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Abstract

Interactive Theorem Provers (ITPs) are tools meant to assist the user during the formal development of
mathematics. Automatic proof searching procedures are a desirable aid, and most ITPs supply the user
with an extensive set of facilities to improve automation. However, the black-box nature of most automatic
procedure conflicts with the interactive nature of these tools: a newcomer running an automatic procedure
learns nothing by its execution (especially in case of failure), and a trained user has no opportunities to
interactively guide the procedure towards the solution, e.g. pruning wrong or not promising branches of the
search tree. In this paper we discuss the implementation of the resolution based automatic procedure of the
Matita ITP, explicitly conceived to be interactively driven by the user through a suitable, simple graphical
interface.
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1 Introduction

Most of the development effort behind Interactive Theorem Provers is devoted to
bridge the gap between the high level language used by humans for reasoning and
communicating mathematics, and the low level foundational language understood
by ITPs. Among all facilities offered by ITPs, a high degree of automation is
certainly desirable and several works (see for example [12,11]) have been devoted to
the integration of automatic proof search facilities in interactive theorem provers.
The machinery employed in this integration is usually hidden to the user: when the
automatic procedure finds a proof the interactive theorem prover usually evaluates
the trace left by the prover (if any) and converts it, possibly using some reflection
mechanism (see [5,6]), to a proof in its foundational dialect. What is neglected
by this traditional approach is the interactive nature of the tool. The user has no
feeling of what is going on, why the automatic procedure has possibly failed and
how he can possibly improve the situation. Moreover, when used in a didactical
environment where untrained users are put in front of an interactive theorem prover,
it is desirable to let them use automation facilities freely, but providing them the
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possibility to understand the work done by the automatic procedure or the reasons
of its failure.

The aim of this work is to develop a reasonably fast SLD [13,14] based proof
searching procedure for the interactive theorem prover Matita [3] that is completely
transparent to the user, allowing him to follow the execution of the procedure and
to drive it, taking run-time decisions on how the procedures explores the search
space. As a side effect we obtain a very handy debugging tool, that proved to be
extremely useful to tune and fix the procedure.

To get this result, we develop a SLD engine that performs backtracking without
relying on the call stack (i.e. not using stack frames as choice points). This charac-
teristic, together with a carefully chosen selection function, allow us to effectively
present to the user a view of the ongoing computation.

2 The proof searching procedure

The way proofs are built in Matita is by instantiation. The foundational dialect
of the interactive theorem prover (namely the Calculus of Inductive Construc-
tions [9,16]) is extended with meta-variables [15] (written ?i) whose type represents
a missing part of the proof, called goal.

Definition 2.1 [Proof problem] A proof problem P is a finite list of typing judge-
ment of the form Γ `?j : T where for each metavariable ?i that occurs in the context
Γ and type T there exists a corresponding entry in P.

Each proof step generates a substitution instantiating one or more existing
metavariables, whose entries are also removed from P, and possibly adding new
entries (new open goals) to P.

Definition 2.2 [Substitution] A metavariable substitution Σ is a list of couples
metavariable-term.

Σ = [?1 := t1; . . . ; ?n := tn]

Substitutions are usually performed lazily, thus the status of the ongoing proof
comprises both a proof problem and a substitution. We will call such a pair a proof
status.

For example, the initial status of the just declared conjecture ∀x, y : N.P (x, y)→
Q(x, y) will be

[] `?1 : ∀x, y : N.P (x, y)→ Q(x, y)

together with an empty substitution. After performing hypothesis introduction it
will change to

x, y : N; p : P (x, y) `?2 : Q(x, y)

together with a substitution Σ = [?1 := λx, y : N.λp : P (x, y).?2].
The application of a substitution Σ to a term t is denoted with Σ(t). This

operation is extended to contexts and proof problems, substituting all the types of
abstracted variables (in the context) or the types of of missing proofs (in the proof
problem).
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A proof is over when there are no more proof problems in the proof status, and
the proof of the original conjecture can be obtained applying the substitution to
the initial metavariable.

The proof searching procedure we implemented in the interactive theorem prover
Matita is essentially inspired by SLD resolution [14]: it iterates applications of
known results following a depth-first strategy (up to a given depth). No introduction
of new hypothesis is done (that amounts to assume to have a horn-like base of
knowledge, as it is often the cases), hence the context of the proof remains unchanged
during the execution of the procedure.

