
UNIVERSITY OF NICE - SOPHIA ANTIPOLIS

DOCTORAL SCHOOL STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

P H D T H E S I S
to obtain the title of

PhD of Sciences

of the University of Nice - Sophia Antipolis

Specialty : Control, Signal and Image Processing

Defended by

Emmanuel Olivi

Coupling of numerical methods
for the forward problem in

Magneto- and
Electro-EncephaloGraphy

prepared at INRIA Sophia Antipolis, Athena Project Team

defended on December, 14th 2011

Advisor : Maureen Clerc - INRIA, Sophia Antipolis
Reviewers : Abderrahmane Bendali - INSA, Toulouse

Marc Bonnet - ENSTA, Paris
Examiners : Christian Bénar - INSERM, Marseille

Olivier Bertrand - INSERM, Lyon
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à vous: Emilien, Alexandre, Emmanuel, Romain, Aurobrata, Sylvain, James, Nicolas, Hassan,

Jaime, Diego, Vivien, . . . Tout particulièrement à Joan et Anne-Charlotte.
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Overview

Résumé

L’électro- et la magnéto-encéphalographie sont deux techniques très utiles pour
observer l’activité électrique du cerveau de par leur résolution temporelle et leur
caractère non invasif. Les mesures sont faites sur la surface extérieure de la tête
(électrodes pour l’EEG et magnétomètres pour la MEG); afin de retrouver les
sources responsables du signal mesuré, un problème inverse de localisation doit être
résolu. Celui-ci requiert une bonne résolution du problème direct, ce qui demande
une bonne modélisation des tissus de la tête, ainsi qu’une représentation fidèle de
ce modèle électro-physiologique par une méthode numérique comme la FEM ou la
BEM. Dans cette thèse, nous nous intéressons au choix critique d’un modèle et de
sa représentation par une méthode numérique notamment pour prendre en compte
l’inhomogénéité de la conductivité du crâne et celle de la matière blanche qui est
proche des sources. Après avoir mis en évidence les avantages et inconvénients des
méthodes courantes, nous exposons une méthode duale de résolution du problème
direct: c’est la méthode adjointe applicable quel que soit la méthode numérique
choisie. Puis en utilisant une approche de décomposition de domaine nous formu-
lons plusieurs méthodes de couplage de méthodes numériques visant à tirer parti
de leurs avantages dans des sous domaines. Cela permet de coupler la BEM avec
la FEM, et implique de nombreux aspects intéressants notamment pour une bonne
prise en compte du crâne. Finalement, nous proposons une nouvelle méthode per-
mettant de traiter des conductivités localement anisotropes ou inhomogènes avec
la BEM.

Abstract

Electro- and Magneto-Encephalography are precious tools for studying brain activ-
ity, notably due to their time resolution and their non invasive nature. Acquisitions
are done on the exterior of the head (scalp electrodes for EEG, and magnetometers
for MEG); in order to recover the sources responsible of the measured signal, an
inverse problem must be solved, for which accurate solutions of the forward problem
must be available. This requires a good modeling of the head tissues, and an appro-
priate representation of this electrophysiological model within numerical methods
such as the BEM or FEM. In this thesis we focus on this dual problem of modeling
and numerical resolution, notably to handle the skull region which must often be
considered anisotropic or highly inhomogeneous in clinical applications, and for the
white matter anisotropy which surrounds the sources in the brain. In this thesis we
first see the common numerical solvers for solving the forward problem, and expose
their strengths and weaknesses. Then, a dual point of view for solving the forward
problem using any numerical method is exposed; which is the adjoint method of our
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forward problem. Its application within a BEM framework is given. Later using a
domain decomposition (DD) framework, we present different coupling procedures
of the main methods BEM and FEM, in order to get both methods advantages
regarding the resolution of the forward problem (notably for handling the skull).
This is done within a DD framework, which appears to be interesting in many
points. Finally, we propose a new method for dealing with locally anisotropic or
inhomogeneous conductivities using a BEM.

Contributions

The main contributions of this thesis are the following:

in Chapter 2: Implementation of the adjoint method for solving, in BEM, the
EEG and MEG forward problem for point-like sensors.

in Chapter 3-4-5: Studying coupling algorithms notably Neumann-Dirichlet. Im-
plementation of a coupling library, which allows for many different couplings,
between BEM and BEM, BEM with tetrahedral FEM, and also BEM with
implicit FEM (Cartesian grid).

in Chapter 6: The handling of perturbations in the conductivity profile within a
BEM framework.

others: Implementation of functionalities for the BEM such as: internal operators
for any sub-domains, implementation of sources within any sub-domains. For
the tetrahedral FEM: handling of anisotropic conductivities such as the one
of the skull, or the one of a white matter fiber. Meshing tools: using CGAL
for generating surfacic meshes out of segmented MRI, or re-meshing of very
fined mesh. Volumic meshes generation with special features such as multi-
compartment model, or approximating at boundaries a given surfacic mesh,
or matching exactly this surfacic mesh (sharp edges).
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’Adjoint method for lead-fields computation in MEEG.’ Human Brain Map-
ping (HBM), jun 2011. [Olivi et al., 2011b]

Maureen Clerc, Alexandre Gramfort, Emmanuel Olivi and Théodore Papadopoulo.
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Notations and units:

Mathematical notations:

r denotes a vector in R3.

f : r ∈ R3 7→ f(r) ∈ R a scalar function.

F : r ∈ R3 7→ F(r) ∈ R3 a function returning a vector (i.e. a vector field).

∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)T
’nabla’, a first-order differential operator.

∆ = ∇·∇ the Laplace operator (or Laplacian), a second-order differential operator
which can be applied to a scalar or vector field.

∇f denotes the gradient of f .

∇ · F denotes the divergence of the vector field F, a scalar function of R3.

∇× F denotes the curl of F, a vector field.

∂
∂t denotes the (partial-) derivative operator with respect to time.

Ω a compact subset of R3.

∂Ω its (Lipshitz) boundary, and Ω̄ its closure i.e. Ω̄ = Ω ∪ ∂Ω.∫
Ω dr

′ denotes a volumic integral.∫
S ds

′ an integral over the surface S.

δ(r) = δ0(r) the Dirac distribution centered at 0.

Physical notations:

V (r) the electric potential at point r (expressed in [V ]: Volts).

E the electric field (expressed in [V.m−1]).

B the magnetic field (expressed in [T ]: Tesla).

ρ the electric charge density [C.m−3].

J the total current density [A.m−2].

Jp the primary current source [A.m−2].

constants:

µ0 = 4π.10−7 the magnetic permeability of the vacuum space (expressed in
[V.s.A−1.m−1]).

ε0 = 1
µ0·c0 the electrical permittivity of the vacuum space.
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1.2.1 Les générateurs électromagnétiques . . . . . . . . . . . . . . . 10
1.2.2 L’EEG et la MEG . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Imagerie fonctionnelle du cerveau avec l’EEG et la MEG . . 16
1.2.4 Localisation de sources en MEEG . . . . . . . . . . . . . . . 18
1.2.5 Le problème inverse . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Le problème direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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Chapter 1

Introduction française

Au fur et à mesure que l’homme progresse dans sa compréhension de la nature,
le cerveau fascine. Sa complexité au niveau structurel est hors de portée de nos
compétences techniques actuelles, un ordinateur ne peut rivaliser avec 1011 = 100
milliards de neurones, chacun interagissant avec des milliers de voisins, le tout
avec une consommation énergétique faible puisqu’il ne consomme que 25 watts au
maximum [Kandel et al., 2000].
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1.1 Contexte

Dans le cerveau se trouvent des cellules qui assurent la transmission de signaux
bio-électriques: les neurones. Des charges électriques sont transmises par l’axone,
puis le signal est relayée à ses synapses par des molécules qui assurent le lien entre
un neurone et ses afférents: un neurotransmetteur (voir Fig.1.1).

