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Abstract. This paper is a report about the use of Matita, an interactive theorem
prover under development at the University of Bologna, for the solution of the
POPLmark Challenge, part 1a. We provide three different formalizations, including
two direct solutions using pure de Bruijn and locally nameless encodings of bound
variables, and a formalization using named variables, obtained by means of a sound
translation to the locally nameless encoding. According to this experience, we also
discuss some of the proof principles used in our solutions, which have led to the
development of a generalized inversion tactic for Matita.

1. Introduction

The POPLmark challenge(Aydemir et al., 2005) is a set of “bench-
marks” proposed by an international group of researchers in order to
assess the advances of theorem proving for the verification of properties
of programming languages and to promote the use and enhancement
of proof assistant technology.

The set of problems has been chosen to capture many of the most
critical issues in formalizing the metatheory of programming languages,
comprising scope, binding, typing, and reduction. In particular, the
challenge focuses on some theoretical aspects of System F<:(Cardelli
et al., 1991), that is a language joining a simple and tractable syntax
with a sufficiently rich and complex metatheory.

Due to its intended goals, it is natural, for any new tool aimed at
the mechanization of formal reasoning, to confront such a challenge,
both to stress the tool against a nontrivial set of problems, and to test
its expressiveness and actual usability. This paper is a report about a
new solution for part 1a of the POPLmark challenge developed using
Matita, a new interactive theorem prover under development at the
Computer Science Department of the University of Bologna. Matita
and its library, including the solution to the challenge discussed here,
are available for download at http://matita.cs.unibo.it .

The structure of the paper is the following: section 2 introduces
Matita; section 3 discusses the three representations of bound and

c© 2011 Kluwer Academic Publishers. Printed in the Netherlands.

jar09.tex; 3/02/2011; 11:40; p.1



2

free variables which we used in our solutions; in section 4 we describe
the proof principles and the main proofs of our solutions; finally in
section 5 we briefly analyse the work on a quantitative basis and draw
conclusions.

2. Matita

Matita is a new interactive prover developed at the University of Bologna
by a research team coordinated by the first author. The architecture is
discussed in (Asperti et al., 2006).

Matita is based on the Calculus of Inductive Constructions and is
partially compatible, at proof object level, with the Coq System (Coq,
2004) developed at INRIA. It is written in Ocaml and its features were
purposely developed to be similar to those of Coq, in order to provide
a more modular, more maintainable and thus, in many ways, “lighter”
alternative. Since the two systems share the same foundational frame-
work, their kernel is also similar: the main differences are that modules
are not implemented in Matita, that on the other side provide explicit
substitutions as a primitive notion.

Some key differences lie in the refiner, that is the type inference shell
surrounding the kernel. In particular, Matita takes advantage from a
strong notion of existential variable that has no counterpart in Coq and
has an extensive beneficial impact in many architectural aspects of the
system (from tactics, to i/o). At user interaction level, Matita offers
both a procedural and a declarative editing style, providing several
innovative features(Asperti et al., 2007). In particular

− the sequent-window is based on a MathML-compliant GTK-widget
supporting hyperlinks, a sophisticated bidimensional rendering,
“content based” cut and paste, in place reduction and other direct
form of interaction;

− editing is improved by means of “tinycals” (Sacerdoti Coen et al.,
2006), featuring a sort of “semantic directed” editing mode, that
allows to structure the text following the structure of the dy-
namically generated proof, and maintaining at the same time the
possibility of a step by step execution (impossible in any other
system);

− Matita offers a complex mechanism to solve notational ambiguities
and overloading of operators, allowing the user to work with a
(configurable) notation as close as possible to the standard math-
ematical practice;
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Figure 1. The Cic Browser showing dependencies between proofs and a proof in
declarative style.

− the system has been conceived since the very beginning as an in-
terface between the user and the library of already proved results;
all new theorems are indexed using a metadata system explicitly
conceived for this purpose, and several functionalities to search
and browse the repository are implemented. These comprise a
particularly useful “hint” operation, suggesting to the user a set of
theorems applicable to the current goal, and a browser (see Fig. 2)
to show graphs of dependencies among proofs and definitions and
translations of procedural proofs in declarative style.

3. Concrete encodings of variable bindings

System F<: is a second order lambda calculus enriched with a subtyping
relation. Since the focus of this paper is on the formalization of proofs
concerning the type sublanguage of F<:, we will assume knowledge of
the full syntax of F<:, and only report here the details needed to discuss
the formalized syntax of types and typing environments here. For the
full syntax of F<:, see (Cardelli et al., 1991).
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S, T, . . . ::= Types

| X,Y, . . . type variables

| Top the supertype of any type

| S → T functions from S to T

| ∀X <: S.T bounded universal quantifier

Figure 2. Syntax of the type sublanguage of F<:

The type sublanguage of F<: (fig. 2) consists of type variables, the
type Top (which is supertype of any type), arrow types (functions from
one type to another) and universal types (polymorphic expressions); en-
vironments may carry both typing constraints (on term variables) and
subtyping constraints (on type variables). As for the subtyping relation,
it is formalized by means of an algorithmic subtyping judgement, whose
rules are directed by the syntax. Part 1a of the POPLmark challenge
asks to prove that algorithmic subtyping is reflexive and transitive. We
provide the well-formedness and subtyping rules of F<: in fig. 3 as a
reference for the following sections.

Since F<: makes use of binders not only in terms, but also in types,
we must deal with the well-known problems of α-equivalence and avoid-
ance of variable capture. The most common approaches to these dif-
ficulties require to rewrite the syntax in such a way that α-equivalent
terms are syntactically equal. One way to do this is to drop names
altogether: variables can be expressed by means of indices, whose value
uniquely identifies the level at which the variable is bound; this is how
de Bruijn’s representation works.

One inconvenience with de Bruijn’s representation is that when
performing a substitution, indices representing free variables in the
substituted term might need to be updated (lifted) in order to stay
coherent; this can complicate both the statements and the proofs of
many lemmata. The locally nameless representation (Pollack, 1993)
is a variation on de Bruijn’s representation, where bound variables are
represented by indices (so that α-equivalence and equality are the same)
and free variables are represented by names (eliminating the need to
lift free indices in substituted terms). The syntax is the same as the
de Bruijn representation, except for the addition of free type variables
(fig. 5).

