
A content based mathematical search engine:
Whelp

Andrea Asperti, Ferruccio Guidi, Claudio Sacerdoti Coen,
Enrico Tassi, and Stefano Zacchiroli

Department of Computer Science, University of Bologna
Mura Anteo Zamboni, 7 — 40127 Bologna, ITALY

{asperti,fguidi,sacerdot,tassi,zacchiro}@cs.unibo.it

Abstract. The prototype of a content based search engine for mathe-
matical knowledge supporting a small set of queries requiring matching
and/or typing operations is described. The prototype — called Whelp —
exploits a metadata approach for indexing the information that looks far
more flexible than traditional indexing techniques for structured expres-
sions like substitution, discrimination, or context trees. The prototype
has been instantiated to the standard library of the Coq proof assistant
extended with many user contributions.

1 Introduction

The paper describes the prototype of a content based search engine for math-
ematical knowledge — called Whelp — developed inside the European Project
IST-2001-33562 MoWGLI [4]. Whelp has been mostly tested to search notions
inside the library of formal mathematical knowledge of the Coq proof assis-
tant [8]. Due to its dimension (about 40,000 theorems), this library was adopted
by MoWGLI as a main example of repository of structured mathematical in-
formation. However, Whelp — better, its filtering phase — only works on a
small set of metadata automatically extracted from the structured sources, and
is thus largely independent from the actual syntax (and semantics) of the infor-
mation. Metadata also offer a higher flexibility with respect to more canonical
indexing techniques such as discrimination trees [17], substitution trees [14] or
context trees [13] since all these approaches are optimized for the single oper-
ation of (forward) matching, and are difficult to adapt or tune with additional
constraints (such as global constraints on the signature of the term, just to make
a simple but significant example).

Whelp is the final output of a three-year research work inside MoWGLI which
consisted in exporting the Coq library into XML, defining a suitable set of meta-
data for indexing the information, implementing the actual indexing tools, and
finally designing and developing the search engine. Whelp itself is the result of
a complete architectural re-visitation of a first prototype described in [15], inte-
grated with the efficient retrieval mechanisms described in [3] (further improved
as described in Sect. 5.2), and integrated with syntactic facilities borrowed from

2

the disambiguating parser of [20]. Since the prototype version described in [15],
also the Web interface has been completely rewritten and simplified, exploiting
most of the publishing techniques developed for the hypertextual rendering of
the Coq library (see http://helm.cs.unibo.it/) and described in Sect. 6.

2 Syntax

Whelp interacts with the user as a classical World Wide Web search engine, it ex-
pects single line queries and returns a list of results matching it. Whelp currently
supports four different kinds of queries, addressing different user-requirements
emerged in MoWGLI: Match, Hint, Elim, and Locate (described in Sect. 5).
The list is not meant to be exhaustive and is likely to grow in the future.

The most typical of these queries (Match and Hint) require the user to
input a term of the Calculus of (co-)Inductive Constructions — CIC — (the
underlying calculus of Coq), supporting different kinds of pattern based queries.
Nevertheless, the concrete syntax we chose for writing the input term is not
bound to any specific logical system: it has been designed to be as similar as
possible to ordinary mathematics formulae, in their TEX encoding (see Table 1).

term ::= identifier
| number
| Prop | Type | Set sort
| ? placeholder
| term term application
| binder vars . term abstraction
| term \to term arrow type
| (term) grouping
| term binop term binary operator
| unop term unary operator

binder ::= \forall | \exists | \lambda

vars ::= names variables
| names : term typed variables

names ::= identifier | identifier names
binop ::= + | - | * | / | ^ arithmetic operators

| < | > | \leq | \geq | = | \neq comparison operators
| \lor | \land logical operators

unop ::= - unary minus
| \lnot logical negation

Table 1. Whelp’s term syntax

As a consequence of the generality of syntax, user provided terms do not
usually have a unique direct mapping to CIC term, but must be suitably inter-
preted in order to solve ambiguities. Consider for example the following term

http://helm.cs.unibo.it/

3

input: \forall x. 1*x = x. in order to find a corresponding term we need to
know the possible meanings of the number 1 and the symbol * 1.

The typical processing of a user query (depicted in Fig. 1) is therefore a
pipeline made of four distinct phases: parsing (canonical transformation from
concrete textual syntax to Abstract Syntax Trees, ASTs for short), disambigua-
tion (described in next section), metadata extraction (described in Sect. 4), and
the actual query (described in Sect. 5).

