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Abstract. In this paper, we present a formalisation of elementary group
theory done in Coq. This work is the first milestone of a long-term effort
to formalise Feit-Thompson theorem. As our further developments will
heavily rely on this initial base, we took special care to articulate it in
the most compositional way.

1 Introduction

Recent works such as [2, 7, 8, 17] show that proof systems are getting sufficiently
mature to formalise non-trivial mathematical theories. Group theory is a domain
of mathematics where computer proofs could be of real added value. This domain
was one of the first to publish very long proofs. The first and most famous
example is the Feit-Thompson theorem. Its historical proof [6] is 255 pages long.
That proof has later been simplified and re-published [4, 16], providing a better
understanding of local parts of the proof. Yet its length remains unchanged, as
well as its global architecture. Checking such a long proof with a computer would
clearly increase the confidence in its correctness, and hopefully lead to a further
step in the understanding of this proof. This paper addresses the ground work
needed to start formalising this theorem.

There have been several attempts to formalise elementary group theory using
a proof assistant. Most of them [1, 11, 21] stop at the Lagrange theorem. An
exception is Kammüller and Paulson [12] who have formalised the first Sylow
theorem. The originality of our work is that we do not use elementary group
theory as a mere example but as a foundation for further formalisations. It is
then crucial to us that our formalisation scales up. We have therefore worked
out a new development, with a strong effort in proof engineering.

First of all, we reuse the SSReflect extension of Coq developed by Gonthier
for his proof of the Four Colour theorem. This gives us a library and a proof
language that is particularly well suited to the formalisation of finite groups. Sec-
ond, we make use of many features of the Coq proof engine (notations, implicit
arguments, coercions, canonical structures) to get more readable statements and
tractable proofs.

The paper is organised as follows. In Section 2, we present the SSReflect
extension and show how it is adequate to our needs. In Section 3, we comment



some of our choices in formalising objects such as groups, quotients and mor-
phisms. Finally, in Section 4, we present some classic results of group theory that
have already been formally proved in this setting.

2 Small scale reflection

The SSReflect extension [9] offers new syntax features for the proof shell and
a bunch of libraries making use of small scale reflection in various respects.
This layer above the standard Coq system provides a convenient framework for
dealing with structures equipped with a decidable equality. In this section, we
comment the fundamental definitions present in the library and how modularity
is carried out throughout the development.

2.1 Proof shell

Proof scripts written with the SSReflect extension have a very different flavour
than the ones developed using standard Coq tactics. We are not going to present
the proof shell extensively but only describe some simple features, that, we be-
lieve, have a positive impact on productivity. A script is a linear structure com-
posed of tactics. Each tactic ends with a period. An example of such a script is
the following

move⇒ x a H; apply: etrans (cardUI ).
case: (a x); last by rewrite /= card0 card1.
by rewrite [ + x]addnC.

by rewrite {1}mem filter /setI.

All the frequent bookkeeping operations that consists in moving, splitting, gen-
eralising formulas from (or to) the context are regrouped in a single tactic move,
making these operations more intuitive. For example, the fact that arguments of
the move at the first line of the example of script are after the arrow indicates
that the three arguments are the name to associate to three formulas to move
from the conclusion to the context.

Good practise recommends to outline the underlying structure of the proof
by indenting. To further structure scripts, SSReflect first proposes a tactical
by to explicitly tag closing tactics. When replaying scripts, we then have the nice
property that an error immediately occurs when a closing tactic fails to prove
its subgoal. Second, when composing tactics, the two tacticals first and last let
the user restrict the application of a tactic to only the first or the last subgoal
generated by the previous command. It covers the frequents cases where a tactic
generates two subgoals one of which can be easily discarded. In practice, these
two tactics are so effective at increasing the linearity of our scripts that, in fact,
it is very rare than more than two levels of indentation are needed.

Finally, the rewrite tactic in SSReflect comes with a concise syntax to
accommodate in a single command all the possible combinations of conditional



rewriting, unfolding of definition, simplifying, rewriting selecting specific occur-
rences, rewriting selecting specific patterns, to name only some of them. Rewrit-
ing is then really convivial and contributes to a change of proof style more based
on equational reasoning. In the standard library of Coq, the rewrite tactic is
roughly used the same number of times than the tactic apply. In our development
for group theory, rewrite is used three times more than apply — despite the
fact that, on average, each SSReflect rewrite stands for three Coq rewrites.