Typing environments in the locally nameless approach are similar
to their informal counterparts. They are defined as lists of bounds,
which are pairs (variable name, type), together with a boolean value to
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Γ ` Top (WFT-Top)

X ∈ dom(Γ)

Γ ` X
(WFT-TVar)

Γ ` S Γ ` T

Γ ` S → T
(WFT-Arrow)

Γ ` S
X /∈ dom(Γ) Γ, X <: T ` U

Γ ` ∀X <: T.U
(WFT-Forall)

∅ ` ♦ (WFE-Empty)

x /∈ dom(Γ) Γ ` T

` Γ, x : T
(WFE-Cons1)

X /∈ dom(Γ) Γ ` T

` Γ, X <: T
(WFE-Cons2)

Γ ` ♦ Γ ` S

Γ ` S <: Top
(SA-Top)

Γ ` ♦ X ∈ dom(Γ)

Γ ` X <: X
(SA-Refl-TVar)

X <: U ∈ Γ Γ ` U <: T

Γ ` X <: T
(SA-Trans-TVar)

Γ ` T1 <: S1 Γ ` S2 <: T2

Γ ` S1 → S2 <: T1 → T2
(SA-Arrow)

Γ ` T1 <: S1 Γ, X <: T1 ` S2 <: T2

Γ ` ∀XS1
.S2 <: ∀XT1

.T2
(SA-All)

Figure 3. Well-formedness and subtyping rules of F<:

discriminate typing bounds on term variables from subtyping bounds
on type variables.

In the de Bruijn approach, we don’t have names and bounds are
identified by their position inside the environment. The dangling indices
inside a bound must be resolved in the part of the environment which
precedes that bound. We will use the notation • <: T to refer to a
subtyping bound in a de Bruijn typing environment.

The last concrete approach to binding we take into account is the
named variables approach, in which names are used for both free and

jar09.tex; 3/02/2011; 11:40; p.5



6

S, T, . . . ::= Types

| #0,#1, . . . type indices

| Top the supertype of any type

| S → T functions from S to T

| ∀S .T bounded universal quantifier

Figure 4. Syntax of F<: (de Bruijn): types

S, T, . . . ::= Types

| X,Y, . . . free type variables

| ...

Figure 5. Syntax of F<: (locally nameless): types

bound variables. Its syntax is the closest possible to the informal pre-
sentation of fig. 2: however we will see that the formalization of its type
system requires some additional care.

S, T, . . . ::= Types

| X,Y, . . . type variables

| Top the supertype of any type

| S → T functions from S to T

| ∀X <: S.T bounded universal quantifier

Figure 6. Syntax of F<: (named variables): types

4. Formalization

We discuss now our formalizations of Part 1A of the POPLmark chal-
lenge. The first part deals with the formalization of the type system
using the encodings mentioned in Section 3. In the second part, we
present some of the proof principles used in the solutions. Finally, we
describe the main proofs of each formalization.
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4.1. Formalization of the type system

To restate the well-formedness and subtyping judgements in the de
Bruijn encoding, it is sufficient to remember the key differences of this
encoding with respect to the informal syntax:

− named variables are replaced by indices, with an explicit manage-
ment of binding: the dangling index #n refers to the n-th entry of
its environment (from right to left, 0 based);

− each environment entry lives in a different environment: in order
to use the content of an environment entry in a judgement, we
must relocate it to the environment of that judgement.

The first change happens to be more an advantage than an issue: it
allows us not to worry at all about names, at the same time keeping the
statement of rules concerning binding very natural, similar to informal
practice. The second change, however, needs a more careful handling,
since relocation must be treated explicitly. Fig. 7 shows the de Bruijn
formalization of the less trivial rules of F<:: the notations |Γ| and Γ(n)
refer respectively to the length of environment Γ and to the n-th entry
of Γ; T ↑ n is the variable lifting operation, defined as follows:

T ↑k n =


#m ↑k n = m+ n if k ≤ m
#m ↑k n = m if k > m
Top ↑k n = Top

(U → V ) ↑k n = (U ↑k n)→ (V ↑k n)
(∀U .V ) ↑k n = ∀U↑kn.(V ↑k+1 n)

T ↑ n = T ↑0 n

Lifting provides the notion of relocation we needed, since each environ-
ment entry lives in an initial segment of the full environment.

In the locally nameless encoding, we get a more immediate treatment
of environments, since relocation of environment entries is not needed.
On the contrary, binding needs a more complex treatment, because
of the use of explicit names for free variables. In particular, the rules
whose conclusions involve binders cannot be fully structural on types:
on one side, we want the type system to only deal with locally closed
types (since locally-closedness is a necessary condition for a type to be
well formed); on the other side, in a well formed type ∀U.V , V is in
general not locally closed.

Of course the solution is to replace the dangling index #0 of V with
a proper free variable X. However this kind of reasoning hides more
complexity than meets the eye. For example, we might translate the
All rule to the locally nameless encoding, obtaining easily:
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n < |Γ|

Γ ` #n
(WFT-TFree)

Γ ` T Γ, • <: T ` U

Γ ` ∀T .U
(WFT-All)

Γ ` ♦ n < |Γ|

Γ ` #n <: #n
(SA-Refl-TVar)

Γ(n) = • <: U Γ ` (U ↑ n+ 1) <: T

Γ ` #n <: T
(SA-Trans-TVar)

Γ ` T1 <: S1 Γ, • <: T1 ` S2 <: T2

Γ ` ∀S1 .S2 <: ∀T1 .T2
(SA-All)

Figure 7. Some rules of the de Bruijn-style formalization of F<:.

Γ ` T1 <: S1 Γ, X <: T1 ` S2{X/#0} <: T2{X/#0}
Γ ` ∀S1 .S2 <: ∀T1 .T2

where S2{X/#0} means “the type S2 where every occurrence of the
dangling index #0 has been replaced with a free type name X”. Please
notice the use of X: nowhere do we state if the right premise should hold
for a specific X or for any X. Indeed, both alternatives are partially
incorrect because, for reasons of well-formedness, we must require that
X be fresh; assuming this condition of well-formedness is met, alter-
native solutions for quantification have been proposed in literature.
Universal and existential quantification lead to formulations of the type
system which we respectively call strong and weak (after Urban and
Pollack(Urban and Pollack, 2007)). However, these names are some-
what misleading since it can be proved that the two formulations are
logically equivalent: this comes from the fact that the subtyping judge-
ment is an equivariant predicate, i.e. one whose validity is invariant
under swapping of variable names.

The concept of equivariance, which is a key point of nominal logics
(Pitts, 2003), was exploited in the solution proposed by Leroy (Leroy,
2007), as well as in a previous version of our locally nameless solution.
However, upon discovering that the proofs related to equivariance ac-
counted for about one third of our code, we decided to go for a more
standard approach.

It can be noted that, in informal logical practice, it is convenient to
use the weak (existential) variant when we want to construct a proof
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of Γ ` ∀S1 .S2 <: ∀T1 .T2 (we only need to show that the premises hold
for one suitable X); on the other hand, when reasoning backwards,
the strong (universal) variant is more useful, as it provides stronger
induction principles. A more complex co-finite quantification (Aydemir
et al., 2008), providing the benefits of both the strong and the weak
versions of the type system, has been used by Charguéraud for his
locally nameless solution in Coq. In our locally nameless solution, we
chose to use the strong formulation of the type system, which is suf-
ficient to obtain very compact proofs. In fact, up to minor syntactical
differences between Coq and Matita’s tactic languages, it turns out
that our solution is the most compact among those based on the locally
nameless encoding (see Sect. 5).