Fig. 1. Whelp’s processing

3 Disambiguation

The disambiguation phase builds CIC terms from ASTs of user inputs (also
called ambiguous terms). Ambiguous terms may carry three different sources of
ambiguity : unbound identifiers, literal numbers, and literal symbols. Unbound
identifiers are sources of ambiguity since the same name could have been used
to represent different objects. For example, three different theorems of the Coq
library share the name plus assoc (locating them is an exercise for the interested
reader. Hint: use Whelp’s Locate query).

Numbers are ambiguous since several different encodings of them could be
provided in logical systems. In the Coq standard library for example we found
naturals (in their unary encoding), positives (binary encoding), integers (signed
positives), and reals. Finally, symbols (instances of the binop and unop syntactic
categories of Table 1) are ambiguous as well: infix + for example is overloaded
to represent addition over the four different kinds of numbers available in the
Coq standard library. Note that given a term with more than one sources of
ambiguity, not all possible disambiguation choices are valid: for example, given
the input 1+1 we must choose an interpretation of + which is typable in CIC
according to the chosen interpretation for 1; choosing as + the addition over
natural numbers and as 1 the real number 1 will lead to a type error.

A disambiguation algorithm takes as input an ambiguous term and return a
fully determined CIC term. The naive disambiguation algorithm takes as input
an ambiguous term t and proceeds as follows:

1. Create disambiguation domains {Di|i ∈ Dom(t)}, where Dom(t) is the set
of ambiguity sources of t. Each Di is a set of CIC terms.

1 Note that x is not undetermined, since it is a bound variable

4

2. Let Φ = {φi|i ∈ Dom(t), φi ∈ Di} be an interpretation for t. Given t and
an interpretation Φ, a CIC term is fully determined. Iterate over all possible
interpretations of t and type-check them, keep only typable interpretations
(i.e. interpretations which determine typable terms).

3. Let n be the number of interpretations who survived step 2. If n = 0 signal
a type error. If n = 1 we have found exactly one CIC term corresponding
to t, returns it as output of the disambiguation phase. If n > 1 let the user
choose one of the n interpretations and returns the corresponding term.

The above algorithm is highly inefficient since the number of possible inter-
pretations Φ grows exponentially with the number of ambiguity sources. The
actual algorithm used in Whelp is far more efficient being, in the average case,
linear in the number of ambiguity sources.

The efficient algorithm relies on two features (available in CIC) of the under-
lying calculus: metavariables and refiner. Metavariables [18] are typed, non linear
placeholders which can occur in terms; ?i usually denotes the i-th metavariable,
while ? denotes a freshly created metavariable. A refiner [16] is a partial func-
tion whose input is a term with placeholders and whose output is either a new
term obtained instantiating some placeholder or ε, meaning that no well typed
instantiation could be found for the placeholders occurring in the term (type
error).

The efficient algorithm starts with an interpretation Φ0 = {φi|φi =?, i ∈
Dom(t)}, which associates a fresh metavariable to each source of ambiguity. Then
it iterates refining the current CIC term (i.e. the term obtained interpreting t
with Φi). If the refinement succeeds the next interpretation Φi+1 will be created
making a choice, that is replacing a placeholder with one of the possible choice
from the corresponding disambiguation domain. The placeholder to be replaced
is chosen following a preorder visit of the ambiguous term. If the refinement fails
the current set of choices cannot lead to a well-typed term and backtracking is
attempted. Once an unambiguous correct interpretation is found (i.e. Φi does
no longer contain any placeholder), backtracking on the last choice is attempted
anyway to find the other correct interpretations.

The intuition which explain why this algorithm is more efficient is that as
soon as a term containing placeholders is not typable, no further instantiation
of its placeholders could leads to a typable term. For example, during the dis-
ambiguation of user input \forall x. x*0 = 0, an interpretation Φi is encoun-
tered which associates ? to the instance of 0 on the right, the real number 0 to
the instance of 0 on the left, and the multiplication over natural numbers (mult
for short) to *. The refiner will fail, since mult require a natural argument, and
no further instantiation of the placeholder will be tried.

If, at the end of the disambiguation, more than one possible interpretations
are possible, the user will be asked to choose the intended one (see Fig. 2).

Details of the disambiguation algorithm of Whelp can be found in [20], where
an equivalent algorithm that avoids backtracking is also presented.

