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LCF Tactics

type thm
type proof = thm list -> thm
type goal = form list * form
type tactic = goal -> (goal list * proof)
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Lack of Metavariables

The validation model above does not handle metavariables and
unification.
Goals may not contain unknowns to be instantiated later.

[E1 ≤ E2]
transitivity
−→ [E1 ≤ ? ; ? ≤ E2]

successor−→ [S(E1) ≤ E2]

type thm
type proof = thm list -> thm
type goal = form list * form
type tactic = goal -> (goal list * proof)
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Locality

No automated global reasoning (à la constraint programming):

[?y ≤ d ; a ≤?x+?y ≤ b ; c ≤?x−?y ]

Coq’s L-tac:
a high-level language to exploit domain specific knowledge
can figure out a local strategy pattern matching the
sequent
can not pattern match all the goals at once to figure out the
global strategy
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No Partial Code Extraction / Proof Rendering

type thm
type proof = thm list -> thm

Code extraction
possible for complete proofs (maps [] 7→ π where π : thm)
not possible for partial proofs (maps l 7→ π[l])

Difficult to check if the proof is following the wanted (e.g.
computationally efficient) algorithm:

Code extraction for complete proofs is too late!
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Unstructured Scripts

thens_tactical: tactic -> tactic list -> tactic

intro n; elim n;
[ simplify; reflexivity;
| intro H; rewrite > H; auto; ]

requires multiple undo-redo to be written
fragile, difficult to fix when it breaks
difficult to understand
leads to unstructured scripts
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Implementation of Declarative Languages

we proceed by induction on n to prove P(n)
case S m: ...
case O: ...

The tactic (here case S m:) chooses the goal.

P_0 by ... (H) []
P_1 by ... []
then P_2 by H [P_1]
and P_3 []::[P_2]
hence P_4 [P_2, P_3]

An accumulator is used to chain forward reasoning steps,
passing information to tactics applied next.
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Unclassified Goals

No way to tag goals:
goals that are side conditions
goals to be proved automatically
goals to be postponed (e.g. PVS subtyping judgements)
goals subject to a rippling procedure
...

The tag needs to carry informations, e.g.:
a rippled goal needs to carry the inductive hypothesis and
the rippling direction
a goal to be proved automatically may carry the set of facts
to be used



LCF Tactics and their Limitations State of the art Our Proposal

Outline

1 LCF Tactics and their Limitations

2 State of the art

3 Our Proposal



LCF Tactics and their Limitations State of the art Our Proposal

HOL-Light

type thm =
Sequent of (term list * term) (* hyps, concl *)

type justification =
instantiation -> thm list -> thm

type goalstate =
(term list * instantiation)

* goal list * justification
type tactic = goal -> goalstate

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√



LCF Tactics and their Limitations State of the art Our Proposal

Coq

type tactic =
goal sigma -> (goal list sigma * validation)

and validation = (proof_tree list -> proof_tree)

type proof_tree = {
open_subgoals : int;
goal : goal;
ref : (rule * proof_tree list) option }

and rule = ...

? = using additional data structures

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√
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MetaPRL

type tactic =
sentinal -> msequent -> msequent list * ext_just

type msequent_so_vars =
SOVarsDelayed | SOVars of SymbolSet.t

type msequent = {
mseq_goal : term;
mseq_assums : term list;
mseq_so_vars : msequent_so_vars ref;

}
type ext_just =
| RuleJust of ...
| RewriteJust of ...
...

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√ √ √
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Matita 0.x

type proof =
uri option * metasenv * substitution *
term Lazy.t * term * attribute list

type goal = int
type metasenv = (goal * term list * term) list
type substitution=(goal * term list * term * term) list
type status = proof * goal

type tactic
val mk_tactic: (status -> proof * goal list) -> tactic

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√ √
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Isabelle-Pure
datatype thm = Thm of
deriv * (*derivation*)
{thy_ref: theory_ref, (*reference to theory*)
tags: Properties.T, (*additional annotations*)
maxidx: int, (*max idx of Var TVar*)
shyps: sort OrdList.T, (*sort hypotheses*)
hyps: term OrdList.T, (*hypotheses*)
tpairs: (term * term) list, (*flex-flex pairs*)
prop: term} (*conclusion*)

and deriv = Deriv of
{max_promise: serial,
open_promises: (serial * thm future) OrdList.T,
promises: (serial * thm future) OrdList.T,
body: Pt.proof_body};

type tactic = thm -> thm Seq.seq

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√ √ √ √
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Our Proposal

type proof_object

type goal
type metasenv = (goal * term list * term) list

type proof_status = metasenv * proof_object
type tac_status = {
pstatus : proof_status;
gstatus : context_stack;

}
type tactic = tac_status -> tac_status

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√ √

?
√ √ √
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The Context Stack

type task =
int * [ ‘Open | ‘Closed ] * goal * [> ‘No_tag ]

type context = task list * task list
type context_stack = context list

Metas Global Proof Structured Declarative Tagged
reasoning inspection scripts language goals√ √

?
√ √ √
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Example

tactic focused postponed tail
[(0,O,?22)] [] []

exists [(0,O,?38);(0,O,?39)] [] []
[ [(1,O,?38)] [] [([(2,O,?39)],[])]
2: [(2,O,?39)] [[(1,O,?38)]] [([],[])]
assumption [] [[(1,C,?38)]] [([],[])]
] [(1,C,?38)] [] []
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Embedding LCF tactics

Most tactics operates on a single goal.

type lcf_tactic =
proof_status -> goal -> proof_status

distribute_tac: lcf_tactic -> tactic
exec: tactic -> lcf_tactic

exec (distribute_tac lcf_tac) s g = lcf_tac s g
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Distribute tac

let distribute_tac tac status =
match status.gstatus with
| [] -> assert false
| (g, t) :: s ->

let rec aux s go gc = function
| [] -> s, go, gc
| (_,_,n,_) :: loc_tl ->

let s, go, gc =
(* a metavariable could have been closed by side effect *)
if n \in gc then s, go, gc
else

let sn = tac s n in
let go’,gc’ = compare_statuses s sn in
sn,((go \cup [n]) \setminus gc’) \cup go’,gc \cup gc’

in
aux s go gc loc_tl

in
let s0, go0, gc0 = status.pstatus, [], [] in
let sn, gon, gcn = aux s0 go0 gc0 g in
(* deep_close set all instantiated metavariables to ‘Close *)
let stack = (gon, t \setminus gcn) :: deep_close gcn s
in { gstatus = stack; pstatus = sn }
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Exec

let exec tac pstatus g =
let stack = [ [0, ‘Open, g, ‘No_tag ], [] ] in
let status =
tac { gstatus = stack ; pstatus = pstatus }

in
status.pstatus
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The block tactic

let block_tac l status =
fold_left (fun status tac -> tac status) status l

The LCF tactical thens is simply implemented as:

let thens_tac t tl =
block_tac (t :: ‘[‘ :: separate ‘|‘ tl @ ‘]‘)

where separate ‘|‘ [ t_1 ; ... ; t_n ] is
[ t_1 ; ‘|‘ ; ... ; ‘|‘ ; t_n ].
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Conclusions

few literature
common misconception about LCF data types
studying an overcoming their limitations
our proposal for Matita 1.0
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