
Working with Mathematical Structures in Type
Theory

Claudio Sacerdoti Coen and Enrico Tassi

Department of Computer Science, University of Bologna
Mura Anteo Zamboni, 7 – 40127 Bologna, ITALY

{sacerdot,tassi}@cs.unibo.it

Abstract. We address the problem of representing mathematical struc-
tures in a proof assistant which: 1) is based on a type theory with de-
pendent types, telescopes and a computational version of Leibniz equal-
ity; 2) implements coercive subtyping, accepting multiple coherent paths
between type families; 3) implements a restricted form of higher order
unification and type reconstruction. We show how to exploit the previous
quite common features to reduce the “syntactic” gap between pen&paper
and formalised algebra. However, to reach our goal we need to propose
unification and type reconstruction heuristics that are slightly differ-
ent from the ones usually implemented. We have implemented them in
Matita.

1 Introduction

It is well known that formalising mathematical concepts in type theory is not
straightforward, and one of the most used metrics to describe this difficulty is
the gap (in lines of text) between the pen&paper proof, and the formalised ver-
sion. A motivation for that may be that many intuitive concepts widely used in
mathematics, like graphs for example, have no simple and handy representation
(see for example the complex hypermap construction used to describe planar
maps in the four colour theorem [11]). On the contrary, some widely studied
fields of mathematics do have a precise and formal description of the objects
they study. The most well known one is algebra, where a rigorous hierarchy of
structures is defined and investigated. One may expect that formalising algebra
in an interactive theorem prover should be smooth, and that the so called De
Bruijn factor should be not so high for that particular subject.

Many papers in the literature [9] give evidence that this is not the case. In this
paper we analyse some of the problems that arise in formalising a hierarchy of
algebraic structures and we propose a general mechanism that allows to tighten
the distance between the algebraic hierarchy as is conceived by mathematicians
and the one that can be effectively implemented in type theory.

In particular, we want to be able to formalise the following informal piece of
mathematics1 without making more information explicit, expecting the interac-
tive theorem prover to understand it as a mathematician would do.
1 PlanetMath, definition of Ordered Vector Space.

2 C. Sacerdoti Coen, E. Tassi

Example 1. Let k be an ordered field. An ordered vector space over k is a vector
space V that is also a poset at the same time, such that the following conditions
are satisfied

1. for any u, v, w ∈ V , if u ≤ v then u+ w ≤ v + w,
2. if 0 ≤ u ∈ V and any 0 < λ ∈ k, then 0 ≤ λu.

Here is a property that can be immediately verified: u ≤ v iff λu ≤ λv for any
0 < λ.

We choose this running example instead of the most common example about
rings[9,16,3] because we believe the latter to be a little deceiving. Indeed, a
ring is usually defined as a triple (C,+,∗) such that (C,+) is a group, (C,∗) is a
semigroup, and some distributive properties hold. This definition is imprecise or
at least not complete, since it does not list the neutral element and the inverse
function of the group. Its real meaning is just that a ring is an additive group that
is also a multiplicative semigroup (on the same carrier) with some distributive
properties. Indeed, the latter way of defining structures is often adopted also
by mathematicians when the structures become more complex and embed more
operations (e.g. vector spaces, Riesz spaces, integration algebras).

Considering again our running example, we want to formalise it using the
following syntax2, and we expect the proof assistant to interpret it as expected:

record OrderedVectorSpace : Type := {
V:> VectorSpace; (∗ we suppose that V.k is the ordered field ∗)
p:> Poset with p.CApo = V.CAvs; (∗ the two carriers must be the same ∗)
add le compat: ∀ u,v,w:V. u ≤ v → u + w ≤ v + w;
mul le compat: ∀ u:V.∀α :k. 0 ≤ u → 0 < α→ 0 ≤ α ∗ u
}.
lemma trivial: ∀R.∀ u,v:R. (∀α . 0 < α→ α ∗ u ≤ α ∗ v) → u ≤ v.

The first statement declares a record type. A record type is a sort of labelled
telescope. A telescope is just a generalised Σ-type. Inhabitants of a telescope of
length n are heavily typed n-tuples 〈x1, . . ., xn〉T1,...,Tn where xi must have type
Tix1. . .xi−1. The heavy types are necessary for type reconstruction. Instead, in-
habitants of a record type with n fields are not heavily typed n-tuples, but
lighter n-tuples 〈x1, . . ., xn〉R where R is a reference to the record type declara-
tion, which declares once and for all the types of fields. Thus terms containing
inhabitants of records are smaller and require less type-checking time than their
equivalents that use telescopes.

Beware of the differences between our records — which are implemented, at
least as telescopes, in most systems like Coq — and dependently typed records
“à la Betarte/Tasistro/Pollack” [5,4,8]:

1. there is no “dot” constructor to uniformly access by name fields of any record.
Thus the names of these projections must be different, as .CApo and .CAvs.

2 The syntax is the one of the Matita proof assistant, which is quite close to the one
of Coq. We reserve λ for lambda-abstraction.

