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Abstract. We introduce a new technique for constructing a finite state
deterministic automaton from a regular expression, based on the idea
of marking a suitable set of positions inside the expression, intuitively
representing the possible points reached after the processing of an ini-
tial prefix of the input string. Pointed regular expressions provide an
algebraic counterpart to position automata, joining the elegance and the
symbolic appealingness of Brzozowski’s derivatives, with the effective-
ness of McNaughton and Yamada’s labelling technique, and essentially
combining the best of the two approaches.

1 Introduction

There is hardly a subject in Theoretical Computer Science that, in view of its
relevance and elegance, has been so thoroughly investigated as the notion of
regular expression and its relation with finite state automata (see e.g. [18, 9]
for some recent surveys). All the studies in this area have been traditionally
inspired by two precursory, basilar works: Brzozowski’s theory of derivatives [6],
and McNaughton and Yamada’s algorithm [15] (attributed to Glushkov [11] in
the east). The main advantages of derivatives are that they are syntactically
appealing, easy to grasp and to prove correct (see [17] for a recent revisitation).
On the other side, McNaughton and Yamada’s approach results in a particularly
efficient algorithm, still used by most pattern matchers like the popular grep
and egrep utilities. The relation between the two approaches has been deeply
investigated too, starting from the seminal work by Berry and Sethi [4] where
it is shown how to refine Brzozowski’s method to get to the efficient algorithm
(Berry and Sethi’ algorithm has been further improved by later authors [5, 7]).

We introduce in this paper an algebraic variation of position automata based
on pointed regular expression. Intuitively, points mark the positions inside the
regular expression which have been reached after reading some prefix of the input
string, or better the positions where the processing of the remaining string has to
be started. Each pointed expression for e represents a state of the deterministic
automaton associated with e; since we obviously have only a finite number of
possible labellings, the number of states of the automaton is finite.

Pointed regular expressions allow the direct construction of the DFA [14]
associated with a regular expression, in a way that is simple, intuitive, and



efficient (the task is traditionally considered as very involved in the literature:
see e.g [18], pag.71). At the same time, their algebraic nature allows a clean and
comparison with derivatives (see the extended version of this paper [3]).

In the imposing bibliography on regular expressions - as far as we could
discover - the only author mentioning a notion close to ours is Watson [19, 20].
However, he only deals with single points, while the most interesting properties
of pre derive by their implicit additive nature (such as the possibility to compute
the move operation by a single pass on the marked expression: see definition 11).

2 Regular expressions

Definition 1. A regular expression over the alphabet Σ is an expression e gen-
erated by the following grammar, where a ∈ Σ:

E ::= ∅|ε|a|E + E|EE|E∗

Definition 2. The language L(e) associated with the regular expression e is
defined by the following rules:

L(∅) = ∅ L(ε) = {ε}
L(a) = {a} L(e1 + e2) = L(e1) ∪ L(e2)
L(e1e2) = L(e1) · L(e2) L(e∗) = L(e)∗

where ε is the empty string, L1 ·L2 = { l1l2 | l1 ∈ L1, l2 ∈ L2} is the concatena-
tion of L1 and L2 and L∗ is the so called Kleene’s closure of L: L∗ =

⋃∞
i=0 L

i,
with L0 = ε and Li+1 = L · Li.

Definition 3 (nullable). A regular expression e is nullable if ε ∈ L(e).

The fact of being nullable is decidable; it is easy to prove that the characteristic
function ν(e) can be computed by the following rules:

ν(∅) = false ν(ε) = true
ν(a) = false ν(e1 + e2) = ν(e1) ∨ ν(e2)
ν(e1e2) = ν(e1) ∧ ν(e2) ν(e∗) = true

Definition 4. A deterministic finite automaton (DFA) is a quintuple (Q,Σ, q0, t, F )
where

∗ Q is a finite set of states;
∗ Σ is the input alphabet;
∗ q0 ∈ Q is the initial state;
∗ t : Q×Σ → Q is the state transition function;
∗ F ⊆ Q is the set of final states.

