
Nonuniform Coercions

via

Unification Hints

Claudio Sacerdoti Coen1, Enrico Tassi2

1University of Bologna - Department of Computer Science
2Microsoft Research-INRIA Joint Center

TYPES 2010 — 15 October 2010 — Warsaw

Context of this work

I Interactive theorem prover Matita (CIC)

I Formalization of formal topology (Algebraic Structures)

I Unification made user-extensible (Unification Hints)

I In some corner cases the system is unable to exploit the
knowledge given by hints

Context of this work

I Interactive theorem prover Matita (CIC)

I Formalization of formal topology (Algebraic Structures)

≡

“Type
Inference”

Matita

Type
Checking

?=

Kernel Refiner

I Unification made user-extensible (Unification Hints)

I In some corner cases the system is unable to exploit the
knowledge given by hints

Context of this work

I Interactive theorem prover Matita (CIC)

I Formalization of formal topology (Algebraic Structures)

≡

“Type
Inference”

Matita

Type
Checking

?=

Kernel Refiner

I Unification made user-extensible (Unification Hints)

I In some corner cases the system is unable to exploit the
knowledge given by hints

Context of this work

I Interactive theorem prover Matita (CIC)

I Formalization of formal topology (Algebraic Structures)

≡

“Type
Inference”

Matita

Type
Checking

?=

Kernel Refiner

I Unification made user-extensible (Unification Hints)

I In some corner cases the system is unable to exploit the
knowledge given by hints

Example� �
record Group : Type := { carr : Type, ∗ : . . .}
definition Z : Group := 〈 Z, +, 0, . . .〉.
lemma mulg1: ∀G:Group, ∀ a:carr G. a ∗ 1 = a.
lemma cardG gt0 : ∀G : Group, 0 < |G|.� �� �
check (mulg1 ?G 2).� �

Works, since 2 has type Z, and it’s context expects a term of
type carr ?G and the unification algorithm knows a canonical
solution for Z

?
=carr ?G .� �

check (cardG gt0 Z).� �
Error: Z has type Type but it’s context expects a term of type
Group. The unification problem Type

?
= Group has no

solution.

Example� �
record Group : Type := { carr : Type, ∗ : . . .}
definition Z : Group := 〈 Z, +, 0, . . .〉.
lemma mulg1: ∀G:Group, ∀ a:carr G. a ∗ 1 = a.
lemma cardG gt0 : ∀G : Group, 0 < |G|.� �� �
check (mulg1 ?G 2).� �
Works, since 2 has type Z, and it’s context expects a term of
type carr ?G and the unification algorithm knows a canonical
solution for Z

?
=carr ?G .

� �
check (cardG gt0 Z).� �
Error: Z has type Type but it’s context expects a term of type
Group. The unification problem Type

?
= Group has no

solution.

Example� �
record Group : Type := { carr : Type, ∗ : . . .}
definition Z : Group := 〈 Z, +, 0, . . .〉.
lemma mulg1: ∀G:Group, ∀ a:carr G. a ∗ 1 = a.
lemma cardG gt0 : ∀G : Group, 0 < |G|.� �� �
check (mulg1 ?G 2).� �
Works, since 2 has type Z, and it’s context expects a term of
type carr ?G and the unification algorithm knows a canonical
solution for Z

?
=carr ?G .� �

check (cardG gt0 Z).� �

Error: Z has type Type but it’s context expects a term of type
Group. The unification problem Type

?
= Group has no

solution.

Example� �
record Group : Type := { carr : Type, ∗ : . . .}
definition Z : Group := 〈 Z, +, 0, . . .〉.
lemma mulg1: ∀G:Group, ∀ a:carr G. a ∗ 1 = a.
lemma cardG gt0 : ∀G : Group, 0 < |G|.� �� �
check (mulg1 ?G 2).� �
Works, since 2 has type Z, and it’s context expects a term of
type carr ?G and the unification algorithm knows a canonical
solution for Z

?
=carr ?G .� �

check (cardG gt0 Z).� �
Error: Z has type Type but it’s context expects a term of type
Group. The unification problem Type

?
= Group has no

solution.

Outline

1. Coercions
I Nonuniform coercions
I Examples

2. Implementation
I Ingredients
I Declaring nonuniform coercions
I Reusing existing hints

3. Conclusions

Type inference and coercions

I These problems have to be addressed by type inference

Γ ` t : T t ′ : T ′

I Looks like coercions could solve these typing errors

(k , (N ,Z)) ∈ ∆ Γ ` k x : Z Z
?

= Z

Γ ` x : N

k x

: Z

I but (uniform) coercions are type theoretic functions
whose insertion is type driven.

Type inference and coercions

I These problems have to be addressed by type inference

Γ ` t : T t ′ : T ′

I Looks like coercions could solve these typing errors

(k , (N ,Z)) ∈ ∆

Γ ` k x : Z Z
?

