
LCF Tactics and their Limitations State of the art Our Proposal

A New Type For Tactics

Andrea Asperti <asperti@cs.unibo.it>
Wilmer Ricciotti <ricciott@cs.unibo.it>

Claudio Sacerdoti Coen <sacerdot@cs.unibo.it>

Enrico Tassi <tassi@cs.unibo.it>

University of Bologna

PLLMS, August 2009

LCF Tactics and their Limitations State of the art Our Proposal

Outline

1 LCF Tactics and their Limitations

2 State of the art

3 Our Proposal

LCF Tactics and their Limitations State of the art Our Proposal

Outline

1 LCF Tactics and their Limitations

2 State of the art

3 Our Proposal

LCF Tactics and their Limitations State of the art Our Proposal

LCF Tactics

type thm
type proof = thm list -> thm
type goal = form list * form
type tactic = goal -> (goal list * proof)

LCF Tactics and their Limitations State of the art Our Proposal

Lack of Metavariables

The validation model above does not handle metavariables and
unification.
Goals may not contain unknowns to be instantiated later.

[E1 ≤ E2]
transitivity
−→ [E1 ≤ ? ; ? ≤ E2]

successor−→ [S(E1) ≤ E2]

type thm
type proof = thm list -> thm
type goal = form list * form
type tactic = goal -> (goal list * proof)

LCF Tactics and their Limitations State of the art Our Proposal

Locality

No automated global reasoning (à la constraint programming):

[?y ≤ d ; a ≤?x+?y ≤ b ; c ≤?x−?y]

Coq’s L-tac:
a high-level language to exploit domain specific knowledge
can figure out a local strategy pattern matching the
sequent
can not pattern match all the goals at once to figure out the
global strategy

LCF Tactics and their Limitations State of the art Our Proposal

No Partial Code Extraction / Proof Rendering

type thm
type proof = thm list -> thm

Code extraction
possible for complete proofs (maps [] 7→ π where π : thm)
not possible for partial proofs (maps l 7→ π[l])

Difficult to check if the proof is following the wanted (e.g.
computationally efficient) algorithm:

Code extraction for complete proofs is too late!

LCF Tactics and their Limitations State of the art Our Proposal

Unstructured Scripts

thens_tactical: tactic -> tactic list -> tactic

intro n; elim n;
[simplify; reflexivity;
| intro H; rewrite > H; auto;]

requires multiple undo-redo to be written
fragile, difficult to fix when it breaks
difficult to understand
leads to unstructured scripts

LCF Tactics and their Limitations State of the art Our Proposal

Implementation of Declarative Languages

we proceed by induction on n to prove P(n)
case S m: ...
case O: ...

The tactic (here case S m:) chooses the goal.

P_0 by ... (H) []
P_1 by ... []
then P_2 by H [P_1]
and P_3 []::[P_2]
hence P_4 [P_2, P_3]

An accumulator is used to chain forward reasoning steps,
passing information to tactics applied next.

LCF Tactics and their Limitations State of the art Our Proposal

Unclassified Goals

No way to tag goals:
goals that are side conditions
goals to be proved automatically
goals to be postponed (e.g. PVS subtyping judgements)
goals subject to a rippling procedure
...

The tag needs to carry informations, e.g.:
a rippled goal needs to carry the inductive hypothesis and
the rippling direction
a goal to be proved automatically may carry the set of facts
to be used

LCF Tactics and their Limitations State of the art Our Proposal

Outline

1 LCF Tactics and their Limitations

2 State of the art

3 Our Proposal

LCF Tactics and their Limitations State of the art Our Proposal

HOL-Light

type thm =
Sequent of (term list * term) (* hyps, concl *)

type justification =
instantiation -> thm list -> thm

type goalstate =
(term list * instantiation)

* goal list * justification
type tactic = goal -> goalstate

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√

LCF Tactics and their Limitations State of the art Our Proposal

Coq

type tactic =
goal sigma -> (goal list sigma * validation)

and validation = (proof_tree list -> proof_tree)

type proof_tree = {
open_subgoals : int;
goal : goal;
ref : (rule * proof_tree list) option }

and rule = ...

? = using additional data structures

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√

LCF Tactics and their Limitations State of the art Our Proposal

MetaPRL

type tactic =
sentinal -> msequent -> msequent list * ext_just

type msequent_so_vars =
SOVarsDelayed | SOVars of SymbolSet.t

type msequent = {
mseq_goal : term;
mseq_assums : term list;
mseq_so_vars : msequent_so_vars ref;

}
type ext_just =
| RuleJust of ...
| RewriteJust of ...
...