The transition function t is extended to strings in the following way:

t∗(q, w) =

{
t(q, ε) = q

t(q, aw′) = t∗(t(q, a), w′)



Definition 5. Let A = (Q,Σ, q0, t, F ) be a DFA; the language recognized A is
defined as follows:

L(A) = {w|t∗(q0, w) ∈ F}

3 Pointed regular expressions

Definition 6.

1. A pointed item over the alphabet Σ is an expression e generated by following
grammar, where a ∈ Σ:

E ::= ∅|ε|a| • a|E + E|EE|E∗

2. A pointed regular expression (pre) is a pair 〈e, b〉 where b is a boolean and e
is a pointed item.

The term •a is used to point to a position inside the regular expression, preceding
the given occurrence of a. In a pointed regular expression, the boolean must be
intuitively understood as the possibility to have a trailing point at the end of
the expression.

Definition 7. The carrier |e| of an item e is the regular expression obtained
from e by removing all the points. Similarly, the carrier of a pointed regular
expression is the carrier of its item.

In the sequel, we shall often use the same notation for functions defined over
items or pres, leaving to the reader the simple disambiguation task. Moreover,
we use the notation ε(b), where b is a boolean, with the following meaning:

ε(true) = {ε} ε(false) = ∅

Definition 8.

1. The language Lp(e) associated with the item e is defined as follows:

Lp(∅) = ∅ Lp(ε) = ∅
Lp(a) = ∅ Lp(•a) = {a}
Lp(e1 + e2) = Lp(e1) ∪ Lp(e2) Lp(e1e2) = Lp(e1) · L(|e2|) ∪ Lp(e2)
Lp(e∗) = Lp(e) · L(|e|∗)

2. For a pointed regular expression 〈e, b〉 we define

Lp(〈e, b〉) = Lp(e) ∪ ε(b)

Example 1.

1. If e contains no point (i.e. e = |e|) then Lp(e) = ∅
2. Lp((a+ •b)∗) = L(b(a+ b)∗)



Let us observe that, as shown by point 2. above (replacing b with a more complex
expression), pointed regular expressions can provide a more compact syntax for
denoting languages than traditional regular expressions. This may have impor-
tant applications to the investigation of the descriptional complexity (succinct-
ness) of regular languages (see e.g. [10, 12, 13]).

Lemma 1. If e is a pointed item then ε 6∈ Lp(e). Hence, ε ∈ Lp(〈e, b〉) if and
only if b = true.

Proof. A trivial structural induction on e.

3.1 Broadcasting points

Intuitively, a regular expression e must be understood as a pointed expression
with a single point in front of it. Since however we only allow points over sym-
bols, we must broadcast this initial point inside the expression, that essentially
corresponds to the ε-closure operation on automata. We use the notation •(·) to
denote such an operation.

The broadcasting operator is also required to lift the item constructors (choice,
concatenation and Kleene’s star) from items to pres: for example, to concate-
nate a pre 〈e1, true〉 with another pre 〈e2, b2〉, we must first broadcast the trailing
point of the first expression inside e2 and then pre-pend e1; similarly for the star
operation. We could define first the broadcasting function •(·) and then the lifted
constructors; however, both the definition and the theory of the broadcasting
function are simplified by making it co-recursive with the lifted constructors.

Definition 9.

1. The function •(·) from pointed item to pres is defined as follows:

•(∅) = 〈∅, false〉 •(ε) = 〈ε, true〉
•(a) = 〈•a, false〉 •(•a) = 〈•a, false〉
•(e1 + e2) = •(e1)⊕ •(e2) •(e1e2) = •(e1)� 〈e2, false〉
•(e∗) = 〈e′∗, true〉 where • (e) = 〈e′, b′〉

