
An interactive driver for goal directed proof
strategies

Andrea Asperti and Enrico Tassi

Department of Computer Science, University of Bologna

22 August 2008



Context

What we had:

I Matita is an ITP developed at the University of Bologna,
similar to Coq

I Automation is a desirable aid, we decided to add some proof
searching facility

I Non-decision procedures are usually black boxes
I Newcomers learn nothing using automation
I Script breakage may make automation a non-option on large

developments



Aim

What we want:
I An automatic proof searching procedure

I reasonably fast (not the main aim, but is fun to optimise it!)
I designed with interactiveness in mind

I Interface to display the ongoing proof search

I Interface to drive it at runtime

I Experimentation, Debugging, Didactical purposes, . . .

I A procedure producing proof scripts (not only proof objects)



Outline

I Interactive proof search procedure

I LSD resolution and ITP
I The stack issue

I Operational description of the proof search procedure

I The interface

I Conclusion



Which kind of procedure is better suited for
interactiveness? (1/4)



Which kind of procedure is better suited for
interactiveness? (2/4)

Forward reasoning techniques are nice:

I Clear interaction point

I Fast algorithms

But we decided not to develop a procedure
performing forward reasoning because:

I Not the way ITPs are used

I Active set not that stable

I Both sets are usually very big



Which kind of procedure is better suited for
interactiveness? (3/4)



Which kind of procedure is better suited for
interactiveness? (4/4)

Depth first proof search:

I Upper part of the tree is stable

I Clear interaction point (selection)

I Failed computations can be hidden

I Goals are almost self contained

We believe that with a depth first goal directed procedure the user
needs less information to follow the procedure.



SLD resolution

SLD

← A1, . . . ,An H
c← B1, . . . ,Bm Σ = mgu(H,Ai )

← Σ(A1, . . . ,Ai−1,B1, . . . ,Bm,Ai+1, . . . ,An)



Apply tactic

Apply-tac

P = Γ1 `?1 : A1, . . . , Γn `?n : An

P ′ = R(Γ `?B1 : B1, . . . Γ, x1 : B1, . . . , xm−1 : Bm−1 `?Bm : Bm);P
Γ ` c ?B1 . . . ?Bm : H

P ′, Σ, Γ ` H
?≡ Ai

U
 P ′′, Σ′

Σ′′ =?i := c ?B1 . . . ?Bm ; Σ′

(Σ′′(P ′′),Σ′′)



The stack issue

� �
let rec first f l = function
| [] → raise Failure
| hd:: tl →

try f hd
with Failure → first f tl

and all gl (S, P) =
match gl with
| [] → S, P
| g :: tl →

let cl = cands (S, P) g in
let S’, P’ = first (fun (S, P, gl ) → all gl (S, P)) cl in
all tl (S ’, P’)� �

Choice points (tl in first) are kept by the OCaml stack but we need to

show them to the user!



Making the stack explicit

I The status is ((P, gl , fl) :: alt, θ)
I θ : Term→ Term +⊥
I P = (P,Σ)
I gl is the todo list
I alt is the list of alternatives to the original problem
I fl is the list of goals that fail if that item fails

I Goals in gl are of the form Dg | S t
g where g has an entry in P



Making the stack explicit

I The initial status is ([P, [Dg ], []], ∅)
I If lemmas t1 and t2 apply to g , the new status will be

([P ′, [Dg1 ; Dg2 ; S t1
g ], [] ; P ′′, [Dg3 ; S t2

g ], [g ]], ∅)



The tactic I

(((P,Σ) as P,S t
g :: tl , fl) :: el , θ)

step−→ ((P, tl , fl) :: el ′, θ′) (i)
when M(T ) = ∅ and Γ `?g : T ∈ P
where θ′ = θ[T 7→ Σ(g)] and el ′ = purge(el , tl)

(((P,Σ) as P,S t
g :: tl , fl) :: el , θ)

step−→ ((P, tl , fl) :: el , θ) (ii)
when M(T ) 6= ∅ and Γ `?g : T ∈ P

(((P,Σ),Dg :: tl , fl) :: el , θ)
step−→ (((P,Σ′), tl , fl) :: el , θ) (iii)

when θ(T ) 6= ⊥ and Γ `?g : T ∈ P
where Σ′ = Σ ◦ [?g := θ(T )]

(((P,Σ),Dg :: tl , fl) :: el , θ)
step−→ (el , θ′

m+1) (iv)
when θ(T ) = ⊥ and Γ `?g : T ∈ P
where θ′

1 = θ and fl = {g1; . . . ; gm}
and Γg `?g : Tg ∈ P for g ∈ {1, . . . ,m}
and θ′

g+1 = θ′
g [Tg 7→ ⊥] for g ∈ {1, . . . ,m}



The tactic II

(((P,Σ),Dg :: tl , fl) :: el , θ)
step−→ (el , θ′

m+1) (v)
when cands(P, g) = []
where θ′

1 = θ and fl = {g1; . . . ; gm}
and Γg `?g : Tg ∈ P for g ∈ {1, . . . ,m}
and θ′

g+1 = θ′
g [Tg 7→ ⊥] for g ∈ {1, . . . ,m}

((P,Dg :: tl , fl) :: el , θ)
step−→ ((P ′

1, l1@tl , []) :: . . . (vi)
. . . :: (P ′

m, lm@tl , g :: fl) :: el , θ)
where cands(P, g) = (t1,P

′
1, g1,1 . . . g1,ni ) :: . . .

. . . :: (tm,P
′
m, gm,1 :: . . . :: gm,nm )

and li = R([Dgi,1 . . . ; Dgi,ni
]) ◦ [S ti

g ] for i ∈ {1 . . .m}

((P, [S t
g ], fl) :: el , θ)

step−→ (Success P) (vii)

([], θ)
step−→ Failure (viii)



The interface



Conclusion

I We developed a goal-directed depth-first proof search
procedure that can be driven by the user at runtime

I The interface helped in debugging the procedure

What’s next?

I We will introduce Matita to first year students (logic course)

I Script reconstruction almost finished but needs some tuning



That’s all

Thanks for your attention

If you want to give Matita a try:

http://matita.cs.unibo.it/


	introduction
	Which procedure
	SLD resolution
	The stack issue
	The interface
	That's all