Dendrites

Cell body

Nucleus

Myelin sheath

Axon terminal

Axon

Figure 1.1 – Schéma d’un neurone.wikipedia

Le cerveau est également composé de cellules gliales encore plus nombreuses
que les neurones (10 à 50 fois plus). Même si ces cellules ne transmettent pas
directement l’information, elles apportent des nutriments et de l’oxygène aux
neurones. De plus, elles produisent de la myéline qui permet aux neurones d’être
isolés les uns des autres. Le rôle des cellules gliales n’est pas complètement établi,
mais la myéline produite étant blanche baptisa la ’matière blanche’, où leur
concentration est la plus importante, car cette région contient un grand nombre
d’axones contrairement à la matière grise qui elle contient les corps cellulaires des
neurones.
Depuis les début de l’odyssée du cerveau, l’homme essaye d’établir différentes
relations entre l’organisation cellulaire et des fonctions cognitives. Un des buts
majeurs serait la conception d’une carte hautement détaillée du cerveau avec les
fonctions cognitives associées.

1.1.1 L’anatomie du cerveau

Le cerveau est l’organe central du système nerveux. Il flotte dans le liquide céphalo-
rachidien (LCR) et est entouré du crâne qui le protège de l’extérieur et . Il se
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compose de deux hémisphères qui chacun peut être divisé en 4 lobes comme l’indique
la figure 1.2. Ces lobes sont séparés par des fissures que tous les individus partagent.
On peut en première approximation associer ces lobes avec les fonctions suivantes:
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Figure 1.2 – Coupe sagittale d’un cerveau humain.wikipedia

le lobe frontal: dont la fonction est l’aptitude à la prise de décision,
l’établissement de raisonnements, le siège des émotions; des fonctions cog-
nitives de haut niveau.

le lobe pariétal: intègre les informations sensorielles, également associé à
l’orientation, la reconnaissance, le langage.

le lobe temporel: impliqué dans la perception auditive, la sémantique, le langage,
la mémoire.

le lobe occipital: dédié à la vision.

La région hachurée (sous le lobe occipital) est le cervelet qui est impliqué dans
l’équilibre, la posture, . . . Bien qu’il ne génère pas ces mouvements, il les calibre et
les rend précis [Ghez and Fahn, 1985]. La partie extérieure du cerveau est nommé
le cortex ou matière grise, sur lequel l’on voit des circonvolutions appelés gyrus
ou sulci pour respectivement des plis convexes ou concaves. Sous la matière grise
qui représente l’interface du cerveau avec le LCR, se trouve la matière blanche
composées de faisceaux de fibres (regroupement d’axones myélénisés).

1.1.2 Motivations

Historiquement, on a commencé à établir des relations entre ses différentes régions
et l’observation de manifestations extérieures, notamment à la suite de lésions. De
telles lésions peuvent, en effet, amener des pertes de mémoire (court termes et long
terme), la cécité, ou l’impossibilité de prendre une décision, l’obésité, . . . . De telles
observations ont amené les premiers expérimentateurs à penser que la vision n’était
pas simplement le fait des yeux, l’obésité de l’alimentation, . . . mais tous contrôlés
par le cerveau. D’un autre coté, les maladies neuro-dégénératives comme Alzheimer
ou Parkinson, sont causés par la mort de neurones entrâınant celles des fonctions
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associées, comme la mémoire, la mouvement,. . . .
L’épilepsie quant à elle, est une activité hyper-synchrone neuronale générée par une
petite région du cerveau (spécifique à chaque patient). L’étude de telles maladies
constitue également une motivation principale.

Mais dans certains cas, souvent rencontrés sur des personnes ayant des troubles
du développement, le cerveau fascine par son habilité à stocker de l’information,
comme par l’exemple des livres entiers ligne par ligne, ou encore pour ses aptitudes
au calcul arithmétique bien plus avancées qu’un individu ’normal’.

Certains pensent qu’en étudiant et comprenant la manière dont est traitée
l’information dans le cerveau, la construction d’une intelligence artificielle serait
possible. Une autre motivation séduisante consiste à établir une communication du
cerveau vers une machine: de l’ICM (Interface Cerveau-Machine). En analysant les
signaux générés par le cerveau (comme avec de l’EEG), on peut traduire ces infor-
mations en commandes en vue de contrôler un ordinateur. Cette alternative offre
un grand espoir aux personnes dans l’incapacité partielle ou totale de communiquer
(souffrant de syndrome d’enfermement).

1.1.3 L’imagerie médicale

Les techniques d’imageries médicales visent à produire des images 1D, 2D, 3D ou
3D+temps de parties ou de la totalité du cerveau en vue d’une étude clinique de
cet organe. La plupart reposent sur des phénomènes électromagnétiques, d’autres
sur la radioactivité, ou les ondes acoustiques. Chacune possède naturellement des
avantages et inconvénients, et produit ainsi des images à différentes résolutions
spatiale, temporelle ou de différent tissus. À partir de ces données collectées, une
image peut être reconstruite. Les techniques de reconstruction sont un champ de
recherche propre à chaque modalité d’imagerie.

1.1.3.1 L’imagerie par résonance magnétique: l’IRM

La plus connue des modalités d’imagerie pour observer le cerveau est l’IRM, qui
pourvoit les meilleures résolutions de tissus contenant des molécules d’eau (comme
les tissus cérébraux). l’IRM est basée sur l’interaction des protons contenus dans
les molécules d’eau (proton de l’atome d’hydrogène H) avec un champ magnétique
généré par la machine. Ces interactions directement liées aux proportions d’eau
dans les tissus, permettent d’en déduire des images tri-dimensionnelles où le
contraste représente cette hétérogénéité de la concentration d’eau dans les tissus.
En variant le type d’acquisition (champ magnétique et l’impulsion radio-fréquence
émise: séquence T1 et T2 par exemple) on obtient des images de contraste différent
pour la peau, la graisse, le LCR, le crâne, . . . bien que le crâne reste difficilement
visible sur une IRM: voir Fig.(1.3).
Le principe de l’IRM a donné lieu à d’autres modalités comme l’IRM fonctionnelle
(IRMf) qui permet de mesurer certaines quantités liées à l’activité du cerveau.
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Figure 1.3 – Coupe sagittale d’une IRM T1.

Cette modalité sera détaillée section.1.1.4.2.

L’IRM de diffusion (IRMd) mesure quant à elle la diffusion des molécules d’eau
dans le cerveau dans des directions spécifiées. Cette diffusion serait isotrope dans
un milieu homogène; l’anisotropie de la diffusion reflète ainsi les faisceaux de fi-
bres présents notamment dans la matière blanche. Cette anisotropie est mise en
évidence en calculant une valeur scalaire l’anisotropie fractionnaire (la FA:fractional
anisotropy) en chaque voxel. En intégrant plusieurs images obtenues dans des di-
rections différentes, on peut construire un modèle de diffusion en chaque voxel,
le plus simple étant un modèle de tenseur (DTI pour Diffusion Tensor Imag-
ing). Le modèle de tenseur étant symétrique, il n’a que six inconnues et peut
être représenté par une ellipsöıde. HARDI (pour High-Angular-Resolution Diffu-
sion Tensor Imaging) est une représentation plus fine permettant l’observation de
croisement de fibres. La Fig.(1.4) représente la FA dans la direction principale
(le vecteur propre du tenseur de diffusion), où le codage couleur en RGB encode
les composantes x-y-z du vecteur propre. Le tenseur de diffusion en chaque voxel
de l’image 3D est d’un grand intérêt pour étudier les connectivités au sein du
cerveau. En effet, à partir de l’expression du tenseur de diffusion (DTI), on peut
estimer les fibres qui suivent les directions principales de ces ellipsöıdes. Manip-
ulant ces tenseurs de diffusion a permis l’établissement d’une nouvelle technique
d’imagerie, la tractographie [Mori et al., 1999]-[Basser et al., 2000] (voir Fig.(2.5)).
On peut également reconstruire une tractographie à partir de représentations plus
fine de la diffusion en utilisant HARDI (High Angular Resolution Diffusion Imag-
ing) [Descoteaux et al., 2009].