The classical rule for SLD resolution follows.

SLD

← A1, . . . , An H ← B1, . . . , Bm Σ = mgu(H,Ai)
← Σ(A1, . . . , Ai−1, B1, . . . , Bm, Ai+1, . . . , An)

CIC is a dependently typed, higher order, language where no most general unifier
can be found in the general case. Nevertheless, an essentially first order unification
heuristic is implemented as part of the so called refiner 1 and largely used in the
process of building proofs. A detailed description of the unification algorithm im-
plemented in Matita can be found in [17] and some recent extensions are described
in [18].

Definition 2.3 [Unification] The process of unifying two terms is denoted with

P, Σ, Γ ` N ?≡M U
; P ′, Σ′

Unification performs only metavariables instantiations, and the resulting Σ′ is
such that Σ′(N) is convertible (that for CIC means equal up to βιδζ-reduction)
with Σ′(M) in context Σ′(Γ) and proof problem Σ′(P ′).

The SLD resolution rule is implemented in Matita as the apply tactic. Since
it is meant for interactive usage, both the selection and computation rule are left
to the user: in the following presentation the goal i and the clause (lemma) c are
user provided. The outcome of the tactic is a proof status or an exception if the
unification step fails.

1 The refiner is the component implementing type-inference, as opposed to the kernel, implementing type-
checking. It is in charge to automatically fill the proof with a lot of negligible information easily inferred
by the context. See e.g. [2] for an architectural outline of Curry-Howard based ITPs.
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Apply-tac

P = Γ1 `?1 : A1, . . . ,Γn `?n : An

P ′ = R(Γ `?B1 : B1, . . .Γ, x1 : B1, . . . , xm−1 : Bm−1 `?Bm : Bm);P

Γ ` c ?B1 . . . ?Bm : H

P ′, Σ, Γ ` H ?≡ Ai
U
; P ′′, Σ′

Σ′′ =?i := c ?B1 . . . ?Bm ; Σ′

(P ′′,Σ′′)

With Γ ` t : T we denote the typing judgement assigning to t the type T in
the context Γ. The reordering function R is applied to the list of new goals, and
as we will see in Section 2.1 it allows to implement some heuristics to increase
performances and avoid the proliferation of meaningless goals.

Note that unifying H with Ai can in general instantiate some ?Bi but not gen-
erate new metavariables, thus the set of new goals opened by the apply tactic is a
subset of {?B1 , . . . , ?Bn}.

Our final goal is to provide the user a tool to observe the automatic procedure
running and possibly drive it without stopping it. To do that, we have to make sure
that some parts of the computation are reasonably stable, such that the user has
enough time to read them before they change. If it was not possible, the user would
have to stop the execution and make it advance step by step, inherently loosing the
speed modern computers have, or alternatively not use the tactic interactively (just
let it run).

To achieve a reasonably stable view of the ongoing computation, we had to
adopt a leftmost, depth first, selection rule. The selection function is fixed and
always chooses the first goal, in the same spirit of Prolog. The proof the procedure
is building up can be seen as some sort of tree: an application of the resolution
rule generates a node with a new son for every newly generated goal, and proceeds
trying to prove all of them. If one fails it backtracks changing the node (if there are
alternative clauses that can be applied). If we assume to have n applicable clauses
and a depth limit d, a node at depth i is updated every (d − i − 1)n iterations,
granting a reasonable stability for shallow nodes.

An alternative search strategy, like for example the discount algorithm [?], that
generates and continuously refines a set of proved (intermediate) results, would not
have worked. What a user needs to know to understand what a discount based
automatic prover is doing is the set of intermediate lemmas proved so far. This set
is usually really huge and continuously changing: new results are added, weaker
results are removed in favour of more general ones, all results are simplified (put in
a canonical form) using newly generated equations.