5

Fig. 2. Disambiguation: interpretation choice

4 Metadata

The metadata model we use for indexing mathematical notions is essentially
based on a single ternary relation Ref p(s, t) stating that an object s refers an
object t at a given position p. We use a minimal set of positions discriminating
the hypotheses (H), from the conclusion (C) and the proof (P) of a theorem
(respectively, the type of the input parameters, the type of the result, and the
body of a definition). Moreover, in the hypothesis and in the conclusion we also
distinguish the root position (MH and MC, respectively) from deeper positions
(that, in a first order setting, essentially amounts to distinguish relational sym-
bols from functional ones). Extending the set of positions we could improve the
granularity and the precision of our indexing technique but so far, apart from a
simple extension discussed below, we never felt this need.

Example 1. Consider the statement:

∀m,n : nat .m ≤ n → m < (S n)

its metadata are described by the following table:

Symbol Position
nat MH
≤ MH
< MC
S C

6

All occurrences of bound variables are collapsed under a unique reserved name
Rel, forgetting the actual variable name. See Sect. 5.3 for an example of its use.

The accuracy of metadata for discriminating the statements of the library
is remarkable. We computed (see [1]) that the average number of mathematical
notions in the Coq library sharing the same metadata set is close to the actual
number of duplicates (i.e. metadata almost precisely identify statements).

According to the type as proposition analogy, the metadata above may be
also used to index the type of functions. For instance, functions from nat to R
(reals) would be identified by the following metadata:

Symbol Position
nat MH
R MC

in this case, however, the metadata model is a bit too rough, since for instance
functions of type nat → nat , nat → nat → nat , (nat → nat) → nat → nat and
so on would all share the following metadata set:

Symbol Position
nat MH
nat MC

To improve this situation, we add an integer to MC (MH), expressing the number
of parameters of the term (respectively, of the given hypothesis). We call depth
this value since in the case of CIC is equal to the nesting depth of dependent
products2 along the spine relative to the given position. For instance, the three
types above would now have the following metadata sets:

nat → nat
Symbol Position
nat MH(0)
nat MC(1)

nat → nat → nat
Symbol Position
nat MH(0)
nat MC(2)

(nat → nat) → nat → nat
Symbol Position
nat MH(1)
nat H
nat MH(0)
nat MC(2)

The depth is a technical improvement that is particularly important for re-
trieving functions from their types (we shall also see a use in the Elim query,
Sect. 5.3), but is otherwise of minor relevance. In the following examples, we
shall always list it among the metadata for the sake of completeness, but it may
be usually neglected by the reader.

2 Recall that in type theory, the space of function is just a degenerate case of dependent
product.

7

5 Whelp queries

5.1 Match

Not all mathematical results have a canonical name or a set of keywords which
could easily identify them. For this reason, it is extremely useful to be able to
search the library by means of the explicit statement. More generally, exploiting
the well-known types-as-formulae analogy of Curry-Howard, Whelp’s Match
operation takes as input a type and returns a list of objects (definition or proofs)
inhabiting it.

Example 2. Find a proof of the distributivity of times over plus on natural num-
bers. In order to retrieve those statements, Whelp need to be fed with the dis-
tributivity law as input: \forall x,y,z:nat. x * (y+z) = x*y + x*z. The
Match query will return 4 results:

1. cic:/Coq/Arith/Mult/mult plus distr l.con
2. cic:/Coq/Arith/Mult/mult plus distr r.con
3. cic:/Rocq/SUBST/comparith/mult plus distr r.con
4. cic:/Sophia-Antipolis/HARDWARE/GENE/Arith compl/mult plus distr2.con

(1), (3), and (4) have types which are α-convertible with the user query;
(2) is an interesting “false match” returned by Whelp having type ∀n, m, p ∈
N.(n+m) ∗ p = n ∗ p+m ∗ p, i.e. it is the symmetric version of the distributivity
proposition we were looking for.

The match operation simply amounts to revert the indexing operation, look-
ing for terms matching the metadata set computed from the input. For in-
stance, the term \forall x,y,z:nat. x * (y+z) = x*y + x*z has the follow-
ing metadata:

Symbol Position
nat MH(0)
= MC(3)
nat C
∗ C
+ C

Note that nat occurs in conclusion as an hidden parameter of equality; the
indexed term is the term after disambiguation, not the user input.