1.1.3.2 Autres techniques d’imagerie

Comme le crâne est composé de peu de molécules d’eau, il est difficile de le re-
construire à partir d’IRM. D’un autre côté, les rayons-X interagissent bien avec les
os. Ces ondes électromagnétiques furent découvertes en 1895 par Wilhelm Röntgen



1.1. Contexte 7

Figure 1.4 – Coupe axiale d’une DWI colorée en FA.

Figure 1.5 – Une vue 3D d’une tractographie.

et sont considérées comme la première technique d’imagerie. Même si les rayons-X
sont à première vue inoffensifs pour l’homme, une exposition longue ou répétée peut
entrâıner des conséquences négatives sur les corps cellulaires. Sur la Fig.(1.6) est
affichée un CT-scan du crâne, où les artefacts visibles sont dû à certains composants
de la machine.

Les ultra-sons ne pénétrant pas dans le cerveau à cause du crâne, l’imagerie du
cerveau par ultra-sons est impossible. Néanmoins pour des tissus plus souples, les
muscles, liquides, . . . les ultra-sons peuvent fournir de belles images en 2D+temps
(Échographie)

Ces techniques permettent l’observation anatomique du cerveau et non son étude
fonctionnelle.

1.1.4 Observer l’activité du cerveau
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Figure 1.6 – Computed tomography.

1.1.4.1 Techniques invasives

La Tomographie à Émission de Positron (TEP) requiert l’injection d’une
substance radioactive et permet de reconstruire une image en mesurant la
désintégration radioactive de cet élément introduit et diffusé dans une région
d’intérêt. En TEP, le traceur radioactif injecté dans le corps se concentre sur le
glucose qui est différemment consommé dans les différentes région du cerveau. Ce
traceur émet des positrons que le système mesure indirectement grâce aux paires
de rayons-gamma produits lorsque le positron s’annule avec l’électron: e−+ e+ −→
γ + γ. Une image en 3D peut ainsi être reconstruite grâce à des techniques de re-
construction par tomographie: une coupe d’une telle image est affichée en Fig.(1.7).
Les zones rouges correspondent à une accumulation de radioactivité, ce qui trahit
l’activité du cerveau de par sa consommation en glucose.

Figure 1.7 – Scan TEP d’une tête humaine.wikipedia
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L’ElectroCorticoGraphie (EcoG) est une technique très proche de
l’électroencéphalographie, pour laquelle les électrodes sont directement placées sur
une grille disposée sur la surface du cortex1 afin de mesurer l’activité électrique de
la région alentour aux électrodes.

Encore plus profondément dans le cerveau, la stéréo Encéphalographie (sEEG)
permet d’obtenir le potentiel électrique sur des électrodes placées sur un tige im-
planté en profondeur dans le cortex.

Ces deux techniques requièrent donc un trou dans le crâne pour y placer les
électrodes, bien que la craniotomie requise pour la sEEG soit plus réduite. Ces
techniques sont utilisées pour les patients atteint d’épilepsie pharmaco-résistante.
Le signal obtenu est traité afin de localiser la zone epileptogène pendant une crise.
Dans certains cas cette zone peut être enlevée et permet une guérison complète de
la maladie. Au préalable, on doit avoir une idée sur la zone a-priori responsable
afin d’insérer les électrodes non loin de cette zone, car elles ne peuvent qu’inférer
localement l’activité du cerveau.

1.1.4.2 Techniques non-invasives

L’IRM fonctionnelle (IRMf) L’IRM fonctionnelle est une séquence spéciale d’IRM
qui permet de mesurer la réponse hémodynamique locale. Cette activité est reliée
à l’activité du cerveau. L’oxygène est délivrée aux neurones via l’oxyhémoglobine
qui est une molécule diamagnétique contenue dans le sang.

À leur activation, les neurones transforment l’oxyhémoglobine en
désoxyhémoglobine qui est elle paramagnétique. D’un autre côté le débit
sanguin local augmente également mais de manière plus importante, ce qui
entrâıne une diminution relative de la desoxyhémoglobine. Cette différence de
concentration relative produit des changements observables par la résonance
magnétique: c’est le signal BOLD (Blood-Oxygen-Level Dependent).

Ces changements ne sont pas instantanés, ce qui limite la résolution temporelle
de l’IRMf à quelques secondes. IRMf est attractive de par sa résolution spatiale
(voir Fig.(1.8)), qui est de l’ordre de 2 − 3 mm et indépendante de la localisation
de la source, ce qui permet l’observation de phénomènes profonds dans le cerveau
ce qui n’est pas possible en EEG.

Enfin, ajoutons que les résultats obtenus avec l’IRMf restent difficiles à in-
terpréter car la relation entre le signal BOLD mesuré et l’activité des neurones est
seulement une corrélation et non une implication.

L’ÉlectroEncéphalographie (EEG) et la MagnétoEncéphalographie (MEG) sont
deux modalités hautement non-invasives puisque passives: elles n’appliquent aucun
champ externe mais visent à capter le faible champ électromagnétique généré par
l’activité neuronale. Seules les sources superficielles du cerveau sont mesurables
càd les sources non loin de la surface du cortex. L’EEG et la MEG permettent

1soit en-dessus de la dure mère (épidurale) ou en-dessous (subdurale), mais dans tout les cas,

sous le crâne.
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Figure 1.8 – IRMf statistique (orange) superposée à une coupe d’IRMa.wikipedia

toutes deux d’obtenir une très bonne résolution temporelle ( 1ms dépendant de la
fréquence échantillonnage). Quant à la résolution spatiale, après une localisation
de sources, l’erreur estimée est de l’ordre du centimètre.

Ajoutons également que la MEG ne peut détecter que très faiblement les
sources radiales à la surface interne du crâne, tandis que l’EEG n’a pas cette
limitation. Ces modalités seront plus en détails exposées sec.(1.2.2).

La Fig.(1.9) présente les différentes résolutions spatiales et tem-
porelles des modalités présentées ci-dessus. Les résolutions spatiales de
l’EEG,MEG,EcoG,sEEG sont des estimations de l’erreur spatiale commise
en localisation de sources (càd une fois le signal acquis); puisque rappelons-le ces
modalités ne fournissent pas une image 3D comme l’IRMf, mais un signal aux
électrodes qui est traité afin de recouvrer les sources responsables de ce signal.
Ajoutons également que l’abscisse des temps est logarithmique.

Enfin, cette figure ne présente pas les différentes sensibilités des modalités à la
position (ou orientation) des sources, par exemple la MEG ne voit pas les sources
radiales, l’EEG ne permet pas de voir les sources profondes, et l’IRMf n’apporte
qu’une corrélation avec l’activité électrique, enfin l’EcoG-sEEG ont un champ de
vision très local.

1.2 EEG-MEG: concept physique et applications courantes.

1.2.1 Les générateurs électromagnétiques

1.2.1.1 Comportement électrique d’un seul neurone

Comme expliqué en sec.(1.1), les neurones transmettent des signaux. Le signal se
propageant le long de l’axone s’appelle un Potentiel d’Action (PA). Un neurone
reçoit de multiple signaux (des potentiels d’action) en entrée de la part de ses
neurones voisins qui ont leurs dendrites connectées à ses synapses ou directement sur
le soma. À partir de ces entrées, le neurones va émettre ou non un potentiel d’action,
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Figure 1.9 – Résolutions spatiale et temporelle pour différentes modalités

d’imagerie fonctionnelle du cerveau. La noirceur du cercle donne une idée de

l’invasivité de la modalité.

càd transmettre l’information le long de l’axone à d’autres neurones. La plupart
des liaisons inter-neuronales sont biochimiques (relaxation d’un neurotransmetteur),
même si certains sont purement électriques.

Le Potentiel Post-Synaptique : (PPS) Quand un potentiel d’action atteint une
terminaison de l’axone, celui-ci relâche des neurotransmetteurs, et ces molécules
voyagent jusqu’à atteindre les synapses d’autres neurones. Puis ces molécules
changent subitement la perméabilité de la membrane de telles sorte que les ions Na+

et K+ pénètrent la cellule et modifient la différence de potentiel intra-extracellulaire
de état de repos. Cette différence de potentiel est augmentée de 10mV pendant 10ms
environ. Ce phénomène est nommé un PPS.

Le Potentiel Action : (PA) Si beaucoup de PPS s’additionnent, le potentiel
atteint un seuil critique et un PA est généré. Ce PA correspond à une augmentation
de 100mV du potentiel de repos en 1ms pendant 2 − 3ms. Le potentiel de repos
étant la différence transmembranaire due aux différentes concentration en ions Ca+

et K+. Après ce PA, l’état de repos est recouvré en quelques ms; le temps total du
phénomène est de l’ordre de 10ms. La Fig.(1.10) retrace ce processus. Ajoutons
que l’amplitude des PA est toujours la même, ainsi le codage de l’information au
sein du cerveau se fait en modulation de fréquence et non modulation d’amplitude.
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Figure 1.10 – Potentiel d’action se propageant le long d’un axone. Le rouge code

les états de repos, le bleu le PA, et le vert le recouvrement. http://soe.ucdavis.

edu

Ces potentiels créés lors de l’activation de neurones (PPS et PA) engendrent
un déplacement de charges et ainsi la création de petits courants appelés courant
primaires (ou intracellulaires). Afin de détecter à une certaine distance ces pe-
tits champs électromagnétiques générés par les neurones, ces champs doivent
s’additionner à un temps donné. Les courants primaires dues aux PA durent 1ms,
ce qui les rend peut susceptibles de se synchroniser. D’un autre côté, les PPS en-
gendrent des courants durant 10ms. De plus, le champ électromagnétique créé par
un PA peut être assimilé à celui d’un quadripôle càd la somme de deux dipôles
opposés légèrement déplacés l’un de l’autre.

On peut observer Fig.(1.10) (milieu) cette configuration; les charges positives
sont entourées de charges négatives, ce qui créé des courants opposés. À une distance
r, l’influence d’un quadripôle décrôıt en r3, tandis que celle d’un dipôle décrôıt en r2.
En contraste, les PPS génèrent des courants dans une seule direction (de la synapse
vers le soma). Finalement, afin que ces PPS se somment, ils doivent être dans la
même direction. Heureusement, de telles structures sont présentes dans le cerveau:
ces neurones à dendrites longues et parallèles s’appellent des neurones pyramidaux.
Selon les estimations (voir [Murakami and Okada, 2006]), 104 neurones doivent être
conjointement actifs pour obtenir un signal mesurable en EEG et MEG.

http://soe.ucdavis.edu
http://soe.ucdavis.edu
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1.2.1.2 Les neurones pyramidaux

Les neurones pyramidaux sont des cellules dans la matière grise qui présentent
des dendrites orientées vers la surface externe du cortex (dendrites apicales.) On
peut voir Fig.(1.11) de telles structures dont le comportement électromagnétique
peut être assimilé à celui d’un dipôle de courant. Dans les expériences relatées

Figure 1.11 – Neurones pyramidaux d’un macaque où un dipôle de courant su-

perposé représente un PPS. http://brainmaps.org

par [Murakami and Okada, 2006], différents types de neurones ont été modélisés
et leur courant équivalent calculé. Un dipôle de courant peut être défini comme
un dipôle électrique où au lieu de considérer deux charges de différents signes, on
considère deux courants opposés: un puits et une source. Voir Fig.(1.12) pour
une superposition du potentiel et courant généré par un dipôle de courant sur une
dendrite apicale. Dans ces expériences, les auteurs ([Murakami and Okada, 2006]),
estiment à 1pA pour le moment d’un dipôle de courant représentant un simple
neurone pyramidal. Il a été estimé à 1mm2 la surface du cortex nécessaire
à l’obtention d’un signal mesurable, même si les expériences augmente cette
estimation à 100mm2 [Hämäläinen et al., 1993].

Soit un dipôle de courant à la position r, d’orientation m et d’amplitude m =
‖m‖. On peut voir Fig.(1.13), les iso-lignes du champ électrique généré par un
dipôle (une vue 2D avec une symétrie axiale). Pour le cas du champ magnétique,
on note que le champ est contenu dans les plans normaux à m (vue 3D). Cela
explique l’incapacité de la MEG à détecter des sources radiales (champ magnétique
nul).

http://brainmaps.org
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+ -

Figure 1.12 – Champ électrique (flèches violettes) généré par un dipôle de courant

(modèle de courant PPS). Les lignes bleues représentent les iso-courbes du potentiel.

Figure 1.13 – Champ électrique (gauche) et magnétique (droite) généré par un

dipôle de courant (en rouge).

1.2.2 L’EEG et la MEG

L’Électroencéphalographie (EEG) est une technique non-invasive très utile a
l’observation fonctionnelle du cerveau. Sa haute résolution temporelle est bien
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meilleure que celle de l’IRMf (cf. Fig.(1.9)), et sa haute non-invasivité la rend
très utilisée depuis plusieurs décennies. L’EEG enregistre le potentiel électrique
au niveau des électrodes disposées sur le scalp. L’EEG mesure les fluctuations du
potentiel qui résultent des courants générés par les neurones dans le cerveau. Le
premier enregistrement EEG sur un humain a été réalisé en 1929 par le physiolo-
giste Allemand Hans Berger. Grâce aux enregistrements effectués entre seulement
2 électrodes, il a pu observer différentes activités du cerveau d’un patient selon qu’il
avait les yeux fermés ou pas. Plus tard, il mesura également l’activité lors d’une
crise épileptique. Ces analyses du signal étaient faites visuellement en regardant la
courbe du potentiel; le tout sur un encéphalogramme de mauvaise définition (voir
Fig.(1.14)). En fait, les électrodes utilisées n’étaient pas des capteurs placés sur

Figure 1.14 – Un des tout premier enregistrement EEG. EEG d’un enfant super-

posé sur un signal a 10Hz.wikipedia

le scalp, mais de fins fils d’argent introduits sous le scalp. Cette technique per-
mettait une bonne conduction entre le fil et la tête. De nos jours, les bonnets
EEG peuvent compter de 19 à 256 électrodes et le contact entre les électrodes
et le scalp est assuré par une solution électrolytique qui se diffuse sur une petite
surface autour de l’électrode. Des électrodes sèches sont également en cours de
recherche [Taheri et al., 1994], ce qui permettra notamment d’augmenter leur nom-
bre.

Avoir plus d’électrodes permet d’obtenir des cartes de plus hautes résolutions
de l’activité électrique sur le scalp.
À la question: Combien d’électrodes devons nous mettre pour obtenir une bonne
topographie?, il convient de remarquer que le potentiel sur le scalp est très lisse,
de plus l’emploi de gel électrolytique ne permet pas de placer des électrodes proches.