2.2 Views

The Coq system is based on an intuitionistic type theory, the Calculus of In-
ductive Constructions [19, 14]. There is a distinction between logical propositions
and boolean values. On the one hand, logical propositions are objects of type
Prop for which the excluded middle does not hold, i.e. the proposition ∀P:Prop,

P ∨ ¬P is not provable. On the other hand, bool is an inductive datatype with
two constructors true and false , for which the term
fun b → if b returns (b || ∼b = true) then refl equal true else refl equal true

is a proof of ∀ b: bool, b || ∼b = true. This proof does a dependent case analysis
on b and returns in each case a proof of true = true, the term ( refl equal true),
thanks to the fact that boolean functions are computable.

When working in a decidable domain, the distinction between propositions
and booleans does not make sense anymore. The small scale reflection proposes
a generic mechanism to have the best of the two worlds and move freely from
a propositional version of a decidable predicate to its boolean version. For this,
booleans are injected into propositions using the coercion mechanism:

Coercion is true (b: bool) := b = true.

Now, every time the Coq system expects a proposition but receives a boolean
b, it will automatically coerce it into the proposition ( is true b), i.e the propo-
sition b = true. Coercions are also omitted by the prettyprinter, so everything is
completely transparent to the user. Then, the inductive predicate reflect is used
to relate propositions and booleans

Inductive reflect (P: Prop): bool → Type :=
| Reflect true : P ⇒ reflect P true
| Reflect false : ¬P ⇒ reflect P false.

The statement ( reflect b P) indicates that ( is true b) and P are two logically
equivalent propositions. In the following, we use the notation b ↔ P for ( reflect

b P). For instance, the following lemma:

Lemma andP: ∀ b1 b2, (b1 ∧b2) ↔ (b1 && b2).

relates the boolean conjunction && and the logical one ∧ . Note that in andP, b1

and b2 are two boolean variables and the proposition b1 ∧ b2 hides two coercions.
The conjunction of b1 and b2 can then be viewed as b1∧b2 or as b1&& b2. A
naming convention in SSReflect is to postfix the name of view lemmas with
P. For example, orP relates || and ∨ , negP relates ∼ and ¬.



Views are integrated to the proof language. If we are to prove a goal of the
form (b1∧b2)→ G, the tactic case ⇒ E1 E2 changes the goal to G adding to the
context the two assumptions E1: b1 and E2: b2. If the goal is of the form (b1&&

b2)→G instead, we simply need to change the tactic to case/andP⇒ E1 E2 to
perform the necessary intermediate change of view.

Suppose now that our goal is b1&& b2. In order to split this goal into two
subgoals, we use a combination of two tactics: apply/andP; split. The first tactic
performs the change of view so that the second tactic can do the splitting.
Note that if we happen to have in the context an assumption H: b1, instead of
performing the splitting, the tactic rewrite H /=, i.e., rewriting with H followed
by a simplification, can directly be used to transform the goal b1&& b2 into b2.

Views also provide a convenient way to swap between several (logical) char-
acterisations of the same (computational) definition, having a view lemma per
interpretation. A trivial example is the ternary boolean conjunction. If we have
a goal of the form b1 && (b2 && b3) →G, applying the tactic case/andP leads
to the goal b1 → b2 && b3 →G. We can also define an alternative view with

Inductive and3 (P Q R: Prop): Prop := And3: P →Q →R → (and3 P Q R).

Lemma and3P: ∀b1 b2 b3, (and3 b1 b2 b3) ↔ (b1 && (b2 && b3)).

Now, the tactic case/and3P directly transforms the goal b1 && (b2 && b3) →G

into b1 →b2 → b3 →G.

2.3 Libraries

In our formalisation of finite groups, we reused the base libraries initially devel-
oped for the formal proof of the Four Colour theorem. They consist in a hierarchy
of structures and a substantial toolbox to work with finite types. At the bottom
of this hierarchy, the structure eqType deals with types with decidable equality.