Figure 8 describes the rules for well-formedness and subtyping of
universal types, as formalized in the locally nameless encoding.

Γ ` T

for all X :

(
X /∈ dom(Γ) ∧X /∈ FV(U)⇒
Γ, X <: T ` U{X/#0}

)
Γ ` ∀T .U

(WFT-All)

Γ ` T1 <: S1

for all X :

(
X /∈ dom(Γ)⇒
Γ, X <: T1 ` S2{X/#0} <: T2{X/#0}

)
Γ ` ∀S1 .S2 <: ∀T1 .T2

(SA-All)

Figure 8. Some rules of the locally nameless formalization of F<:.

Our last formalization uses the named variables approach. Ideally,
the formalization of the type system should be very close to the informal
presentation of fig. 3. However, at some point, α-conversion must be
taken into account, otherwise one will never be able to prove a subtyp-
ing relation between two universal types binding different variables.

There are basically two ways to deal with α-conversion:

− α-conversion can be formalized separately from the subtyping judge-
ment (either algorithmically or as an inductive predicate); then an
additional rule for the subtyping judgement will be provided:

Γ ` S <: T S =α S
′ T =α T

′

Γ ` S′ <: T ′
(SA-Alpha)
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− the rules WFT-All and SA-All can be rephrased in such a way
that the subtyping judgement is directly derivable even if their
bound variables are different:

Γ ` T1 <: S1

for all Z /∈ dom(Γ):

 (Z ∈ FV(S2)⇒ Z = X)⇒
(Z ∈ FV(T2)⇒ Z = Y )⇒
Γ, Z <: T1 ` (Z X) · S2 <: (Z Y ) · T2


Γ ` ∀X <: S1.S.2 <: ∀Y <: T1.T2

(SA-All)

where (X Y ) · − is the name swapping operator, replacing every
occurrence of X with Y and vice-versa, not caring for binders.

We will avoid the first solution, since rules like SA-Alpha make
the subtyping judgement less algorithmic, which would contrast with
the spirit of the POPLmark challenge. However the second solution
can seem a little puzzling at first. The swap-based statement of α-
conversion was originally due to Gabbay and Pitts (Gabbay and Pitts,
1999) and is very well-suited to formalization, since it simplifies the
handling of name-capture. For what concerns quantification over free
variables, again we follow the schema of universal quantification over
all acceptable names Z. Z is acceptable if:

− it’s not in the domain of Γ;

− it does not cause variable capture inside S2 or T2: for this condition
to hold, one must verify that if Z ∈ FV(S2), then Z = X, and that
if Z ∈ FV(T2), then Z = Y .

4.2. Proof principles

Most proofs given in the specification of the POPLmark challenge are
by structural induction on some type. However it is often the case,
particularly in the locally-nameless representation, that structural in-
duction on types does not yield a strong enough induction hypothesis to
reason on sub-typing in the case of bounded quantification: for example,
to prove ∀S .T , we obtain an induction hypothesis on T , whereas we now
need an induction hypothesis on T [X/#0] for all X.

Instead of using induction on types, a very natural proof technique
consists in doing structural induction on (proof trees for) the well-
formed type judgement. For instance, induction over a proof of Γ ` T
yields exactly the four cases of a proof by induction over T (i.e. T = Top,
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T = X, T = T1 → T2 and T = ∀T1 .T2); the second induction hypothesis
in the latter case is the strong one we usually need, i.e. that the binary
property P (on pairs typing context-type) we are proving holds for
Γ, X <: T1 and T2[X/#0] for any type variable X free in both Γ and T2.

In our opinion, and as already noticed by others (as (Pollack, 1993))
proofs by structural induction on the well-formed judgement are more
than a technical trick due to an unnatural representation: they are the
natural way to reason on types (and terms) of a language. Indeed, note
that structural induction on types and structural induction on well-
formed type judgements yield exactly the same hypotheses when types
are considered up to α-equivalence. Thus we may think of the proofs
in the specification of the POPLmark challenge as proofs by structural
induction on well-formed judgements.

Once decided that informal proofs by structural induction on types
are to be formalized with structural induction on the well-formed judge-
ment for types, the informal proof still presents a suspicious proof step.
In (Aydemir et al., 2005), Lemma A.3 (transitivity and narrowing),
the proof is done “by induction on the structure of Q. . . . We proceed
by an inner induction on the structure of Γ ` S <: Q, with a case
analysis on the final rule of this derivation and of Γ ` Q <: T . . . . by
the inner induction hypothesis . . . ”. The question is how to formalize
an “inner induction on the structure, with a case analysis on the final
rule”. Indeed, as we will see in a few moments, at least in the Calculus
of (Co)Inductive Constructions, structural induction does not allow to
perform at once case analysis on the final rule, unless we give up on
using the “inner induction hypotheses”. The proof may probably still
be understood as a proof by induction on the size of the derivation,
followed by case analysis on the last rule used. However, such a proof
is more involved and more difficult to carry out in systems that favour
structural induction (such as Coq and Matita). In the rest of this
paragraph we will explain that the previous informal proof rule can be
justified by the unusual technique of induction/inversion, explaining in
what cases induction/inversion is logically justified. Although this proof
principle has been “implicitly” exploited in several solutions in Coq to
the POPLmark challenge, none of them make it explicit, resulting in
an obfuscated proof whose key point is unclear and which is difficult
to port to variations of the calculus. Instead, we have formalized the
proof principle as a lemma, and we claim that an interactive theorem
prover should be able to automatically derive it from the definition of
the subtyping judgement, exactly as it is already done for the induction
and inversion principles.
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4.2.1. Induction/inversion principles
To informally explain induction/inversion and its use in our proof, we
start recalling the rule for induction over inductive families (which
generalise abstract data types in the Haskell community). For the sake
of conciseness, in the following pages we will write ~tn for a sequence of
terms t1, . . . , tn, and ~t for a sequence of terms of unspecified length. We
also allow us to bind several variables at once, writing B ~xn : ~Tn.t for
Bx1 : T1 . . . Bxn : Tn.t (where B ∈ {λ,∀}); the meaning of the notation

B~x : ~T .t is similar, with ~x and ~T having the same, unspecified length.
An inductive family is similar to an inductive type, but it defines

at once a set of mutually-recursive inductive types differing from the
values of some parameters. Syntactically, the declaration of an inductive
family is isomorphic to the declaration of a judgement by giving its
introduction rules. The family parameters are the arguments of the
judgement. The derivation rules are the constructors of the inductive
family. Positivity conditions must be satisfied by the derivation rules
to ensure existence of the least fixpoint solution of the set of recursive
rules. When the judgement is 0-ary (i.e. it has no parameters), we
obtain a simple inductive definition. In this case, the conclusion of all
derivation rules is simply the name of the inductive type being defined,
providing no information.

Once an inductive family I is declared by giving its derivation rules
(its constructors), we obtain for free recursion over the inductive family
as the elimination principle corresponding to the introduction rules. We
briefly recall the typing judgement of induction principles for arbitrary
inductive families: our syntax is similar to the one given by (Werner,
1994) up to some minor differences.