2. The lifted constructors are defined as follows

〈e′1, b′1〉 ⊕ 〈e′2, b′2〉=〈e1 + e2, b
′
1 ∨ b′2〉

〈e′1, b′1〉 � 〈e′2, b′2〉=

{
〈e′1e′2, b′2〉 when b′1 = false
〈e′1e′′2 , b′2 ∨ b′′2〉 when b′1 = true and •(e′2) = 〈e′′2 , b′′2〉

〈e′, b′〉? =

{
〈e′∗, false〉 when b′ = false
〈e′′∗, true〉 when b′ = true and •(e′) = 〈e′′, b′′〉

The apparent complexity of the previous definition should not hide the extreme
simplicity of the broadcasting operation: on a sum we proceed in parallel; on a
concatenation e1e2, we first work on e1 and in case we reach its end we pursue
broadcasting inside e2; in case of e∗ we broadcast the point inside e recalling
that we shall eventually have a trailing point.



Example 2. Suppose to broadcast a point inside (a + ε)(b∗a + b)b. We start
working in parallel on the first occurrence of a (where the point stops), and on ε
that gets traversed. We have hence reached the end of a+ ε and we must pursue
broadcasting inside (b∗a + b)b. Again, we work in parallel on the two additive
subterms b∗a and b; the first point is allowed to both enter the star, and to
traverse it, stopping in front of a; the second point just stops in front of b. No
point reached that end of b∗a + b hence no further propagation is possible. In
conclusion:

•((a+ ε)(b∗a+ b)b) = (•a+ ε)((•b)∗ • a+ •b)b

Definition 10. Broadcasting is extended to pres in the obvious way:

•(〈e, b〉) = 〈e′, b ∨ b′〉 where • (e) = 〈e′, b′〉

As we shall prove in Corollary 2, broadcasting an initial point may reach the
end of an expression e if and only if e is nullable. The following theorem charac-
terizes the broadcasting function and also shows that the semantics of the lifted
constructors on pres is coherent with the corresponding constructors on items.

Theorem 1.
1. Lp(•e) = Lp(e) ∪ L(|e|)
2. Lp(e1 ⊕ e2) = Lp(e1) ∪ Lp(e2)
3. Lp(e1 � e2) = Lp(e1) · L(|e2|) ∪ Lp(e2)
4. Lp(e?) = Lp(e) · L(|e|)∗

We do first the proof of 2., followed by the simultaneous proof of 1. and 3., and
we conclude with the proof of 4.

Proof (of 2.). We need to prove Lp(e1 ⊕ e2) = Lp(e1) ∪ Lp(e2).

Lp(〈e′1, b′1〉 ⊕ 〈e′2, b′2〉) = Lp(〈e′1 + e′2, b
′
1 ∨ b′2〉) = Lp(e′1 + e′2) ∪ ε(b′1) ∪ ε(b′2)

= Lp(e′1) ∪ ε(b′1) ∪ Lp(e′2) ∪ ε(b′2) = Lp(e1) ∪ Lp(e2)

Proof (of 1. and 3.). We prove 1. (Lp(•e) = Lp(e) ∪L(|e|)) by induction on the
structure of e, assuming that 3. holds on terms structurally smaller than e.

∗ Lp(•(∅)) = Lp(〈∅, false〉) = ∅ = Lp(∅) ∪ L(|∅|).
∗ Lp(•(ε)) = Lp(〈ε, true〉) = {ε} = Lp(ε) ∪ Lp(|ε|).
∗ Lp(•(a)) = Lp(〈a, false〉) = {a} = Lp(a) ∪ L(|a|).
∗ Lp(•(•a)) = Lp(〈•a, false〉) = {a} = Lp(•a) ∪ L(| • a|).
∗ Let e = e1 + e2. By induction we know that Lp(•(ei)) = Lp(ei) ∪ L(|ei|)

Thus, by 2., we have

Lp(•(e1 + e2)) = Lp(•(e1)⊕ •(e2)) = Lp(•(e1)) ∪ Lp(•(e2))
= Lp(e1) ∪ L(|e1|) ∪ Lp(e2) ∪ L(|e2|) = Lp(e1 + e2) ∪ L(|e1 + e2|)