Structure eqType : Type := EqType {
sort :> Type;
== : sort → sort → bool;
eqP : ∀ x y, (x = y) ↔ (x == y)

}.

The :> symbol declares sort as a coercion from an eqType to its carrier type. It
is the standard technique to get subtyping, an object of type eqType can then be
viewed as an object of type Type. In the type theory of Coq, the only relation we
can rewrite with is the primitive (Leibniz) equality. When another equivalence
relation is the intended notion of equality on a given type, the user usually needs
to use the setoid workaround [3]. Unfortunately, setoid rewriting does not have
the same power as primitive rewriting. An eqType structure not only assumes
the existence of a decidable equality == but also eqP injects this equality into
the Leibniz one, thus promoting it to a rewritable relation.

Any non parametric inductive type can be turned into an eqType choosing for
== the function that checks structural equality. This is the case for booleans and



natural numbers for which a bool eqType and nat eqType are defined as canonical
structures. Canonical structures are used when solving equations involving im-
plicit arguments. Namely, if the type checker needs to infer an eqType structure
on the type nat, it will automatically choose as a default choice the nat eqType

type. By enlarging the set of implicit arguments Coq can infer, canonical struc-
tures ease the handling of the hierarchy of structures.

A key property of eqType structures is that they enjoy proof-irrelevance for
the equality proofs of their elements: every equality proof is convertible to a
reflected boolean test.

Lemma eq irrelevance: ∀ (d: eqType) (x y: d) (E: x = y) (E’: x = y), E = E’.

An eqType structure only defines a domain, in which sets take their elements.
Sets are then represented by their characteristic function

Definition set (d: eqType) := d →bool.

and defining set operations like ∪ and ∩ is done by providing the corresponding
boolean functions.

The next step consists in building lists, elements of type seq d, whose elements
belong to the parametric eqType structure d. The decidability of equality on d

is needed when defining the basic operations on lists like membership ∈ and
look-up index. Then, membership is used for defining a coercion from list to set,
such that ( l x) is automatically coerced into x ∈ l.

Lists are the cornerstone of the definition of finite types. A finType structure
is composed of a list of elements of an eqType structure, each element being
unique.

Structure finType : Type := FinType {
sort :> eqType;
enum : seq sort ;
enumP : ∀ x, count (set1 x) enum = 1
}.

where (set1 x) is the set that contains only x and (count f l) computes the num-
ber of elements y of the list l for which (f y) is true.

Finite sets are then sets taken in a finType domain. In the library, the basic
operations are provided. For example, given A a finite set, (card A) represents
the cardinality of A. All these operations come along with their basic properties.
For example, we have:

Lemma cardUI : ∀ (d: finType) (A B: set d),
card (A ∪ B) + card (A ∩ B) = card A + card B.

Lemma card image : ∀ (d d’: finType) (f: d →d’) (A: set d),
injective f ⇒ card (image f A) = card A.

3 The group library

This section is dedicated to the formalisation of elementary group theory. We
justify our definitions and explain how they relate to each other.



3.1 Graphs of function and intensional sets

We use the notation f=1g to indicate that two functions are extensionally equal,
i.e the fact that ∀ x, f x = g x holds. In Coq, f=1g does not implies f = g. This
makes equational reasoning with objects containing functions difficult in Coq
without adding extra axioms. In our case, extra axioms are not needed. The
functions we manipulate have finite domain so they can be finitely represented
by their graph. Given d1 a finite type and d2 a type with decidable equality, a
graph is defined as

Inductive fgraphType : Type :=
Fgraph (val: seq d2) (fgraph sizeP: size val = card d1): fgraphType.

It contains a list val of elements of d2, the size of val being exactly the cardinal
of d1. Defining a function fgraph of fun that computes the graph associated to a
function is straightforward. Conversely, a conversion fun of fgraph is defined to
let the user manipulate graphs as standard functions. With graphs as functions,
it is possible to prove functional extensionality

Lemma fgraphP : ∀ (f g : fgraphType d1 d2), f =1 g ⇔ f = g.