Given an inductive type I of arity ∀ ~xn : ~Tn.σ, where σ is a sort.
Suppose that P is a predicate of type ∀ ~xn : ~Tn.I ~xn ⇒ τ , where τ is
a sort, and t has type I ~un for some (properly typed) terms ~un. The
application of the proper induction principle on t to prove P ~un t is
written

EτI ( ~un, t, P ){ ~fm}

where ~fm are the proof terms for each of the m sub-cases of the induc-
tion (one for each of the constructors of I). The expected type for the
~fm is computed by the following definition:

DEFINITION 1. Let Γ be a CIC context, c, T,Q CIC terms. The
operators ∆Q{Γ; c : T} and ΘQ{Γ;T} are defined as follows:

∆Q{Γ; c : I ~t} ≡ ΘQ{Γ;Q ~t c}
∆Q{Γ; c : ∀x : T.U} ≡ ∀x : T.∆Q{Γ, x : T ; c x : U}
otherwise undefined
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ΘQ{∅;T} ≡ T

ΘQ{Γ, x : ∀~y : ~V .I ~t;T} ≡ ΘQ{Γ;∀~y : ~V .Q ~t (x ~y)⇒ T}
∆Q{Γ, x : U ;T} ≡ ∆Q{Γ;T} if the head of U is not I
otherwise undefined

Let kIi of type KIi (i = 1, . . . ,m) be the constructors of type I. Then
we can write the typing rule for the induction principle as follows:

Γ ` I : ∀ ~xn : ~Tn.σ
for all i = 1, . . . , n: Γ ` ui : Ti{u1,...,ui−1/x1,...,ui−1}

Γ ` t : I ~un Γ ` P : ∀ ~xn : ~Tn.I ~xn ⇒ τ
for all j = 1, . . . ,m: Γ ` fj : ∆P {∅; kj : Kj}
elimination of I towards sort τ is allowed1

Γ ` EτI ( ~un, t, P ){ ~fm} : P ~un t
(Elim)

A well-known fact about induction principles for inductive families is
that they are not well-suited for immediate applications to hypothesis
in which the family parameters are instantiated with anything different
from a variable. For example, applying the induction principle to the
premise Γ ` Top <: T we are left with five cases to prove, disregarding
the fact that only the first derivation rule could have been applied
in this case. Moreover, they are exactly the same five cases we would
obtain by changing Γ, Top or T to any other well-typed expression.
Inversion (Cornes and Terrasse, 1996; McBride, 2002) is the (derived)
proof principle we need in these cases. For the previous reasons, the
“inner induction with case analysis” in the informal proof suggested in
the POPLmark challenge does not correspond to an induction principle.

Inversion allows to invert derivation rules by replacing in a hy-
pothesis a judgement with a disjunction of all the ways in which it
can be obtained. Operationally, it is sufficient to perform first order
unification of the hypothesis with the conclusion of every derivation
rule and, in case of success, augment the conjunction of the premises
of the derivation rules with the equalities imposed by the unifier. For
instance, inverting an hypothesis Γ ` X <: T1 → T2 yields

(X <: U ∈ Γ ∧ Γ ` U <: T1 → T2) ∨
(Γ ` T1 <: S1 ∧ Γ ` S2 <: T2 ∧X = S1 → S2)

since unification fails for all rules but Trans and Arrow.

1 The condition on allowed sort eliminations is not relevant to the subject of
this paper; the interested reader can find more information in (Werner, 1994) (for
a general account of elimination in CIC) and (Asperti et al., 2009) (for the actual
type system implemented in Matita).

jar09.tex; 3/02/2011; 11:40; p.13



14

Usually, in pen&paper proofs, it is inversion, and not induction,
that is used in presence of judgements. The problem with inversion is
that it does not provide inductive hypotheses over the new premises.
Thus, most of the time, inversion on a judgement follows induction
on the arguments of the judgement. For instance, the specification of
POPLmark proves transitivity for F<: by induction over T followed
by “induction with case analysis” (apparently similar to inversion) for
Γ ` S <: T . Note, however, that the similarity may not be correct since
inversion does not provide access to an “inner inductive hypothesis”.

The natural question is then whether an inversion rule that also
provides induction hypotheses is admissible. We call such a rule induc-
tion/inversion.

To answer the question, we will now consider how inversion is proved
in terms of induction.

Given a predicate P : ∀ ~zn : ~Tn.I ~zn ⇒ σ and a vector of properly
typed variables ~xn, we define the augmented predicate

P̂ [ ~xn] , λ ~zn : ~Tn.λz : I ~zn.x1 = z1 ⇒ . . .⇒ xn = zn ⇒ P ~zn z

Depending on the actual arity of I, the well typedness of P̂ might
depend on the definition of =. In the general discussion of inversion and
induction/inversion principles, we will assume that = is John Major’s

equality: under this assumption, P̂ is always well typed
It is possible to prove the inversion principle applying the regular

induction principle for I to the augmented predicate, as follows

ÊτI , λP, ~xn, x, ~Hm.EτI ( ~xn, x, P̂ [ ~xn]){ ~fm} Rx1 · · ·Rxn
: ∀P : (∀ ~zn : ~Tn[ ~zn].I ~zn ⇒ σ).

∀ ~xn : ~Tn[ ~xn].∀x : I ~xn.∀ ~fm : ~Hm.P ~xn x

where the actual shape of the Hi is the one required by the induction
principle and Rt is the trivial reflexivity proof of t = t. We will justify
this definition later in the more general case of induction/inversion,
however it is interesting to see the result in the case of the subtyping
judgement of F<:. Suppose for example we want to invert a hypothesis
H stating Γ ` T1 → T2 <: T ′1 → T ′2 to prove P . Since induction over
H ignores the actual family parameters Γ, T1 → T2 and T ′1 → T ′2, we
are forced to generalise our goal to proving (∆ = Γ) ⇒ (T = T1 →
T2)⇒ (T ′ = T ′1 → T ′2)⇒ P under the hypothesis ∆ ` T <: T ′, and to
perform induction thereafter. We only show two cases.

In the Top case we need to prove (∆ = ∆) ⇒ (S = T1 → T2) ⇒
(Top = T ′1 → T ′2) ⇒ P (under two additional hypotheses), which is
trivially done since the third premise is false. This corresponds to the
case where first order unification (of Top and T ′1 → T ′2) fails.
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In the Arrow case, we need to prove (∆ = ∆) ⇒ (S1 → S2 =
T1 → T2) ⇒ (S′1 → S′2 = T ′1 → T ′2) ⇒ P under the additional
hypotheses ∆ ` S′1 <: S1, ∆ ` S2 <: S′2 and the relative induction
hypotheses (∆ = ∆) ⇒ (S′1 = T1 → T2) ⇒ (S1 = T ′1 → T ′2) ⇒ P
and (∆ = ∆) ⇒ (S2 = T1 → T2) ⇒ (S′2 = T ′1 → T ′2) ⇒ P . The
induction hypotheses are clearly inaccessible, since their second and
third premises are false. Thus we can simply ignore them and propagate
(i.e. apply) the equalities (the first order unifier) to reduce the thesis
to P under the hypotheses ∆ ` T ′1 <: T1 and ∆ ` T2 <: T ′2. Exactly
what we expected from the inversion principle.