∗ Let e = e1e2. By induction we know that Lp(•(ei)) = Lp(ei)∪L(|ei|). Thus,
by 3. over the structurally smaller terms e1 and e2

Lp(•(e1e2)) = Lp(•(e1)� 〈e2, false〉)
= Lp(•(e1)) · L(|e2|) ∪ Lp(e2) = (Lp(e1) ∪ L(|e1|)) · L(|e2|) ∪ Lp(e2)
= Lp(e1) · L(|e2|) ∪ L(|e1|) · L(|e2|) ∪ Lp(e2) = Lp(e1e2) ∪ L(|e1e2|)



∗ Let e = e∗1. By induction we know that Lp(•(e1)) = Lp(e′1)∪ε(b′1) = Lp(e1)∪
L(|e1|) and in particular, since by Lemma 1 ε 6∈ Lp(e1),

Lp(e′1) = Lp(e1) ∪ (L(|e1|) \ ε(b′1))

Then,

Lp(•(e∗1)) = Lp(〈e′∗1 , true〉) = Lp(e′∗1 ) ∪ ε
= Lp(e′1)L(|e∗1|) ∪ ε = (Lp(e1) ∪ (L(|e1|) \ ε(b′1)))L(|e∗1|) ∪ ε
= Lp(e1)L(|e∗1|) ∪ (L(|e1|) \ ε(b′1))L(|e∗1|) ∪ ε = Lp(e1)L(|e∗1|) ∪ L(|e∗1|)
= Lp(e∗1) ∪ L(|e∗1|)

Having proved 1. for e assuming that 3. holds on terms structurally smaller
than e, we now assume that 1. holds for e1 and e2 in order to prove 3, i.e.
Lp(e1 � e2) = Lp(e1) · L(|e2|) ∪ Lp(e2). We distinguish the two cases of the
definition of �:

Lp(〈e′1, false〉 � 〈e′2, b′2〉) = Lp(〈e′1e′2, b′2〉) = Lp(e′1e
′
2) ∪ ε(b′2)

= Lp(e′1) · L(|e′2|) ∪ Lp(e′2) ∪ ε(b′2) = Lp(e1) · L(|e2|) ∪ Lp(e2)

Lp(〈e′1, true〉 � 〈e′2, b′2〉) = Lp(〈e′1e′′2 , b′2 ∨ b′′2〉) = Lp(e′1e
′′
2) ∪ ε(b′2) ∪ ε(b′′2)

= Lp(e′1) · L(|e′′2 |) ∪ Lp(e′′2) ∪ ε(b′2) ∪ ε(b′′2)
= Lp(e′1) · L(|e′′2 |) ∪ Lp(e′2) ∪ L(|e′2|) ∪ ε(b′2)
= (Lp(e′1) ∪ ε(true)) · L(|e2|) ∪ Lp(e′2) ∪ ε(b′2) = Lp(e1) · L(|e2|) ∪ Lp(e2)

Proof (of 4.). We need to prove Lp(e?) = Lp(e) ·L(|e|)∗. We distinguish the two
cases of the definition of ·?:
Lp(〈e′, false〉?) = Lp(〈e′∗, false〉) = Lp(e′∗)

= Lp(e′) · L(|e′|)∗ = (Lp(e′) ∪ ε(false)) · L(|e′|)∗ = Lp(e) · L(|e|)∗

Lp(〈e′, true〉?) = Lp(〈e′′∗, true〉) ∪ ε = Lp(e′′∗) ∪ ε = Lp(e′′) · L(|e′′|)∗ ∪ ε
= (Lp(e′) ∪ L(|e′|)) · L(|e′′|)∗ ∪ ε = Lp(e′) · L(|e′′|) ∪ L(|e′|) · L(|e′′|)∗ ∪ ε
= Lp(e′) · L(|e′′|) ∪ L(|e′|)∗ = (Lp(e′) ∪ ε(true)) · L(|e′′|) = Lp(e) · L(|e|)∗

Corollary 1. For any regular expression e, L(e) = Lp(•e).