Les signaux enregistrés en EEG sont de l’ordre de quelques µV, et sont amplifiés
et numérisés avec un taux d’échantillonnage allant jusqu’à 25kHz La Fig.(1.15)
représente un enregistrement EEG actuel.

La magnetoencéphalographie (MEG) est apparue 40 ans après l’EEG en 1968. Si
l’activité électrique du cerveau génère un champ électrique, elle génère également un
champ magnétique (ou d’une manière plus générale un champ électromagnétique).
Bien-que le champ magnétique soit très faible (quelques fT (10−15Tesla)), il se
propage hors de la tête. David Cohen en 1968 a inventé la MEG. En réalité ce fut
la MCG (MagnetoCardiographie) inventée premièrement, lorsqu’il observa avec un
seul capteur (une bobine d’induction en cuivre) le champ magnétique créé par un
cœur battant. Avec de telles faibles valeurs du champ magnétique l’on doit avoir
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Figure 1.15 – Enregistrement EEG de plusieurs électrodes au cours du temps (en

abscisse). On y voit une crise épileptique.wikipedia

des capteurs de très haute sensibilité. En effet, sachant que le champ magnétique
terrestre est autour de 50µT=5.10−5T (un milliard de fois le champ magnétique créé
par le cerveau), et un bruit magnétique urbain est de 1µT, cela a conduit les scien-
tifiques à travailler dans des espaces protégés des champs extérieurs. Un an après,
James E. Zimmerman inventa le SQUID (Superconducting QUantum Interference
Device) qui est un détecteur ultra-sensible (jusqu’à 5.10−18T ). David Cohen a vite
vu l’avantage de tels capteurs et pu observer le cerveau dans une chambre isolée du
MIT. Les MEG actuelles comportent des centaine de SQUIDS, souvent appariées
afin de mesurer un gradient de champ magnétique (gradiomètres) moins sensibles
aux bruits. Elles ont autour de 200 capteurs et certaines installations permettent
d’avoir un casque EEG simultanément (voir Fig.(1.16)).

1.2.3 Imagerie fonctionnelle du cerveau avec l’EEG et la MEG

L’intérêt majeur de l’EEG est d’analyser les fonctions du cerveau. Avec seulement
2 capteurs, Hans Berger a pu observer différents rythmes cérébraux. Dans son
expérience, il a pu observer que lorsqu’un individu ferme les yeux, un rythme dom-
inant de 10Hz apparaissait. C’est ainsi que l’on commença à étudier les rythmes
du cerveau, tout d’abord en déduisant un état cognitif seulement en regardant les
fréquences principales présentes (voir Fig.(1.17)).

L’étude des rythmes cérébraux ne nécessite que peu d’électrodes (un casque
de 19 électrodes suffit), en appliquant une FFT (Fast Fourier Transform) sur les
données acquises, on obtient les fréquences contenues. L’inférence d’un rythme
avec un état peut dépendre de la position des électrodes. L’on peut vérifier les
affirmations suivantes:

Ondes γ: Activités cérébrales de haut niveau telles que lors de calcul mental ou
de résolution de problèmes.
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Figure 1.16 – Un système MEG couplé à un EEG moderne.

Figure 1.17 – Rythmes du cerveau.

Ondes β: État occupé, conversations, pensées, . . . état normal.

Ondes α: Au niveau du lobe occipital (à l’arrière au dessus du cou). Elles sont
signes d’états calmes, ou yeux clos. Elles ont les amplitudes les plus élevées
(c’est pourquoi elles ont été les premières ondes observées).

Ondes µ: Apparaissent aux mêmes fréquences que les ondes α mais se situent au
niveau du cortex moteur (centre du scalp); elles disparaissent quand le sujet
bouge ou pense à bouger.

Ondes θ: Sont plus difficiles à caractériser, elles apparaissent durant le sommeil
profond, et sont probablement dues à l’hippocampe qui se trouve pourtant
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loin des capteurs EEG [Buzsáki, 2002].

En regardant une topographie EEG ou MEG, on peut parfois avoir une
vague idée de la position de la source représentant l’activité prépondérante (voir
Fig.(1.18)). Visuellement, on peut estimer grossièrement la position: antéro-

Figure 1.18 – Topographie EEG et MEG. extraite d’une présentation de Matti
Hämäläinen.

postérieure, droite/gauche, ainsi que l’orientation de la source principale. Par
exemple, à partir de la Fig.1.18, un médecin verrait une source tangentielle lo-
calisée dans la zone temporale ou au niveau du cortex moteur, sur la gauche du
patient. À partir des données collectées l’on souhaiterait trouver les sources du
signal mesurés, et ce, à chaque instant, ce qui produirait une image 3D+temps
montrant les zones du cerveau actives. Hélas ce n’est pas possible tant que nous
avons plus d’inconnues que de données. D’où l’intérêt d’augmenter le nombre de
capteurs évoqué en sec.1.2.2.
En réalité, on peut estimer les paramètres (position, orientation) des différentes
sources, c’est le problème de localisation de sources en MEEG:

Étant donné des valeurs du potentiel sur le scalp, trouver les sources responsables
de ce signal.

1.2.4 Localisation de sources en MEEG

À partir d’enregistrements EEG ou MEG, l’on souhaite retrouver les sources dans le
cerveau responsables de certaines composantes du champ électromagnétique mesuré.
C’est un problème inverse de localisation. Soit J la variable représentant la source
primaire (un dipôle de courant) dans le cerveau, et soit f une fonction qui donne
la stricte relation des sources avec le potentiel aux capteurs Vs. f est le résultat
du problème direct qui étant donné une source dans le cerveau donne la com-
posante souhaitée du champ électromagnétique. Le problème inverse est fondé sur
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le problème direct. En EEG il s’écrit:

trouver J t.q Vs = f(J) . (1.1)

Si l’on pouvait inverser la fonction f , le problème serait résolu en écrivant:

J = f−1(Vs).

Mais comme le problème est sous déterminé puisqu’on ne dispose quelques centaines
de capteurs pour des milliers de sources possibles.(p.ex. en considérant J ∈ R3×R3

un champ de vecteurs échantillonné dans tout le cerveau sur une image cartésienne
de 128x128x128).
On doit donc se résigner à trouver une solution approchée J̃ de J en ajoutant de
l’a-priori sur les sources; c’est le champ de recherche des problèmes inverses en
MEEG.

1.2.4.1 Modèles de sources

Une hypothèse sur l’activité électrique du cerveau souvent appliquée, est qu’à
chaque instant, elle est clairsemée (sparse): càd seules quelques sources sont ac-
tives simultanément. ’Actives’ signifie électriquement actives et détectables par
l’EEG ou la MEG. Les modèles de sources sont de deux types:

sources dipolaires elles représentent l’activité conjointe d’un grand nombre
de PPS voisins d’une position (106 [Hämäläinen et al., 1993][Nunez, 1981]).
Chaque source a 6 paramètres (3 pour la position et 3 pour l’orientation).

sources distribuées représentent l’activité d’une petite surface. Le plus sou-
vent, la position est contrainte à vivre sur une surface imaginaire située entre
l’interface matière grise/LCR et Matière blanche/matière grise. L’orientation
est contrainte par la surface car les PPS sont perpendiculaires à la surface
externe du cortex. Cela permet de réduire le nombre d’inconnues.

