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» Unification made user-extensible (Unification Hints)

» In some corner cases the system is unable to exploit the
knowledge given by hints



Example

record Group : Type := { carr : Type, _x_ : ...
definition Z : Group := ( Z, +, 0, ...).
lemma mulgl: V G:Group, Va:carr G. a x 1 = a.
lemma cardG_gt0 : VG : Group, 0 < |G|.

[check (mulgl 7 2).
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Example

record Group : Type := { carr : Type, _x_ : ...}
definition Z : Group := ( Z, +, 0, ...).

lemma mulgl: V G:Group, Va:carr G. a x 1 = a.
lemma cardG_gt0 : VG : Group, 0 < |G|.

[check (mulgl 7 2).

Works, since 2 has type Z, and it's context expects a term of
type carr 7 and the unification algorithm knows a canonical
solution for Z =carr ?¢.

[check (cardG_gt0 Z). }

Error: Z has type Type but it's context expects a term of type
Group. The unification problem Type = Group has no
solution.
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» Looks like coercions could solve these typing errors

(k,(N,Z)eA Trkx:Z Z=Z
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» but (uniform) coercions are type theoretic functions
whose insertion is type driven.

(A_.Z,(Type, Group)) e A T+ (A.2) Q: Group
- Q: Type ~ (A_.2) Q : Group
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Nonuniform coercions: examples

Uniform coercions

x: N F N = 2
x = kx
Nonuniform coercions
- Type — Group
Z = Z
- Type — Group
Q = Q
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Cheap implementation: ingredient #1

Unification hints:

Examples:

Do H
I+ P =20 myhint
? = Z
‘G
- Z = carr ¢
4 = carr G
?g = carr H
2, —
G.H: Group X product_group G H

74 X g = carr 7x



Cheap implementation: ingredient #1 (cont.)

Note that hints define “equivalence classes” of constants, thus
approximated indexing for fast retrieval must take them into
account.
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Cheap implementation: ingredient #2

Uniform coercion loosely indexed:

(result, (x, target)) € A T & result s : target  target = T

[Fx:S~vresults: T

Note that T and target can be in the same equivalence class.



Encoding nonuniform coercions

record solution (S : Type) (s : S) : Type :={
target : Type; (x T x)
result : target (% t x)

1.

coercion result: VS:Type.Vs:S.Vsol:solution S's. target S's sol
ons : 7 >—> target 777.
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target : Type; (x T x)
result : target (% t x)

1.

coercion result: VS:Type.Vs:S.Vsol:solution S's. target S's sol
ons : 7 >—> target 777.

s~ result 7 s 7
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Declaring nonuniform coercions

Type — Group

l_Z — Z

(result, (x, target)) € A
[t result 7 Z 74, : target Type Z 74,

target Type Z 74, = Group
= Z: Type ~~ result 7 Z 75, : Group

We declare the following hint:

?s = mk_solution Type Z Group Z

- target Type Z 75y = Group

Note that:

target Type Z 75, > Group result Type Z 75> Z



Declaring nonuniform coercions (the right way)

This is unsatisfactory, we need one new hint per coercion

;= mk_solution Type Z Group Z
target Type Z 7s,; = Group

}_ ?SO

Moreover, the system is already aware that

?G = Z

s Z = carr ¢

We need only this hint:

7, = carr G

7o) = mk_solution Type 7?7 Group G
G : Group - : P P

target Type 77 7o) = Group
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Further research:
» Notion of coherence (sanity check on A as a whole)

» Notion of composition for nonuniform coercions
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