Another important corollary is that an initial point reaches the end of a
(pointed) expression e if and only if e is able to generate the empty string.

Corollary 2. •e = 〈e′, true〉 if and only if ε ∈ L(|e|).

Proof. By theorem 1 we know that Lp(•e) = Lp(e) ∪ L(|e|). So, if ε ∈ Lp(•e),
since by Lemma 1 ε 6∈ Lp(e), it must be ε ∈ L(|e|). Conversely, if ε ∈ L(|e|) then
ε ∈ Lp(•e); if •e = 〈e′, b〉, this is possible only provided b = true.

We conclude this section mentioning a few additional properties of the broad-
casting function whose simple proofs can be found in the extended version [3].
Theorem 2.

1. •(e1 ⊕ e2) = •(e1)⊕ •(e2)
2. •(e1 � e2) = •(e1)� e2
3. •(•(e)) = •(e)



3.2 The move operation

We now define the move operation, that corresponds to the advancement of the
state in response to the processing of an input character a. The intuition is clear:
we have to look at points inside e preceding the given character a, let the point
traverse the character, and broadcast it. All other points must be removed.

Definition 11.

1. The function move(e, a) taking in input a pointed item e, a character a ∈ Σ
and giving back a pointed regular expression is defined as follow, by induction
on the structure of e:

move(∅, a) = 〈∅, false〉 move(ε, a) = 〈ε, false〉
move(b, a) = 〈b, false〉 move(•a, a) = 〈a, true〉
move(•b, a) = 〈b, false〉 move(e1 + e2, a) = move(e1, a)⊕move(e2, a)
move(e∗, a) = move(e, a)? move(e1e2, a) = move(e1, a)�move(e2, a)

2. The move function is extended to pres by just ignoring the trailing point:
move(〈e, b〉, a) = move(e, a)

Example 3. Let us consider the pre (•a+ ε)((•b)∗ • a+ •b)b and the two moves
w.r.t. the characters a and b. For a, we have two possible positions (all other
points gets erased); the innermost point stops in front of the final b, the other
one broadcast inside (b∗a+ b)b, so

move((•a+ ε)((•b)∗ • a+ •b)b, a) = 〈(a+ ε)((•b)∗ • a+ •b) • b, false〉

For b, we have two positions too. The innermost point stops in front of the final
b too, while the other point reaches the end of b∗ and must go back through b∗a:

move((•a+ ε)((•b)∗ • a+ •b) • b, b) = 〈(a+ ε)((•b)∗ • a+ b) • b, false〉

Theorem 3. For any pointed regular expression e and string w,

w ∈ Lp(move(e, a))⇔ aw ∈ Lp(e)

Proof. The proof is by induction on the structure of e.

∗ if e is atomic, and e is not a pointed symbol, then both Lp(move(e, a)) and
Lp(e) are empty, and hence both sides are false for any w;
∗ if e = •a then Lp(move(•a, a)) = Lp(〈a, true〉) = {ε} and Lp(•a) = {a};
∗ if e = •b with b 6= a then Lp(move(•b, a)) = Lp(〈b, false〉) = ∅ and Lp(•b) =
{b}; hence for any string w, both sides are false;
∗ if e = e1 + e2 by induction hypothesis w ∈ Lp(move(ei, a)) ⇔ aw ∈ Lp(ei),

hence,

w ∈ Lp(move(e1 + e2, a))⇔
⇔ w ∈ Lp(move(e1, a)⊕move(e2, a))
⇔ w ∈ Lp(move(e1, a)) ∪ Lp(move(e2, a))
⇔ (w ∈ Lp(move(e1, a))) ∨ (w ∈ Lp(move(e2, a)))
⇔ (aw ∈ Lp(e1)) ∨ (aw ∈ Lp(e2))
⇔ aw ∈ Lp(e1) ∪ Lp(e2)
⇔ aw ∈ Lp(e1 + e2)