Searching for the distributivity law then amounts to look for a term s such
that :

Ref MH (0)(s, nat) ∧ Ref MC (3)(s,=) ∧ Ref C(s, nat) ∧ Ref C(s, ∗) ∧ Ref C(s,+)

In a relational database, this is a simple and efficient join operation.

Example 3. Suppose we are interested in looking for a definition of summation
for series of natural numbers. The type of such an object is something of the
kind (nat → nat) → nat → nat → nat , taking the series, two natural numbers
expressing summation lower and upper bound, and giving back the resulting sum.
Feeding Whelp’s Match query with such a type does give back four results:

cic:/Coq/Arith/Mult/mult_plus_distr_l.con
cic:/Coq/Arith/Mult/mult_plus_distr_r.con
cic:/Rocq/SUBST/comparith/mult_plus_distr_r.con
cic:/Sophia-Antipolis/HARDWARE/GENE/Arith_compl/mult_plus_distr2.con

8

1. cic:/Coq/Reals/Rfunctions/sum nat f.con

2. cic:/Sophia-Antipolis/Bertrand/Product/prod nm.con

3. cic:/Sophia-Antipolis/Bertrand/Summation/sum nm.con

4. cic:/Sophia-Antipolis/Rsa/Binomials/sum nm.con

Although we have a definition for summation in the standard library, namely
sum nat f , its theory is very underdeveloped. Luckily we have a much more
complete development for sum nm in a contribution from Sophia, where:

sum nm n m f =
n+m∑
x=n

f(x)

Having discovered the name for summation, we may then inquire about
the proofs of some of its properties; for instance, considering the semantics of
sum nm, we may wonder if the following statement is already in the library:

∀m,n, c : nat.(sum nm n m λx : nat.c) = (S m) ∗ c

Matching the previous theorem actually succeed, returning the following:
cic:/Sophia-Antipolis/Bertrand/Summation/sum nm c.con.

Matching incomplete patterns Whelp also support matching with partial
patterns, i.e. patterns with placeholders denoted by ?. The approach is essentially
identical to the previous one: we compute all the constants A appearing in the
pattern, and look for all terms referring at least the set of constants in A, at
suitable positions.

Suppose for instance that you are interested in looking for all known facts
about the computation of sin on given reals. You may just ask Whelp to Match
sin ? = ?, that would result in the following list (plus a couple of spurious results
due to the fact that Coq variables are not indexed, at present):

1. cic:/Coq/Reals/Rtrigo/sin 2PI.con

2. cic:/Coq/Reals/Rtrigo/sin PI.con

3. cic:/Coq/Reals/Rtrigo/sin PI2.con

4. cic:/Coq/Reals/Rtrigo calc/sin3PI4.con

5. cic:/Coq/Reals/Rtrigo calc/sin 2PI3.con

6. cic:/Coq/Reals/Rtrigo calc/sin 3PI2.con

7. cic:/Coq/Reals/Rtrigo calc/sin 5PI4.con

8. cic:/Coq/Reals/Rtrigo calc/sin PI3.con

9. cic:/Coq/Reals/Rtrigo calc/sin PI3 cos PI6.con

10. cic:/Coq/Reals/Rtrigo calc/sin PI4.con

11. cic:/Coq/Reals/Rtrigo calc/sin PI6.con

12. cic:/Coq/Reals/Rtrigo calc/sin PI6 cos PI3.con

13. cic:/Coq/Reals/Rtrigo calc/sin cos5PI4.con

14. cic:/Coq/Reals/Rtrigo calc/sin cos PI4.con

15. cic:/Coq/Reals/Rtrigo def/sin 0.con

Previous statements semantics is reasonably clear by their names; Whelp,
however, also performs in-line expansion of the statements, and provides hyper-
links to the corresponding proofs (see Fig. 3).