= Z

Γ ` x : N

k x

: Z

I but (uniform) coercions are type theoretic functions
whose insertion is type driven.

Type inference and coercions

I These problems have to be addressed by type inference

Γ ` t : T t ′ : T ′

I Looks like coercions could solve these typing errors

(k , (N ,Z)) ∈ ∆

Γ ` k x : Z Z
?

= Z

Γ ` x : N

k x

: Z

I but (uniform) coercions are type theoretic functions
whose insertion is type driven.

Type inference and coercions

I These problems have to be addressed by type inference

Γ ` t : T t ′ : T ′

I Looks like coercions could solve these typing errors

(k , (N ,Z)) ∈ ∆

Γ ` k x : Z Z
?

= Z

Γ ` x : N

k x

: Z

I but (uniform) coercions are type theoretic functions
whose insertion is type driven.

Type inference and coercions

I These problems have to be addressed by type inference

Γ ` t : T t ′ : T ′

I Looks like coercions could solve these typing errors

(k , (N ,Z)) ∈ ∆ Γ ` k x : Z

Z
?

= Z

Γ ` x : N

k x

: Z

I but (uniform) coercions are type theoretic functions
whose insertion is type driven.

Type inference and coercions

I These problems have to be addressed by type inference

Γ ` t : T t ′ : T ′

I Looks like coercions could solve these typing errors

(k , (N ,Z)) ∈ ∆ Γ ` k x : Z Z
?

= Z

Γ ` x : N

k x

: Z

I but (uniform) coercions are type theoretic functions
whose insertion is type driven.

Type inference and coercions

I These problems have to be addressed by type inference

Γ ` t : T t ′ : T ′

I Looks like coercions could solve these typing errors

(k , (N ,Z)) ∈ ∆ Γ ` k x : Z Z
?

= Z

Γ ` x : N k x : Z

I but (uniform) coercions are type theoretic functions
whose insertion is type driven.

Type inference and coercions

I These problems have to be addressed by type inference

Γ ` t : T t ′ : T ′

I Looks like coercions could solve these typing errors

(k , (N ,Z)) ∈ ∆ Γ ` k x : Z Z
?

= Z

Γ ` x : N k x : Z

I but (uniform) coercions are type theoretic functions
whose insertion is type driven.

(λ .Z, (Type,Group)) ∈ ∆ Γ ` (λ .Z) Z : Group

Γ ` Z : Type (λ .Z) Z : Group

Type inference and coercions

I These problems have to be addressed by type inference

Γ ` t : T t ′ : T ′

I Looks like coercions could solve these typing errors

(k , (N ,Z)) ∈ ∆ Γ ` k x : Z Z
?

= Z

Γ ` x : N k x : Z

I but (uniform) coercions are type theoretic functions
whose insertion is type driven.

(λ .Z, (Type,Group)) ∈ ∆ Γ ` (λ .Z) Q : Group

Γ ` Q : Type (λ .Z) Q : Group

Nonuniform coercions

∆ =

{
Γ1 ` S1 → T1

s1 7→ t1
. . . Γn ` Sn → Tn

sn 7→ tn

}
where

Γi ` si : Si Γi ` ti : Ti

Inserting a nonuniform coercion works as follows:

(
Γi ` Si → Ti

si 7→ ti

)
∈ ∆

S
?

= Si

s
?

= si
T

?
= Ti

Γ ` s : S

ti

: T

where variables in Γi are replaced by unification variables.

Nonuniform coercions

∆ =

{
Γ1 ` S1 → T1

s1 7→ t1
. . . Γn ` Sn → Tn

sn 7→ tn

}
where

Γi ` si : Si Γi ` ti : Ti

Inserting a nonuniform coercion works as follows:

(
Γi ` Si → Ti

si 7→ ti

)
∈ ∆

S
?

= Si

s
?

= si
T

?
= Ti

Γ ` s : S

ti

: T

where variables in Γi are replaced by unification variables.

Nonuniform coercions

∆ =

{
Γ1 ` S1 → T1

s1 7→ t1
. . . Γn ` Sn → Tn

sn 7→ tn

}
where

Γi ` si : Si Γi ` ti : Ti

Inserting a nonuniform coercion works as follows:

(
Γi ` Si → Ti

si 7→ ti

)
∈ ∆

S
?

= Si

s
?

= si
T

?
= Ti

Γ ` s : S

ti

: T

where variables in Γi are replaced by unification variables.

Nonuniform coercions

∆ =

{
Γ1 ` S1 → T1

s1 7→ t1
. . . Γn ` Sn → Tn

sn 7→ tn

}
where

Γi ` si : Si Γi ` ti : Ti

Inserting a nonuniform coercion works as follows:

(
Γi ` Si → Ti

si 7→ ti

)
∈ ∆

S
?