∗ suppose e = e1e2, by induction hypothesis w ∈ Lp(move(ei, a)) ⇔ aw ∈
Lp(ei), hence,

w ∈ Lp(move(e1e2, a))⇔
⇔ w ∈ Lp(move(e1, a)�move(e2, a))
⇔ w ∈ Lp(move(e1, a)) · L|e2| ∪ Lp(move(e2, a))
⇔ w ∈ Lp(move(e1, a)) · L|e2| ∨ w ∈ Lp(move(e2, a))
⇔ (∃w1, w2, w = w1w2 ∧ w1 ∈ Lp(move(e1, a))
∧w2 ∈ L(|e2|)) ∨ w ∈ Lp(move(e2, a))

⇔ (∃w1, w2, w = w1w2 ∧ aw1 ∈ Lp(e)
∧w2 ∈ L(|e2|)) ∨ aw ∈ Lp(e2)

⇔ (aw ∈ Lp(e1) · L|e2|) ∨ (aw ∈ Lp(e2))
⇔ aw ∈ Lp(e1) · L|e2|∪ ∈ Lp(e2)
⇔ aw ∈ Lp(e1e2)

∗ suppose e = e∗1, by induction hypothesis w ∈ Lp(move(e1, a)) ⇔ aw ∈
Lp(e1), hence,

w ∈ Lp(move(e∗1, a))⇔
⇔ w ∈ Lp(move(e1, a))?

⇔ w ∈ Lp(move(e1, a)) · L(|move(e1, a)|)∗
⇔ ∃w1, w2, w = w1w2 ∧ w1 ∈ Lp(move(e1, a))
∧w2 ∈ L(|e1|)∗

⇔ ∃w1, w2, w = w1w2 ∧ aw1 ∈ Lp(e1) ∧ w2 ∈ L(|e1|)∗
⇔ aw ∈ Lp(e1) · L(|e1|)∗
⇔ aw ∈ Lp(e∗1)

We extend the move operations to strings in the usual way:

Definition 12.

move∗(e, ε) = e move∗(e, aw) = move∗(move(e, a), w)

Theorem 4. For any pointed regular expression e and all strings α, β,

β ∈ Lp(move∗(e, α))⇔ αβ ∈ Lp(e)

Proof. A trivial induction on the length of α, using theorem 3.

Corollary 3. For any pointed regular expression e and any string α,

α ∈ Lp(e)⇔ ∃e′, Lp(move∗(e, α)) = 〈e′, true〉

Proof. By Theorems 4 and Lemma 1.

3.3 From regular expressions to DFAs

Definition 13. To any regular expression e we may associate a DFA De =
(Q,Σ, q0, t, F ) defined in the following way:



∗ Q is the set of all possible pointed expressions having e as carrier;
∗ Σ is the alphabet of the regular expression
∗ q0 is •e;
∗ t is the move operation of definition 11;
∗ F is the subset of pointed expressions 〈e, b〉 with b = true.

Theorem 5. L(De) = L(e)

Proof. By definition,

w ∈ L(De)↔ move∗(•(e), w) = 〈e′, true〉

for some e′. By the previous theorem, this is possible if an only if w ∈ Lp(•(e)),
and by corollary 1, Lp(•(e)) = L(e).

Remark 1. The fact that the set Q of states of De is finite is obvious: its cardi-
nality is at most 2n+1 where n is the number of symbols in e. This is one of the
advantages of pointed regular expressions w.r.t. derivatives, whose finite nature
only holds after a suitable quotient, and is not so trivial to prove (see [6]).

The automaton De just defined may have many inaccessible states. We can pro-
vide another algorithmic and direct construction that yields the same automaton
restricted to the accessible states only.