2.1 The reordering function

To understand why reordering newly generated goals can increase performances,
and also avoids generating many pointless goals, consider the division operation
between natural numbers and the associated predicate divides. A natural number q
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divides n if there exists a p such that n = q ∗ p. In a dependently typed λ-calculus
equipped with inductive types, a natural 2 definition for that predicate would be an
inductive predicate with a single constructor

witness : ∀p, q, n : N.p ∗ q = n→ q|n

This lemma (actually a constructor), when applied, generates two new goals: ?p

of type N and ?H of type ?p ∗ q = n. Attempting to solve ?p first is a bad idea
since we have no real information on ?p except that it is a natural number, while
we know more information concerning the second goal, for example that it involves
the multiplication operation. This piece of information can be exploited by the
computational rule to search for applicable clauses. Moreover, almost every solution
to goal ?H also forces ?p to be some fixed natural number.

Interactive theorem provers are tools used to create libraries of formalized the-
orems; as a consequence the environment from which the computation rule may
choose a lemma to apply is extremely polluted. In case of goals of just type N,
it could even choose to apply the Fibonacci function and then successively try to
guess an input such that the second goal can be solved, possibly backtracking and
guessing another input for the Fibonacci function. The ability of the CIC logic to
compute is very handy in general, but is cases like this one may lead to very long
computations.

2.2 The computation rule

The computation rule has to find a clause (in our case an existing lemma), or
better a list of clauses, that will be applied in order to solve a given goal. ITPs are
equipped with large libraries of already proved results, thus some searching facilities
have to be employed to select a reasonably small amount of lemmas that will then
be effectively applied. Matita has many built-in searching facilities, extensively
described in [1], that can search local and remote libraries for results relevant to
a given goal. These facilities are used to fill in an in-memory trie 3 data structure
together with some parts of the library the user can declare to be pertinent to what
he is doing. On top of this structure a pretty efficient unification approximation
can be performed, resulting in a set of lemmas that is later refined using the real
unification algorithm.

Since we want to present the user only good alternatives, the computational rule
has not only to find good candidates, but also to attempt to apply them, directly
pruning false positives. Moreover, suddenly applying all found lemmas allows to sort
these alternatives looking for example to the number of newly opened goals. The
cands function performs this search and returns a list of alternative proof statuses.

Definition 2.4 [Candidates (of the environment E)] Let g be a goal, P a proof
problem and Σ a substitution environment. Let Γ `?g : T ∈ P. The func-
tion cands applied to a proof status (P, Σ) and a goal g returns a list of tuples

2 An alternative definition, using the computational fragment of CIC to define the division operation and
proving some properties of that function is also possible, but not widely adopted.
3 A trie is a tree of prefixes, a good compromise between search speed and space consumption adopted, in
some of its variants, by many automatic provers.
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(Σ′,P ′, [g1; . . . ; gn]) such that:

• t ∈ E
• Γ ` t : ∀x1 : T1. . . .∀xn : Tn.T

′

• P, Σ, Γ ` T ?≡ T ′ U; P ′, Σ′

• Γ;x1 : T1; . . . ;xi−1 : Ti−1 `?gi : Ti ∈ P ′ ∀i ∈ {1, . . . , n}
• ?g := (t ?g1 . . . ?gn) ∈ Σ′

2.3 Backtracking

The cands function finds a set of relevant lemmas in the global environment (the
library of already proved results) and using the Apply-tac rule attempts to apply
them to a given goal, returning the list of proof statuses relative to successful ap-
plications of that rule. On top of that, an automatic proof searching procedure can
easily be implemented by means of two mutually recursive functions.

For each goal to be solved (gl), the function search calls the computation rule
(implemented by the cands function) that finds a list of lemmas and that uses the
Apply-tac rule to obtain the list of associated proof statuses (cl). Then it tries
to find if one of the resulting proof statuses can be solved, using the first function,
that recursively calls search. If one succeeds, search moves to the next goal to be
solved. A pseudo-OCaml code for that function follows. The choice of OCaml as
the implementation language for the tactic is not arbitrary, since the whole Matita
ITP is written in in that language.

� �
let rec first f l = function
| [] → raise Failure
| hd:: tl →

try f hd
with Failure → first f tl

let rec search gl (S, P) =
match gl with
| [] →S, P
| g :: tl →

let cl = cands (S, P) g in
let S’,P’ = first (fun (S, P, gl) → search gl (S, P)) cl in
search tl (S ’, P’)� �

The code is oversimplified, many checks are missing: for example there is no
bound check, thus this function may diverge. Nevertheless, it is already enough to
see the issue arising with this simple and elegant implementation of backtracking.

The problem with this approach is that informations needed to properly back-
track are kept by the OCaml stack. The try/with construct uses stack frames to
“label” choice points in the derivation to which the function may backtrack. While
this is in general an elegant solution, it can not be employed here, since we want
to show the user the current computation, and OCaml (like most of compiled lan-
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guages) does not provide enough introspection mechanisms to explore the current
call stack.

To reach our objective we have to write a stack-less procedure (that is a tail
recursive function). Before detailing such procedure we want to give an overview of
the final result we obtained, showing the interface we offer to the user.

3 The graphical user interface

The proof searching procedure elaborates fast, but the depth-first proof searching
strategy (that is, selecting always the first goal) makes the shallow part of the
computation pretty stable. For that reason we adopted the viewport widget, that
allows to display only a subpart of a larger picture, by default the most stable.

In Figure 1 the user interface to drive the automatic procedure is shown. On
the background there is the main window of Matita, showing the current open
conjecture (conjecture fifteen). The window is divided in three columns:

• the leftmost shows the progressive number of open conjectures, the number iden-
tifying the current goal and the depth left (the difference between the user defined
bound and the actual depth);

• the column in the middle displays the i-th open conjecture, since it lives in the
original context (displayed by the background window) there is no need to print
again this information;

• the rightmost column lists all lemmas that can be applied to the conjecture. This
column displays the so called choice stack [7], colouring in grey the applied lemma.
Some additional information on these lemmas are displayed using tool tips. If a
lemma is unknown to the user, its type can be shown holding the mouse on its
name.

To attack conjecture fifteen the automatic tactic found a bunch of lemmas that
can be applied. The former, witness, has already been applied and is thus coloured
in grey. The list of grey items, read top to bottom, is the list of lemmas applied
so far. All its alternatives are shown on its right. The application of the witness
lemma to a goal of the form n|m opens two conjectures: the former (number 52)
is that for a certain ?51, m = n∗?51 and the latter (number 51) is the witness ?51

itself.
The user already sees the result of the reordering function R, since newly opened

goals have been sorted, preferring goal 52 to 51.
The next step performed by the automatic procedure is to find relevant lemmas

for the conjecture displayed in the second line, place them in the rightmost column,
grey the former and display the result of its application. In case one application fails,
the next alternative is attempted. In case there are no alternatives left, the next
alternative of the previous line it considered. Thus, if no lemmas can be applied to
conjecture 52, both line one and two are removed together with the witness lemma
that generated them and the lemma div mod spec to divides is applied.

The user can execute the tactic step by step with the next button, and switch
between the running status and the paused one with the buttons pause and play.
To drive the proof searching algorithm the user can interact with the lemmas in
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Figure 1. Auto interaction window

the rightmost column. In Figure 1 the user just clicked on the transitive divides
lemma, opening the list of allowed actions. The prune action simply removes the
lemma for the list of alternatives, the follow action makes all alternatives before the
one selected immediately fail.

The pair of big arrow buttons on the right allows to move the current viewport,
focusing on goals that are examined by the proof searching procedure at depth
greater than a fixed amount (ten in this case) in the search tree. The choice of
using a viewport allows to cut out the deepest part of the computation, that is
likely to change very frequently and not worth being displayed.

When a subgoal is solved, two possible scenario arise, depending if some
metavariables are occurring in its statement or not. If some metavariables occur,
the solution found may instantiate them in such a way that other goals in which
such metavariables occur result false. In that case, the line corresponding to that
goal is not removed, and the list of candidates associated to it remains visible and
the user can interact with it. If the goal statement contains no metavariables the
corresponding line is removed, since no choices relevant for the eventual success of
the proof search procedure can be made by the user.

4 Operational description of the tactic

To present the user such a window, the search procedure has to be stack-less. All
informations have to be accessible by the graphical user interface at any time. That
means the procedure has to be a for-program (or a tail recursive function) keeping
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the computation tree (and informations needed for backtracking) into a first order
object and possibly pass it to the GUI.

To formally describe how the procedure works and the data structure used to
represent the computation status we need to define the following objects.