Note that on the left-hand side of the equivalence, f =1g is automatically co-
erced into (fun of graph f) =1(fun of graph g). In order to make graphs a proper
substitute to functions, we need to equip them with the same operations that
the ones proposed for functions. For example, (setType d) corresponds to (set d).
We call elements of (setType d) intensional sets by opposition to the sets defined
by their characteristic function. The notation {x, f x} is used to define the in-
tensional set whose characteristic function is f and (iimage f A) corresponds to
the intensional set of the image of A by f.

Graphs are used to build some useful datastructures. For example, homoge-
neous tuples, i.e. sequences of elements of type K of fixed length n, are imple-
mented as graphs with domain (ordinal n), the finite type {0, 1, 2,. . ., n−1}, and
co-domain K. With this representation, the n-th element of a p-tuple t can be
obtained applying t to n, as soon as n lies in the the domain of t. Also, permu-
tations are defined as function graphs with identical domain and co-domain, the
val list of which does not contain any duplicate.

3.2 Groups

In the same way than eqType structures were introduced before defining sets,
we introduce a notion of (finite) group domain which is distinct from the one of
groups. It is modelled by a finGroupType record structure

Structure finGroupType : Type := FinGroupType {
element :> finType;

1 : element;
−1 : element → element;
∗ : element → element → element;

unitP : ∀ x, 1 ∗ x = x;



invP : ∀ x, x−1 ∗ x = 1;
mulP : ∀ x1 x2 x3, x1 ∗ (x2 ∗ x3) = (x1 ∗ x2) ∗ x3

}.

It contains a carrier, a composition law and an inverse function, a unit element
and the usual properties of these operations. Its first field is declared as a coercion
to the carrier of the group domain.

In the group library, a first category of lemmas is composed of properties
that are valid on the whole group domain. For example:

Lemma invg mul : ∀ x1 x2, (x2 ∗ x1)−1 = x1
−1 ∗ x2

−1.

Also, we can already define operations on arbitrary sets of a group domain.
If A is such a set, we can define for instance:

Definition x ˆ y := y−1 ∗ x ∗ y.
Definition A :∗ x := {y, y ∗ x−1 ∈ A}. (∗ right cosets ∗)
Definition A :ˆ x := {y, y ˆ x−1 ∈ A}. (∗ conjugate ∗)
Definition normaliser A := {x, (A :ˆ x) ⊂ A}.

Some definitions may look less intuitive at first sight since we try as much as
possible to define them as boolean predicates. For example, the set of point-wise
products of two sets is defined as:

Definition A :*: B := {xy, ∼(disjoint {y, xy ∈ (A :∗ y)} B)}

A view lemma gives the natural characterisation of this object:

Lemma smulgP : ∀A B z, (∃ x y, x ∈ A & y ∈ B & z = x ∗ y) ↔ (z ∈ A :*: B).

Lemmas like smulgP belongs to the second category of lemmas composed of the
properties of these operations requiring only group domain sets.

Finally, a group is defined as a boolean predicate, satisfied by sets of a given
group domain that contain the unit and are stable under product.

Definition group set A := 1 ∈ A && (A :*: A) ⊂ A.

It is very convenient to give the possibility of attaching in a canonical way
the proof that a set has a group structure. This is why groups are declared as
structures:

Structure group(elt : finGroupType) : Type := Group {
set of group :> setType elt;
set of groupP : group set set of group
}.

The first argument of this structure is a set, giving the carrier of the group.
Notice that we do not define one type per group but one type per group domain,
which avoids having unnecessary injections everywhere in the development.

Finally, the last category of lemmas in the library is composed of group
properties. For example, given a group H, we have the following property:

Lemma groupMl : ∀ x y, x ∈ H ⇒ (x ∗ y) ∈ H = y ∈ H.



In the above statement, the equality stands for Coq standard equality between
boolean values, since membership of H is a boolean predicate.

We declare a canonical group structure for the usual group constructions so
that they can be displayed as their set carrier but still benefit from an automati-
cally inferred proof of group structure when needed. For example, such canonical
structure is defined for the intersection of two groups H and K that share the
group domain elt :

Lemma group setI : group set (H ∩ K).
Canonical Structure setI group := Group group setI.

where, as in the previous section, ∩ stands for the set intersection operation.
Given a group domain elt and two groups H and K, the stability of the group
law for the intersection is proved in the following way:

Lemma setI stable : ∀ x y, x ∈ (H ∩ K) ⇒ y ∈ (H ∩ K) ⇒ (x ∗ y) ∈ (H ∩ K).
Proof. by move⇒ x y H1 H2; rewrite groupMl. Qed.