It is now clear why induction hypotheses are not provided by inver-
sion rules: in the general case, they are dropped because inaccessible.
This is what actually happens in the implementation of the Coq and
Matita proof assistants, where inversion principles are automatically
generated following the idea just described. However, there are situa-
tions where the induction hypothesis remains accessible. Indeed, in the
previous example the inductive hypotheses became inaccessible since
the second and third actual parameters of the inductive family in the
conclusion Γ ` S1 → S2 <: T1 → T2 and in each premise (Γ ` T1 <: S1
and Γ ` S2 <: T2) of rule Arrow are different. On the other hand,
since Γ remains Γ in the premises of the rule, the inductive hypotheses
were guarded by a satisfiable premise ∆ = ∆ which is trivially satisfied.

We can generalise the previous observation to obtain the following
improved induction rule: if a family parameter is globally constant, i.e.
it remains the same in each recursive occurrence of the inductive family
in its derivation rules, then the family parameter is not quantified in
each premise of the induction principle, but it occurs instantiated with
the value of the actual parameter in the hypothesis the principle is
applied to. This is indeed the case for the induction principles of the
Coq and Matita theorem provers.2

Moreover, we can also derive the following induction/inversion prin-
ciple we are interested in:

Theorem 1. (Induction/inversion principle) Given an inductive fam-
ily, we say that a formal family parameter is locally constant to one
premise of one derivation rule if its actual value does not differ from
that in the conclusion of the rule. We get a different induction/inversion
principle for each subset S of the family parameters subject to the re-
striction that, if the type of a family parameter in S depends on another

2 This observation is actually internalised in the meta-theory of the Calculus of
(Co)Inductive Constructions, that allows global universal quantifications for induc-
tive families to simplify the implementation and to have more liberal type-checking
rules.

jar09.tex; 3/02/2011; 11:40; p.15



16

family parameter, the latter must also be in S. The principle has the
shape of an inversion principle with additional, accessible induction
hypotheses provided for all those recursive arguments whose locally
constant parameters are a superset of S. Moreover, as in inversion
principles, in each case we get a unifier as a set of additional hypotheses
Fi = Ai where Fi is a family parameter in S and Ai is the corresponding
actual parameter in the conclusion of the inference rule.

Proof. Let I be an inductive family with arity ∀ ~zn : ~Tn.σ and
constructors ki : Ki, i = 1, . . . ,m. Let P be a predicate of type ∀ ~zn :
~Tn.I veczn ⇒ τ . Assume that S = {s1, . . . , s|S|} and that x1, . . . , xn are
properly typed variables. We define PS [ ~xn] as the predicate P partially
augmented over the set S:

PS [ ~xn] , λ ~zn : ~Tn.λz : I ~zn.xs1 = zs1 ⇒ . . .⇒ xs|S| = zs|S| ⇒ P ~zn z

Then we can prove the S-induction/inversion principle as follows

EτI,S , λP : (∀ ~xn : ~Tn.I ~xn ⇒ τ).

λ ~xn : ~Tn.λx : I ~xn.

λf1 : ∆PS [ ~xn]{∅; k1 : K1}.
· · ·
λfm : ∆PS [ ~xn]{∅; km : Km}.
EτI ( ~xn, x, PS [ ~xn]){ ~fm} Rxs1

· · ·Rxs|S|
: ∀P : (∀ ~xn : ~Tn.I ~xn ⇒ τ).

∀ ~xn : ~Tn.∀x : I ~xn.

∆PS [ ~xn]{∅; k1 : K1} ⇒
· · ·
∆PS [ ~xn]{∅; km : Km} ⇒
P ~xn x

To show that this definition satisfies the specification of an S-induction/inversion
principle, we must prove that:

1. The type of each subcase fi is provided with an equational hypothe-
sis for each index j in the set S, stating that the family parameter of
index j of the inverted term is equal to the corresponding paremeter
in the target type of ki. But this is, by definition, the role of the
partially augmented predicate PS . If Ki : ∀~y : ~U.V ~u, then the type
of fi is of the form

∀~y : ~U.IH 1 ⇒ · · · ⇒ · · · IH r

⇒ xs1 = us1 ⇒ · · · ⇒ xs|S| = us|S|
⇒ P ~u (ki ~y)
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thus satisfying the request.

2. Induction hypotheses such that all the parameters with index in S
are locally constant are accessible. For this to happen, induction
hypotheses must be in the form

IH , ∀~a.xs1 = us1 ⇒ · · · ⇒ xs|S| = us|S| ⇒ P ~un v

such that FV (usi) ∩ ~a = ∅ for all i, and the goal must be

xs1 = u′s1 ⇒ · · · ⇒ xs|S| = u′s|S| ⇒ P ~u′n v
′.

such that for all i ∈ S, ui = u′i. We can then introduce from the
goal the new hypotheses ~e|S| and feed them to IH , obtaining

IH ′ , λ~a.IH ~a ~e|S| : ∀~a.P ~un v

whose shape is the same of a regular, accessible induction hypoth-
esis.

As an example, that we have used in our solution to the POPLmark
challenge, we show the induction/inversion principle for the sub-typing
judgement of Fig. 8 where we choose S = {Γ, T} (i.e. the typing context
and the second type). The choice is driven by the Trans rule where Γ
and T are locally constant parameters, whereas the second argument
is not (being U in the premise, and X in the conclusion). Indeed, note
that we get an almost-standard inversion principle were we have traded
hypotheses on L with the induction hypothesis in the Trans case.

Theorem 2. ({Γ, T}-Induction/inversion for Γ ` S <: T ) Let P be a
ternary predicate over triples (∆, L,R). For all ∆, L,R we have ∆ `
L <: R implies P (∆, L,R) provided that

Top ∀Γ, S. ` Γ⇒ Γ ` S ⇒ (∆ = Γ)⇒ (R = Top)⇒ P (Γ, S, Top)

Refl ∀Γ, X. ` Γ⇒ X ∈ domΓ⇒ (∆ = Γ)⇒ (R = X)⇒ P (Γ, X,X)

Trans ∀Γ, X, U, T, X <: U ∈ Γ ⇒ Γ ` U <: T ⇒ P (Γ, U, T ) ⇒ (∆ =
Γ)⇒ (R = T )⇒ P (Γ, X, T )

Arrow ∀Γ, S1, S2, T1, T2. Γ ` T1 <: S1 ⇒ Γ ` S2 <: T2 ⇒ (∆ = Γ) ⇒
(R = T1 → T2)⇒ P (Γ, S1 → S2, T1 → T2)

All ∀Γ, S1, S2, T1, T2. Γ ` T1 <: S1 ⇒ (∀X,X 6∈ dom(Γ) ⇒ Γ, X <:
T1 ` S2[X/#0] <: T2[X/#0]) ⇒ (∆ = Γ) ⇒ (R = ∀T1 .T2) ⇒
P (Γ,∀S1 .S2, ∀T1 .T2)
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It is now clear that this induction/inversion lemma is exactly what
we need to justify the informal proof, since it allows to use the “inner
hypothesis” (in the Trans case), but also to (partially) perform “case
analysis on the final rule of the derivation”. What is surprising at first
is that such a proof principle, that seems quite ad-hoc in the informal
proof, is actually a general proof principle. Indeed, we want to remark
two additional facts.

