Multiple Inheritance and Coercive Subtyping
or how to teach an old dog (on steroids)
new tricks

Claudio Sacerdoti Coen <sacerdot@cs.unibo.it>
Enrico Tassi <tassitcs.unibo.it>

University of Bologna

02/05/2007

Outline

ﬂ Mathematical Structures and Multiple Inheritance

e Pullbacks of Coercions

e Conclusions

Outline

0 Mathematical Structures and Multiple Inheritance

An old problem (1/2)

How to represent (a hierarchy of) mathematical structures

structures must be first class objects (no modules)
multiple inheritance (e.g. a Riesz space is a vector space
that has a lattice structure s.t. ...)

controlled sharing (e.g. ring = group + monoid)
inheritance must be “symmetric”

(e.g. NO ring = group + monoid_on (carrier group))
subtyping (e.g. a vectore space is a Riesz space)
structure specialization (e.g. V ring on natural numbers)

e for multiple inheritance with controlled sharing
e to prove theorems on specialized structures

An old problem (2/2)

Additional requirements
@ notation should work properly

@ lambda term € O(n) where n is the size of the formula
(e.g. NO carrier of monoid of additive group of ring of .. .)

@ unification, type inference must work properly
(.9- VX0 +XxAT =x)

Theoretical solution 1

Betarte/Tasistro: dependently typed, extensible records

@ Monoid = (C: Type;o: C — C — C;e: C)

@ (C = nat,o = +;e=0) : Monoid

@ dependently typed projections to extract fields value
(e.g.- M.C)

@ inheritance by extensibility
(e.g. Group = (Monoid; opp : C — C))

@ subtyping is structural (permutation and addition of fields)
(e.g. an ordered semigroup is an ordered group)

@ Pollack: “structural subtyping depends on accident of
structure, and does not support natural mathematical
definitions”

Theoretical solution 1

Betarte/Tasistro: dependently typed, extensible records
@ complex type system (subtyping is hardcoded)
@ no structure specialization
@ manually built specialized structures are not subtypes
@ conversion, typechecking: ok
@ unification, refinement, type inference: ???

Theoretical solution 2

Pollack: Sigma types (for opaque fields) + Manifest types +
Coercive subtyping
@ inheritance by inclusion of sub-structures (as fields)
(e.g. Monoid = (S : Semigroup; e : S.C))
@ coercive subtyping replaces subtyping and extensibility
(e.g. (SM) : Semigroup whenever M : Monoid)

@ manifest types for controlled sharing, symmetric
inheritance and structure specialization
(e.g. (carrier = nat; o : carrier — carrier — carrier))

Theoretical solution 2

Pollack: Sigma types (for opaque fields) + Manifest types +
Coercive subtyping

@ lambda term € O(d * n) where nis the size of the formula
and d the height of the inheritance graph

@ coded in type theory + induction/recursion
@ conversion, typechecking: ok
@ unification, refinement, type inference: ??7?

Practical solution

Geuvers, Pollack et alt.: non extensible dependently typed
records + coercive subtyping + Pebble style sharing

@ used for FTA (now CoRN); requires no changes to Coq
@ inheritance by inclusion of sub-structures (as fields)

@ coercive subtyping replaces subtyping and extensibility
@ single inheritance is ok

@ asymmetric multiple inheritance, controlled sharing
structure (e.g.
Ring = (G: group; mult : G.C — G.C — G.C;
1: G.C; H : is_semigroup G.C mult e))
@ specialization by Pebble style sharing only
(e.g. monoid_on : Type — Type)

Practical solution

Geuvers, Pollack et alt.: non extensible dependently typed
records + coercive subtyping + Pebble style sharing

@ multiple coercions not allowed
@ satisfactory only for linear hierarchies

@ lambda term € O(d = n) where n is the size of the formula
and d the height of the inheritance graph

@ it worksl!

Our proposal

non extensible dependently typed records + coercive subtyping
+ manifest fields via extensional equality

@ no changes to the theory/implementation of Cog/Matita
no need for induction/recursion

less efficient/clean/computational than Pollack’s proposal
inheritance by inclusion of sub-structures (as fields)
coercive subtyping replaces subtyping and extensibility

Our proposal

@ ring = { G: group; M: monoid; with: G.carrier = M.carrier }
@ problem: VR : ring.1g + 0g = 15 not well typed

@ hint:
r-P:vVB: T.A=7 B— Type
'HH:A=1B
F=M: P A(refl_eqr A)
r-(M:yPBH):PHB
= (M ‘(refl_eqr A) PA (refl,eqr A)) > M
@ thus:

VR.(1g :r.with R-G.carrier) + 0g = (15 :g.witn R.G.carrier)

well typed (but not practical)

