Nonuniform Coercions
via
Unification Hints

Claudio Sacerdoti Coen®, Enrico Tassi®

LUniversity of Bologna - Department of Computer Science
2Microsoft Research-INRIA Joint Center

TYPES 2010 — 15 October 2010 — Warsaw

Context of this work

» Interactive theorem prover Matita (CIC)

» Formalization of formal topology (Algebraic Structures)

Context of this work

» Interactive theorem prover Matita (CIC)

» Formalization of formal topology (Algebraic Structures)

Kernel Refiner
Type “Type @
Checking I[nference” |

Matita

Context of this work

» Interactive theorem prover Matita (CIC)

» Formalization of formal topology (Algebraic Structures)

Kernel Refiner
Type “Type @
Checking Inference”
-— -—
— 2

Matita

» Unification made user-extensible (Unification Hints)

Context of this work

» Interactive theorem prover Matita (CIC)

» Formalization of formal topology (Algebraic Structures)

Kernel Refiner
Type “Type @
Checking Inference”
-— -—
— 2

Matita
» Unification made user-extensible (Unification Hints)

» In some corner cases the system is unable to exploit the
knowledge given by hints

Example

record Group : Type := { carr : Type, _x_ : ...
definition Z : Group := (Z, +, 0, ...).
lemma mulgl: V G:Group, Va:carr G. a x 1 = a.
lemma cardG_gt0 : VG : Group, 0 < |G|.

[check (mulgl 7 2).

Example

record Group : Type := { carr : Type, _x_ : ...}
definition Z : Group := (Z, +, 0, ...).

lemma mulgl: V G:Group, Va:carr G. a x 1 = a.
lemma cardG_gt0 : VG : Group, 0 < |G|.

[check (mulgl 7 2).

Works, since 2 has type Z, and it's context expects a term of
type carr 7 and the unification algorithm knows a canonical
solution for Z =carr ?¢.

Example

record Group : Type := { carr : Type, _x_ : ...}
definition Z : Group := (Z, +, 0, ...).

lemma mulgl: V G:Group, Va:carr G. a x 1 = a.
lemma cardG_gt0 : VG : Group, 0 < |G|.

[check (mulgl 7 2).

Works, since 2 has type Z, and it's context expects a term of
type carr 7 and the unification algorithm knows a canonical
solution for Z =carr ?¢.

[check (cardG_gt0 Z).

Example

record Group : Type := { carr : Type, _x_ : ...}
definition Z : Group := (Z, +, 0, ...).

lemma mulgl: V G:Group, Va:carr G. a x 1 = a.
lemma cardG_gt0 : VG : Group, 0 < |G|.

[check (mulgl 7 2).

Works, since 2 has type Z, and it's context expects a term of
type carr 7 and the unification algorithm knows a canonical
solution for Z =carr ?¢.

[check (cardG_gt0 Z). }

Error: Z has type Type but it's context expects a term of type
Group. The unification problem Type = Group has no
solution.

Outline

1. Coercions
» Nonuniform coercions
» Examples

2. Implementation

» Ingredients
» Declaring nonuniform coercions
» Reusing existing hints

3. Conclusions

Type inference and coercions

» These problems have to be addressed by type inference
Tt T~t T

» Looks like coercions could solve these typing errors

l=x: N~ 7

Type inference and coercions
» These problems have to be addressed by type inference
Tt T~t T

» Looks like coercions could solve these typing errors

(k,(N,2)) e A
l=x: N~ 7

Type inference and coercions
» These problems have to be addressed by type inference
Tt T~t T

» Looks like coercions could solve these typing errors

(k,(N,2)) e A
Ml=x: N~ 7

Type inference and coercions
» These problems have to be addressed by type inference
Tt T~t T

» Looks like coercions could solve these typing errors

(k,(N,Z2)) e A
l=x: N~ 7

Type inference and coercions
» These problems have to be addressed by type inference
Tt T~t T

» Looks like coercions could solve these typing errors

(k,(N,Z))e A Thrkx:Z
l=x: N~ 7

Type inference and coercions
» These problems have to be addressed by type inference
Tt T~t T