The first one is that these induction/inversion rules can be automat-
ically generated from the derivation rules of the judgement and, as well
as the standard induction and inversion rules, are fully determined
once the judgement is inductively defined. On the other hand, when
the judgement has n family parameters, we can generate 2n different
induction/inversion principles. Indeed, standard induction and stan-
dard inversion corresponds respectively to the empty and full sets of
family parameters. A first observation to reduce the number of prin-
ciples to generate is that a set of induction/inversion principles makes
sense only if its elements provide different induction hypotheses. In
turn, this depends on the variety of locally constant parameters in
the rules. For instance, in the case of our sub-typing judgement, only
three induction/inversion principles have to be considered: standard
induction, standard inversion and {Γ, T}-induction/inversion. Even if
a large number of principles are worth generating, we can expect the
proof assistant to dynamically generate them when needed.

The second fact is that, as far as we know, the conditions for induc-
tion/inversion principles have never been characterised before. How-
ever, we have detected them in other proofs about the meta-theory
of programming languages, such as the ones on LambdaDelta by F.
Guidi(Guidi, 2006). We claim that better knowledge on them could
easily result in shorter and deeper proofs, as the ones we present here.

The generation of induction/inversion principles is performed by
Matita on demand, using the inverter command.

4.3. Proofs

In this section we will discuss briefly the main proofs of the solutions
to POPLmark part 1a that we have formalized in Matita, based on the
proof techniques of Section 4.2. The formal proofs in Matita can be
retrieved from the Web pages of the Matita proof assistant. We will
begin with the locally nameless solution, which is in some sense more
basic than the other two.
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4.3.1. Locally nameless
The first property we must show is the reflexivity of subtyping.

Theorem 3. (reflexivity (locally nameless encoding)) Let Γ be a typ-
ing environment, and T a type; if Γ is well-formed and T is well-formed
in Γ, then Γ ` T <: T .

Proof. Once it has been proved that, for all Γ and T , Γ ` T implies
FV(T ) ⊆ dom(Γ), the proof is trivial by induction on the derivation of
Γ ` T . Matita is able to prove almost every case of the induction by
means of standard automation.

The following theorem asserts a stronger weakening property than
the one described in the specifications: here weakening on well formed
environments is defined as set inclusion, instead of concatenation of
two disjoint environments. In this way we are exempted from proving
the less tractable lemma on permutations.

Theorem 4. (weakening (locally nameless encoding))

1. Let Γ be a typing environment, T a type. If Γ ` T , then for all
environments ∆ such that Γ ⊆ ∆, we get ∆ ` T .

2. Let Γ be a typing environment, T,U types. If Γ ` T <: U , for all
well-formed environments ∆ such that Γ ⊆ ∆, we get ∆ ` T <: U .

Proof. The first point follows easily from a straightforward induction
on the derivation of Γ ` T . The second point follows from an induction
on the derivation of Γ ` T <: U (the proposition proved in part (i) is
used in the Top case). Once again standard automation turns out to
be very useful.

Unlike the specifications, we decided to prove narrowing and tran-
sitivity separately. Our statements are also slightly stronger than the
ones provided in the specifications. This is ultimately due to the locally
nameless encoding: in fact, since the encoding of the All rule is not
fully structural with respect to the types mentioned in it, the induction
on the structure of a type, used in the informal proof, is not sufficient
to prove narrowing and transitivity in our setting. Instead, we will use
an induction on the derivation of some judgements.

Theorem 5. (narrowing (locally nameless encoding)) For all typing en-
vironments Γ,Γ′, for all types U,P,M, N and for all variables X,
if
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1. Γ′ ` P <: U

2. Γ `M <: N

3. for all Γ′′, T if Γ′,Γ′′ ` U <: T then Γ′,Γ′′ ` P <: T

then forall ∆ s.t. Γ = Γ′, X <: U,∆, the judgement Γ′, X <: P,∆ `
M <: N holds.

Proof. We proceed by induction on the derivation of Γ ` M <: N .
The interesting case is SA-Trans-TVar: in this case, M = Y , where
Y is a type variable. If X = Y , we prove the statement by means of rule
SA-Trans-TVar. Since X <: P ∈ (Γ′, X <: P,∆) (trivially), we only
need to prove Γ′, X <: P,∆ ` P <: N : this is obtained by means of
hypothesis 3 (Γ′, X <: P,∆ ` U <: N holds by induction hypothesis).
If X 6= Y , the goal is obtained trivially by induction hypothesis.

Last, we turn to proving the main property, i.e. transitivity of sub-
typing. Again, we use a slightly different statement from the specifica-
tions, but the proof follows closely the suggested structure.

Theorem 6. (transitivity (locally nameless encoding)) Let T a type,
Γ′ a typing environment such that Γ′ ` T . For any typing environment
Γ such that dom(Γ′) ⊆ dom(Γ), and for all types R,U , if Γ ` R <: T
and Γ ` T <: U then Γ ` R <: U .

Proof. We proceed by induction on the derivation of Γ′ ` T , followed
by {Γ, T}-induction/inversion on Γ ` R <: T . The interesting case
is WFT-All: in this case, T = ∀T ′ .T ′′ and, by applying the unifier
provided by the principle, only two cases are possible:

− R = X (whereX is a type variable) andX <: V ∈ Γ (for some type
V ). The thesis follows from the induction/inversion hypothesis, by
means of rule Trans.

