A New Type For Tactics

Andrea Asperti <asperti@cs.unibo.it>
Wilmer Ricciotti <ricciottecs.unibo.it>
Claudio Sacerdoti Coen <sacerdot@cs.unibo.it>
Enrico Tassi <tassiecs.unibo.it>

University of Bologna

PLLMS, August 2009



Outline

@ LCF Tactics and their Limitations
e State of the art

e Our Proposal



LCF Tactics and their Limitations

Outline

@ LCF Tactics and their Limitations



LCF Tactics and their Limitations

LCF Tactics

type thm

type proof = thm list —-> thm

type goal = form list x form

type tactic = goal -> (goal list * proof)



LCF Tactics and their Limitations

Lack of Metavariables

The validation model above does not handle metavariables and

unification.
Goals may not contain unknowns to be instantiated later.

t
(E; < B3] ran3|t|V|ty [Er<7;7<E) successor [S(E}) < Eo]

type thm

type proof = thm list -> thm

type goal = form list x form

type tactic = goal —-> (goal list * proof)



LCF Tactics and their Limitations

Locality

No automated global reasoning (a la constraint programming):

7y <d; a<?+7, <b; c<?%-17)]

Coqg’s L-tac:
@ a high-level language to exploit domain specific knowledge
@ can figure out a local strategy pattern matching the
sequent

@ can not pattern match all the goals at once to figure out the
global strategy



LCF Tactics and their Limitations

No Partial Code Extraction / Proof Rendering

type thm
type proof = thm list —-> thm

Code extraction
@ possible for complete proofs (maps [| — = where 7 : thm)
@ not possible for partial proofs (maps / — =[/])

Difficult to check if the proof is following the wanted (e.g.
computationally efficient) algorithm:

Code extraction for complete proofs is too late!



LCF Tactics and their Limitations

Unstructured Scripts

thens_tactical: tactic —> tactic list —-> tactic

intro n; elim n;
[ simplify; reflexivity;
| intro H; rewrite > H; auto; ]

@ requires multiple undo-redo to be written
o fragile, difficult to fix when it breaks

@ difficult to understand

@ leads to unstructured scripts



LCF Tactics and their Limitations

Implementation of Declarative Languages

we proceed by induction on n to prove P (n)
case S m:
case O:

The tactic (here case S m:) chooses the goal.

PO by ... (H) []

P_.1 by ... []

then P_2 by H [P_1]

and P_3 [1::[P_2]
hence P_4 [P_2, P_3]

An accumulator is used to chain forward reasoning steps,
passing information to tactics applied next.



LCF Tactics and their Limitations

Unclassified Goals

No way to tag goals:
@ goals that are side conditions
@ goals to be proved automatically
@ goals to be postponed (e.g. PVS subtyping judgements)
@ goals subject to a rippling procedure
° ..

The tag needs to carry informations, e.g.:

@ a rippled goal needs to carry the inductive hypothesis and
the rippling direction

@ a goal to be proved automatically may carry the set of facts
to be used



State of the art

Outline

e State of the art



State of the art

HOL-Light

type thm =

Sequent of (term list x term) (» hyps, concl x)
type justification =

instantiation -> thm list -> thm
type goalstate =

(term list * instantiation)

* goal list * Jjustification

type tactic = goal -> goalstate

Metas Global Proof Structured | Declarative | Tagged
reasoning | inspection scripts language goals
v



State of the art

type tactic =
goal sigma -> (goal list sigma % validation)
and validation = (proof_tree list -> proof_tree)

type proof_tree = {

open_subgoals : int;
goal : goal;
ref : (rule » proof_tree list) option }

and rule =

? = using additional data structures

Metas Global Proof Structured | Declarative | Tagged
reasoning | inspection scripts language goals
v



State of the art

MetaPRL

type tactic =

sentinal -> msequent —-> msequent list % ext_just
type msequent_so_vars =

SOVarsDelayed | SOVars of SymbolSet.t
type msequent = {

mseq_goal : term;
mseqg_assums : term list;
mseq_so_vars : msequent_so_vars ref;

}
type ext_just =
| RuledJust of
| RewritedJust of

Metas Global Proof Structured | Declarative | Tagged
reasoning | inspection scripts language goals
v