Definition 14. Let e be a regular expression and let q0 be •e. Let also

Q0 := {q0}
Qn+1 := Qn ∪ {e′|e′ 6∈ Qn ∧ ∃a.∃e ∈ Qn.move(e, a) = e′}

Since every Qn is a subset of the finite set of pointed regular expressions, there is
an m such that Qm+1 = Qm. We associate to e the DFA De = (Qm, Σ, q0, F, t)
where F and t are defined as for the previous construction.

Example 4. In Figure 1 we describe the DFA associated with the regular expres-
sion (ac + bc)∗. The graphical description of the automaton is the traditional
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Fig. 1. DFA for (ac+ bc)∗

one, with nodes for states and labelled arcs for transitions. Unreachable states



are not shown. Final states are emphasized by a double circle: since a state 〈e, b〉
is final if and only if b is true, we may just label nodes with the item.
The automata is not minimal: it is easy to see that the two states corresponding
to the pres (a • c+ bc)∗ and (ac+ b • c)∗ are equivalent (a way to prove it is to
observe that they define the same language!).

Example 5. Starting form the regular expression (a+ ε)(b∗a+ b)b, we obtain the
automata of Figure 2
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4

Fig. 2. DFA for (a+ ε)(b∗a+ b)b

Quite remarkably, this DFA is minimal! (the pair of states 6− 8 and 7− 9 differ
for the fact that 6 and 7 are final, while 8 and 9 are not).

4 Conclusions and future work

We introduced in this paper the notion of pointed regular expression. Points
are used to mark the positions inside the regular expression which are reached
after reading some prefix of the input string, and where the processing of the
remaining string should start. In particular, each pointed expression has a clear
semantics. Since each pointed expression for e represents a state of the deter-
ministic automaton associated with e, this means we may associate a semantics



to each state in terms of the specification e and not of the behaviour of the
automaton. This allows a direct, intuitive and easily verifiable construction of
the deterministic automaton for e. We used pointed expressions during the last
couple of years for teaching the argument to students and, according to our
experience, they are clearly superior to any other method we are aware of.

From a theoretical point of view, pointed expressions seem to open a wide
range of novel perspectives and original approaches, partially outlined in the
extended version [3], that also contains a discussion of minimization and a de-
tailed comparison with Brzozowski’s derivatives (that turned out to be less trivial
than expected, and is likely to be improved passing through Antimirov’s partial
derivatives [1]).

The most interesting operation is merging (denoted with a †), defined by
overlapping two pointed expression with a same carrier. As a matter of fact, the
very reason allowing a direct construction of the DFA is that the semantics of
pres behaves additively w.r.t. merging, that is

Lp(e1 † e2) = Lp(e1) ∪ Lp(e2)

This also explains why the techinque cannot be trivially extended to intersection
and complement, since merging is no longer additive. The problem has a deep
theoretical reason: indeed, even if these operators do not increase the expressive
power of regular expressions they can have a drastic impact on succinctness.
In particular it is well known that expressions with complements can provide
descriptions of certain languages which are non-elementary more compact than
standard regular expression [16]. Gelade [10] has recently proved that for any
natural number n there exists a regular expression with intersection of size O(n)
such that any DFA accepting its language has a double-exponential size, i.e. it
contains at least 22n

states (see also [12]). Hence, marking positions with points is
not enough, just because we would not have enough states. This seems to suggest
the possibility to exploit more complex variants of pres, using for instance colors
to recover the additive property.

A large amount of research has been recently devoted to the so called suc-
cinteness problem, namely the investigation of the descriptional complexity of
regular languages (see e.g. [10, 12, 13]). Since, as observed in Example1, pointed
expression can provide a more compact description for regular languages than
traditional regular expression, it looks interesting to better investigated this issue
(that seems to be related to the so called star-height [8] of the language).

It could also be worth to investigate variants of the notion of pointed expres-
sion, allowing different positioning of points inside the expressions. Merging must
be better investigated, and the whole equational theory of pointed expressions,
both with different and (especially) fixed carriers must be entirely developed.

All the results is the paper have been formalized and checked in the inter-
active theorem prover Matita [2], that actually provided the original motivation
for our work.
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