1.2.5 Le problème inverse

Le problème inverse est résolu en cherchant une solution Ṽs = f(J̃) approchée des
données mesurées Vs:

J̃ = arg min
J

‖Vs − Ṽs‖ = arg min
J

‖Vs − f(J)‖ . (1.2)

Ce problème est mal posé (au sens d’Hadamard), selon les critères suivants
définissant un problème bien posé:

• Il existe une unique solution;

• Elle dépend continûment des données (dans une certaine topologie).
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Le problème (1.2) ne remplit pas ces conditions car il est largement sous déterminé,
on procède donc à une régularisation traitée ici en ajoutant de l’a-priori sur la
solution. On pourrait également augmenter le nombre d’électrodes, mais comme
expliqué en [Ryynänen et al., 2004], cela dépend beaucoup de la conductivité du
crâne qui lisse les potentiels spatialement; dans le cas de l’EEG, il ne sert à rien
d’aller au delà de 256 électrodes. On ajoute donc de l’a-priori sur la solution.
Plusieurs techniques sont envisageable, ajouter de l’a-priori sur les positions des
sources au cours du temps, sur leur orientation, . . . . Ces méthodes peuvent se
classer dans ces différentes catégories:

dipole fitting On place des dipôles sur une région d’intérêt, et l’on essaye d’estimer
leur moment afin de satisfaire au mieux l’Eq.(1.2). Par exemple, pour une
tâche somato-sensorielle, on place des dipôles dans le cortex sensori-moteur.
Quelques méthodes sont: rotating dipôles, moving dipôles, Minimum Norm,
. . .

filtrage l’espace est échantillonné (souvent sur une grille cartésienne), et l’on essaie
de filtrer le bruit et les inter-corrélations (beamforming methods). On peut
également essayer de décomposer le signal en multiple composantes (avec une
SVD), c’est le but des méthodes MUSIC (MUltiple SIgnal Classification).

sources distribuées de manière plus générale on échantillonne l’espace des
sources (grille cartésienne ou surface imaginaire), où à chaque noeud sont
placés 3 dipôles (pour couvrir toutes les orientations). Les méthodes de Min-
imumNorm ajoutent de l’a-priori sur la régularité des sources, avec soit une
norme L0 (nombre de sources spécifié), norme L1 (sparsité), norme L2 (énergie
bornée), . . . ou combinaison de plusieurs normes [Gramfort et al., 2008].

1.3 Le problème direct

Le problème direct simule une source dans le cerveau afin de calculer la composante
d’intérêt aux capteurs (f dans Eq.(1.1)). Cette résolution est faite grâce aux
équations de Maxwell en quasi-statique sur une géométrie particulière au patient.
Ainsi, ce problème dépend de chaque sujet, càd on doit avoir pour chaque patient
la définition de ses tissus cérébraux et leur conductivités. La plupart des surfaces
peuvent être obtenus en segmentant une IRM anatomique; le crâne est cependant
difficile à obtenir et est souvent estimé (inflation du cerveau ou érosion du scalp).
Les conductivités des différentes couches sont évaluées de différentes manières ; con-
ductivités estimées in-vivo, ex-vivo, in-vitro, . . . ou grâce à l’EIT (Tomographie par
Impédance Électrique) [Clerc et al., 2005a].

1.3.1 Les équations de Maxwell

Les équations de Maxwell sont des EDP (équations aux dérivées partielles), qui
relient dans tout milieu, le champ électrique, le champ magnétique avec les sources
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électriques, ou les distributions de courants. Ces variables dépendent du temps et
de l’espace. Voir page.vii concernant les notations utilisées.

Une formulation locale: En partant des relations établies par Ampère, Gauss, et
Faraday, Maxwell les a rassemblées et complétées. Dans leur forme locale, elles
s’écrivent dans le vide: 

∇ ·E = ρ
ε0

∇ ·B = 0

∇×E = −∂B
∂t

∇×B = µ0J + µ0ε0
∂E
∂t

(1.3)

Pour les tissus humains, la perméabilité magnétique est la même que celle du vide.
La permittivité électrique ε varie beaucoup de ε0 selon le tissu considéré et les
fréquences étudiées.

Soit εr = ε
ε0

la permittivité relative d’un milieu de permittivité ε, ce facteur est
de 4.108 pour la matière grise, 1.105 pour la peau à 10Hz [Gabriel et al., 1996b].
Dans leur forme locale, pour un milieu de permittivité ε et perméabilité µ = µ0,
Eq.(1.3.a) et Eq.(1.3.d) s’écrivent:

∇ ·E =
ρ

ε
(1.4)

∇×B = µ0J + µ0ε
∂E
∂t

(1.5)

(1.6)

L’approximation quasi-statique : Pour l’EEG et la MEG, on peut négliger les
dérivées en temps (voir [Hämäläinen et al., 1993]). Ceci est dû aux échelles de
notre problème, un diamètre de tête inférieur au mètre, des échelles de temps de
l’ordre de quelques ms (PPS). On peut ré-écrire ces équations (1.3):

∇ ·E = ρ
ε (a)

∇×E = 0 (b)

∇ ·B = 0 (c)

∇×B = µ0J (d)

(1.7)

Le champ magnétique et le champ électrique sont découplés et peuvent donc être
résolus indépendamment.

1.3.1.1 Une équation de Poisson pour le potentiel électrique

L’équation.(1.7b.) implique que E dérive d’un champ scalaire, le potentiel électrique
V , et va par définition des hauts potentiels vers les bas:

∇×E = 0 =⇒ E = −∇V (1.8)
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Ce champ E est entièrement déterminé par la connaissance de V , et V est ainsi
défini à une constante près. On applique une divergence sur l’Eq.(1.7d.):

∇ · (∇×B) = ∇ · (µ0J) = 0

Ainsi le courant total est de divergence nulle. On décompose maintenant J en sa
composante primaire due à la source primaire, noté Jp (générée par les PPS) et
sa composante passive due aux courants passifs (ou Ohmique) car le matériau est
résistif (de conductivité σ):

∇ · J = ∇ · Jp +∇ · (σE) = 0

Cette équation est une équation de Poisson qui relie le potentiel à la source primaire
Jp. En utilisant l’Eq.(1.8) on obtient l’équation que va s’attacher à résoudre cette
thèse:

∇ · (σ∇V ) = ∇ · Jp (1.9)

1.3.1.2 La loi de Biot-Savart pour le champ magnétique

En prenant le rotationel de l’Eq.(1.7d.), et utilisant l’Eq.(1.7c.):

∇×∇×B = ∇(∇ ·B)−∆B = −∆B = µ0∇× J, (1.10)

On obtient des équations de Poisson pour chaque composante du champ magnétique
B. La solution fondamentale de l’équation de Laplace qui vérifie ∆G = δ: est la
fonction de Green

G(r) =
−1

4π‖r‖
On utilise le produit de convolution de cette solution fondamentale avec le terme
source, ainsi l’Eq.(1.10) s’écrie:

B(r) =
µ0

4π

∫
R3

∇× J(r′)
1

‖r− r′‖
dr′ + BH ,

où BH est la solution homogène de l’Eq.(1.10). Finalement, on impose un champ
magnétique nul à l’infini et donc BH = 0, et en intégrant par partie:

B(r) =
µ0

4π

∫
R3

J(r′)×∇
(

1
‖r− r′‖

)
dr′

=
µ0

4π

∫
R3

J(r′)×
(

r− r′

‖r− r′‖3

)
dr′

=
µ0

4π

∫
R3

Jp(r′)×
(

r− r′

‖r− r′‖3

)
dr′ − µ0

4π

∫
R3

σ∇V (r′)×
(

r− r′

‖r− r′‖3

)
dr′

B(r) = B0(r)− µ0

4π

∫
R3

σ∇V (r′)×
(

r− r′

‖r− r′‖3

)
dr′ , (1.11)

où B0(r) =
µ0

4π

∫
R3

Jp(r′)×
(

r− r′

‖r− r′‖3

)
dr′ . (1.12)



1.3. Le problème direct 23

C’est la loi de Biot et Savart.
Le champ magnétique à chaque point r peut donc s’écrire comme la somme des
contributions des 2 courants. On appelle B0 le champ magnétique primaire qui ne
dépend que de la source primaire et pas du milieu. C’est là une distinction entre la
MEG et l’EEG puisque en EEG on a une très forte dépendance aux milieu traversé
tandis qu’en MEG la composante primaire est indépendante de ces paramètres et
est de plus prépondérante.