State of the art

Matita 0.x

type
uri

proof =
option » metasenv = substitution =

term Lazy.t % term x attribute list

type goal = int
type metasenv = (goal * term list x term) list
type substitution=(goal » term list % term x term) list
type status = proof * goal
type tactic
val mk_tactic: (status —-> proof x goal list) -> tactic
Metas Global Proof Structured | Declarative | Tagged
reasoning | inspection scripts language goals
v v



State of the art

Isabelle-Pure

datatype thm = Thm of

deriv = (xderivationx)
{thy_ref: theory_ref, (xreference to theoryx)
tags: Properties.T, (radditional annotationsx)
maxidx: int, (*max idx of Var TVarx)
shyps: sort OrdList.T, (#sort hypothesesx)
hyps: term OrdList.T, (xhypothesesx)
tpairs: (term x term) list, («flex—flex pairsx)
prop: term} (xconclusionx)
and deriv = Deriv of

{max_promise: serial,

open_promises: (serial » thm future) OrdList.T,
promises: (serial * thm future) OrdList.T,

body: Pt.proof_body};
type tactic = thm -> thm Seqg.seq

Metas Global Proof Structured | Declarative | Tagged
reasoning | inspection scripts language goals

v Vv Vv



Our Proposal

Outline

e Our Proposal



Our Proposal

Our Proposal

type proof_object

type goal
type metasenv = (goal x term list % term) list
type proof_status = metasenv x proof_object
type tac_status = {
pstatus : proof_status;
gstatus : context_stack;
}
type tactic = tac_status —-> tac_status
Metas Global Proof Structured | Declarative | Tagged
reasoning | inspection scripts language goals
v v ? v v v




Our Proposal

The Context Stack

type task =
int » [ ‘Open | ‘Closed ] % goal % [> ‘No_tag ]
type context = task list x task list

type context_stack = context list
Metas Global Proof Structured | Declarative | Tagged
reasoning | inspection scripts language goals
J v ? Vv v v




Our Proposal
Example

tactic focused postponed tail
[(0,0,722)] I (l
exists [(0,0,738);(0,0,739)] 1 1
[ [(1,0,738)] I [([(2,0,739)],[])]
2: [(2,0,739)] [[(1,0,738)]]  [([}.0)]

assumption ] [[(1.G,238)]1  [([.[D]
] [(1,G,738)] I I



Our Proposal

Embedding LCF tactics

Most tactics operates on a single goal.

type lcf_tactic =
proof_status -> goal —-> proof_status

distribute_tac: lcf_tactic —-> tactic
exec: tactic -> lcf_tactic

exec (distribute_tac 1lcf_tac) s g = lcf_tac s g



Our Proposal

Distribute_tac

let distribute_tac tac status =
match status.gstatus with
| [] —> assert false

| (g, t) :: s —>
let rec aux s go gc = function
| [ -> s, go, gc
(_,_,n,_) :: loc_tl —>

let s, go, gc =
(» a metavariable could have been closed by side effect x)
if n \in gc then s, go, gc

else

let sn = tac s n in

let go’,gc’ = compare_statuses s sn in

sn, ((go \cup [n]) \setminus gc’) \cup go’,gc \cup gc’
in

aux s go gc loc_tl

in

let s0, go0, gcO = status.pstatus, [], [] in

let sn, gon, gcn = aux sO0 go0 gcO0 g in

(x deep_close set all instantiated metavariables to ‘Close x*)
let stack = (gon, t \setminus gcn) :: deep_close gcn s

in { gstatus = stack; pstatus = sn }



Our Proposal

let exec tac pstatus g =
let stack = [ [0, ‘Open, g, ‘No_tag 1, [] 1 in

let status =
tac { gstatus = stack ; pstatus = pstatus }
in

status.pstatus



Our Proposal

The block tactic

let block_tac 1 status =
fold_left (fun status tac —-> tac status) status 1

The LCF tactical thens is simply implemented as:

let thens_tac t tl =
block_tac (t :: ‘[ :: separate ‘|[' tl @ ‘1Y)

where separate ‘| [ t_1 ; ... ; t_n 1lis
el Yy oo MY ton ].



Our Proposal

Conclusions

@ few literature

@ common misconception about LCF data types
@ studying an overcoming their limitations

@ our proposal for Matita 1.0



	LCF Tactics and their Limitations
	State of the art
	Our Proposal