Definition 4.1 [Proof of goal] Given a goal (metavariable number) g and a substi-
tution Σ, the proof of g denoted with Σ(g) is the least fixed point of Σ(·) starting
from ?g.

This function is not only used at the end of the tactic to build the proof object
for the main conjecture, but also to create (and cache) the proof of intermediate
results, avoiding to search twice the same proof.

Definition 4.2 [Metas of term] Given a term t the set of metavariables occurring
in t is denoted with M(t).

As we already anticipated in the previous section, the procedure behaves differ-
ently if a metavariable occurs in a goal.

Definition 4.3 [Cache] A cache θ is a partial function from terms (actually types)
to terms. Its domain can be extended with the operation θ[T 7→ t]. All terms in θ

live in the same context.

We use the notation θ[T 7→ Σ(g)] to update θ associating the proof of g with T .
We use ⊥ to represent failures, thus θ[T 7→ ⊥] extends θ with the information that
T has no proof. The cache is an essential ingredient to obtain good performances
and avoids many kinds of loops.

Definition 4.4 [Element] We call an element a triple of type (in OCaml notation)
proof status ∗ op list ∗ goal list where goal is the type of metavariable indexes
and op is the following algebraic type:� �
type op = D of goal | S of goal ∗ term� �

The D constructor will decorate goals that still have to be processed (toDo),
while S will decorate goals that have been successfully solved, and whose proof may
be cached. The last component of an element is a failure list, containing all goals
that have to be considered failed when the element itself fails (i.e. when the op list
contains some D items that fail).

The last ingredient is the function to find lemmas that can be applied to a
given goal, that is the function cands described in Section 2.2. The only needed
modification is to make this function also return the applied lemma together with
the proof status: this is needed to display the choice stack to the user. Note that
cands can easily be extended to look for applicable lemmas not only in the global
environment E but also in θ since all elements in θ live in the same context Γ of the
goal (the proof searching procedure never alters Γ).

In Table 1 we define the step function mapping a list of elements and a cache
to a new list of elements equipped with a possibly updated cache. This function
is the core of the automatic procedure, and is applied until a Failure or Success
status is reached. We use ◦ for list concatenation. The complete failure status is
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(((P,Σ) as P, St
g :: tl, f l) :: el, θ)

step−→ ((P, tl, f l) :: el′, θ′) (i)

when M(T ) = ∅ and Γ `?g : T ∈ P

where θ′ = θ[T 7→ Σ(g)] and el′ = purge(el, tl)

(((P,Σ) as P, St
g :: tl, f l) :: el, θ)

step−→ ((P, tl, f l) :: el, θ) (ii)

when M(T ) 6= ∅ and Γ `?g : T ∈ P

(((P,Σ), Dg :: tl, f l) :: el, θ)
step−→ (((P,Σ′), tl, f l) :: el, θ) (iii)

when θ(T ) 6= ⊥ and Γ `?g : T ∈ P

where Σ′ = Σ ◦ [?g := θ(T )]

(((P,Σ), Dg :: tl, f l) :: el, θ)
step−→ (el, θ′m+1) (iv)

when θ(T ) = ⊥ and Γ `?g : T ∈ P

where θ′1 = θ and fl = {g1; . . . ; gm}

and Γg `?g : Tg ∈ P for g ∈ {1, . . . ,m}

and θ′g+1 = θ′g[Tg 7→ ⊥] for g ∈ {1, . . . ,m}

(((P,Σ), Dg :: tl, f l) :: el, θ)
step−→ (el, θ′m+1) (v)

when cands(P, g) = []

where θ′1 = θ and fl = {g1; . . . ; gm}

and Γg `?g : Tg ∈ P for g ∈ {1, . . . ,m}

and θ′g+1 = θ′g[Tg 7→ ⊥] for g ∈ {1, . . . ,m}

((P,Dg :: tl, f l) :: el, θ)
step−→ ((P ′1, l1@tl, []) :: . . . :: (P ′m, lm@tl, g :: fl) :: el, θ) (vi)

where cands(P, g) = (t1, P ′1, g1,1 . . . g1,ni) :: . . . :: (tm, P ′m, gm,1 :: . . . :: gm,nm)

and li = R([Dgi,1 . . . ;Dgi,ni
]) ◦ [Sti

g ] for i ∈ {1 . . .m}

((P, [St
g], f l) :: el, θ)

step−→ (Success P) (vii)