» Looks like coercions could solve these typing errors

(k,(N,Z2))eA Trkx:Z Z=+Z
lEx: N~ 7

Type inference and coercions
» These problems have to be addressed by type inference
Tt T~t T

» Looks like coercions could solve these typing errors

(k,(N,Z))eA Trkx:Z Z=+Z
lEx:N~kx:Z

Type inference and coercions
» These problems have to be addressed by type inference
Tt Tt T

» Looks like coercions could solve these typing errors

(k,(N,Z)eA Trkx:Z Z=Z
TEx:N~kx:Z

» but (uniform) coercions are type theoretic functions
whose insertion is type driven.

(A_.Z,(Type, Group)) € A T F (A..Z) Z: Group
M=2Z: Type ~ (A-.2) Z : Group

Type inference and coercions
» These problems have to be addressed by type inference
Tt Tt T

» Looks like coercions could solve these typing errors

(k,(N,Z)eA Trkx:Z Z=Z
TEx:N~kx:Z

» but (uniform) coercions are type theoretic functions
whose insertion is type driven.

(A_.Z,(Type, Group)) e A T+ (A.2) Q: Group
- Q: Type ~ (A_.2) Q : Group

Nonuniform coercions

51 — Tl
ST — 4 Sh

F,-I—s,-:S,- r,'l_t,'i7—,'

Inserting a nonuniform coercion works as follows:

[Fs:S~ T

where variables in I'; are replaced by unification variables.

Nonuniform coercions

A:{Flk v e S 2 T
ST — 4 S,

F,-I—s,-:S,- r,'l_t,'i7—,'

Inserting a nonuniform coercion works as follows:

5,' — T;
(F;I— Si =)EA

[Fs:S~ T

where variables in I'; are replaced by unification variables.

Nonuniform coercions

A:{Flk S e o
ST — 4 S,

F,-I—s,-:S,- r,'l_t,'i7—,'

Inserting a nonuniform coercion works as follows:

5,' — T;
(F;I— Si =)EA

[Fs:S~ T

where variables in I'; are replaced by unification variables.

Nonuniform coercions

A:{Flk S e o
ST — 4 S,

F,-I—s,-:S,- r,'l_t,'i7—,'
Inserting a nonuniform coercion works as follows:
s £ S

5,' — T; S
(F;I— si =)EA

[Fs:S~ T

S;

where variables in I'; are replaced by unification variables.

Nonuniform coercions

A:{Flk S e o
ST — 4 S,

F,-I—s,-:S,- r,'l_t,'i7—,'

Inserting a nonuniform coercion works as follows:

s £ S
5,' — T,') é Si
(F; - si = i) SIA T £ T

[Fs:S~ T

where variables in I'; are replaced by unification variables.

Nonuniform coercions

A:{Flk S e o
ST — 4 S,

F,-I—s,-:S,- r,'l_t,'i7—,'

Inserting a nonuniform coercion works as follows:

s £ S
5,' — T,') é Si
(F; - si = i) SIA T £ T

lEs:S~t:T

where variables in I'; are replaced by unification variables.

Nonuniform coercions: examples

Uniform coercions

x: N F N = 2
x = kx
Nonuniform coercions
- Type — Group
Z = Z
- Type — Group
Q = Q

Cheap implementation: ingredient #1

Unification hints:
ﬁ myhint
Q y

7
M=

Cheap implementation: ingredient #1

Unification hints:
ﬁ myhint
Q y

Examples:

Cheap implementation: ingredient #1

Unification hints:

Examples:

Do H
I+ P =20 myhint
? = Z
‘G
- Z = carr ¢
4 = carr G
?g = carr H
2, —
G.H: Group X product_group G H

74 X g = carr 7x

Cheap implementation: ingredient #1 (cont.)

Note that hints define “equivalence classes” of constants, thus
approximated indexing for fast retrieval must take them into
account.

(k,(N,Z)eA Trks:Z Z=carZ
l's: N~ ks:carr Z

Cheap implementation: ingredient #1 (cont.)

Note that hints define “equivalence classes” of constants, thus
approximated indexing for fast retrieval must take them into
account.