cic:/Coq/Reals/Rfunctions/sum_nat_f.con
cic:/Sophia-Antipolis/Bertrand/Product/prod_nm.con
cic:/Sophia-Antipolis/Bertrand/Summation/sum_nm.con
cic:/Sophia-Antipolis/Rsa/Binomials/sum_nm.con
cic:/Sophia-Antipolis/Bertrand/Summation/sum_nm_c.con
cic:/Coq/Reals/Rtrigo/sin_2PI.con
cic:/Coq/Reals/Rtrigo/sin_PI.con
cic:/Coq/Reals/Rtrigo/sin_PI2.con
cic:/Coq/Reals/Rtrigo_calc/sin3PI4.con
cic:/Coq/Reals/Rtrigo_calc/sin_2PI3.con
cic:/Coq/Reals/Rtrigo_calc/sin_3PI2.con
cic:/Coq/Reals/Rtrigo_calc/sin_5PI4.con
cic:/Coq/Reals/Rtrigo_calc/sin_PI3.con
cic:/Coq/Reals/Rtrigo_calc/sin_PI3_cos_PI6.con
cic:/Coq/Reals/Rtrigo_calc/sin_PI4.con
cic:/Coq/Reals/Rtrigo_calc/sin_PI6.con
cic:/Coq/Reals/Rtrigo_calc/sin_PI6_cos_PI3.con
cic:/Coq/Reals/Rtrigo_calc/sin_cos5PI4.con
cic:/Coq/Reals/Rtrigo_calc/sin_cos_PI4.con
cic:/Coq/Reals/Rtrigo_def/sin_0.con

9

Fig. 3. Match results.

5.2 Hint

In a process of backward construction of a proof, typical of proof assistants,
one is often interested in knowing which theorems can be applied to derive the
current goal. The Hint operation of Whelp is exactly meant to this purpose.

Formally, given a goal g and a theorem t1 → t2 → · · · → tn → t, the problem
consists in checking if there exist a substitution θ such that:

tθ = g (1)

A necessary condition for (1), which provides a very efficient filtering of the
solution space, is that the set of constants in t must be a subset of those in g.
In terms of our metadata model, the problem consists to find all s such as

{x|Ref(s, x)} ⊆ A (2)

where A is the set of constants in g. This is not a simple operation: the naive
approach would require to iterate, for every possible source s, the computation
of its forward references, i.e. of {x|Ref(s, x)}, followed by a set comparison with
A.

The solution of [3] is based on the following remarks. Let us call Card(s) the
cardinality of {x|Ref(s, x)}, which can be pre-computed for every s. Then, (2)
holds if and only if there is a subset A′ of A such that A′ = {x|Ref(s, x)}, or
equivalently:

A′ ⊆ {x|Ref(s, x)} ∧ |A′| = Card(s)

10

and finally: ∧
a∈A′

Ref(s, a) ∧ |A′| = Card(s)

The last one is a simple join that can be efficiently computed by any relational
database. So the actual cost is essentially bounded by the computation of all
subsets of A, and A, being the signature of a formula, it is never very large (and
often quite small).

The problem of matching against a large library of heterogeneous notions is
however different and far more complex than in a traditional theorem proving
setting, where one typically works with respect to a given theory with a fixed, and
usually small signature. If e.g. we look for theorems whose conclusion matches
some kind of equation like e1 = e2 we shall eventually find in the library a
lot of injectivity results relative to operators we are surely not interested in:
in a library of 40,000 theorems like the one of Coq we would get back about
3,000 of such silly matches. Stated in other words, canonical indexing techniques
specifically tailored on the matching problem such as discrimination trees [17],
substitution trees [14] or context trees [13] are eventually doomed to fail in
a mathematical knowledge management context where one cannot assume a
preliminary knowledge on term signatures.

On the other side, the metadata approach is much more flexible, allowing
a simple integration of matching operation with additional and different con-
straints. For instance in the version of hint described in [15] the problem of
reducing the number of silly matches was solved by requiring at least a minimal
intersection between the signatures of the two matching terms. However, this ap-
proach did sometimes rule out some interesting answers. In the current version
the problem has been solved imposing further constraints of the full signature
of the term (in particular on the hypothesis), essentially filtering out all solu-
tions that would extend the signature of the goal. The actual implementation
of this approach requires a more or less trivial extension to hypothesis of the
methodology described in [3].

5.3 Elim

Most statements in the Coq knowledge base concern properties of functions
and relations over algebraic types. Proofs of such statements are carried out by
structural induction over these types. In particular, to prove a goal by induction
over the type t, one needs to apply a lemma stating an induction principle over
t (an eliminator of t [16]) to that goal. Since many different eliminators can be
provided for the same type t (either automatically generated from t, or set up
by the user), it is convenient to have a way of retrieving all the eliminators of
a given type. The Elim query of Whelp does this job. To understand how it
works, let’s take the case of the algebraic type of the natural numbers: one feeds
Whelp with the identifier nat , which denotes this type in the knowledge base,
and expects to find at least the well-known induction principle nat ind :

11

∀P : nat → Prop.(P 0) → (∀n : nat .(P n) → (P (S n))) → ∀n : nat .(P n)

A fairly good approximation of this statement is based on the following ob-
servations: the first premise (nat → Prop) has an antecedent, a reference to
Prop in its root and a reference to nat ; the forth premise has no antecedents
and a reference to nat in its root; the conclusion contains a bound variable in
its root (i.e. P). Notice that we choose not to approximate the major premises
of nat ind (the second and the third) because they depend on the structure of
nat and discriminate the different induction principles over this type.