Our proposal

@ idea (assuming dependent records):

ring' (R : ring) =
{G=R.G
M = { carrier = R.G.carrier;
op = (R-M.op :g.witn carrier — carrier — carrier);
e = (R.M.e :g i carrier);
neutral : (R.M.neutral :g iy VX : carrier.e x x = x)}

}

@ Let R = ring’ R for some ring R.
R.M.carrier is intensionally equal to R.G.carrier

@ Re-define the projections/coercions M : ring — monoid as
M (R : ring) := M (ring’ R)

First Properties

@ symmetric multiple inheritance and controlled sharing
@ but now we have multiple coercion paths!

e we need to improve coercions (second part of the talk!)
@ size of lambda terms still unsatisfactory

e we need to improve coercions (second part of the talk!)

Structure specialization?

@ structure specialization through syntactic sugar?

VS : semigroup with M.carrier = nat.
P[S, S.carrier, S.op|

syntactic sugar for

VS : semigroup.Ywith : S.carrier = nat.
let S’ := (carrier = nat;
op = (op :with carrier — carrier — carrier))
in

P[S, S'.carrier, S'.op]

@ inheritance: semigroup with M.carrier = nat is a semigroup

Major Problem

M := {carrier=Z;op=";e=1}

R = {G = G; M = M; with: G.carrier = M.carrier}
Oy +0y 04 and Og + 0g > 0g but
1M*1M>1Mand 1/:;*1/:;]ﬁ‘lR

Outline

e Pullbacks of Coercions

Mathematical structures

@ Dependent records used to pack carriers, operations (and
properties)
@ Inheritance:
e Subtyping between dependent records
e Coercive subtyping
@ Problems:
e Chain of coercions:
(Carrier_OF _Setoid (Setoid_OF_SemiGroup
(SemiGroup_OF _Group (Group_OF _Ring ...))))
e Multiple coercion paths for multiple inheritance
(an unification/type inference problem)

Composite coercions

@ Every time a coercion is declared, the coercions graph is
automatically completed with composite coercions

@ Not so simple (requires unification/refinement):
ki :VS: Type.GS — F (1 S)
ko :vS: Type.F (HS) — U (K S)
If we can find u and v such that
I(u?y)=2H?and K7, = v 7 then
kio :VS: Type.G(uS) — U (v S)
Implementation: apply kq (saturated) to ko (saturated),
refine and then X-abstract on remaining metavariables.
@ Introduces multiple paths between nodes in the coercion
graph
e Unification problem: k> - g = k> _ (ki - g) but how to solve
Ki2 -7 = ko - 727
e Untamed solution: unification up to conversion (too
expensive)
o Well behaved solution: see later

Multiple inheritance

@ Multiple paths are not dangerous when they are
intensionally equal

@ E.g.: “a Riesz space is a vector space that is also a lattice”;
“an algebra is a vector space with a multiplicative
structure”;

“an f-algebra is a Riesz space that is also an algebra”

@ Intensionally equal multiple paths are necessary

@ Eg.Vif<1—1fxf<A1
f « f has type carrier of vector space of algebra of f-algebra
but is used with type carrier of vector space of Reisz space
of f-algebra

@ Serious unification problems:
carrier_ OF _algebra 74 =
carrier_OF _Riesz_space 7o

Pullbacks

p
Consider the unification problem)
ft=gt
where f is a coercion from Ato M

g is a coercion from Bto M M
f', g is the smallest pullback of A and B

f"is a coercion from P to A

g’ is a coercion from P to B

o If P# Aand t =7y then unify ?y with f' 73 (?5 of type P)
e If P # Band t' =7, then unify ?,> with g’ 73 (73 of type P)

@ Then solve the initial unification problem without using
conversion

@ Works also for composite coercions! (triangular pullback)

2:B

.
3
2

VL

%i \\?

Pullbacks

@ Same solution for dependent coercions
(just saturate in advance)
@ Hidden assumptions:
e Invariant: only well-typed terms (with possibly different
types) are unified
o To unify ?; with t first unify their types
@ Under the previous assumption: no circular dependency
between unification and refinement

Outline

e Conclusions

Conclusions (1/2)

@ We solve the problem of multiple intensionally equal
coercions paths

@ Solutions is fully satisfactory (so far)
@ Size of proof terms dramatically reduced

Conclusions (2/2)

@ We propose an improvement of Pollack, Geuvers et alt. to
“capture” manifest types by extensional equality

@ Symmetric multiple inheritance, controlled sharing,
subtyping

@ Structure specialization?

@ Notation, unification, type inference work properly

@ Conversion is (asymmetrically) not preserved by
composition

	Mathematical Structures and Multiple Inheritance
	Pullbacks of Coercions
	Conclusions

