]: C \sigma}$$

$$R = (\text{eq_ind_r } A \ r\sigma \ (\lambda x : A.t[x]_p =_B s)\sigma \ \beta \ l\sigma \ h\sigma) : t\sigma =_B s\sigma$$

Superposition right (forward reasoning)

$$\frac{\vdash \quad I =_{A} r \quad \vdash \quad t =_{B} s}{\vdash \quad t[r]_{p} \sigma =_{B} s \sigma}$$

$$t =_{A} s \vdash C$$

$$\vdash C\sigma$$

Superposition left (backward reasoning)

$$\frac{\vdash h: I =_A r \qquad \alpha: t =_B s \vdash M: C}{\beta: t[r]_p \sigma =_B s \sigma \vdash M \sigma[R/\alpha \sigma]: C \sigma}$$

$$R = (\text{eq_ind_r } A \ r\sigma \ (\lambda x : A.t[x]_p =_B s)\sigma \ \beta \ l\sigma \ h\sigma) : t\sigma =_B s\sigma$$

Superposition right (forward reasoning)

$$\frac{\vdash h: I =_A r}{\vdash R: t[r]_p \sigma =_B s \sigma}$$

$$R = (\text{eq_ind } A \ l\sigma \ (\lambda x : A.t[x]_p =_B s)\sigma \ k\sigma \ r\sigma \ h\sigma) : t[r]_p\sigma =_B s\sigma$$

$$t =_{\mathcal{A}} s \vdash C$$

$$\vdash C\sigma$$

Superposition left (backward reasoning)

$$\frac{\vdash h: I =_A r \qquad \alpha: t =_B s \vdash M: C}{\beta: t[r]_p \sigma =_B s \sigma \vdash M \sigma[R/\alpha \sigma]: C \sigma}$$

$$R = (\text{eq_ind_r } A \ r\sigma \ (\lambda x : A.t[x]_p =_B s)\sigma \ \beta \ l\sigma \ h\sigma) : t\sigma =_B s\sigma$$

Superposition right (forward reasoning)

$$\frac{\vdash h: I =_A r \qquad \vdash k: t =_B s}{\vdash R: t[r]_p \sigma =_B s \sigma}$$

$$R = (\text{eq_ind } A \ l\sigma \ (\lambda x : A.t[x]_p =_B s)\sigma \ k\sigma \ r\sigma \ h\sigma) : t[r]_p\sigma =_B s\sigma$$

$$\frac{\alpha : t =_{A} s \vdash M : C}{\vdash M[\text{refl_eq } A \ t\sigma/\alpha] : C\sigma}$$

Superposition left (backward reasoning)

$$\frac{\vdash h: I =_A r \quad \alpha: t =_B s \vdash M: C}{t[r]_p \sigma =_B s \sigma \vdash} C \sigma$$

Superposition right (forward reasoning)

$$\frac{\vdash h: I =_A r \qquad \vdash k: t =_B s}{\vdash t[r]_{p\sigma} =_B s\sigma}$$

$$\frac{\alpha: t =_{A} s \vdash C}{\vdash C\sigma}$$

Problem	Search	Steps	Typing		Proof size	
			raw	opt	raw	opt
BOO069-1	2.15	27	79.50		3.1M	
BOO071-1	2.23	27	203.03		5.4M	
GRP118-1	0.11	17	7.66		546K	
GRP485-1	0.17	47	323.35		5.1M	
LAT008-1	0.48	40	22.56		933K	
LCL115-2	0.81	52	24.42		1.1M	

Tab. 1. Timing (in seconds) and proof size

Problem	Search	Steps	Typing		Proof size	
			raw	opt	raw	opt
BOO069-1	2.15	27	79.50	0.23	3.1M	29K
BOO071-1	2.23	27	203.03	0.22	5.4M	28K
GRP118-1	0.11	17	7.66	0.13	546K	21K
GRP485-1	0.17	47	323.35	0.23	5.1M	33K
LAT008-1	0.48	40	22.56	0.12	933K	19K
LCL115-2	0.81	52	24.42	0.29	1.1M	37K

Tab. 1. Timing (in seconds) and proof size

Normal form

Given the following standard lemmas:

```
trans: \forall A: Type. \forall x, y, z: A.x =_A y \rightarrow y =_A z \rightarrow x =_A z

sym: \forall A: Type. \forall x, y: A.x =_A y \rightarrow y =_A x

eq_f: \forall A, B: Type. \forall f: A \rightarrow B. \forall x, y: A.x =_A y \rightarrow (f x) =_B (f y)
```

Definition (Proof normal form)

```
\pi = \text{eq.f } B \ C \ \Delta \ a \ b \ axiom
\mid \text{eq.f } B \ C \ \Delta \ a \ b \ (\text{sym } B \ b \ a \ axiom)
\mid \text{trans } A \ a \ b \ c \ \pi \ \pi
```

ρ , CIC eq_ind \rightarrow CIC trans sym

```
\rho(\pi) \leadsto \rho'(\lambda x : B.x, \pi) when \pi : a =_B b
\rho'(\Delta, \text{ eq\_ind } A \text{ a } (\lambda x.\Gamma[x] =_B m) \pi_1 \text{ b } \pi_2) \rightsquigarrow
          trans C (\Delta \circ \Gamma)[b] (\Delta \circ \Gamma)[a] \Delta[m]
                    (\text{sym } C (\Delta \circ \Gamma)[a] (\Delta \circ \Gamma)[b] \rho'(\Delta \circ \Gamma, \pi_2)) \rho'(\Delta, \pi_1)
\rho'(\Delta, \text{ eq\_ind\_r } A \text{ a } (\lambda x.\Gamma[x] =_B m) \pi_1 \text{ b } \pi_2) \rightsquigarrow
          trans C (\Delta \circ \Gamma)[b] (\Delta \circ \Gamma)[a] \Delta[m] \rho'(\Delta \circ \Gamma, \pi_2) \rho'(\Delta, \pi_1)
\rho'(\Delta, \text{ eq\_ind } A \text{ a } (\lambda x.m =_B \Gamma[x]) \pi_2 \text{ b } \pi_1) \rightsquigarrow
          trans C \Delta[m] (\Delta \circ \Gamma)[a] (\Delta \circ \Gamma)[b] \rho'(\Delta, \pi_2) \rho'(\Delta \circ \Gamma, \pi_1)
\rho'(\Delta, \text{ eq\_ind\_r } A \text{ a } (\lambda x.m =_B \Gamma[x]) \pi_1 \text{ b } \pi_2) \rightsquigarrow
          trans C \Delta[m] (\Delta \circ \Gamma)[a] (\Delta \circ \Gamma)[b]
                    \rho'(\Delta, \pi_1) (sym C(\Delta \circ \Gamma)[b](\Delta \circ \Gamma)[a] \rho'(\Delta \circ \Gamma, \pi_2))
\rho'(\Delta, \pi) \rightsquigarrow \text{eq.f } B \subset \Delta \text{ a b } \pi \text{ when } \pi : a =_B b \text{ and } \Delta : B \rightarrow C
```

Theorem 1: ρ is type preserving

if $\Delta: B \to C$ and $\pi: x =_B y$, then $\rho'(\Delta, \pi): \Delta[x] =_C \Delta[y]$ By induction on the size of π

$$\Gamma: A \to B \qquad \pi_1: \Gamma[a] =_B m \qquad \pi_2: a =_A b$$

$$\rho'(\Delta, \text{ eq.ind } A \text{ a } (\lambda x. \Gamma[x] =_B m) \pi_1 \text{ b } \pi_2: \Gamma[b] =_B m)$$

 \Rightarrow

$$\rho'(\Delta \circ \Gamma, \ \pi_2) : \Delta[\Gamma[a]] =_C \Delta[\Gamma[b]]$$

$$P \equiv (\text{sym } C \ \Delta[\Gamma[a]] \ \Delta[\Gamma[b]] \ \rho'(\Delta \circ \Gamma, \ \pi_2)) : \Delta[\Gamma[b]] =_C \Delta[\Gamma[a]]$$

$$\frac{\pi_1 : \Gamma[a] =_B m}{Q \equiv \rho'(\Delta, \ \pi_1) : \Delta[\Gamma[a]] =_C \Delta[m]}$$

$$P: \Delta[\Gamma[b]] =_C \Delta[\Gamma[a]] \qquad Q: \Delta[\Gamma[a]] =_C \Delta[m]$$

trans $C \Delta[\Gamma[b]] \Delta[\Gamma[a]] \Delta[m] P Q: \Delta[\Gamma[b]] =_C \Delta[m]$

θ , CIC trans sym \rightarrow CIC canonical

Pushing sym up.

```
\theta(\operatorname{sym} A \ b \ a \ (\operatorname{trans} A \ b \ c \ a \ \pi_1 \ \pi_2)) \rightsquigarrow \\ \operatorname{trans} A \ a \ c \ b \ \theta(\operatorname{sym} A \ c \ a \ \pi_2) \ \theta(\operatorname{sym} A \ b \ c \ \pi_1)
\theta(\operatorname{sym} A \ b \ a \ (\operatorname{sym} A \ a \ b \ \pi)) \rightsquigarrow \theta(\pi)
\theta(\operatorname{trans} A \ a \ c \ b \ \pi_1 \ \pi_2) \rightsquigarrow \\ \operatorname{trans} A \ a \ c \ b \ \theta(\pi_1) \ \theta(\pi_2)
\theta(\operatorname{sym} B \ \Delta[a] \ \Delta[b] \ (\operatorname{eq.f} A \ B \ \Delta \ a \ b \ \pi)) \rightsquigarrow \\ \operatorname{eq.f} A \ B \ \Delta \ b \ a \ (\operatorname{sym} A \ a \ b \ \pi)
\theta(\pi) \rightsquigarrow \pi
```

By induction on the size of the proof.

$$\theta(\text{sym } A \ b \ a \ (\text{trans } A \ b \ c \ a \ \pi_1 \ \pi_2)$$

trans $A \ a \ c \ b \ \theta(\text{sym} \ A \ c \ a \ \pi_2) \ \theta(\text{sym} \ A \ b \ c \ \pi_1)$

By induction on the size of the proof.

$$\theta(\text{sym } A \ b \ a \ (\text{trans } A \ b \ c \ a \ \pi_1 \ \pi_2) : a =_A b)$$

 \Rightarrow

trans $A \ a \ c \ b \ \theta(\text{sym} \ A \ c \ a \ \pi_2) \ \theta(\text{sym} \ A \ b \ c \ \pi_1)$

By induction on the size of the proof.

$$\theta$$
(sym A b a (trans A b c a π_1 π_2): $a =_A b$)

 \Rightarrow

trans $A \ a \ c \ b \ \theta(\text{sym} \ A \ c \ a \ \pi_2) \ \theta(\text{sym} \ A \ b \ c \ \pi_1) : a =_A b$

By induction on the size of the proof.

$$\frac{\pi_1: b =_A c \qquad \pi_2: c =_A a}{\theta(\text{sym } A \ b \ a \ (\text{trans } A \ b \ c \ a \ \pi_1 \ \pi_2): a =_A b)}$$

trans $A \ a \ c \ b \ \theta(\text{sym} \ A \ c \ a \ \pi_2) \ \theta(\text{sym} \ A \ b \ c \ \pi_1) : a =_A b$

By induction on the size of the proof.

$$\pi_1 : b =_A c \qquad \pi_2 : c =_A a$$

$$\theta(\text{sym } A \ b \ a \ (\text{trans } A \ b \ c \ a \ \pi_1 \ \pi_2) : a =_A b)$$

$$\Rightarrow$$

$$\operatorname{sym} A \ c \ a \ \pi_2 : a =_A c$$

$$\operatorname{trans} A \ a \ c \ b \ \theta(\operatorname{sym} A \ c \ a \ \pi_2) \ \theta(\operatorname{sym} A \ b \ c \ \pi_1) : a =_A b$$

By induction on the size of the proof.

$$\frac{\pi_1 : b =_A c \qquad \pi_2 : c =_A a}{\theta(\text{sym } A \ b \ a \ (\text{trans } A \ b \ c \ a \ \pi_1 \ \pi_2) : a =_A b)}$$

$$\Rightarrow$$

By induction on the size of the proof.

$$\pi_1 : b =_A c \qquad \pi_2 : c =_A a$$

$$\theta(\text{sym } A \ b \ a \ (\text{trans } A \ b \ c \ a \ \pi_1 \ \pi_2) : a =_A b)$$

$$\Rightarrow$$

$$\frac{\theta(\operatorname{sym} A c a \pi_2) : a =_A c}{\operatorname{trans} A a c b \theta(\operatorname{sym} A c a \pi_2) \theta(\operatorname{sym} A b c \pi_1) : c =_A b}$$

Examples

▶ Demo!

Future work

- ▶ We developed a prolog-style proof search procedure, we want nice proof objects also in this case.
- Declarative and procedural language rendering of such proof objects (work in progress).
- ▶ Make tactics more "proof reconstruction" friendly.