Thus, a set of constraints approximating nat ind is the following (recall that
Rel stands for an arbitrary bound variable):

Symbol Position
Prop MH(1)
nat H
nat MH(0)
Rel MC

The Elim query of Whelp simply generalizes this scheme substituting nat
for a given type t and retrieving any statement c such that:

Ref MH (1)(c,Prop) ∧ Ref H (c, t) ∧ Ref MH (0)(c, t) ∧ Ref MC (c,Rel)

In the case of nat , Elim returns 47 statements ordered by the frequency of
their use in the library (as expected nat ind is the first one).

5.4 Locate

Whelp’s Locate query implements a simple “lookup by name” for library no-
tions. Once fed with an identifier i, Locate returns the list of all objects whose
name is i. Intuitively, the name of an object contained in library is the name
chosen for it by its author.3

This list is obtained querying the specific relational metadata Name(c, i)
that binds each unit of knowledge c to an identifier i (its name). Unix-shell-like
wildcards can be used to specify an incomplete identifier: all objects whose name
matches the incomplete identifier are returned.

Even if not based on the metadata model described in Sect. 4, Locate turns
out to be really useful to browse the library since quite often one remembers the
name of an object, but not the corresponding contribution.

Example 4. By entering the name gcd , Locate returns four different versions
of the “greatest common divisor”:

1. cic:/Orsay/Maths/gcd/gcd.ind#xpointer(1/1)
2. cic:/Eindhoven/POCKLINGTON/gcd/gcd.con
3. cic:/Sophia-Antipolis/Bertrand/Gcd/gcd.con
4. cic:/Sophia-Antipolis/Rsa/Divides/gcd.con

3 In the current implementation object names correspond to the last fragment of object
URIs, without extension.

cic:/Orsay/Maths/gcd/gcd.ind#xpointer(1/1)
cic:/Eindhoven/POCKLINGTON/gcd/gcd.con
cic:/Sophia-Antipolis/Bertrand/Gcd/gcd.con
cic:/Sophia-Antipolis/Rsa/Divides/gcd.con

12

6 Web interface

The result of Whelp is, for all queries, a list of URIs (unique identifiers) for
notions in the library. This list is not particularly informative for the user, who
would like to have hyperlinks or, even better, in-line expansion of the notions.

In the MoWGLI project we developed a service to render on the fly, via a
complex chain of XSLT transformations, mathematical objects encoded in XML
(those objects of the library of Coq that Whelp is indexing). XSLT is the stan-
dard presentational language for XML documents and an XSLT transformation
(or stylesheet) is a purely functional program written in XSLT that describes a
simple transformation between two XML formats.

The service can also render views (misleadingly called “theories” in [2]), that
is an arbitrary, structured collection of mathematical objects, suitably assembled
(by an author or some mechanical tool) for presentational purposes. In a view,
definitions, theorems, and so on may be intermixed with explanatory text or
figures, and statements are expanded without proofs: a link to the corresponding
proof objects allows the user to inspect proofs, if desired.

Providing Whelp with an appealing user interface for presenting the answers
(see Fig. 3) has been as simple as making it generate a view and pipelining
Whelp with UWOBO4, the component of our architecture that implements the
rendering service.

UWOBO is a stylesheet manager implemented in OCaml5 and based on
LibXSLT, whose main functionality is the application of a list of stylesheets
(each one with the respective list of parameters) to a document. The stylesheets
are pre-compiled to improve performance. Both stylesheets and the document
are identified using HTTP URLs and can reside on any host. UWOBO is both
a Web server and a Web client, accepting processing requests and asking for
the document to be processed. Whelp is a Web server, accepting queries as
processing requests and returning views to the client.

The Whelp interface is thus simply organized as a HTTP pipeline (see Fig. 4).

Fig. 4. Whelp’s HTTP pipeline.