The group structure on the H ∩ K carrier is automatically inferred from the
canonical structure declaration and the by closing command uses the H1 and H2

assumptions to close two trivial generated goals.
This two-level definition of groups, involving group domain types and groups

as first order citizens equipped with canonical structures, plays an important
role in doing proofs. Type inference is then used to perform proof inference from
the database of registered canonical structures.

3.3 Quotients

Typically, every local section of our development assumes once and for all the
existence of one group domain elt to then manipulate different groups of this
domain. Nevertheless, there are situations where it is necessary to build new
finGroupType structures. This is the case for example for quotients. Let H and K

be two groups in the same group universe, the quotient K/H is a group under the
condition that H is normal in K. Of course, we could create a new group domain
for each quotient, but we can be slightly smarter noticing that given a group H,
all the quotients of the form K/H share the same group law, and the same unit.
The idea is then to have all the quotients groups K/H in a group domain ./H.
The largest possible quotient is N(H)/H, where N(H) is the normaliser of H and
all the other quotients are subsets of this one.

In our formalisation, normality is defined as:

Definition H / K := (H ⊂ K) && (K ⊂ (normaliser H)).

If H / K, H-left cosets and H-right cosets coincide for every element of K. Hence,
they are just called cosets. Once again, we carefully stick to first order predicates
to take as much benefit as possible from the canonical structure mechanism. If
necessary, side conditions are embedded inside definitions by the mean of boolean
tests. Like this, we avoid having to add pre-conditions in the properties of these
predicates to insure well-formedness. The definition of cosets makes no restriction
on its arguments:



Definition coset (A : setType elt) (x : elt ) :=
if (x ∈ (normaliser A)) then A :∗ x else A.

The set of cosets of an arbitrary set A is the image of the whole group domain
by the coset operation. Here we define the associated sigma type:

Definition cosets (A : setType elt):= iimage (coset A) elt.
Definition cosetType (A : setType elt):= eq sig (cosets A).

where eq sig builds the sigma type associated to a set. This cosetType type can
be equipped with canonical structures of eqType and finType and elements of
this type are intentional sets.
The quotient of two groups of the same group domain can always be defined:

Definition A/B := iimage (coset of B) A.

where coset of : elt → (cosetType A) injects the value of (coset A x) in (cosetType

A). Thanks to the internal boolean test in coset, A/B defines in fact [A ∩
N(B)]/B.

When H is equipped with a group structure, we define group operations on
(cosetType H) thanks to the following properties:

Lemma cosets unit : H ∈ (cosets H).
Lemma cosets mul : ∀Hx Hy : cosetType H, (Hx :*: Hy) ∈ (cosets H).
Lemma cosets inv : ∀Hx : cosetType H, (Hx :−1) ∈ (cosets H).

where A :−1 denotes the image of a set A by the inverse operation. Group prop-
erties are provable for these operations: we can define a canonical structure of
group domain on cosetType, depending on an arbitrary group object. Canonical
structures of groups, in this group domain, are defined for every quotient of two
group structures. A key point in the readability of statements involving quotients
is that the ./. notation is usable because it refers to a definition independent of
proofs; the type inference mechanism will automatically find an associated group
structure for this set when it exists.

Defining quotients has also been a place where we had to rework our for-
malisation substantially using intensional sets instead of sets defined by their
characteristic function. In the library of finite group quotients, there are two
kinds of general results. The first one states equalities between quotients, like
the theorems about the kernel of quotient morphism. The second, often heavily
relying on properties of the first kind, builds isomorphisms between different
groups, i.e. groups having distinct carriers (and hence operations). For example,
this is the case for the so-called three fundamental isomorphism theorems. The
initial version of the quotients was using sets defined by their characteristic func-
tion. Having sets for which function extensionality does not hold had forced us
to use setoid. For theorems with types depending on setoid arguments, especially
the ones stating equalities, we had to add one extensional equality condition per
occurrence of such a dependant type in the statement of the theorem in order
to make these theorems usable. The situation was even worse since, in order to
apply one of these theorems. the user had to provide specific lemmas, proved
before-hand, for each equality proof. This was clearly unacceptable if quotients



were to be used in further formalisations. Using intensional sets has simplified
everything.