Working with Mathematical Structures in Type Theory 3

We suppose that ad-hoc projections .k, .v, etc. are automatically declared
by the system.
When we write x.v we mean the application of the .v function to x;

2. there is no structural subtyping relation “à la Betarte/Tasistro” between
records; however, ad-hoc coercions “à la Pollack” can be declared by the
user; in particular, we suppose that when a field is declared using “:>”, the
relative projection is automatically declared as a coercion by the system;

3. there are no manifest fields “à la Pollack”; the with notation is usually
understood as syntactic sugar for declaring on-the-fly a new record with a
manifest field; however, having no manifest fields in our logic, we will need a
different explanation for the with type constructor, it will be given in Sec. 2.

When lambda-abstractions and dependent products do not type their vari-
able, the type of the variable must be inferred by the system during type recon-
struction. Similarly, all mathematical notation (e.g. “∗”) hides the application
of one projection to a record (e.g. “?.∗” where ? is a placeholder for a particu-
lar record). The notation “x:R” can also hide a projection R.CA from R to its
carrier.

All projections are monomorphic, in the sense that different structures have
different projections to their carrier. All placeholders in projections must be in-
ferred during type reconstruction. This is not a trivial task: in the expression
“α ∗ u ≤ α ∗ w” both sides of the inequation are applications of the scalar prod-
uct of some vector space R (since u and v have been previously assigned the type
R.CA); since their result are compared, the system must deduce that the vector
space R must also be a poset, hence an ordered vector space.

In the rest of the paper we address the problem of representing mathematical
structures in a proof assistant which: 1) is based on a type theory with dependent
types, telescopes and a computational version of Leibniz equality; 2) implements
coercive subtyping, accepting multiple coherent paths between type families; 3)
implements a restricted form of higher order unification and type reconstruction.
Lego, Coq, Plastic and Matita are all examples of proof assistants based on such
theories. In the next sections we highlight one by one the problems that all these
systems face in understanding the syntax of the previous example, proposing
solutions that require minimal modifications to the implementation.

2 Dependently typed records in Type Theory

The first problem is understanding the with type constructor employed in the
example. Pollack and alt. in [8] propose the model for a new type theory having
in the syntax primitive dependently typed records, and show how to interpret
records in the model. The theory lacks with, but it can be easily added to the
syntax (adopting the rules proposed in [16]) and also interpreted in the model.
However, no non-prototipical proof assistant currently implements primitive de-
pendently typed records.

4 C. Sacerdoti Coen, E. Tassi

2.1 Ψ and Σ types

In [16], Randy Pollack shows that dependently typed records with uniform field
projections and with can be implemented in a type theory extended with in-
ductive types and the induction-recursion principle [10]. However, induction-
recursion is also not implemented in most proof assistants, and we are looking
for a solution in a simpler framework where we only have primitive records (or
even simply primitive telescopes or primitive Σ-types), but no inductive types.

In the same paper, he also shows how to interpret dependently typed records
with and without manifest fields in a simpler type theory having only primitive
Σ-types and primitive Ψ -types. A Σ-type (Σx:T. P x) is inhabited by heavily
typed couples 〈w,p〉T,P where w is an inhabitant of the type T and p is an
inhabitant of P w. The heavy type annotation is required for type inference. A
Ψ -type (Ψx:T. p) is inhabited by heavily typed singletons 〈w〉T,P,p where w is an
inhabitant of the type T and p is a function mapping x of type T to a value of type
P x. The intuitive idea is that 〈w, p[w]〉T,P and 〈w〉T,P,λx:T. p[x] should represent
the same couple, where in the first case the value of the second component is
opaque, while in the second case it is made manifest (as a function of the first
component). However, the two representations actually are different and morally
equivalent inhabitants of the two types are not convertible, against intuition. We
will see later how it is possible to represent couples typed with manifest fields
as convertible couples with opaque fields. We will denote by .1 and .2 the first
and second projection of a Σ/Ψ -type.

The syntax “Σx:T. P x with .2 = t[.1]” can now be understood as syntactic
sugar for “Ψx:T. t[x]”. The illusion is completed by declaring a coercion from
Ψx:T. p to Σx:T. P x so that 〈w〉T,P,p is automatically mapped to 〈w, p w〉T,P
when required.

Most common mathematical structure are records with more than two fields.
Pollack explains that such a structure can be understood as a sequence of
left-associating3 nested heavily typed pairs/singletons. For instance, the record
r ≡〈nat, list nat, @〉R of type R := {C : Type; T := list C; app: T → T → T} is
represented as4

r0≡〈 (), Type〉Unit, λC:Unit.Type

r1≡〈r0〉ΣC:Unit.Type, λx:(ΣC:Unit.Type).Type1 , λy:(ΣC:Unit.Type). list y.1

r ≡〈r1, @〉Ψy:(ΣC:Unit.Type). list y.1, λx:(Ψy:(ΣC:Unit.Type). list y.1). x.2→x.2→x.2

of type Σx:(Ψ y:(ΣC: Unit. Type). list y .1). x.2 → x.2 → x.2.
However, the deep heavy type annotations are actually useless and make the term
extremely large and its type checking inefficient. The interpretation of with also
becomes more complex, since the nested Σ/Ψ types must be recursively traversed
to compute the new type.
3 In the same paper he also proposes to represent a record type with a right-associating

sequence of Σ/Φ types, where a Φ type looks like a Ψ type, but makes it first fields
manifest. However, in Sect. 5.2.2 he also argues for the left-associating solution.

4 Type1 in the definition of r1 is the second universe in Luo’s ECC [13]. Note that
Type has type Type1

Working with Mathematical Structures in Type Theory 5

2.2 Weakly manifest types

In this paper we dropΣ/Ψ types in favour of primitive records, whose inhabitants
do not require heavy type annotations. However, we are back at the problem of
manifest fields: every time the user declares a record type with n fields, to follow
closely the approach of Pollack the system should declare 2n record types having
all possible combinations of manifest/opaque fields.

To obtain a new solution for manifest fields we exploit the fact that mani-
fest fields can be declared using with and we also go back to the intuition that
records with and without manifest fields should all have the same representa-
tion. That is, when x ≡3 (x is definitionally equal to 3) and p: P x, the term
〈x, p〉R should be both an inhabitant of the record R := { n: nat; H: P n} and
of the record R with n = 3. Intuitively, the with notation should only add in
the context the new “hypothesis” x ≡3. However, we want to be able to obtain
this effect without extending the type theory with with and without adding at
run time new equations to the convertibility check. This is partially achieved
by approximating x ≡3 with an hypothesis of type x = 3 where “=” is Leibniz
polymorphic equality.

To summarise, the idea is to represent an inhabitant of R := {n: nat; H: P n}
as a couple 〈x, p〉R and an inhabitant of R with n=3 as a couple 〈c, q〉R,λc:R. c.n=3

of type Σc:R. c.n=3. Declaring the first projection of the Σ-type as a coercion,
the system is able to map every element of R with n=3 into an element of R.

However, the illusion is not complete yet: if c is an inhabitant of R with n=3,
c .1. n (that can be written as c.n because .1 is a coercion) is Leibniz-equal to
3 (because of c.2), but is not convertible to 3. This is problematic since terms
there were well-typed in the system presented by Pollack are here rejected. Sev-
eral concrete example can already be found in our running example: to type
u + w ≤ v + w (in the declaration of add le compat), the carriers p.CApo and
V.CAvs must be convertible, whereas they are only Leibniz equal. In princi-
ple, it would be possible to avoid the problem by replacing u + w ≤ v + w with
[u+w]p.2≤[v+w]p.2 where [] is the constant corresponding to Leibniz elimina-
tion, i.e. [x]w has type Q[M] whenever x has type Q[N] and w has type N=M.
However, the insertion of these constants, even if done automatically with a
couple of mutual coercions, makes the terms much larger and more difficult to
reason about.

2.3 Manifesting coercions

To overcome the problem, consider c of type R with n=3 and notice that the lack
of conversion can be observed only in c .1. n (which is not definitionally equal to
3) and in all fields of c.1 that come after n (for instance, the second field has type
P c.1.n in place of P 3). Moreover, the user never needs to write c.1 anywhere,
since c.1 is declared as a coercion. Thus we can try to solve the problem by
declaring a different coercion such that c .1. n is definitionally equal to 3. In our
example, the coercion5 is
5 The name of the coercion is knR verbatim, R and n are not indexes.

6 C. Sacerdoti Coen, E. Tassi

definition knR : ∀M : nat. R with n=M → R :=
λm:nat. λ x:(Σc:R. c.n=M). 〈M, [x.1.H]x.2〉R

Once knR is declared as a coercion, c.H is interpreted as (knR 3 c).H which has type
P (knR 3 c).n, which is now definitionally equal to P 3. Note also that (knR 3 c).H is
definitionally equal to [c .1. H]c.2 that is definitionally equal to c .1. H when c.2 is
a closed term of type c .1. n = 3. When the latter holds, c .1. n is also definitionally
equal to 3, and the manifest type information is actually redundant, according
to the initial intuition. The converse holds when the system is proof irrelevant,
or, with minor modifications, when Leibniz equality is stated on a decidable
type [12].

Coming back to our running example, u + w ≤ v + w can now be parsed as
the well-typed term

u (V.+) w ((k
CApo
Poset V.CAvs p).≤) v (V.+) w

Things get a little more complex when with is used to change the value of a
field f1 that occurs in the type of a second field f2 that occurs in the type of a third
field f3. Consider the record type declaration R := { f1: T; f2: P f1; f3: Q f1 f2} and
the expression R with f1= M, interpreted as Σc:R. c. f1= M. We must find a
coercion from R with f1= M to R declared as follows

definition kf1
R : ∀M:T. R with f1 = M → R :=

λM:T. λ x:(Σc:R. c.f1=M). 〈M, [c.1.f2]c.2, w〉

for some w that inhabit Q M [c.1.f2]c.2 and that must behave as c .1. f3 when
c .1. f1≡M. Observe that c .1. f3 has type Q c.1. f1 c.1.f2, which is definitionally
equivalent to Q c.1. f1 [c .1. f2]reflT c.1.f1 , where refl T c.1.f1 is the canonical proof of
c .1. f1= c.1. f1. Thus, the term w we are looking for is simply [[c .1. f3]]c.2 which
has type Q M [c.1.f2]c.2 where [[]] is the constant corresponding to computational
dependent elimination for Leibniz equality:

lemma [[]]p : Q x (reflA x) →Q y p.
where x : A, y : A, p : x = y, Q : (∀ z. x = z → Type) and [[M]]reflA x ≡ M.

To avoid handling the first field differently from the following, we can always use
[[]] in place of [] .

The following derived typing and reduction rules show that our encoding of
with behaves as expected.

Phi-Start

` ∅ valid

Phi-Cons
` Φ valid R, l1, . . . , ln free in Φ

Ti : Πl1 : T1.Πli−1.Ti−1.T ype i ∈ {1, . . . , n}
` Φ,R = 〈l1 : T1, . . . , ln : Tn〉 : Type valid

Working with Mathematical Structures in Type Theory 7

Form

(R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ Γ, l1 : T1, . . . , li−1 : Ti−1 ` a : Ti
Γ ` R with li = a : Type

Intro

(R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ Γ ` R with li = a : Type
Γ `Mk : Tk M1 . . . Mi−1 a Mi+1 . . . Mk−1 k ∈ {1, . . . , i− 1, i+ 1, . . . , n}
Γ ` 〈〈M1, . . . ,Mi−1, a,Mi+1, . . . ,Mn〉R, reflA a〉R,λr:R.a=a : R with li = a

Coerc
(R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ

Γ ` R with li = a : Type Γ ` c : R with li = a

Γ ` kliR a c : R

Coerc-Red

(R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ
Γ ` kliR a 〈〈M1, . . . ,Mn〉R, w〉R,s B 〈M1, . . . ,Mi−1, a, [[Mi+1]]w, . . . , [[Mn]]w〉R

Proj
(R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ

Γ ` R with li = a : Type Γ ` c : R with li = a

Γ ` (kliR a c).lj : Tj (kR a c).l1 . . . (kR a c).lj−1

Proj-Red1
(R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ

Γ ` (kliR a 〈〈M1, . . . ,Mn〉R, w〉R,s).lj BMj

j < i

Proj-Red2
(R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ

Γ ` (kliR a c).li B a

Proj-Red3

(R = 〈l1 : T1, . . . , ln : Tn〉 : Type) ∈ Φ
Γ ` (kliR a 〈〈M1, . . . ,Mn〉R, w〉R,s).lj B [[Mj]]w

i < j

2.4 Deep with construction

In order to interpret the with type constructor on “deep” fields, it is sufficient
to follow the same schema, changing the coercion to make their sub-records
manifest. Formally, when Q := {f: T; l : U} and R := {q: Q; s: S}, we interpret
R with q.f = M with Σc:R. c.q. f = M and we declare the coercion:

definition kq.f
R : ∀M:T. R with q.f = M → R :=

λM:T. λ x:(Σc:R. c.q.f=M).

kqR (kfQ M 〈x.1.1, x.2〉Q, λq:Q. q.f=M)

(match x with 〈〈〈a, l〉Q, s〉R, w〉R, λr:R. r.q.f=M ⇒
〈〈〈a, l〉Q, s〉R, [[reflQ 〈a, l〉Q]]w〉R, λr:R. r.q=kf

Q M 〈〈a,l〉Q, w〉Q, λq:Q. q.f=M
)

8 C. Sacerdoti Coen, E. Tassi

Note that the computational rule associated to the computational dependent
elimination of Leibniz equality is necessary to type the previous coercion:

〈〈〈a, l〉Q, s〉R,[[reflQ〈a, l〉Q]]w〉R, λr:R. r.q=kf
QM〈〈a,l〉Q,w〉Q,λq:Q. q.f=M

is well typed since refl Q 〈a, l〉Q has type 〈a, l〉Q= 〈a, l〉Q that is equivalent to
〈a, l〉Q= kfQ a 〈〈a, l〉Q, reflT a〉Q,λq:Q. q.f=q.f ; thus [[reflQ 〈a, l〉Q]]w has type
〈a, l〉Q= kfQ M 〈〈a, l〉Q, w〉Q, λq:Q. q.f=M.

As expected, (kq.f
R M c).q.f B M for all c of type R with q.f = M. Due to lack

of space we omit all other derived typing and reduction rules associated to the
deep with construct.

2.5 Nested with contructions

Finally, from the derived typing and reduction rules it is not evident that a
type R with la=M with lb=N can be formed. Surprisingly, this type poses no
additional problem. The system simply de-sugars it as

Σd: (Σc:R. c. la=M). (klaR M d).lb=N

and, as explained in the next section, automatically declares the composite coer-
cion k

la,lb
R := λM,N,c. k

lb
R N (klaR M c) as a coercion from R with la=M with lb=N

to R such that: (k
la,lb
R M N c).laBM and (k

la,lb
R M N c).lbBN and

(k
la,lb
R M N 〈〈〈M1,. . ., Mn〉R, wa〉, wb〉).liB{{Mi}}wa,wb

where {{Mi}}wa,wb is Mi (if i<a and i<b), [[Mi]]wa (if a < i < b), [[Mi]]wb (if
b < i < a), [[[[Mi]]wa]]wb (if a < b < i or b < a < i).

2.6 Signature strengthening and with commutation

To conclude our investigation of record types with manifest fields in type theory,
we consider a few additional properties, which are signature strengthening and
with commutation.

An important typing rule for dependently typed records with manifest fields
is signature strengthening: a record c of type R must also have type R with f = R.f

and the other way around. In our setting R with f = R.f is interpreted as
Σc:R. c. f = c.f and we can couple the coercion kf

R from R with f = R.f to R

with a dual coercion ιR from R to R with f = R.f such that: ∀w. kf
R(ιR(w)) ≡w,

∀w.ιR(kf
R(w)) = w and the latter Leibniz equality is strengthened to definitional

equality when w.2 is a closed term or the system is proof irrelevant. The same
can be achieved with minor modificaitons when the equality on the type of the
f field is decidable.

with commutation is the rule that states the definitional equality of
R with f=M with g=N and R with g=N with f=M when both expressions are
well-typed. In our interpretation, the two types are not convertible since they
are represented by different nestings of Σ-types. Moreover, for any label l that

Working with Mathematical Structures in Type Theory 9

follows f and g in R, the l projection of two canonical inhabitants of the two
types built from the same terms are provable equal, but not definitionally equal:
in the first case we obtain a term [[[[M]]wf]]wg for some wf and wg, and in the
second case we obtain a term [[[[M]]wg]]wf . A proof of their equality is simply
[[[[reflT M]]wf]]wg . Definitional equality holds when when wf or wg are canonical
terms — in particular when they are closed terms — or if at least one of the
two types has a decidable equality. In practice, with commutation can often be
avoided declaring a pair of mutual coercions between the two commutated types.

2.7 Remarks on code extraction

Algebra has been a remarkable testing area for code extraction, see the con-
structive proof developed in [9] for example. The encoding of manifest fields
presented in the previous sections behave nicely with respect to code extraction.
The manifest part of a term is encoded in the equality proof, that is erased dur-
ing extraction, projections like kf

R, are extracted to functions that simply replace
one field of the record in input. All occurrences of [[]] are also erased.

3 Structures, inheritance, shared carrier and unification.

Following the ideas from the previous section, we can implement with as syntac-
tic sugar: R with f = M is parsed as Σc:R. c. f = M and our special coercion kf

R

respecting definitional equality is defined from Σc:R. c. f=M to R. The scope of
the special coercion should be local to the scope of the declaration of a variable
of type R with f=M. When with is used in the declaration of one record field,
as in our running example, the scope of the coercion extends to the following
record fields, and also to the rest of the script.

As our running example shows, one important use of with is in multiple
inheritance, in order to share multiply imported sub-structures. For instance, an
ordered vector space inherits from a partially ordered set and from a vector space,
under the hypothesis that the two carriers (singleton structures) are shared.
Since sub-typing is implemented by means of coercions, multiple inheritance
with sharing induces multiple coercion paths between nodes in the coercion
graph (see Fig. 1; dotted lines hide intermediate structures like groups or Riesz
spaces). When the system needs to insert a coercion to map an inhabitant of
one type to an inhabitant of a super-type, it must choose one path in the graph.
In order to avoid random choices that lead to unwanted interpretations and to
type errors (in systems having dependent types), coherence of the coercion graph
is usually required [14,3]. The graph is coherent when the diagram commutes
according to βη-conversion. However in the following we drop η-conversion which
is not supported in Coq and Matita.

One interesting case of multiple coherent paths in a graph is constituted by
coherent paths between two nodes and the arcs between them obtained by com-
position of the functions forming one path. Indeed, it is not unusual in large
formalisation as CoRN [9] to have very deep inheritance graphs and to need

10 C. Sacerdoti Coen, E. Tassi

�� ���� ��f − algebra
r

uuk k k k k k k

""

Q N K
H

D�� ���� ��OrderedV ectorSpace

V

vvmmmmmmmmmmmmm
p

))SSSSSSSSSSSSSS
�� ���� ��Algebra

wwp p p p p p

��

I
@�� ���� ��Poset

CApo ((QQQQQQQQQQQQQ
�� ���� ��V ectorSpace

CAvs

uukkkkkkkkkkkkkkk
�� ���� ��Ring

oo

kjihgfedccba`__�� ���� ��Type

Fig. 1. Inheritance graph from the library of Matita

to cast inhabitants of very deep super-types to the root type. For instance, the
expression ∀ x: R should be understood as ∀ x: k R where k is a coercion from
the ordered, archimedean, complete field of real numbers to its carrier. With-
out composite coercions, the system needs to introduce a coercion to ordered,
archimedean fields, then another one to ordered fields, another one to fields, and
then to rings, and so on, generating a very large term and slowing down the
type-checker.

If coherent DAGs of coercions pose no problem to conversion, they do for
unification, although this aspect has been neglected in the literature. In par-
ticular, consider again our running example, whose coercion graph is shown in
Fig. 1. Suppose that the user writes the following (false) statement: ∀ x. −x ≤ x

where −x is just syntactic sugar for −1 ∗ x. The statement will be parsed as
∀ x:?1. −1 ?4.∗ x ?5.≤ x and the type reconstruction engine will produce the fol-
lowing two unification constraints: ?1≈?4.CAvs (since x is passed to ?4.∗) and
?4.CAvs≈?5.CApo (since −1 ∗ x is passed to ?5.≤). The first constraint is easily
solved, “discovering” that x should be an element of a vector space, or a ele-
ment of one super-structure of a vector space (since ?4 can still be instantiated
with a coercion applied to an element of a super-structure). However, the sec-
ond constraint is problematic since it asks to unify two applications (?4.CAvs

and ?5.CApo) having different heads. When full higher-order unification is em-
ployed, the two heads (two projections) are unfolded and unification will even-
tually find the right unifier. However, unfolding of constants during unification
is too expensive in real world implementations, and higher order unification is
never implemented in full generality, preferring an incomplete, but deterministic
unification strategy.

Since expansion of constants is not performed during unification, the con-
straint to be solved is actually a rigid-rigid pattern with two different heads. To
avoid failure, we must exploit the coherence of the coercion graph. Indeed, since
the arguments of the coercions are metavariables, they can still be instantiated
with any possible path in the graph (applied to a final metavariable representing

Working with Mathematical Structures in Type Theory 11

the structure the path is applied to). For instance, ?4.CAvs can be instantiated to
?6.p.CAvs where ?6 is an ordered vector space and the vector space ?4 is obtained
from ?6 forgetting the poset structure.

Thus the unification problem is reduced to finding two coherent paths in the
graph ending with CAvs and CApo. A solutions is given by paths ?6.V.CApo and
?6.p.CAvs. Another one by ?7.r.V.CApo and ?7.r.p.CAvs where ?7 is an f-algebra.

Among all solutions the most general one corresponds to the pullback (in
categorical terms) of the two coercions, when it exists. In the example, the
pullback is given by V and p. All other solutions (e.g. r .V and r .p) factor trough
it.

If the pullback does not exist (i.e. there are different solutions admitting anti-
unifiers), the system can just pick one solution randomly, warning the user about
the arbitrary choice. Coercion graphs for algebraic structures usually enjoy the
property that there exists a pullback for every pairs of coercions with the same
target.

Finally, note that the Coq system does not handle composite coercions, since
these would lead to multiple paths between the same types. However, long chains
of coercions are somehow problematic for proof extraction. According to private
communication, an early experiment in auto-packing chains of coercions was at-
tempted, but dropped because of the kind of unification problems just explained.
After implementing the described procedure for unification up to coherence in
Matita, we were able to implement coercion packing.

4 Type reconstruction with unification and coercions.

Syntactic de-sugaring of with expression for a large hierarchy of mathemati-
cal structures has been made by hand in Matita, proving the feasibility of the
approach. In particular, combining de-sugaring with the unification up to coher-
ence procedure described in the previous paragraph, we are able to write the
first part of our running example in Matita.

The statement of the trivial lemma, however, is not accepted yet. To fully
understand which problem still arises, we need to introduce type reconstruction
and coercion synthesis algorithms more formally.

4.1 Type reconstruction algorithm

Coq, Lego and Matita use similar algorithms based on [1,2,17] to insert coercions
in user provided ill-typed terms to make them well-typed. Coercions can be
inserted in three different positions: around arguments expected to be sorts (e.g.
when typing bound variables), around application heads (to fix the arity of the
head), and around application arguments (to fix their types).

In the following presentation the coercion synthesis judgement

Γ ` t R
 Γ ` t′ : T

12 C. Sacerdoti Coen, E. Tassi

means that a term t in a well-typed context Γ can be internalised as a well-typed
term t′ of type T ; t′ is obtained by inserting coercions in t. s ranges over sorts
(Prop or Type in CIC). c ranges over declared coercions.

The rules given in [1,17] are the following:

lam
Γ ` T R

 Γ ` T ′ : T ′′ Γ ` T ′′ /≡ s Γ ` c : T ′′ → s′

Γ, x : c T ′ ` b R
 Γ, x : c T ′ ` b′ : U

Γ ` λx : T.b R
 Γ ` λx : c T ′.b′ : Πx : c T ′.U

prod
Γ ` T R

 Γ ` T ′ : T ′′ Γ ` T ′′ /≡ s Γ ` c : T ′′ → s′

Γ, x : c T ′ ` U R
 Γ, x : c T ′ ` U ′ : s

Γ ` Πx : T.U R
 Γ ` Πx : c T ′.U ′ : s

app-head

Γ ` f R
 Γ ` f ′ : F Γ ` F /≡ Πx : B.C

Γ ` c : F → Πx : A.U Γ ` (c f ′) a R
 Γ ` u : U ′

Γ ` f a R
 Γ ` u : U ′

app-arg

Γ ` f R
 Γ ` f ′ : Πx : B.U Γ ` a R

 Γ ` a′ : A
Γ ` A /≡ B Γ ` c : A→ B

Γ ` f a R
 Γ ` f ′ (c a′) : U [c a′/x]

All these rule have a negative precondition. If the precondition is positive, then
the coercion is not needed and thus not inserted.

These rules have been employed in the type reconstruction algorithm of Coq
and Matita. The type reconstruction algorithm is obtained from the syntax di-
rected type inference algorithm by adding metavariables [15] in the calculus
(standing for missing sub-terms) and by replacing conversion (≡) with unifica-
tion (≈). We thus extend our judgement with an environment Θ that is a list
of metavariable declarations (Γ `?i : T) or metavariable instantiations. With ?si
we state a metavariable that can only be instantiated with a sort (Prop or Type
in CIC); with ?ci a metavariable that can only be instantiated with a coercion.
R
 can now instantiate metavariables performing unification, thus the whole

judgement is extended to

Θ : Γ ` t R
 Θ′ : Γ ` t′ : T

Insertion of coercions interacts badly with open terms. Consider, for instance,
the following example and assume a coercion from natural numbers to integers.

∀P : int → Prop. ∀Q : nat → Prop. ∀ b. P b ∧Q b.

Working with Mathematical Structures in Type Theory 13

Here P b is processed before Q b. The rule app-arg is not applied, since the
type of b is a metavariable ?i and ?i≈ int. Then Q b is processed, but now b has
type int, int /≈ nat and there is no coercion from int to nat. The problem here is
that a coercion was needed around the first occurrence of b but since its type
was flexible app-arg was not triggered.

To solve the problem, one important step is the realization that rules that
insert coercions and rules that do not are occurrences of the same rule when iden-
tities are considered as coercions. In [6,7], Chen proposes an unified set of rules
that also employes least upper bounds (lub) in the coercion graph to compute
less coerced solutions. Chen’s rule for application adapted with metavariables in
place of coercions is the following:

I-app

Θ : Γ ` f R
 Θ′ : Γ ` f ′ : C Θ′′ = Θ′, Γ `?ci : C →lub Πx : A.B

Θ′′ : Γ ` a R
 Θ′′′ : Γ ` a′ : A′ Θ′′′′ = Θ′′′, Γ `?cj : A′ → A

Θ : Γ ` f a R
 Θ′′′′ : Γ ` (?ci f ′) (?cj a′) : B[(?cj a′)/x]

Adopting this rule, the problematic example above is accepted:
∀P : int → Prop. ∀Q : nat → Prop. ∀ b. P b ∧ Q b is understood as
∀P : int → Prop. ∀Q : nat → Prop. ∀ b: ?1. (?c2 P) (?c3 b) ∧ (?c4 Q) (?c5 b) where ?1

can be instantiated with nat, ?c3 with the coercion from nat to int and all other
coercions with the identity.

From this example it is clear that Chen’s rules modified with metavariables
are able to type every term generating a large number of constraints that must
inefficiently be solved at the very end looking at the coercion graph.

Note, however, that rule I-appl in its full generality is not required to ac-
cept our running example. We believe this not to be a coincidence. Indeed, most
formulae in the algebraic domain are of a particular shape: 1) universal quan-
tifications are either on structure types (e.g. ∀G : Group) or elements of some
structure (e.g. ∀g : G to be understood as ∀g : G.CA); 2) functions either take
structures in input (e.g. G × G); or they manipulate structure elements whose
domain is left implicit (e.g. : M.CA → nat → M.CA for some monoid M).
In particular, all operations in a structure are functions of the second kind.

Under this assumption, rule I-appl can be relaxed to rule app-head-arg,
which is given below together with the rules for explicitly and implicitly typed
universal quantification.

lam-explicit

Θ : Γ ` T R
 Θ′ : Γ ` T ′ : T ′′

Θ′′ = Θ′, Γ `?sj , Γ `?ci : T ′′ →?sj Θ′′ : Γ, x :?ci T
′ ` b R

 Θ′′′ : Γ ` b′ : U

Θ : Γ ` λx : T.b R
 Θ′′′ : Γ ` λx :?ci T ′.b′ : Πx :?ci T.U

14 C. Sacerdoti Coen, E. Tassi

lam-implicit

Θ′ = Θ,Γ `?i :?sj Θ′ : Γ, x :?i ` b
R
 Θ′′ : Γ, x :?i ` b′ : T ′

Θ : Γ ` λx :?.b R
 Θ′′ : Γ ` λx :?i.b′ : Πx :?i.T ′

prod-explicit

Θ : Γ ` T R
 Θ′ : Γ ` T ′ : T ′′ Θ′′ = Θ′, Γ `?sj , Γ `?ci : T ′′ →?sj

Θ′′ : Γ, x :?ci T
′ ` U R

 Θ′′′ : Γ, x :?ci T
′ ` U ′ : s

Θ : Γ ` Πx : T.U R
 Θ : Γ ` Πx :?ci T ′.U ′ : s

prod-implicit

Θ′ = Θ,Γ `?sj , Γ `?i :?sj Θ′ : Γ, x :?i ` U
R
 Θ′′ : Γ, x :?i ` U ′ : s

Θ : Γ ` Πx :?.U R
 Θ′′ : Γ ` Πx :?i.U ′ : s

app-head-arg

Θ : Γ ` f R
 Θ′ : Γ ` f ′ : F Θ′ : Γ ` a R

 Θ′′ : Γ ` a′ : A
〈Θ′′′, cf : F → Πx : T → U〉 = lubΠ(Θ′′, Γ, F)
〈Θ′′′′, ca : A→ T 〉 = lub(Θ′′′, Γ, A, T)

Θ : Γ ` f a R
 Θ′′′′ : Γ ` (cf f ′) (ca a′) : U ′[ca a′/x]

The auxiliary function lubΠ(Θ,Γ, F) returns a couple 〈Θ′, c : T → Πx : U.V 〉
such that in Θ′ and Γ we have F ≈ T and Πx : U.V is the least upper bound
of all solutions in the coercion graph. Note that, according to the restrictions
we made, F cannot be a flexible term. Thus the computation of the least upper
bound is as in Chen.

The auxiliary function lub(Θ,Γ, T, U) returns a couple 〈Θ′, c : T → U〉 such
that the type of the coercion c can be unified to T → U in Γ and Θ′ and the
coercion is the least upper bound of the solutions in the coercion graph. The
lub function is defined according to the restriction on functions in the algebraic
language. Indeed, by hypothesis we must only consider the following two cases
corresponding to the two kind of functions in our language:

1. f has type S → T for some structure type S and some type T and a has
type ?1 or it has type R for some structure type R. In the first case the lub
is the identity coercion and ?1 is unified with S. In the second case the lub
is the coercion from R to S in the coercion graph.

2. f has type ?1.CAR →? and a has type ?2 or it has type ?2.CAS . In both
cases the lub is the identity coercion and the type of a is unified with ?1.CAR
exploiting the coercion graph as explained in Sect. 3.

Finally, as expected, our rules are not complete outside the fragment we
choose. For instance, assume a coercion from natural numbers to integers and
consider the following statement:

Working with Mathematical Structures in Type Theory 15

lemma broken : ∀ f : (∀A : Type. A →A → Prop). f ?i 3 −2 ∧f ?i −2 3.

Here the type of f is completely specified, and the rule prod-explicit is applied.
The term f ?i, which is outside our fragment, has type ?i → (?i → Prop) and it
is passed an argument of type nat the first time and an argument of type int the
second time. No backtracking free algorithm would be able to type this term.

5 Conclusions.

In this paper we addressed the problem of representing mathematical structures
in a proof assistant based on a type theory with dependent types, telescopes and a
computational version of Leibniz equality. We show how to represent dependently
typed records with manifest fields in type theory exploiting coercive subtyping
and unification up to coherence in coercion graphs.

We made a significant advancement with respect to [16] since we do not re-
quire induction-recursion to have the with construct. Unification up to coherence
seems also a novel approach.

We have also identified a significant fragment of algebra for which a backtracking-
free coercion-aware type reconstruction algorithm can be efficiently implemented.
This latter result requires further investigation (to enlarge the fragment) and a
formal proof of completeness.

References

1. Anthony Bailey. Coercion synthesis in computer implementations of type-theoretic
frameworks. In TYPES ’96: Selected papers from the International Workshop on
Types for Proofs and Programs, pages 9–27, London, UK, 1998. Springer-Verlag.

2. Anthony Bailey. The Machine-Checked Literate Formalisation Of Algebra In Type
Theory. PhD thesis, University of Manchester, 1998.

3. Gilles Barthe. Implicit coercions in type systems. In Types for Proofs and Programs:
International Workshop, TYPES 1995, pages 1–15, 1995.

4. Gustavo Betarte and Alvaro Tasistro. Formalization of systems of algebras using
dependent record types and subtyping: An example. In Proceedings of the 7th.
Nordic workshop on Programming Theory, Gothenburg, 1995.

5. Gustavo Betarte and Alvaro Tasistro. Extension of Martin-Löf’s type theory with
record types and subtyping. In Twenty-five Years of Constructive Type Theory.
Oxford Science Publications, 1998.

6. Gang Chen. Subtyping, Type Conversion and Transitivity Elimination. PhD thesis,
University Paris 7, 1998.

7. Gang Chen. Coercive subtyping for the calculus of constructions. In The 30th
Annual ACM SIGPLAN - SIGACT Symposium on Principle of Programming Lan-
guage (POPL), 2003.

8. Thierry Coquand, Randy Pollack, and Makoto Takeyama. A logical framework
with dependently typed records. Fundamenta Informaticae, 65(1-2):113–134, 2005.

9. Lúıs Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-corn, the constructive
coq repository at nijmegen. In MKM, pages 88–103, 2004.

16 C. Sacerdoti Coen, E. Tassi

10. Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions
in type theory. Journal of Symbolic Logic, 65(2), 2000.

11. Georges Gonthier. A computer-checked proof of the four-colour theorem. Available
at http://research.microsoft.com/~gonthier/4colproof.pdf.

12. Michael Hedberg. Unpublished proof formalized in lego by T. Kleymann and in
coq by B. Barras. http://coq.inria.fr/library/Coq.Logic.Eqdep_dec.html.

13. Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, University of
Edinburgh, 1990.

14. Zhaohui Luo. Coercive subtyping. J. Logic and Computation, 9(1):105–130, 1999.
15. César Muñoz. A Calculus of Substitutions for Incomplete-Proof Representation in

Type Theory. PhD thesis, INRIA, November 1997.
16. Robert Pollack. Dependently typed records in type theory. Formal Aspects of

Computing, 13:386–402, 2002.
17. Amokrane Saibi. Typing algorithm in type theory with inheritance. In The 24th

Annual ACM SIGPLAN - SIGACT Symposium on Principle of Programming Lan-
guage (POPL), 1997.

http://research.microsoft.com/~gonthier/4colproof.pdf
http://coq.inria.fr/library/Coq.Logic.Eqdep_dec.html

	Working with Mathematical Structures in Type Theory