= Si

s
?

= si

T
?

= Ti

Γ ` s : S

ti

: T

where variables in Γi are replaced by unification variables.

Nonuniform coercions

∆ =

{
Γ1 ` S1 → T1

s1 7→ t1
. . . Γn ` Sn → Tn

sn 7→ tn

}
where

Γi ` si : Si Γi ` ti : Ti

Inserting a nonuniform coercion works as follows:

(
Γi ` Si → Ti

si 7→ ti

)
∈ ∆

S
?

= Si

s
?

= si
T

?
= Ti

Γ ` s : S

ti

: T

where variables in Γi are replaced by unification variables.

Nonuniform coercions

∆ =

{
Γ1 ` S1 → T1

s1 7→ t1
. . . Γn ` Sn → Tn

sn 7→ tn

}
where

Γi ` si : Si Γi ` ti : Ti

Inserting a nonuniform coercion works as follows:

(
Γi ` Si → Ti

si 7→ ti

)
∈ ∆

S
?

= Si

s
?

= si
T

?
= Ti

Γ ` s : S ti : T

where variables in Γi are replaced by unification variables.

Nonuniform coercions: examples

Uniform coercions

x : N ` N → Z
x 7→ k x

Nonuniform coercions

` Type → Group
Z 7→ Z

` Type → Group
Q 7→ Q

Cheap implementation: ingredient #1

Unification hints:

−→
?x :=

−→
H

Γ ` myhint
P ≡ Q

Examples:

?G := Z`
Z ≡ carr ?G

?A := carr G
?B := carr H

?X := product group G H
G ,H : Group `

?A × ?B ≡ carr ?X

Cheap implementation: ingredient #1

Unification hints:

−→
?x :=

−→
H

Γ ` myhint
P ≡ Q

Examples:

?G := Z`
Z ≡ carr ?G

?A := carr G
?B := carr H

?X := product group G H
G ,H : Group `

?A × ?B ≡ carr ?X

Cheap implementation: ingredient #1

Unification hints:

−→
?x :=

−→
H

Γ ` myhint
P ≡ Q

Examples:

?G := Z`
Z ≡ carr ?G

?A := carr G
?B := carr H

?X := product group G H
G ,H : Group `

?A × ?B ≡ carr ?X

Cheap implementation: ingredient #1 (cont.)

Note that hints define “equivalence classes” of constants, thus
approximated indexing for fast retrieval must take them into
account.

(k , (N ,Z)) ∈ ∆ Γ ` k s : Z Z
?

= carr Z
Γ ` s : N k s : carr Z

Cheap implementation: ingredient #1 (cont.)

Note that hints define “equivalence classes” of constants, thus
approximated indexing for fast retrieval must take them into
account.

(k , (N ,Z)) ∈ ∆ Γ ` k s : Z Z
?

= carr Z
Γ ` s : N k s : carr Z

Cheap implementation: ingredient #2

Uniform coercion loosely indexed:

(result, (∗, target)) ∈ ∆ Γ ` result s : target target
?

= T

Γ ` x : S result s : T

Note that T and target can be in the same equivalence class.

Encoding nonuniform coercions

� �
record solution (S : Type) (s : S) : Type :={

target : Type; (∗ T ∗)
result : target (∗ t ∗)

}.

coercion result : ∀S:Type.∀ s:S.∀ sol: solution S s . target S s sol
on s : ? >−−−> target ???.� �

s result ? s ?sol

Encoding nonuniform coercions

� �
record solution (S : Type) (s : S) : Type :={

target : Type; (∗ T ∗)
result : target (∗ t ∗)

}.

coercion result : ∀S:Type.∀ s:S.∀ sol: solution S s . target S s sol
on s : ? >−−−> target ???.� �

s result ? s ?sol

Declaring nonuniform coercions

` Type → Group
Z 7→ Z

(result, (∗, target)) ∈ ∆

Γ ` result ? Z ?sol : target Type Z ?sol

target Type Z ?sol
?

= Group

Γ ` Z : Type

result ? Z ?sol

: Group

We declare the following hint:

?sol := mk solution Type Z Group Z`
target Type Z ?sol ≡ Group

Note that:

target Type Z ?sol B Group result Type Z ?sol B Z

Declaring nonuniform coercions

` Type → Group
Z 7→ Z

(result, (∗, target)) ∈ ∆

Γ ` result ? Z ?sol : target Type Z ?sol

target Type Z ?sol
?

= Group

Γ ` Z : Type

result ? Z ?sol

: Group

We declare the following hint:

?sol := mk solution Type Z Group Z`
target Type Z ?sol ≡ Group

Note that:

target Type Z ?sol B Group result Type Z ?sol B Z

Declaring nonuniform coercions

` Type → Group
Z 7→ Z

(result, (∗, target)) ∈ ∆

Γ ` result ? Z ?sol : target Type Z ?sol

target Type Z ?sol
?