3.4 Group Morphisms

Group morphisms are functions between two group domains, which comply with
the group laws of their domain and codomain. Since we do not create one type per
group, the notion of morphism is parametrised by a group on which morphism
properties hold. The fundamental property of group morphisms is that they
preserve group structures under image and pre-image.

To avoid having to use technical lemmas about the restriction of morphism
domains, we want the image and preimage of groups by morphism to have a
canonical structure of group. Thus, the values of a given function alone should
be enough to determine the largest group on which this function may be seen as
a morphism.

We have embedded the domain of a morphism inside its computational def-
inition by giving a default unit value outside the group where the morphism
properties are supposed to hold. Now, the problem is to compute back the do-
main of a morphism candidate from its values, identifying the kernel among the
set of elements mapped to the unit:

Definition ker (f: elt → elt’) := {x:elt ⊂ {y: elt, f (x ∗ y) == f y}}.

which can be equipped with a canonical group structure. Morphism domains are
defined as:

Definition mdom (f: elt → elt’) := ker ∪ {x, f x != 1}.

Morphisms are defined by the following structure:

Structure morphism : Type := Morphism {
mfun :> elt → elt’;
group set mdom : group set (mdom mfun);
morphM : ∀ x y,
(mfun x) ∈ mdom ⇒ (mfun y) ∈ mdom ⇒ mfun (x ∗ y) = mfun x ∗ mfun y

}.

An isomorphism is a morphism having a trivial kernel. Restricting a mor-
phism is simply done by giving the default unit value outside its intended domain.
This operation is a canonical morphism construction. Morphisms and quotients
are involved in the universal property of morphism factorisation. For any func-
tion between group domains, we define a quotient function by:

Definition fquo H (f : elt → elt’):=
if H ⊂ (ker f) then fun (Hx : cosetType H) ⇒ f (repr Hx)
else fun (Hx : cosetType H) ⇒ 1.

where repr picks a representative in any set of a finGroupType. Given any mor-
phism, its quotient function defines an isomorphism between the quotient of its
domain by its kernel and the image of the initial morphism.



This definition of morphism has been motivated by the formal proofs of the
three fundamental isomorphism theorems. The goal was to eliminate any proof
dependency which cannot be resolved by the type inference system with the help
of canonical structures. The result is that statements are much more readable
and formal proofs much easier. For instance, the third fundamental isomorphism
theorem follows directly from the three lemmas below, because the function f3

is canonically a morphism.

Hypothesis sHK : H ⊂ K.
Hypothesis nHG : H / G.
Hypothesis nKG : K / G.

Let f3 := (fquo (fquo (coset K)).

Lemma mdom f3 : mdom f3 ⊂ (G / H) / (K / H).
Lemma im f3 : iimage f3 = G / K.
Lemma f3 ker : (ker f3) = {1}.

4 Standard theorems of group theory

In order to evaluate how practical our definitions of groups, cosets and quotients
were, we have started formalising some standard results of group theory. In
this section, we present three of them: Sylow theorems, Frobenius lemma and
Cauchy-Frobenius lemma. Sylow theorems are central in group theory. Frobenius
lemma gives a nice property of the elements of a group of a given order. Finally
Cauchy-Frobenius lemma, also called Burnside counting lemma, applies directly
to enumeration problems. Our main source of inspiration for these proofs was
some lecture notes on group theory by Constantine [5].

4.1 Sylow theorems

The first Sylow theorem states the existence of a subgroup H of K of cardinal pn,
for every prime p such that card(K) = pns and p does not divide s. Its formal
statement is the following

Definition sylow K p H := subgroup H K && card H == p ˆ (logn p (card K)).

Theorem sylow1: ∀K p, ∃H, sylow K p H.