1.3.2 Les modèles électrophysiologiques

Afin de résoudre le problème direct avec l’équation de Poisson (1.9), ou l’équation
de Biot-Savart (1.12), il faut avoir la description de la géométrie et les conductivités
des tissus de la tête du patient. Les problèmes directs en MEG et EEG ne partagent
pas les mêmes sensibilités à l’égard de la modélisation géométrique ou du profil
de conductivité. En fait, le champ magnétique primaire est prépondérant dans
l’expression de B, et peut être calculé analytiquement, sans un modèle de tête.
Toutefois, on pourrait introduire des erreurs considérables, en ne calculant pas la
contribution passive ohmique dans le champ magnétique. Une tête humaine peut
être considérée comme un volume conducteur borné si l’on néglige le courant à
travers le cou. Le courant électrique ne se propage pas en dehors de la tête, car
l’air a une conductivité négligeable.
On peut alors définir une tête comme un ensemble de volumes conducteurs qui
partitionent la tête en régions de profil de conductivité différent. Le crâne ayant
une conductivité nettement inférieure à celle des autres tissus, il convient de le
définir en domaine à part entière. De plus, le profil de conductivité du crâne est
crucial lorsqu’il s’agit de résoudre un problème direct en EEG, car il se situe entre
les sources et les capteurs. D’autre part, pour le problème direct en MEG, il est
moins important de prendre en compte le crâne. En effet le champ magnétique
primaire est indépendant de la conductivité, et le champ passif est lui proportionnel
à la conductivité de la couche considérée. Par conséquent le champ magnétique
n’est que peu affecté par le crâne, ni par le cuir chevelu (dans lequel, en raison de
l’effet protecteur de la bôıte crânienne, ne contient pas d’importants courants).
L’affectation de conductivités isotropes ou anisotropes à chaque région est encore
discutée aujourd’hui, les mesures in-vivo étant presque impossibles et souvent
sujettes à une haute variabilité [Baysal and Haueisen, 2004, Lai et al., 2005], ce
problème sera abordé plus tard, pour l’instant on envisage une conductivité du
crâne entre 15 et 80 fois inférieure à celle du cuir chevelu [Bashar et al., 2009].

Dans le reste de cette section, nous présentons maintenant différents modèles
électrophysiologiques, en partant de la description géométrique d’une tête grossière
avec des volumes conducteurs sphériques imbriqués et des conductivités constantes
et homogènes par morceaux, puis allant jusqu’à une forme réaliste de tête extraite
d’une IRM anatomique et associée à des profils de conductivité appropriés pour
chaque région considérée.



24 Chapter 1. Introduction française

1.3.2.1 Volumes conducteurs sphériques

Le premier modèle utilisé pour résoudre le problème direct en EEG était un
modèle de sphères embôıtées comme montré Fig.(2.19) [Rush and Driscoll, 1968,
Meijs and Peters, 1987]. Sur cette figure, le domaine de la tête Ω est décomposé
en 3 régions Ω1,Ω2,Ω3 de conductivités respectives σ1, σ2, σ3. On considère com-
munément Ω1 représentant le ’cerveau’, Ω2 le crâne et Ω3 la peau du scalp avec des
rayons respectifs 0.87, 0.92, 1.

Figure 1.19 – Un modèle de tête sphérique à 3 couches.

Ce modèle présente plusieurs avantages. Tout d’abord, on ne requiert pas
d’extraction de la géométrie de la tête du patient, seulement une disposition ap-
prochée d’une sphère sur une surface. Deuxièmement, la solution des problèmes
directs Eq.(1.9)-(1.12) peut être obtenue analytiquement, et donc très rapide-
ment [Spinelli et al., 2000]. Mais naturellement l’approximation d’une tête par des
sphères est grossière et conduit à des erreurs considérables. Les modèles elliptiques
sont légèrement plus intéressants (voir Fig.(2.20)), et les équations peuvent encore
se résoudre analytiquement [De Munck, 1988, Kariotou, 2004].

Figure 1.20 – Un modèle sphérique sur la gauche et ellipsöıdal sur la droite.

L’approximation géométrique faite amène des erreurs considérables pour la
résolution du problème direct [Cuffin, 1996, Huiskamp et al., 1999]. Même pour
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la MEG, on considère les modèles sphériques comme trop grossiers comparés aux
modèles réalistes [Van Uitert and Johnson, 2002]. On utilise également des modèles
de sphères centrés pour chaque capteur MEG, ce qui minimise mieux certaines er-
reurs géométriques [Huang et al., 1999]-[Lalancette et al., 2011].
Un pas en avant dans la modélisation est de considérer des géométries réalistes.

1.3.2.2 Conducteurs homogènes constants par morceaux

En segmentant une IRMa, on peut extraire différentes surfaces du cerveau, comme
l’interface matière grise/blanche, grise/LCR, LCR/crâne, crâne/scalp, et scalp/air.
Sur la Fig.(1.21), On peut voir différentes surfaces extraites obtenues en utilisant
le logiciel Freesurfer [Dale et al., 1999, Fischl et al., 1999] qui fonctionne à base
d’atlas. En utilisant une IRM pondérée en T2, on peut deviner l’interface LCR-

Figure 1.21 – Surfaces triangulées de hautes définitions de segmentations

d’IRMa: (fushia)-scalp-(mauve)-crâne-(orange)-LCR-(green)-matière grise-(gray)-

matière blanche.

crâne, sinon une IRM en densité de proton (un autre type de séquence) peut être
utilisée pour définir le crâne.
En utilisant un modèle constant par morceau avec une géométrie réaliste, on
a désormais moins d’erreur géométriques. Si l’IRM n’est pas disponible, une
approche consiste à adapter des modèles génériques calculés sur des IRMa
moyennées [Darvas et al., 2006].
Dans ce type de modèle, la conductivité est constante et homogène par morceau.
C’est la limitation de ce modèle, puisque certains tissus ont une conductivité
anisotrope et inhomogène.
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1.3.2.3 Modèles inhomogènes et anisotropes

Le crâne est composé de plusieurs couches, et dans les parties les plus épaisses,
contient de l’os spongieux. L’os spongieux a une conductivité 4 à 7 fois supérieur à
l’os dur [Akhtari et al., 2002, Ramon et al., 2006]. Cette augmentation subite de la
conductivité au milieu du crâne a conduit les scientifiques à utiliser des modèles de
conductivités anisotropes pour le crâne, afin d’approximer cette inhomogénéité. Le
modèle précédent (de conductivités constantes par morceaux) pourrait modéliser
un tel compartiment si l’on pouvait définir ces aires spongieuses ( avec un CT-scan,
T2-MRI). De plus, de petites régions engendreraient de petits volumes difficiles à
discrétiser et utiliser avec des méthodes numériques.
La matière blanche est elle aussi source d’anisotropie. En effet, sa structure fi-
breuse due aux axones des neurones, conduit mieux dans la direction de la fibre
que dans son plan normal. Cela introduit donc une anisotropie forte du tenseur de
conductivité à prendre en compte.

1.3.2.4 Définir les conductivités des tissus cérébraux

Afin d’avoir une bonne résolution du problème direct il faut introduire naturellement
de bonnes valeurs de conductivités. Ces valeurs sont souvent difficiles à obtenir.

