
Multiple Inheritance and Coercive Subtyping
or how to teach an old dog (on steroids)

new tricks

Claudio Sacerdoti Coen <sacerdot@cs.unibo.it>

Enrico Tassi <tassi@cs.unibo.it>

University of Bologna

02/05/2007

Outline

1 Mathematical Structures and Multiple Inheritance

2 Pullbacks of Coercions

3 Conclusions

Outline

1 Mathematical Structures and Multiple Inheritance

2 Pullbacks of Coercions

3 Conclusions

An old problem (1/2)

How to represent (a hierarchy of) mathematical structures
structures must be first class objects (no modules)
multiple inheritance (e.g. a Riesz space is a vector space
that has a lattice structure s.t. . . .)
controlled sharing (e.g. ring = group + monoid)
inheritance must be “symmetric”
(e.g. NO ring = group + monoid on (carrier group))
subtyping (e.g. a vectore space is a Riesz space)
structure specialization (e.g. ∀ ring on natural numbers)

for multiple inheritance with controlled sharing
to prove theorems on specialized structures

An old problem (2/2)

Additional requirements
notation should work properly
lambda term ∈ O(n) where n is the size of the formula
(e.g. NO carrier of monoid of additive group of ring of . . .)
unification, type inference must work properly
(e.g. ∀x .0 + x ∧ > = x)

Theoretical solution 1

Betarte/Tasistro: dependently typed, extensible records
Monoid = 〈C : Type; ◦ : C → C → C; e : C〉
〈C = nat ; ◦ = +; e = 0〉 : Monoid
dependently typed projections to extract fields value
(e.g. M.C)
inheritance by extensibility
(e.g. Group = 〈Monoid ; opp : C → C〉)
subtyping is structural (permutation and addition of fields)
(e.g. an ordered semigroup is an ordered group)
Pollack: “structural subtyping depends on accident of
structure, and does not support natural mathematical
definitions”

Theoretical solution 1

Betarte/Tasistro: dependently typed, extensible records
complex type system (subtyping is hardcoded)
no structure specialization
manually built specialized structures are not subtypes
conversion, typechecking: ok
unification, refinement, type inference: ???

Theoretical solution 2

Pollack: Sigma types (for opaque fields) + Manifest types +
Coercive subtyping

inheritance by inclusion of sub-structures (as fields)
(e.g. Monoid = 〈S : Semigroup; e : S.C〉)
coercive subtyping replaces subtyping and extensibility
(e.g. (SM) : Semigroup whenever M : Monoid)
manifest types for controlled sharing, symmetric
inheritance and structure specialization
(e.g. 〈carrier = nat ; ◦ : carrier → carrier → carrier〉)

Theoretical solution 2

Pollack: Sigma types (for opaque fields) + Manifest types +
Coercive subtyping

lambda term ∈ O(d ∗ n) where n is the size of the formula
and d the height of the inheritance graph
coded in type theory + induction/recursion
conversion, typechecking: ok
unification, refinement, type inference: ???

Practical solution

Geuvers, Pollack et alt.: non extensible dependently typed
records + coercive subtyping + Pebble style sharing

used for FTA (now CoRN); requires no changes to Coq
inheritance by inclusion of sub-structures (as fields)
coercive subtyping replaces subtyping and extensibility
single inheritance is ok
asymmetric multiple inheritance, controlled sharing
structure (e.g.
Ring = 〈 G : group; mult : G.C → G.C → G.C;

1 : G.C; H : is semigroup G.C mult e〉)
specialization by Pebble style sharing only
(e.g. monoid on : Type→ Type)

Practical solution

Geuvers, Pollack et alt.: non extensible dependently typed
records + coercive subtyping + Pebble style sharing

multiple coercions not allowed
satisfactory only for linear hierarchies
lambda term ∈ O(d ∗ n) where n is the size of the formula
and d the height of the inheritance graph
it works!

Our proposal

non extensible dependently typed records + coercive subtyping
+ manifest fields via extensional equality

no changes to the theory/implementation of Coq/Matita
no need for induction/recursion
less efficient/clean/computational than Pollack’s proposal
inheritance by inclusion of sub-structures (as fields)
coercive subtyping replaces subtyping and extensibility

Our proposal

ring = { G: group; M: monoid; with: G.carrier = M.carrier }
problem: ∀R : ring.1R + 0R = 1R not well typed
hint:

Γ ` P : ∀B : T .A =T B → Type
Γ ` H : A =T B

Γ ` M : P A (refl eqT A)

Γ ` (M :H P B H) : P H B

Γ ` (M :(refl eqT A) P A (refl eqT A)) B M

thus:

∀R.(1R :R.with R.G.carrier) + 0R = (1R :R.with R.G.carrier)

well typed (but not practical)

Our proposal

idea (assuming dependent records):

ring′ (R : ring) =
{ G = R.G;

M = { carrier = R.G.carrier ;
op = (R.M.op :R.with carrier → carrier → carrier);
e = (R.M.e :R.with carrier);
neutral : (R.M.neutral :R.with ∀x : carrier .e ∗ x = x)}

}

Let R′ = ring′ R for some ring R.
R.M.carrier is intensionally equal to R.G.carrier
Re-define the projections/coercions M : ring → monoid as
M (R : ring) := M (ring′ R)

First Properties

symmetric multiple inheritance and controlled sharing
but now we have multiple coercion paths!

we need to improve coercions (second part of the talk!)
size of lambda terms still unsatisfactory

we need to improve coercions (second part of the talk!)