The first definition captures the property of H being a p-Sylow subgroup of K.
The function logn computes, if p is prime, the maximum value of i such that
pi divides the cardinality of K, if p is not prime it returns 0. This theorem has
already been formalised by Kammüller and Paulson [12]. They have followed
the standard proof due to Wielandt [20]. Our proof is slightly different and
intensively uses group actions on sets. Given a group domain G and a finite type
S, actions are defined by the following structure



Structure action : Type := Action {
act f :> S → G → S;
act 1 : ∀ x, act f x 1 = x;
act morph : ∀ (x y : G) z, act f z (x ∗ y) = act f ( act f z x) y
}.

Note that we take advantage of our finite setting to replace the usual bijectivity
of the action by the simpler property that acting with the neuter element is the
identity.

A complete account of our proof is given in [18]. The proof works by induction
on n showing that there exists a subgroup of order pi for all 0 < i ≤ n. The
base case is Cauchy theorem. It states the existence of an element of order p
where p is a prime divisor of the cardinality of the group K. To prove it, we use a
simpler argument that the one in [12] where a combinatorial argument based on
some properties of the binomial is used. We first build the set U such that U =
{(k1, . . . , kp) | ki ∈ K and

∏i=p
i=1 ki = 1}. We have that card(U) = card(K)p−1. We

then define the action of the additive group Z/pZ that acts on U as

n 7−→ (k1, . . . , kp) 7→ (kn mod p+1, . . . , k(n+p−1) mod p+1)

Note that defining this action is straightforward since p-tuples are graphs of
function which domain is (ordinal p).

Now, we consider the set S0 of the elements of U whose orbits by the action
are a singleton. S0 is composed of the elements (k, . . . , k) such that k ∈ K and
kp = 1. A consequence of the class equation tells us that p divides the cardinal
of S0. As S0 is non-empty ((1, . . . , 1) belongs to S0), there exists at least one
k 6= 1, such that (k, . . . , k) belongs to S0. The order of k is then p.

In a similar way, in the inductive case, we suppose that there is a subgroup
H of order pi, we consider NK(H)/H the quotient of the normaliser of H in K by H.
We act with H on the left cosets of H by left translation:

g 7−→ hH 7→ (gh)H

and consider the set S0 of the left coset of H whose orbits by the action are
a singleton. The elements of S0 are exactly the elements of NK(H)/H. Again,
applying the class equation, we can deduce that p divides the cardinal of S0 so
there exists an element k of order p in S0 by Cauchy theorem. If we consider H’
the pre-image by the quotient operation of the cyclic group generated by k, its
cardinality is pi+1.

We have also formalised the second and third Sylow theorems. The second
theorem states that any two p-Sylow subgroups H1 and H2 are conjugate. This
is proved acting with H1 on the left coset of H2. The third theorem states that
the number of p-Sylow subgroups divides the cardinality of K and is equal to 1
modulo p. The third theorem is proved by acting by conjugation on the sets of
all p-Sylow subgroups.



4.2 Frobenius lemma

Given an element a of a group G, ( cyclica) builds the cyclic group generated by
a. When proving properties of cyclic groups, we use the characteristic property
of the cyclic function.

Lemma cyclicP: ∀ a b, reflect (∃ n, aˆn == b) (cyclic a b).

The order of an element is then defined as the cardinality of its associated cyclic
group. Frobenius lemma states that given a number n that divides the cardinality
of a group K, the number of elements whose order divides n is a multiple of n.
In our formalisation, this gives

Theorem frobenius: ∀K n, n | (card K) → n | (card {z:K, (orderg z) | n}).

The proof is rather technical and has intensively tested our library on cyclic
groups. For example, as we are counting the number of elements of a given order,
we need to know the number of generators of a cyclic group. This is given by a
theorem of our library

Lemma phi gen: ∀ a,phi (orderg a) = card (generator (cyclic a)).

where phi is the Euler function.

4.3 The Cauchy-Frobenius lemma

Let G a group acting on a set S. For each g in G, let Fg be the set of elements
in S fixed by g, and t the number of orbits of G on S, then t in equal to the
average number of points left fixed by each element of G:

t =
1
|G|

∑
g∈G

|Fg|

To prove this lemma, we consider B, subset of the cartesian product G × S
containing the pairs (g, x) such that g(x) = x. We use two ways to evaluate the
cardinality of B, first by fixing the first component: |B| =

∑
g∈G |Fg|, then by

fixing the second component: |B| =
∑

x∈S |Gx| where Gx is the stabiliser of x
in G. Then, when sorting the right hand-side of the second equality by orbits
we obtain that |B| = |Gx1||Gx1 | + |Gx2||Gx2 | + · · · + |Gxt||Gxt

| the xi being
representatives of the orbit Gxi. Applying the Lagrange theorem on the stabiliser
of xi in G (the subgroup Gxi), we obtain that for each orbit: |Gxi||Gxi | = |G|
and we deduce that |B| = t|G| =

∑
g∈G |Fg|.

