Higher order proof reconstruction from
paramodulation-based refutations:
the unit equality case

Andrea Asperti and Enrico Tassi

Department of Computer Science, University of Bologna

28-30 June 2007

Context

What we had:

>

>

>

Matita is an ITP developed at the university of Bologna

Lack of automation is one of the most reported issues of ITPs
ATP are effective tools, but usually do not provide a proof
object, sometimes a minimalistic trace mainly for efficiency
(both space and time).

Matita follows the independent verification principle: we need
a real CIC proof

We implemented our own first order paramodulation based
automatic theorem prover (that, of course, provides a good
trace), restricted to the unit equality case.

Context

What we had:

>

>

>

Matita is an ITP developed at the university of Bologna
Lack of automation is one of the most reported issues of ITPs

ATP are effective tools, but usually do not provide a proof
object, sometimes a minimalistic trace mainly for efficiency
(both space and time).

Matita follows the independent verification principle: we need
a real CIC proof

We implemented our own first order paramodulation based
automatic theorem prover (that, of course, provides a good
trace), restricted to the unit equality case.

Why your own prover?

Context

What we had:

>

>

>

Matita is an ITP developed at the university of Bologna
Lack of automation is one of the most reported issues of ITPs

ATP are effective tools, but usually do not provide a proof
object, sometimes a minimalistic trace mainly for efficiency
(both space and time).

Matita follows the independent verification principle: we need
a real CIC proof

We implemented our own first order paramodulation based
automatic theorem prover (that, of course, provides a good
trace), restricted to the unit equality case.

Why your own prover? For fun :-)

Aim

What we want:
» To be able to read the proofs:

» To understand what the automatic procedure did.
> Nice natural language rendering using MoWGLI tech.

a = b by lemmal
= ¢ by lemma?
= d by lemma3

Aim

What we want:
» To be able to read the proofs:

» To understand what the automatic procedure did.
> Nice natural language rendering using MoWGLI tech.

a = b by lemmal
= ¢ by lemma?
= d by lemma3

» Save earth from overheating

» Fast to typecheck
» Not re-doing proof search every time we compile a file

Plan

The plan:

1.
2.
3.

Start from the trace of the prover
Transform it into a CIC object

Apply type preserving transformations to obtain a nice proof
object suitable for point 4.

Render it in natural language (re-using MoWGLI/Matita
rendering facility)

Thanks to C. Sacerdoti Coen declarative language, the printed
proof is a re-executable script (PLMMS talk).

Outline

Equality in CIC
Superposition rules
Proof reconstruction

Demo

vV v v v Y

Conclusion

Equality in CIC

» Not built in, but an inductive predicate with one constructor:

refl_eq : x =5 x

» As any inductive type, comes with an eliminator in two

flavours:
h:P a k:ai =4 a2
(eqind A a; P hax k) : P ap
h:P a k:ai =4 a2

(eqindr Aax P hai k): P ap

Superposition rules

» Superposition left (backward reasoning)
Fl=ar t=pskC

tlrlpoc =g so - Co

» Superposition right (forward reasoning)
Fl=ar Ft=pgs
- tlr]po =g so

» Equality resolution
t=asFC
FCo

Data flow (1/3)

[

I Proof | " CIC

I trace | eq,ind
L___1

p
CIC

eq-trans 0 — CIC.
eq_sym canonical

Data flow (1/3)

[
I Proof | | CIC

P —— .
I trace | ‘ eq-ind

|

CIC
eq-trans
eq-sym

CIC
canonical

Superposition rules with CIC proofs

» Superposition left (backward reasoning)
H [=ar t=psk C
tlrlpoc =g so Co

> Superposition right (forward reasoning)
' l=ar F t=ps
F o tlr]po =B so

» Equality resolution
t=astk C
F Co

Superposition rules with CIC proofs

» Superposition left (backward reasoning)
Fh:l=xr a:t=pst-M:C
B : tlr]poc =g so = Mco[R/ac] : Co