− R = ∀R′ .R′′. In this case, by inversion on Γ ` ∀T ′ .T ′′ <: U
we show U is either Top or ∀U ′ .U ′′. In the first case, showing
that Γ ` ∀R′ .R′′ <: Top is trivial. In the second case, the dif-
ficult part is to show that, for all X /∈ dom(Γ), Γ, X <: U ′ `
R′′{X/#0} <: U ′′{X/#0}. By the induction hypothesis, we only need
to prove Γ, X <: U ′ ` R′′{X/#0} <: T ′′{X/#0} and Γ, X <: U ′ `
T ′′{X/#0} <: U ′′{X/#0}: these follow from the induction/inversion
hypothesis, together with narrowing. Please notice that the hy-
pothesis dom(Γ′) ⊆ dom(Γ), here, is essential, since otherwise the
typing environments in the induction hypothesis and in the goal
would not match.
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When proving reflexivity and transitivity, our formalization of the
All rule requires to prove that some judgement holds for any fresh vari-
able X. As we pointed out in section 4.1, since the subtyping judgement
is equivariant, it is sufficient that it hold for one fresh X: following this
intuition, Leroy, in his solution to the challenge, decided to prove this
alternate “for one” rule. Apparently, this should have simplified the
proofs of reflexivity and transitivity, thus in a previous version of our
solution we decided to follow closely his approach; however, proving
the “for one” rule required a great effort (approximately 500 lines of
code out of 1500). Moreover, proofs can be completed quite easily even
without the “for one” rule. The most difficult case is probably in the
reflexivity: we must prove that Γ ` ∀T .U <: ∀T .U , knowing (by hypoth-
esis) that ∀T .U is well-formed in Γ, and (by induction hypothesis) that
for any X /∈ dom(Γ) ∪ FV(U), Γ, X <: T ` U [X/#0] <: U [X/#0] holds;
now if we apply the “for one” version of the rule, it’s sufficient to prove
that for some Y /∈ dom(Γ), the judgement Γ, Y <: T ` U [Y/#0] <:
U [Y/#0] holds – then we choose Y to be fresh both in Γ and T , and the
thesis follows trivially from the induction hypothesis; using the original
All rule is only apparently more difficult: we need to prove the same
judgement for any Y /∈ dom(Γ) but, since ∀T.U is well-formed in Γ,
one can easily prove that no variables outside Γ can be free in U , thus
the induction hypothesis is sufficient even in this case.

4.3.2. De Bruijn nameless encoding
While the concern about readability of terms containing nameless dum-
mies, which is also brought against locally nameless solutions, is de-
batable, the fact that de Bruijn open terms must be explicitly lifted
when the environment is changed, is a serious matter. The statement
of theorems must be carefully tuned and while we don’t feel that the
readability of the proofs is compromised, the ease of formalization is
impaired to some extent. Still, formalization of the properties of dan-
gling dummies has some interest per se, and theorem provers provide
all the tools to carry on their proofs.

The proof of reflexivity in the de Bruijn encoding is even easier than
in the locally nameless encoding (exactly 3 proof steps in Matita); weak-
ening, however, is the typical example of a theorem whose statement
must be somewhat reworked in the de Bruijn encoding. The relation
Γ ⊆ ∆ we had used in the locally nameless version, denoting that Γ is
extended by ∆, possibly with some entries permuted, is not meaningful
for de Bruijn environments: while the entries of a locally nameless
environment can be permuted consistently without updating the free
names, in a de Bruijn environment the dangling dummies must be also
permuted explicitly.
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We are tempted to state weakening by means of environment con-
catenation and lifting:

For all environments Γ,Γ′ and types S, T , if Γ ` S <: T and Γ,Γ′ `
♦, then Γ,Γ′ ` S ↑ |Γ′| <: T ↑ |Γ′|.

The statement is correct but its proof (as noted in the POPLmark
specifications (Aydemir et al., 2005)) requires a permutation lemma
which is precisely what we wanted to avoid in the first place.

The best we can do is to prove a strong version of weakening, im-
plying the permutation lemma, just like we did in the locally nameless
formalization. However, the notion of environment inclusion needs to
be significantly refined. On the other hand, lifting is not sufficient to
deal with permutations, and a generalization is needed.

DEFINITION 2. The map application of a function f : IN → IN on
F<: types is defined as follows:

f · T =


f · n = f(n)
f · Top = Top

f · (T → U) = f · T → f · U
f · (∀T .U) = ∀f ·T .(f · U)

DEFINITION 3. A function f : IN → IN is an environment extension
map from Γ to ∆ (notation: Γ ⊆f ∆) if and only if it is injective and
for all n < |Γ|, f(n) < |∆| and f · (Γ(n) ↑ n+ 1) = ∆(f(n)) ↑ f(n) + 1.

In simple terms, an environment extension map is a more explicit
version of the ⊆ relation used in the locally nameless formalization.
Its definition can be paraphrased by saying that for every n, the n-th
entry of Γ, relocated at the top level (by lifting) and then mapped to
the environment ∆ (by means of f) must be equal to the f(n)-th entry
of ∆, relocated to the top level (again by lifting).

We can then prove weakening in the following form.

Theorem 7. (weakening (de Bruijn encoding)) For all environments
Γ,∆, if for some f , Γ ⊆f ∆, Γ ` S <: T and ∆ ` ♦, then ∆ ` f · S <:
f · T .

While the proof of the above statement is similar to its locally nameless
counterpart, automation turns out to be a bit less effective.

It can be noted that lifting and environment extension maps have an
interesting relation. Let ⇑mk : IN → IN be the family functions defined
as follows:

⇑mk (n) =

{
m+ n if k ≤ n
n else
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We show that for all types T , T ↑k m =⇑mk ·T . As a corollary,
for all environments Γ,∆, Γ ⊆⇑|∆|0

Γ,∆: therefore the version of weak-

ening involving environment extension maps also implies the previous
statement with concatenation of environments and lifting.

Narrowing and transitivity are then proved separately, following the
same strategy, if not the letter, of the locally nameless proofs.

Theorem 8. (narrowing (de Bruijn encoding)) For all typing environ-
ments Γ,Γ′ and for all types U,P,M,N , if

1. Γ′ ` P <: U

2. Γ `M <: N

3. for all Γ′′, S, T , if Γ′,Γ′′ ` S <: (U ↑ |Γ′′|) and Γ′,Γ′′ ` (U ↑ |Γ′′|) <:
T imply Γ′,Γ′′ ` S <: T

then for all ∆ s.t. Γ = Γ′, • <: U,∆, the judgement Γ′, • <: P,∆ `
M <: N holds.

Theorem 9. (transitivity (de Bruijn encoding)) Let S, T, U be types,
Γ a typing environment, f a function from naturals to naturals. If Γ `
S <: f · T and Γ ` f · T <: U , then Γ ` S <: U .

Somewhat surprisingly, the above statement of transitivity does not
require f to be an environment extension map: it is sufficient for f to
be a function from naturals to naturals. The particular statement of
the theorem is needed in order to get an induction hypothesis which
is sufficiently strong to imply the weak transitivity requirement of
the previous narrowing theorem. The proof also exploits the {Γ, T}-
induction/inversion principle, similarly to the corresponding proof in
the locally nameless encoding.

The usual statements of transitivity and narrowing are then ob-
tained as corollaries.

4.3.3. Named variables
Our solution using named variables follows a radically different ap-
proach from the other two: instead of proving the transitivity of sup-
typing directly on types with named variables, we decided to provide
a translation of types with named variables to locally nameless types.
This induces a translation of environments and, consequently, a transla-
tion of whole subtyping judgements: if we can prove that the subtyping
judgement on types with named variables is adequate and faithful with
respect to the corresponding judgement on locally nameless types, we
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can obtain the transitivity on types with named variables as a corollary,
from the transitivity on locally nameless types.

This kind of formalization, similar to transformations performed by
actual compilers, has an interest in itself and hides some difficulties:
therefore it seemed to be a good companion to the problems of the
POPLmark challenge.

First, we need to define an algorithm providing the intended encod-
ing of types with named variables into locally nameless types.

VTW` =


VTopW` = Top

VXW` = #n if n = posn(X, `)
VXW` = X if X /∈ `
VT ′ → T ′′W` = VT ′W` → VT ′′W`

V∀XT ′ .T ′′W` = ∀VT ′W`
.VT ′′WX,`

VΓW =

{
V∅W = ∅
VΓ′, x : TW = VΓ′W, x : VTW
VΓ′, X <: TW = VΓ′W, X <: VTW

where ` is a list of names used to trace non-locally bound variables.
The encoding of a type is obtained beginning with ` being empty and
it is denoted by V·W; the list is updated with a new variable whenever
we enter the scope of a quantifier; the encoding VXW` is X when X /∈ `
(meaning X is a free variable); if X ∈ `, the encoding VXW` is #n,
where n is the position of X in ` (meaning X is a bound variable, and
the “distance” of its binder is n); the encoding of a type commutes
with all other constructs. The encoding of an environment is the same
environment where every (sub)typing bound has been replaced by its
encoding.

We can also show that this translation is surjective: for every locally
closed type T in the locally nameless representation, there exists a type
T ′ in the named variables representation, such that VT ′W = T .

The key lemma we need to prove adequacy is the following:

Theorem 10. For all variables X,Y and types T , if X ∈ FV (T ) ⇒
X = Y , then V(X Y ) · TW = VTWY [X/#0].

Proof. Actually, the theorem is obtained as a corollary from a stronger
statement:

Given a list of variables `, if X and Y are not in ` and X ∈
FV(T )⇒ X = Y , then V(X Y ) · TW` = VTW`,Y [X/#|`|].
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Our proof is by induction on the weight of T , then by case analysis
again on T . The weight of T is defined as follows:

‖T‖ =


‖X‖ = 0
‖Top‖ = 0

‖U → V ‖ = max(‖U‖, ‖V ‖) + 1
‖∀X <: U.V ‖ = max(‖U‖, ‖V ‖) + 1

It is necessary to go through a large number of cases, depending on
whether variables in T are equal to X, Y or to some variable in `. The
full proof is beyond the scope of this paper.

Theorem 11. (adequacy and faithfulness)

1. Let Γ be a typing environment, T,U types in the named presenta-
tion. If Γ ` T <: U , then VΓW ` VTW <: VUW.

2. Let Γ be a typing environment, T,U types in the locally nameless
encoding. Let Γ′, T ′, U ′ such that Γ = VΓ′W, T = VT ′W and U =
VU ′W. If Γ ` T <: U , then Γ′ ` T ′ <: U ′.

Proof. Adequacy is proved by a straightforward induction on the
derivation of Γ ` T <: U . Almost all the cases are easy (and are proved
automatically by Matita), except for the “for all” case, requiring us to
prove prove that

VΓW ` ∀VS1W.VS2WX <: ∀VT1W.VT2WY

under the following induction hypotheses

IH 1 : VΓW ` VT1W <: VS1W
IH 2 : for all Z /∈ FV(Γ):

(Z ∈ FV(S2)⇒ Z = X)⇒
(Z ∈ FV(T2)⇒ Z = Y )⇒
VΓW, Z <: VT1W ` V(Z X) · S2W <: V(Z Y ) · T2W

By SA-All and IH 1, we reduce to the problem of proving

for all W /∈ FV(Γ): VΓW,W <: VT1W ` VS2WX [W/#0] <: VT2WY [W/#0]

This follows easily from IH 2 by means of theorem 10.
The proof of faithfulness basically mirrors that of adequacy and

is performed by providing an algorithm to compute the backwards
encoding of a locally closed type.
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5. Conclusions

The POPLmark challenge proved to be a valuable test-bench for the
Matita theorem prover. During the development of the solution a few
bugs and malfunctioning have been detected and corrected, especially
concerning tactics like inversion or destruct, less frequently used in
developments of a more mathematical nature. Moreover, we have iden-
tified a new proof principle, that we called induction/inversion and
that we plan to implement in Matita. The principle seems to have been
implicitly adopted in several solutions, but never made explicit before.
We believe that our proof where it is explicit is not only easier to under-
stand, but also more faithful to the informal proof of the POPLmark
specification.

We must stress that the absence of agreed principles to evaluate
solutions to the challenge makes it difficult to draw conclusions. As a
purely indicative data, in Table I we compare the size of our solution
with other solutions written in Coq (whose syntax is the closest to
Matita). Remarkably, the size of our locally nameless solution is 350
lines (slightly less than 4kB compressed), which is the most compact
among those based on the same encoding. That is to say that, in spite of
a sensibly simpler architecture design resulting in about half of the code
of Coq, the functionalities offered by Matita and the expressiveness of
its tactical language are fully comparable with the former. Therefore,
we believe that Matita brilliantly overcame the test, proving to be
a competitive tool for the verification of properties of programming
languages and the automation of formal reasoning.

Our de Bruijn solution has not been tuned for compactness and is
still relatively lengthy (with a size comparable to that of the second
locally nameless solution): in general, de Bruijn formalizations have
proved to be more synthetic than locally nameless ones, and we believe
that automation might help reducing its size significantly.

The solution using named variables is not comparable to the other
ones, since it is based on a completely different proof strategy. Its size
amounts to 1270 lines (9706 bytes compressed), which confirms that
handling of named variables comes at a cost.

As for the encoding issue, as already pointed out by other authors,
we agree that the locally nameless approach leads to proofs which are
more readable (in comparison with de Bruijn’s representation): this is
due to the fact that we do not have to deal with free indices. We also
believe that while it may be possible to obtain a smaller solution using
pure de Bruijn’s approach, the proofs tend to become much less linear,
making the locally nameless approach still preferable.
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Table I. Size comparison between solutions of the challenge in Matita (ours) and
in Coq (all others)

Author Lines GZip’ed Encoding technique

Hirschowitz & Maggesi 293 2906 de Bruijn (nested datatypes)

Ricciotti 350 3931 locally nameless

Charguéraud 465 4058 de Bruijn

Ricciotti 576 5382 de Bruijn

Charguéraud 630 5272 locally nameless (cofinite)

Vouillon 796 6231 de Bruijn

Chlipala 923 4729 locally nameless

Stump 1256 8025 named variables

Leroy 1528 13488 locally nameless

Sallinens 2045 12384 de Bruijn

The biggest drawback with the locally nameless approach is that
typing rules which deal with binders are required (reasoning backwards)
to make disappear indices, in such a way that they are not fully struc-
tural on the types. This means that where the paper proof would use
a straight induction on a type, we are required to use an induction
on its well-formedness derivation. For the same reasons, the cases with
binders are also the most difficult to deal with in the adequacy proof
of the named variables encoding with respect to the locally nameless
encoding.
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