This lemma is a particular case of the powerful Pólya method, but it already
has significant applications in combinatorial counting problems. To illustrate
this, we have formally shown that there are 55 distinct ways of colouring with
4 colours the vertices of a square up to isometry. This is done by instantiating
a more general theorem that tells that the number of ways of colouring with n
colours is (n4 + 2n3 + 3n2 + 2n)/8. This last theorem is a direct application of
the Cauchy-Frobenius theorem. The encoding of the problem is the following:



Definition square := ordinal 4.
Definition colour := ordinal n.
Definition colouring := fgraphType square colour.

Vertices are represented by the set {0, 1, 2, 3}, colours by the set {0, 1, . . . , n−1}
and colouring by functions from vertices to colours. The set of isometries is a
subset of the permutations of square that preserve the geometry of the square.
In our case, we use the characteristic condition that the images of two opposite
vertices remain opposite.

Definition isometry := {p : perm square, ∀ i, p (opp i) = opp (p i)}.

where perm square the permutation group and opp the function that returns the
opposite of a vertex. We get that the isometries is a subgroup of the permuta-
tions, since the property of conserving opposite vertices is stable by composition
and the identity obviously preserve opposite vertices.

Given p an isometry, acting with p is defined as the function that given a
colouring c returns the colouring i 7→ c(p(i)). Each set of identical coloured
squares corresponds to an orbit of this action. To apply Cauchy-Frobenius, we
first need to give an extensional definition of the isometries, i.e. there are 8
isometries: the identity, the 3 rotations of π/2, π and 3π/2, the vertical symmetry,
the horizontal symmetry and the 2 symmetries about the diagonals. Second, we
have to count the elements left fixed by each of the isometry.

The proofs of three theorems presented in this section manipulate many
of the base concepts defined in our formalisation. They have been particularly
important to gave us feed-back on how practical our definitions were.

5 Conclusion

To our knowledge, what is presented in this paper is already one of the most
complete formalisation of finite group theory. We almost cover all the material
that can be found in an introductory course on group theory. Very few standard
results like the simplicity of the alternating group are still missing, but should
be formalised very soon. The only similar effort but in set theory can be found in
the Mizar system [13]. Theorems like the ones presented in Section 4 are missing
from the Mizar formalisation.

Getting the definitions right is one of the most difficult aspect of formalising
mathematics. The problem is not much in capturing the semantics of each in-
dividual construct but rather in having all the concepts working together well.
Group theory has been no exception in that respect. We had lots of try and go
before converging to the definitions presented in this paper. The fact that we
were able to get results like the ones presented in Section 4 relatively easily makes
us confident that our base is robust enough to proceed to further formalisations.

Using SSReflect has been a key aspect to our formal development. It gives
us a very effective way of doing proofs inside the Coq system. Using decidable
types and relying heavily on rewriting for our proofs gives a ‘classical’ flavour
to our development that is more familiar to what can be found in provers like



Isabelle [15] or Hol [10] than what is usually done in Coq. An indication of
the conciseness of our proof scripts is given by the following figure. The standard
library of Coq contains 7000 objects (definitions + theorems) for 93000 lines of
code, this makes a ratio of 13 lines per object. The base library of SSReflect
plus our library for groups contains 1980 objects for 14400 lines, this makes a
ratio of 7 lines per object.
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19. Benjamin Werner. Une théorie des Constructions Inductives. PhD thesis, Paris 7,
1994.

20. Helmut Wielandt. Ein beweis für die Existenz der Sylowgruppen. Archiv der
Mathematik, 10:401–402, 1959.

21. Yuan Yu. Computer Proofs in Group Theory. J. Autom. Reasoning, 6(3):251–286,
1990.