R = (eqind.r A ro (Ax : A.t[x]p, =g s)o B lo ho) : to =g so

> Superposition right (forward reasoning)
o l=ar F t=ps
F o tlr]po =B so

» Equality resolution
t=astk C
F Co

Superposition rules with CIC proofs

» Superposition left (backward reasoning)
Fh:l=pr a:t=pst-M:C
B : tlr]poc =g so = Mco[R/ac] : Co

R = (eqind.r A ro (Ax : A.t[x]p, =g s)o B lo ho) : to =g so

> Superposition right (forward reasoning)
Fh:l=pr Fk:t=ps
FR: tr]poc =g so

R = (eq-ind A lo (Ax : A.t[x]p =g s)o ko ro ho) : t[r]po =g so

» Equality resolution
t=astk C
F Co

Superposition rules with CIC proofs

» Superposition left (backward reasoning)
Fh:l=pr a:t=pst-M:C
B : tlr]poc =g so = Mco[R/ac] : Co

R = (eqind.r A ro (Ax : A.t[x]p, =g s)o B lo ho) : to =g so

> Superposition right (forward reasoning)
Fh:l=pr Fk:t=ps
FR: tr]poc =g so

R = (eq-ind A lo (Ax : A.t[x]p =g s)o ko ro ho) : t[r]po =g so

» Equality resolution
a:t=pastEM:C
F Mirefl.eq A to/a] : Co

Superposition rules with CIC proofs

» Superposition left (backward reasoning)
Fh:l=xr a:t=pst-M:C
tlr]poc =g so Co

» Superposition right (forward reasoning)
Fh:il=pr Fk:t=ps
F tlrlpo =g so

» Equality resolution
a:t=pstk C
F Co

Data flow (2/3)

[

I Proof | " CIC

I trace | eq,ind
L___1

p
CIC

eq-trans 0 — CIC.
eq_sym canonical

Data flow (2/3)

=T ro T T
I Proof | " I CIC
I trace | I eq.ind |

L /4

p
I 7/ o

- cco . CIC |
| eq-trans —— 4@ ‘>I cal
| eqsym | . canonica |

L - _-_4

Data flow (2/3)

Problem Search Steps Typing Proof size

raw opt raw opt
BOO069-1 2.15 27 79.50 3.1M
BOO071-1 2.23 27 203.03 5.4M
GRP118-1 0.11 17 7.66 546K
GRP485-1 0.17 47 323.35 5.1M
LATO008-1 0.48 40 22.56 933K
LCL115-2 0.81 52 24.42 1.1M

Tab. 1. Timing (in seconds) and proof size

Data flow (2/3)

Problem Search Steps Typing Proof size

raw opt raw opt

BOO069-1 2.15 27 79.50 | 0.23 | 3.1M | 29K
BOO071-1 2.23 27 203.03 | 0.22 | 5.4M | 28K
GRP118-1 0.11 17 7.66 | 0.13 | 546K | 21K
GRP485-1 0.17 47 323.35 | 0.23 | 5.1M | 33K
LATO008-1 0.48 40 2256 | 0.12 | 933K | 19K
LCL115-2 0.81 52 2442 | 0.29 | 1.1M | 37K

Tab. 1. Timing (in seconds) and proof size

Data flow (2/3)

[
I Proof |
I trace | ¥

|

1)
CIC
letin 9 — |CI.C
eq_trans Et”.] |
eq_sym canonica

Data flow (2/3)

[
I Proof |
I trace | ¥

|

P
CIC
letin 9 — |CI.C
eq_trans Et”.] |
eq_sym canonica

Normal form

Given the following standard lemmas:

trans : VA: Type VX, y,Z: AX=ay >y =aZ > X=pZ
sym:VA: TypeVx,y : Ax=pay — Yy =paX
eqf: VA, B: TypeVf : A— BVx,y :Ax=ay — (f x) = (f y)

Definition (Proof normal form)