Structure specialization?

structure specialization through syntactic sugar?

∀S : semigroup with M.carrier = nat .
P[S,S.carrier ,S.op]

syntactic sugar for

∀S : semigroup.∀with : S.carrier = nat .
let S′ := 〈 carrier = nat ;

op = (op :with carrier → carrier → carrier)〉
in

P[S,S′.carrier ,S′.op]

inheritance: semigroup with M.carrier = nat is a semigroup

Major Problem

M := {carrier = Z; op = *; e = 1}
R := {G = G; M = M; with: G.carrier = M.carrier}
0M + 0M B 0M and 0R + 0R B 0R but
1M ∗ 1M B 1M and 1R ∗ 1R 6B1R

Outline

1 Mathematical Structures and Multiple Inheritance

2 Pullbacks of Coercions

3 Conclusions

Mathematical structures

Dependent records used to pack carriers, operations (and
properties)
Inheritance:

Subtyping between dependent records
Coercive subtyping

Problems:
Chain of coercions:
(Carrier OF Setoid (Setoid OF SemiGroup

(SemiGroup OF Group (Group OF Ring . . .))))
Multiple coercion paths for multiple inheritance
(an unification/type inference problem)

Composite coercions

Every time a coercion is declared, the coercions graph is
automatically completed with composite coercions
Not so simple (requires unification/refinement):
k1 : ∀S : Type.G S → F (I S)
k2 : ∀S : Type.F (H S)→ U (K S)
If we can find u and v such that
I (u ?1) ∼= H ?2 and K ?2 ∼= v ?1 then
k12 : ∀S : Type.G (u S)→ U (v S)
Implementation: apply k1 (saturated) to k2 (saturated),
refine and then λ-abstract on remaining metavariables.
Introduces multiple paths between nodes in the coercion
graph

Unification problem: k12 g = k2 (k1 g) but how to solve
k12 ?1 ∼= k2 ?2?
Untamed solution: unification up to conversion (too
expensive)
Well behaved solution: see later

Multiple inheritance

Multiple paths are not dangerous when they are
intensionally equal
E.g.: “a Riesz space is a vector space that is also a lattice”;
“an algebra is a vector space with a multiplicative
structure”;
“an f-algebra is a Riesz space that is also an algebra”
Intensionally equal multiple paths are necessary
E.g.: ∀f .f ≤ 1→ f ∗ f ≤ 1
f ∗ f has type carrier of vector space of algebra of f-algebra
but is used with type carrier of vector space of Reisz space
of f-algebra
Serious unification problems:
carrier OF algebra ?1 ∼=
carrier OF Riesz space ?2

Pullbacks

Consider the unification problem
f t ∼= g t ′

where f is a coercion from A to M
g is a coercion from B to M
f ′,g′ is the smallest pullback of A and B
f ′ is a coercion from P to A
g′ is a coercion from P to B

P

?1 : A

M

?2 : B

f g

f ’ g ’

If P 6= A and t =?1 then unify ?1 with f ′ ?3 (?3 of type P)
If P 6= B and t ′ =?2 then unify ?2 with g′ ?3 (?3 of type P)
Then solve the initial unification problem without using
conversion
Works also for composite coercions! (triangular pullback)

Pullbacks

Same solution for dependent coercions
(just saturate in advance)
Hidden assumptions:

Invariant: only well-typed terms (with possibly different
types) are unified
To unify ?i with t first unify their types

Under the previous assumption: no circular dependency
between unification and refinement

Outline

1 Mathematical Structures and Multiple Inheritance

2 Pullbacks of Coercions

3 Conclusions

Conclusions (1/2)

We solve the problem of multiple intensionally equal
coercions paths
Solutions is fully satisfactory (so far)
Size of proof terms dramatically reduced

Conclusions (2/2)

We propose an improvement of Pollack, Geuvers et alt. to
“capture” manifest types by extensional equality
Symmetric multiple inheritance, controlled sharing,
subtyping
Structure specialization?
Notation, unification, type inference work properly
Conversion is (asymmetrically) not preserved by
composition

	Mathematical Structures and Multiple Inheritance
	Pullbacks of Coercions
	Conclusions