4 http://helm.cs.unibo.it/software/uwobo/
5 http://caml.inria.fr/

http://helm.cs.unibo.it/software/uwobo/
http://caml.inria.fr/

13

7 Conclusions

Whelp is the Web searching helper developed at the University of Bologna as
a part of the European Project IST-2001-33562 MoWGLI. HELP is also the
acronym of the four operations currently supported by the system: Hint, Elim,
Locate and Pattern-matching.

Much work remains to be done, spanning from relatively simple technical im-
provements, to more complex architectural re-visitations concerning the indexing
technique and the design and implementation of the queries.

Among the main technical improvements which we plan to support in a near
future there are:

1. the possibility to confine the search to sub-libraries, and in particular to the
standard library alone (this is easy due to the paths of names);

2. skipping the annoying dialog phase with the user during disambiguation for
the choice of the intended interpretation, replacing it with a direct investi-
gation of all possibilities;

3. interactive support for advanced queries, allowing the user to directly ma-
nipulate the metadata constraints (very powerful, if properly used).

The current indexing politics has some evident limitations, resulting in un-
expected results of queries.

The most annoying problem is due to the current management of Coq vari-
ables. Roughly, in Coq, variables are meant for declarations, while constants are
meant for definitions. The current XML-exportation module of Coq [19] does
not discharge section variables, replacing this operation with an explicit substi-
tution mechanism; in particular, variables may be instantiated and their status
look more similar to local variables than to constants. For this reason, variables
have not been indexed; that currently looks as a mistake.

A second problem is due to coercions. The lack of an explicit mechanism for
composition of coercions tends to clutter the terms with long chains of coercions,
which in case of big algebraic developments as e.g. C-Corn [9], can easily reach
about ten elements. The fact that an Object r refers a coercion c contains very
little information, especially if coercions typically come in a row, as in Coq. In
the future, we plan to skip coercions during indexing.

The final set of improvements concern the queries. A major issue, for all kinds
of content based operations, is to take care, at some extent, of delta reduction.
For instance, in Coq, the elementary order relations over natural numbers are
defined in terms of the less or equal relation, that is a suitable inductive type.
Every query concerning such relations could be thus reduced to a similar one
about the less or equal relation by delta reduction. Even more appealing it looks
the possibility to extend the queries up to equational rewriting of the input (via
equations available in the library).6

6 The possibility of considering search up to isomorphism (see [10,11]) looks instead
less interesting, because our indexing policy is an interesting surrogate that works
very well in practice while being much simpler than search up to isomorphisms.

14

Similarly, the Hint operation, could and should be improved by suitably tun-
ing the current politics for computing the intended signature of the search space
(for instance, “closing” it by delta reduction or rewriting, adding constructors
of inductive types, and so on).

Different kind of queries could be designed as well. An obvious generaliza-
tion of Hint is a Auto, automatically attempting to solve a goal by repeated
applications of theorems of the library (a deeper exploration of the search space
could be also useful for a better rating of the Hint results).

A more interesting example of content-based query that exploits the higher
order nature of the input syntax is to look for all mathematical objects provid-
ing examples, or instances, of a given notion. For instance we may define the
following property, asserting the commutativity of a generic function f

is commutative := λA : Set.λf : A → A → A.∀x, y : A.(f x y) = (f y x)

Then, an Instance query should be able to retrieve from the library all com-
mutative operations which have been defined7.

To conclude, we remark that the only component of Whelp that is dependent
on CIC, the logic of the Coq system, is the disambiguator for the user input.
Moreover, the algorithm used for disambiguation depends only on the existence
of a refiner for mathematical formulae extended with placeholders. Thus Whelp
can be easily modified to index and search other mathematical libraries pro-
vided that the statements of the theorems can be easily parsed (to extract the
metadata) and that there exists a service to render the results of the queries.
In particular, the Mizar development team has just released version 7.3.01 of
the Mizar proof assistant that provides both a native XML format and XSLT
stylesheets to render the proofs. Thus it is now possible to instantiate Whelp to
work on the library of Mizar, soon making possible a direct comparison on the
field between Whelp and MML Query, the new search engine for Mizar articles
described in [6].

References

1. A. Asperti, F. Guidi, L. Padovani, C. Sacerdoti Coen, I. Schena. The Science of
Equality: some statistical considerations on the Coq library. Mathematical Knowledge
Management Symposium, 25-29 November 2003, Heriot-Watt University, Edinburgh,
Scotland.