= eqf B C A a b axiom
| eqf B CA ab(sym B b aaxiom)
| transAabcrmm

™

p, CIC eq_.ind— CIC trans sym

p(m) ~ p'(Ax:B.x,) when m:a=pg b
(A, eq-ind A a (M\x.[x] =g m) w1 b mp) ~
trans C (Ao T)[b] (AoT)[a] Alm]
(sym C (AoN)[a] (Aol)[b] p/(AoT, m)) p'(4, m)
(A, eq-indr A a (Ax.I'[x] =g m) w1 b mp) ~
trans C (AoT)[b] (AoT)[a] Alm] p/(AoT, m) p'(A, m)
(4, eqind A a (Ax.m =g ['[x]) mp b 1) ~
trans C A[m] (AoT)[a] (Ao)[b] p(A, m) p'(AoTl, m1)
p'(A, eqindr A a (Ax.m =g ['[x]) m1 b mp) ~
trans C A[m] (Ao l)[a] (AoT)[b]
p(A, m) (sym C (AoT)[b] (AoT)[a] p'(AcT, m2))
P(A,)y~eqfBCAabr whenm:a=gband A:B— C

Theorem 1: p is type preserving

if A:B— Candm:x=gy, then p/(A, 7): Alx] =c Aly]
By induction on the size of 7

rrA—=B m:[[a] =g m moia=ab

p'(A, eqind A a (Ax.[[x] =g m) m1 b 7o : [[b] =g m)
=

p(Aol, m): Allfa]] =c A[l[b]]

P=(sym C A[l[a]] A[F[p] p'(AoT, m)): A[F[b]] =c All[a]]

T - F[a] =B m

Q=/p'(A, m): Alla]] =c A[m]

P:A[lb]] =c Allfa]] Q: A[l{a]] =c A[m]

trans C A[T[b]] A[T[a]] Alm] P Q: A[T[b]] =c Alm]

Data flow (3/3)

[

I Proof | " CIC

I trace | eq,ind
L___1

p
CIC

eq-trans 0 — CIC.
eq_sym canonical

0, CIC trans sym— CIC canonical

Pushing sym up.

O(sym A b a (trans A b ¢ a m1 1)) ~
trans Aac bf(sym A c am) 0(sym A b c m)
O(sym A b a(sym A a b))~ 0(r)
O(trans A a ¢ b 1 mp) ~
trans A a ¢ b 0(m1) 0(m2)
O(sym B Ala] A[b] (eqf AB A abm))~
eqf ABAba(symAabmn)
O(m) ~ m

Theorem 2: 6 is type preserving

By induction on the size of the proof.

O(sym A b a (trans A b c a w1)

=

trans A ac bf(sym A ¢ am) O(sym A b ¢ 1)

Theorem 2: 6 is type preserving

By induction on the size of the proof.

O(sym A b a (trans Abcam m):a=ab)

=

trans A ac bf(sym A ¢ am) O(sym A b ¢ 1)

Theorem 2: 6 is type preserving

By induction on the size of the proof.

O(sym A b a (trans Abcam m):a=ab)

=

trans Aac bfO(sym Acam)fO(symAbcmy):a=ab

Theorem 2: 6 is type preserving

By induction on the size of the proof.

7T1:b:AC T2 .C=Aa4a

O(sym A b a (trans Abcam m):a=ab)

=

trans Aac bfO(sym Acam)fO(symAbcmy):a=ab

Theorem 2: 6 is type preserving

By induction on the size of the proof.

7T1:b:AC T2 .C=Aa4a

O(sym A b a (trans Abcam m):a=ab)
=

symAcam a=acC

trans Aac bfO(sym Acam)fO(symAbcmy):a=ab

Theorem 2: 6 is type preserving

By induction on the size of the proof.

7T1:b:AC T2 .C=Aa4a

O(sym A b a (trans Abcam m):a=ab)
=

symAcam a=acC symAbcm :c=pb

trans Aac bfO(sym Acam)fO(symAbcmy):a=pb

Theorem 2: 6 is type preserving

By induction on the size of the proof.

7T1:b:AC T2 .C=Aa4a

O(sym A b a (trans Abcam m):a=ab)
=

O(sym Acam):a=ac O(sym Abcm):c=ab

trans Aac bfO(sym Acam)fO(symAbcmy):a=pb

Examples

» Demol!

Future work

» We developed a prolog-style proof search procedure, we want
nice proof objects also in this case.

» Declarative and procedural language rendering of such proof
objects (work in progress).

» Make tactics more “proof reconstruction” friendly.