([], θ)
step−→ Failure (viii)

Table 1
Automatic procedure operational description
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represented by ([], θ): the elements list can be considered to list all the alternatives
that can be used prove the initial goal, being empty means that all alternatives
have been explored with a negative result. The annotation t in St

g is not used in the
operational semantic, and t represents the lemma that was applied to g. Remember
we have to show the user the history of lemmas applied so far. The procedure starts
with the following configuration, where g is the initial goal and P the initial proof
status and θ an empty cache.

([(P, [Dg], [])], θ)

On such a status the step function applies rule (vi). calling the cands function
to get a list of alternative proof statuses. All new goals are decorated with a D
constructor, and sorted using the R function. They are positioned in front of the tl
list, separated with an S item for the processed goal g. This item, when processed,
will cache the proof found for g, and this will happen only after all newly created
D items are solved.

In our example, assuming the result of the cads function amounts to
cands(P, g) = [(t1, P1, [g1]); (t2, P2, [g2; g3])] we obtain the following state.

([(P, [Dg], [])], θ)
step−→ ([(P1, [Dg1 ;St1

g ], []); (P2, [Dg2 ;Dg3 ;St2
g ], [g])], θ)

Note that a new element is generated for every alternative proof status returned
by the cands function. All of them, except the last one, are equipped with an empty
failure ( fl ) list. In that way, if they fail, the cache will not be updated with a failure
for g, since there are still valid alternatives for that goal. On the contrary, the last
element inherits the failure list and adds to it g.

Rules (i) and (ii) process a success (that is an S item). The first rule is applied
when no metavariable occurs in the goal, thus the proof found will not have side
effects on the rest of the computation and can be safely added to the cache θ. In
that case, the purge function is used to drop alternatives (brothers of g). They can
be identified in the flat el list comparing the list of items, since the tl is inherited
by all brothers (in rule (vi)) and is never modified.

Rule (iii) solves a Dg item when the cache θ holds a proof for the goal g. The
substitution is enriched with an entry for g.

Rules (iv) and (v) are for partial failures, the former is applied when no applica-
ble clauses are found, the latter when a failure was previously cached for the same
goal.

Rule (vii) is for success, that is when no more items have to be processed. The
final proof status is returned.

4.1 Improvements

The procedure presented in Table 1 can be improved in many ways, for exam-
ple giving a bound to the search space or refining the caching mechanism. These
improvements have been omitted from Table 1 to increase its readability, but are
explained in the following.
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To limit the search tree explored by the procedure to a certain depth, or even a
number of nodes, some additional fields have to be added to the element structure.
To efficiently keep track of the depth or size of the tree, the element structure is
enriched with two integers representing the depth left and the actual size of tree:
every time a D item is processed, the depth limit (as well as the size) is decreased.
When an S item is processed the depth is increased again. The additional following
rule is then added to the operational description:

((P, items, fl, depth, size) :: el, θ)
step−→ (el, θ) (iii bis)

when depth < 0 ∨ size < 0

The cache θ is still not optimal, since a goal g of type T can be associated with ⊥
because the algorithm run out of depth (or size). If the algorithm encounters again
the same goal type T with a greater depth, it could retry. To fix this problem,
goals have to be paired with the depth at which they have been generated in the
failure (fl) list, and the ⊥ symbol annotated with that depth. Then rule (iv) can
be refined as follows:

(((P,Σ) as P,Dg :: tl, f l, depth, size) :: el, θ)
step−→ (el, θ′m+1) (iv)

when θ(T ) = ⊥k and k ≥ depth and Γ `?g : T ∈ P

where θ′1 = θ and fl = {(g1, d1); . . . ; (gm, dm)}

and Γg `?g : Tg ∈ P for g ∈ {1, . . . ,m}

and θ′g+1 = θ′g[Tg 7→ ⊥dg ] for g ∈ {1, . . . ,m}

Note that the last line stores failures for goals in the fl list that have to be enriched
with the depth at which they have been processed in rule (vi).