2. A. Asperti, F. Guidi, L. Padovani, C. Sacerdoti Coen, I. Schena. Mathematical
Knowledge Management in HELM. Annals of Mathematics and Artificial Intelligence,
38(1): 27–46; May 2003.

3. A. Asperti, M. Selmi. Efficient Retrieval of Mathematical Statements. In Proceeding
of the Third International Conference on Mathematical Knowledge Management,
MKM 2004. Bialowieza, Poland. LNCS 3119.

7 Match is in fact a particular case of Instance where the initial sequence of lambda
abstractions is empty.

15

4. A.Asperti, B.Wegner. An Approach to Machine-Understandable Representation of
the Mathematical Information in Digital Documents. In: Fengshai Bai and Bernd
Wegner (eds.): Electronic Information and Communication in Mathematics, LNCS
vol. 2730, pp. 14–23, 2003

5. G. Bancerek, P. Rudnicki. Information Retrieval in MML. In A.Asperti,
B.Buchberger,J.Davenport (eds), Proceedings of the Second International Confer-
ence on Mathematical Knowledge Management, MKM 2003. LNCS, 2594.

6. G. Bancerek, J.Urban. Integrated Semantic Browsing of the Mizar Mathematical
Repository. In: A.Asperti, G.Bancerek, A.Trybulec (eds.), Proceeding of the Third
International Conference on Mathematical Knowledge Management, Springer LNCS
3119.

7. P.Cairns. Informalising Formal Mathematics: Searching the Mizar Library with La-
tent Semantics. In Proceeding of the Third International Conference on Mathematical
Knowledge Management, MKM 2004. Bialowieza, Poland. LNCS 3119.

8. The Coq proof-assistant, http://coq.inria.fr
9. L. Cruz-Filipe, H. Geuvers, F. Wiedijk, “C-CoRN, the Constructive Coq Repository

at Nijmegen”. In: A.Asperti, G.Bancerek, A.Trybulec (eds.), Proceeding of the Third
International Conference on Mathematical Knowledge Management, Springer LNCS
3119, 88-103, 2004.

10. D.Delahaye, R. Di Cosmo. Information Retrieval in a Coq Proof Library using
Type Isomorphisms. In Proceedings of TYPES 99, Lökeberg. Springer-Verlag LNCS,
1999.

11. R. Di Cosmo. Isomorphisms of Types: from Lambda Calculus to Information Re-
trieval and Language Design, Birkhauser, 1995, IBSN-0-8176-3763-X.

12. D. Draheim, W. Neun, D. Suliman. Classifying Differential Equations on the Web.
In Proceeding of the Third International Conference on Mathematical Knowledge
Management, MKM 2004. LNCS, 3119.

13. H. Ganzinger, R. Nieuwehuis, P. Nivela. Fast Term Indexing with Coded Context
Trees. Journal of Automated Reasoning. To appear.

14. P.Graf. Substitution Tree Indexing. Proceedings of the 6th RTA Conference,
Springer-Verlag LNCS 914, pp. 117-131, Kaiserlautern, Germany, April 4-7, 1995.

15. F. Guidi, C. Sacerdoti Coen. Querying Distributed Digital Libraries of Mathe-
matics. In Proceedings of Calculemus 2003, 11th Symposium on the Integration of
Symbolic Computation and Mechanized Reasoning. Aracne Editrice.

16. C. McBride. Dependently Typed Functional Programs and their Proofs. Ph.D.
thesis, University of Edinburgh, 1999.

17. W. McCune. Experiments with discrimination tree indexing and path indexing for
term retrieval. Journal of Automated Reasoning, 9(2):147-167, October 1992.

18. C. Munoz. A Calculus of Substitutions for Incomplete-Proof Representation in
Type Theory. Ph.D. thesis, INRIA, 1997.

19. C. Sacerdoti Coen. From Proof-Assistans to Distributed Libraries of Mathemat-
ics: Tips and Pitfalls. In Proc. Mathematical Knowledge Management 2003, Lecture
Notes in Computer Science, Vol. 2594, pp. 30–44, Springer-Verlag.

20. C. Sacerdoti Coen, S. Zacchiroli. Efficient Ambiguous Parsing of Mathematical
Formulae. In Proceedings of the Third International Conference on Mathematical
Knowledge Management, MKM 2004. LNCS, 3119.

http://coq.inria.fr

	A content based mathematical search engine: Whelp
	Andrea Asperti, Ferruccio Guidi, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchiroli

