An interactive driver for goal directed proof
strategies

Andrea Asperti and Enrico Tassi
Department of Computer Science, University of Bologna

22 August 2008

Context

What we had:
» Matita is an ITP developed at the University of Bologna,
similar to Coq
» Automation is a desirable aid, we decided to add some proof
searching facility
» Non-decision procedures are usually black boxes

» Newcomers learn nothing using automation
» Script breakage may make automation a non-option on large

developments

Aim

What we want:
» An automatic proof searching procedure

> reasonably fast (not the main aim, but is fun to optimise it!)
> designed with interactiveness in mind

» Interface to display the ongoing proof search
» Interface to drive it at runtime
» Experimentation, Debugging, Didactical purposes, ...

» A procedure producing proof scripts (not only proof objects)

Outline

» Interactive proof search procedure
» LSD resolution and ITP
» The stack issue
» Operational description of the proof search procedure
» The interface
» Conclusion

Which kind of procedure is better suited for
interactiveness? (1/4)

Simplification
Inference

Selection

Which kind of procedure is better suited for

interactiveness? (2/4)

Forward reasoning techniques are nice:
» Clear interaction point
» Fast algorithms

But we decided not to develop a procedure
performing forward reasoning because:

» Not the way ITPs are used
» Active set not that stable

» Both sets are usually very big

Selection

Simplification
Inference

Passive

Which kind of procedure is better suited for
interactiveness? (3/4)

Candidates

- Backtrack

Which kind of procedure is better suited for
interactiveness? (4/4)

Depth first proof search: Goal

Candidates

» Upper part of the tree is stable T yemma] .. [iewme

» Failed computations can be hidden

» Clear interaction point (selection)

Backtrack

» Goals are almost self contained

We believe that with a depth first goal directed procedure the user
needs less information to follow the procedure.

SLD resolution

SLD
—A,..., A, HEBL...,B, X =mgu(H,A)

— X(A1,...,Ai—1,B1,...,Bn, Aig1, ..., Ap)

Apply tactic

Apply-tac

P=T1F?2:A,....T,Fn: A, it B
I_ R(F }_?B 'Bl ...F,x1 . Bl,...,Xm_
P = b1 ¢t 9

B, ... ', H
NFc?p ?B 5 o 5
P/ Z, I_I—HEA, ~ /7
Z/;:?,' ::C?B1 ?Bm;Z

(Z/I(’])/l)7 Z//)

The stack issue

let rec first f | = function
| [| — raise Failure
| hd::tl —
try f hd

with Failure — first f tl
and all gl (S, P) =

match gl with

| [] —S P

| g tl —
let cl =cands (S, P) g in
let S',P" = first (fun (S, P, gl) —all gl (S, P)) cl in
all tl (S, P

Choice points (tl in first) are kept by the OCaml stack but we need to
show them to the user!

Making the stack explicit

» The status is ((P, gl, fl) :: alt,)
> 0: Term — Term + L
P=(P,XY)
gl is the todo list
alt is the list of alternatives to the original problem
fl is the list of goals that fail if that item fails

v vy VvYy

> Goals in gl are of the form Dy | Sé where g has an entry in P

Making the stack explicit

> The initial status is ([P, [Dg], []],0)

» If lemmas t; and ty apply to g, the new status will be
([P'.[Der: Deyi Sl [+ P", [Dgs: Sg21, 1811, 0)

The tactic |

((P,%) as P,Sg st fl) el 6) SteR, (P, tl, fl) el 0") (i)
when M(T)=0andTF?2g: TP
where 6 = 0[T — ¥(g)] and el" = purge(el, t/)

(((P,x) as P, S; = tl, fl) = el 0) o ((P,tl, fl) = el 8) (i)
when M(T)# 0 andFF7g: T € P

step

((P,X),Dg :: th, fl) :: el 0) — (((P,X'), tl, fl) :: el 0) (iii)
when §(T)# LandTH?g: T P
where Y =Y o [7g :=0(T)]

(((P.X), Dg :: th, fl) :: el 0) =% (el 0,,,) (iv)
when §(T)= L andTHF?g: T P
where 8] =60 and fl = {g1;...; 8m}
and Mg F?g: T e P forge{l,...,m}

and 0,1 = 0,[Tg — L] for g € {1,...,m}

The tactic Il

(P, %), Dg == tl, fl) - el,0) =5 (el 0,,,+) (v)
when cands(P, g) =[]
where 0] =0 and fl = {g1;...;8m}
and T, F7g: T, € Pforge{l,...,m}
and 0y = 0,[Tg — L] for g € {1,...,m}

((P, D == t, fl) =: el,0) =5 (P}, h©t],[]) :: ... (vi)
(P, Im@tl g i fl) el 0)
where cands(P,g) = (t1, P{,81,1---8i,n) it - -
vt (tmy Pl Bma et Bminy)
and = R([Dg;, -..; Dy, 1) o [Sg] for i € {1...m}

((P,[SE]. fl) :: el,0) =% (Success P) (vii)

(1,60) =2 Failure (viii)

The interface

Q 715|716
n:nat
m : nat
I H:l<n
Hl:0=m
{ HzZ:nlm

Heut : nth_prime (max_prime factor njl n

nth_prime (max_prime_factor njl m

Auto

0(153) nth_prime (max_prime_facter n)|m witn=ss | div_med_spec_te_divides || transitive_divides rr

Lisz2) m=nth_prime {max_prime_factor n}*?
2(51)2) nat 4

3(0)0)

40]0)
Sln\nl
50)0)
7(0]0) 3
8(0\0]

Si0j0)

witness I [l Pause H [Play H [Next H ¥ Close I QA

Conclusion

» We developed a goal-directed depth-first proof search
procedure that can be driven by the user at runtime

» The interface helped in debugging the procedure

What's next?
» We will introduce Matita to first year students (logic course)

» Script reconstruction almost finished but needs some tuning

That's all

Thanks for your attention

If you want to give Matita a try:

http://matita.cs.unibo.it/

	introduction
	Which procedure
	SLD resolution
	The stack issue
	The interface
	That's all