The cands function can be modified to properly sort the list of returned proof
statuses, in such a way that the most promising ones are processed first. The
simplest heuristic is to count the number of newly generated goals (the length of li
in rule (iv)).

4.2 Interfacing with the GUI

The GUI and the automatic procedure run in different threads. Rule (vi) checks a
condition variable 4 , associated with the pause button of the GUI, before proceeding.
The computation status (the el list) is purely functional and every loop sets a global
reference to that variable, allowing the GUI thread to render it.

The element list contains all the information needed by the GUI, but not in an
handy format. The automatic procedure and the data structure it manipulates have
been designed with both speed and user friendliness in mind, but execution speed
has been always preferred to rendering speed or to making the rendering process

4 A condition variable is a widespread synchronisation mechanism allowing one execution context to wait
for a boolean variable to became true, and another execution context to change the value of that variable
eventually waking up every thread waiting on that variable.
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easier. The function to map the element list into a data structure suitable for the
GUI is not interesting, even if far from being trivial, and will not be detailed here. It
essentially amounts in processing in parallel all op lists (one for every element in the
el list), grouping together the lemmas stored in S items. The lemma recorded in S
items is shown to the user as the choice made the procedure. The actual statements
of goals can be computed using the proof status P = (P,Σ), since all goals have an
entry in the proof problem P, and eventual instantiations of metavariables occurring
in their types is recorded in the substitution Σ.

5 Related works

Many debugger or trace visualisation tools have been proposed by the logic/con-
straint programming community. Most of them like the ones described in [20,8]
fall in the so called post-mortem trace analyser, allowing the user to inspect the
computation once it has terminated.

The recent CLPgui [10] employs 2D and 3D visualisation paradigms to show the
user the full search tree, allowing him to navigate it and zoom the interesting parts
of the computation trace.

OzExplorer [19] adopts subtree folding to make the whole tree fit the screen, a
requisite we do not have and thus we adopt a simpler viewport (a restricted view
of the search tree). Moreover we hide solved subgoals (when their solution is not a
choice, i.e. they do not instantiate any metavariable present in any other goal). [7]
introduces the notion of choice stack (list of choices made so far), similar to our list
of grey buttons in the rightmost column.

While our work shares some ideas and follows some visualisation paradigms
described in these papers, the use case of our procedure in an ITP is clearly different
from the general use case of a CLP program. These differences are summarised in
the following:

• our GUI is rarely used to display a huge program (computation), thus it is tailored
to the most frequent case of a tree of depth less then ten

• in ITPs like Matita, thanks to the reasonably large library that equips them, the
branching factor is very high and that prevents a proper tree display: siblings
would be too far to be visually related, thus we dropped the idea of visualising a
tree

• every goal has a meaning per se, thus many informations like goals already solved
can be hidden. The choice stack tells the user where the goal comes from and
this information is enough to follow the computation

For these reasons we had to develop a novel user interface, instead of reusing or
adapting one of the aforementioned tools.

6 Conclusions

In this paper we presented a SLD resolution based automatic procedure for the
interactive theorem prover Matita, that is designed to be driven by the user through
a graphical user interface. In this way we allow unexperienced user to observe the
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procedure running, possibly understanding why it fails or how it managed to solve
a goal for them. Trained users can easily tune the procedure pruning not promising
branches of the computation or following good ones.

A still work in progress addition to this work is making the procedure generate
not only a proof object, but also a proof script (the list of primitive commands to
generate the proofs object) in the spirit of [4]. The choices made by the user inter-
actively have to be recorded so that running again the automatic procedure possibly
honours the same user requests. Having a proof script does not only show the user
what the procedure did, but also greatly decreases the amount of time needed to
re-check the proof script (since proof search has not to be performed again). For-
malising mathematics with an ITP is not an easy task, and refining definitions is a
really frequent activity that usually breaks many already proved lemmas. Having
just a call to an automatic procedure can slow down the process of mending broken
proof scripts, especially if there is no way to inspect what the procedure does, mak-
ing it harder to understand the reasons of a failure. Our work already ameliorates
this situation, but having a proof script that details the previously found proof,
would be even better, allowing a fast re-execution and detection of the problem,
and allowing the user to fix the proof directly if possible, or re-run the automatic
procedure driving it towards a working proof.
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