(k,(N,Z)eA Trks:Z Z=carZ
l's: N~ ks:carr Z

Cheap implementation: ingredient #2

Uniform coercion loosely indexed:

(result, (x, target)) € A T & result s : target target = T

[Fx:S~vresults: T

Note that T and target can be in the same equivalence class.

Encoding nonuniform coercions

record solution (S : Type) (s : S) : Type :={
target : Type; (x T x)
result : target (% t x)

1.

coercion result: VS:Type.Vs:S.Vsol:solution S's. target S's sol
ons : 7 >—> target 777.

Encoding nonuniform coercions

record solution (S : Type) (s : S) : Type :={
target : Type; (x T x)
result : target (% t x)

1.

coercion result: VS:Type.Vs:S.Vsol:solution S's. target S's sol
ons : 7 >—> target 777.

s~ result 7 s 7

Declaring nonuniform coercions

Type — Group

l_Z — Z

=2Z: Type ~ : Group

Declaring nonuniform coercions

Type — Group

l_Z — Z

(result, (x, target)) € A

=2Z: Type ~ : Group

Declaring nonuniform coercions

Type — Group

l_Z — Z

(result, (x, target)) € A

=2Z: Type ~ : Group

Declaring nonuniform coercions

Type — Group

l_Z — Z

(result, (x, target)) € A

=2Z: Type ~~ : Group

Declaring nonuniform coercions

Type — Group

l_Z — Z

(result, (x, target)) € A
[t result 7 Z 74, : target Type Z 74,

M= 2Z: Type ~~ : Group

Declaring nonuniform coercions

Type — Group

l_Z — Z

(result, (x, target)) € A
[result 7 Z 74, : target Type Z 74,

target Type Z 74, = Group

=Z: Type ~~ : Group

Declaring nonuniform coercions

Type — Group

l_Z — Z

(result, (x, target)) € A
[t result 7 Z 74, : target Type Z 74,

target Type Z 74, = Group

= Z: Type ~~ result 7 Z 75, : Group

Declaring nonuniform coercions

Type — Group

l_Z — Z

(result, (x, target)) € A
[t result 7 Z 74, : target Type Z 74,

target Type Z 74, = Group

= Z: Type ~~ result 7 Z 75, : Group

We declare the following hint:

- ?s = mk_solution Type Z Group Z

target Type Z 75y = Group

Declaring nonuniform coercions

Type — Group

l_Z — Z

(result, (x, target)) € A
[t result 7 Z 74, : target Type Z 74,

target Type Z 74, = Group

= Z: Type ~~ result 7 Z 75, : Group

We declare the following hint:

- ?s = mk_solution Type Z Group Z

target Type Z 75y = Group
Note that:

target Type Z 75, > Group

Declaring nonuniform coercions

Type — Group

l_Z — Z

(result, (x, target)) € A
[t result 7 Z 74, : target Type Z 74,

target Type Z 74, = Group
= Z: Type ~~ result 7 Z 75, : Group

We declare the following hint:

?s = mk_solution Type Z Group Z

- target Type Z 75y = Group

Note that:

target Type Z 75, > Group result Type Z 75> Z

Declaring nonuniform coercions (the right way)

This is unsatisfactory, we need one new hint per coercion

;= mk_solution Type Z Group Z
target Type Z 7s,; = Group

}_ ?SO

Moreover, the system is already aware that

?G = Z

s Z = carr ¢

We need only this hint:

7, = carr G

7o) = mk_solution Type 7?7 Group G
G : Group - : P P

target Type 77 7o) = Group

Conclusion

Nonuniform coercions:
» Generalization of type-theoretic coercions
» Cheap implementation on top of unification hints

» Both type inference and unification can exploit the
knowledge expressed in terms of Unification Hints

Conclusion

Nonuniform coercions:
» Generalization of type-theoretic coercions
» Cheap implementation on top of unification hints

» Both type inference and unification can exploit the
knowledge expressed in terms of Unification Hints

Further research:
» Notion of coherence (sanity check on A as a whole)

» Notion of composition for nonuniform coercions

Thanks

Thanks for your attention!

	Intro