= Group

Γ ` Z : Type

result ? Z ?sol

: Group

We declare the following hint:

?sol := mk solution Type Z Group Z`
target Type Z ?sol ≡ Group

Note that:

target Type Z ?sol B Group result Type Z ?sol B Z

Declaring nonuniform coercions

` Type → Group
Z 7→ Z

(result, (∗, target)) ∈ ∆

Γ ` result ? Z ?sol : target Type Z ?sol

target Type Z ?sol
?

= Group

Γ ` Z : Type

result ? Z ?sol

: Group

We declare the following hint:

?sol := mk solution Type Z Group Z`
target Type Z ?sol ≡ Group

Note that:

target Type Z ?sol B Group result Type Z ?sol B Z

Declaring nonuniform coercions

` Type → Group
Z 7→ Z

(result, (∗, target)) ∈ ∆

Γ ` result ? Z ?sol : target Type Z ?sol

target Type Z ?sol
?

= Group

Γ ` Z : Type

result ? Z ?sol

: Group

We declare the following hint:

?sol := mk solution Type Z Group Z`
target Type Z ?sol ≡ Group

Note that:

target Type Z ?sol B Group result Type Z ?sol B Z

Declaring nonuniform coercions

` Type → Group
Z 7→ Z

(result, (∗, target)) ∈ ∆

Γ ` result ? Z ?sol : target Type Z ?sol

target Type Z ?sol
?

= Group
Γ ` Z : Type

result ? Z ?sol

: Group

We declare the following hint:

?sol := mk solution Type Z Group Z`
target Type Z ?sol ≡ Group

Note that:

target Type Z ?sol B Group result Type Z ?sol B Z

Declaring nonuniform coercions

` Type → Group
Z 7→ Z

(result, (∗, target)) ∈ ∆

Γ ` result ? Z ?sol : target Type Z ?sol

target Type Z ?sol
?

= Group
Γ ` Z : Type result ? Z ?sol : Group

We declare the following hint:

?sol := mk solution Type Z Group Z`
target Type Z ?sol ≡ Group

Note that:

target Type Z ?sol B Group result Type Z ?sol B Z

Declaring nonuniform coercions

` Type → Group
Z 7→ Z

(result, (∗, target)) ∈ ∆

Γ ` result ? Z ?sol : target Type Z ?sol

target Type Z ?sol
?

= Group
Γ ` Z : Type result ? Z ?sol : Group

We declare the following hint:

?sol := mk solution Type Z Group Z`
target Type Z ?sol ≡ Group

Note that:

target Type Z ?sol B Group result Type Z ?sol B Z

Declaring nonuniform coercions

` Type → Group
Z 7→ Z

(result, (∗, target)) ∈ ∆

Γ ` result ? Z ?sol : target Type Z ?sol

target Type Z ?sol
?

= Group
Γ ` Z : Type result ? Z ?sol : Group

We declare the following hint:

?sol := mk solution Type Z Group Z`
target Type Z ?sol ≡ Group

Note that:

target Type Z ?sol B Group

result Type Z ?sol B Z

Declaring nonuniform coercions

` Type → Group
Z 7→ Z

(result, (∗, target)) ∈ ∆

Γ ` result ? Z ?sol : target Type Z ?sol

target Type Z ?sol
?

= Group
Γ ` Z : Type result ? Z ?sol : Group

We declare the following hint:

?sol := mk solution Type Z Group Z`
target Type Z ?sol ≡ Group

Note that:

target Type Z ?sol B Group result Type Z ?sol B Z

Declaring nonuniform coercions (the right way)

This is unsatisfactory, we need one new hint per coercion

?sol := mk solution Type Z Group Z`
target Type Z ?sol ≡ Group

Moreover, the system is already aware that

?G := Z
Γ `

Z ≡ carr ?G

We need only this hint:

?Z := carr G
?sol := mk solution Type ?Z Group G

G : Group `
target Type ?Z ?sol ≡ Group

Conclusion

Nonuniform coercions:

I Generalization of type-theoretic coercions

I Cheap implementation on top of unification hints

I Both type inference and unification can exploit the
knowledge expressed in terms of Unification Hints

Further research:

I Notion of coherence (sanity check on ∆ as a whole)

I Notion of composition for nonuniform coercions

Conclusion

Nonuniform coercions:

I Generalization of type-theoretic coercions

I Cheap implementation on top of unification hints

I Both type inference and unification can exploit the
knowledge expressed in terms of Unification Hints

Further research:

I Notion of coherence (sanity check on ∆ as a whole)

I Notion of composition for nonuniform coercions

Thanks

Thanks for your attention!

	Intro