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√ √ √

LCF Tactics and their Limitations State of the art Our Proposal

Matita 0.x

type proof =
uri option * metasenv * substitution *
term Lazy.t * term * attribute list

type goal = int
type metasenv = (goal * term list * term) list
type substitution=(goal * term list * term * term) list
type status = proof * goal

type tactic
val mk_tactic: (status -> proof * goal list) -> tactic

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√ √

LCF Tactics and their Limitations State of the art Our Proposal

Isabelle-Pure
datatype thm = Thm of
deriv * (*derivation*)
{thy_ref: theory_ref, (*reference to theory*)
tags: Properties.T, (*additional annotations*)
maxidx: int, (*max idx of Var TVar*)
shyps: sort OrdList.T, (*sort hypotheses*)
hyps: term OrdList.T, (*hypotheses*)
tpairs: (term * term) list, (*flex-flex pairs*)
prop: term} (*conclusion*)

and deriv = Deriv of
{max_promise: serial,
open_promises: (serial * thm future) OrdList.T,
promises: (serial * thm future) OrdList.T,
body: Pt.proof_body};

type tactic = thm -> thm Seq.seq

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√ √ √ √

LCF Tactics and their Limitations State of the art Our Proposal

Outline

1 LCF Tactics and their Limitations

2 State of the art

3 Our Proposal

LCF Tactics and their Limitations State of the art Our Proposal

Our Proposal

type proof_object

type goal
type metasenv = (goal * term list * term) list

type proof_status = metasenv * proof_object
type tac_status = {
pstatus : proof_status;
gstatus : context_stack;

}
type tactic = tac_status -> tac_status

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√ √

?
√ √ √

LCF Tactics and their Limitations State of the art Our Proposal

The Context Stack

type task =
int * [‘Open | ‘Closed] * goal * [> ‘No_tag]

type context = task list * task list
type context_stack = context list

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√ √

?
√ √ √

LCF Tactics and their Limitations State of the art Our Proposal

Example

tactic focused postponed tail
[(0,O,?22)] [] []

exists [(0,O,?38);(0,O,?39)] [] []
[[(1,O,?38)] [] [([(2,O,?39)],[])]
2: [(2,O,?39)] [[(1,O,?38)]] [([],[])]
assumption [] [[(1,C,?38)]] [([],[])]
] [(1,C,?38)] [] []

LCF Tactics and their Limitations State of the art Our Proposal

Embedding LCF tactics

Most tactics operates on a single goal.

type lcf_tactic =
proof_status -> goal -> proof_status

distribute_tac: lcf_tactic -> tactic
exec: tactic -> lcf_tactic

exec (distribute_tac lcf_tac) s g = lcf_tac s g

LCF Tactics and their Limitations State of the art Our Proposal

Distribute tac

let distribute_tac tac status =
match status.gstatus with
| [] -> assert false
| (g, t) :: s ->

let rec aux s go gc = function
| [] -> s, go, gc
| (_,_,n,_) :: loc_tl ->

let s, go, gc =
(* a metavariable could have been closed by side effect *)
if n \in gc then s, go, gc
else

let sn = tac s n in
let go’,gc’ = compare_statuses s sn in
sn,((go \cup [n]) \setminus gc’) \cup go’,gc \cup gc’

in
aux s go gc loc_tl

in
let s0, go0, gc0 = status.pstatus, [], [] in
let sn, gon, gcn = aux s0 go0 gc0 g in
(* deep_close set all instantiated metavariables to ‘Close *)
let stack = (gon, t \setminus gcn) :: deep_close gcn s
in { gstatus = stack; pstatus = sn }

LCF Tactics and their Limitations State of the art Our Proposal

Exec

let exec tac pstatus g =
let stack = [[0, ‘Open, g, ‘No_tag], []] in
let status =
tac { gstatus = stack ; pstatus = pstatus }

in
status.pstatus

LCF Tactics and their Limitations State of the art Our Proposal

The block tactic

let block_tac l status =
fold_left (fun status tac -> tac status) status l

The LCF tactical thens is simply implemented as:

let thens_tac t tl =
block_tac (t :: ‘[‘ :: separate ‘|‘ tl @ ‘]‘)

where separate ‘|‘ [t_1 ; ... ; t_n] is
[t_1 ; ‘|‘ ; ... ; ‘|‘ ; t_n].

LCF Tactics and their Limitations State of the art Our Proposal

Conclusions

few literature
common misconception about LCF data types
studying an overcoming their limitations
our proposal for Matita 1.0

	LCF Tactics and their Limitations
	State of the art
	Our Proposal