Mesures in-vivo, et in-vitro Les mesures in-vivo sont très rares car elles
nécessitent des expériences invasives, les mesures in-vitro sont elles plus
fréquentes [Gabriel et al., 1996a]-[Gabriel et al., 1996b]. La principale interroga-
tion au sujet de mesures de conductivité in-vitro, est que le tissu se comporte
différemment que dans son milieu naturel à la température corporelle. Les
mesures in-vivo sont plus proches des conductivités réelles, et ont conduit à
des corrections majeures, par exemple, dans [Baumann et al., 1997], nous ap-
prenons que la conductivité du LCR a été sous-estimés d’environ 44 % entre 1977-
1997. Dans [Hoekema et al., 2003], la conductivité du crâne de plusieurs sujets
épileptiques a été mesurée ainsi que celle d’un morceau de crâne post-mortem. Ces
conductivités issues de craniotomies sont beaucoup plus grandes que celle utilisées
par la communauté et que celle du crâne post-mortem, mais montrent surtout une
forte variabilité entre les sujets. De plus, la conductivité du crâne dépend fortement
de l’âge de la personne. C’est pourquoi les méthodes suivantes sont séduisantes.
Voir [Lai et al., 2005] concernant le rapport de conductivité cerveau-crâne.

La tomographie par impédance électrique est une technique similaire à l’EEG.
Au lieu de mesurer le potentiel à des capteurs pour mesurer l’activité électrique du
cerveau, on injecte un courant connu à une paire d’électrodes de sorte que l’on peut
calibrer les valeurs de conductivité en considérant le potentiel mesuré sur les autres
capteurs. C’est ce qu’on appelle l’EIT (voir [Kybic et al., 2006] pour Electrical
Impedance Tomography). On peut estimer les conductivités des tissus de manière
non invasive pour chaque patient en particulier, avant une expérience clinique ou
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de recherche. Une étude sur la sensibilité de ces conductivités avec l’EIT est faite
dans [Vallaghé and Clerc, 2009].

Les potentiels évoqués Afin de calibrer les conductivités des autres tissus, on
peut envisager d’avoir la solution du problème inverse, puis estimer la conductivité,
de telle sorte que le problème direct est en accord avec les mesures. Par exemple, en
connaissant l’emplacement de la zone somato-sensorielle gauche, on peut stimuler
le patient dans cette région, et analyser les résultats, de sorte qu’ils conviennent à
la résolution du problème direct [Gonçalves et al., 2003].

Conductivités utilisées dans nos expériences Le tableau (1.1) énumère les con-
ductivités que nous allons utiliser. Il est basé sur les articles précédents et de la
vaste enquête effectuée dans [Dannhauer et al., 2010]. Nous montrons aussi les
conductivités normalisés qui sont couramment utilisés pour résoudre un problème
direct sur un ordinateur qui peut être fait de même avec conductivités réelles ou
normalisées. Le ratio anisotrope est, pour le crâne, le rapport de la conductivité ra-
diale sur la conductivité tangentielle càd σradiale

σtangentielle
. Et pour la substance blanche

il correspond au ratio de σtransversale
σlongitudinale

qui multiplie la conductivité le long des fibres
de matière blanche. Au chapitre 7 nous étudierons cette question plus en détail.

Tissus Conductivités S/m Isotropes normalisées Ratio Anisotrope
Cerveau 0.33 1.
Matière grise 0.33 1.
Matière blanche 0.33 1 1 : 10
Crane 0.01 0.03 1 : 1.5
Scalp 0.33 1.

Table 1.1 – Conductivités des tissus d’une tête humaine.

Les modèles électrophysiologiques étant présentés, ainsi que les modèles de
sources, il faut représenter ces modèles dans une formulation numérique. Plusieurs
outils sont disponibles, nous nous attachons en section.2.4 à présenter ces divers
outils numériques afin de résoudre le problème direct en MEEG. Après avoir in-
troduits ces méthodes numériques nous proposons le couplage de certaines, afin
d’obtenir une méthode couplées présentant plusieurs avantages. Enfin une exten-
sion d’une méthode permettant généralement de traiter que des domaines isotropes
sera introduite. Suite en section.2.4





Chapter 2

Introduction

As we go deeper in the understanding of Nature and Man, the brain keeps on
fascinating more and more. Its complexity at a structural level, is way beyond
what one could achieve nowadays with computers, at least for a human brain:
1011 = 100 billions of neurons, and each of them interacting with up to several
thousands of neighbors, and quite economic from an energy point of view with 25
watt at peak [Kandel et al., 2000].
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2.1 Context

In the brain lie neurons which are cells ensuring the transmission of information
with bio-electrical signals. The electrical part being the transmission of charges
along the axon, then relayed by the biochemical part: neurotransmitters at synapse
(see fig.2.1). The synapse is the junction between an axon terminal of one neuron
with the dendrites of another neuron.

Dendrites

Cell body

Nucleus

Myelin sheath

Axon terminal

Axon

Figure 2.1 – Simple neuron sketch.wikipedia

The brain is also composed of glial cells (or glia) even more numerous than the
neurons (10 to 50 times more). Even if they do not transmit information, besides
other functionalities, they bring nutrients and oxygen to neurons, and insulate
them from each other, as they all carry electric charges. Their role is not fully
understood yet, but the myelin they produce to insulate the neurons, being white,
gave the name to the white matter region, where mainly the axon part of the
neurons lie. On the other hand, in the gray matter lies the body of the neurons
cells.
Since the beginning of the Odyssey of the brain, scientists endeavor to establish
maps of brain cells organization, as well as functional maps. One of the main goals
being to obtain a fully detailed map of the brain regions with the functions they
play in cognitive processes.

2.1.1 Brain anatomy

The brain is an organ at the center of the nervous system. It is enclosed in the skull
and ’floats’ in the CSF (CerebroSpinal Fluid). It is composed of two hemispheres,
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each of which can be divided into 4 lobes as Fig.(2.2) shows. These lobes are
separated by fissures which all individuals share. These lobes can represent roughly
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Figure 2.2 – Sagittal view of a human brain.wikipedia

the following functions:

the frontal lobe: involves the ability to make decisions, plans, reasonings, emo-
tions; higher mental functions;

the parietal lobe: integrates sensory information, also associated with orienta-
tion, recognition, speech;

the temporal lobe: is involved in auditory perception, semantic, speech, mem-
ory;

the occipital lobe: is mainly dedicated to vision.

The hashed region is the cerebellum which is involved in the balance or posture
position, it does not generate these movements but rather calibrates them and
makes them precise [Ghez and Fahn, 1985]. The exterior of the brain is called
cortex or gray matter, on which we can see convolutions called gyri and sulci for
convex resp. concave folds. Under the gray matter layer, which represents the
interface between the brain and the CSF, lies the white matter which is mainly
composed of bundles of myelinated axons.

2.1.2 Motivations

What is the main motivation for studying the brain ? It is simply the most fascinat-
ing organ, for which, historically, one has begun to establish relationship between
its regions and their function, through observation of patients suffering from brain
lesions. Such lesions can lead to loss of memory (short term or long term), blind-
ness, impossibility of taking critical decisions, obesity, and many other syndromes.
Studying such patients has led scientists to think that the vision process, the body
weight . . . were all controlled by the brain. On the other hand, neurodegenerative
diseases, such as Alzheimer’s disease, Parkinson’s disease are caused by death of
neurons leading to diminution of control, memory, . . .
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Epilepsy is an abnormal hyper-synchronous neuronal activity often generated by a
small region within the brain (specific to each patient). Studying these diseases is a
main motivation for research. But in a few cases, often encountered in people with
developmental disorders, the brain can fascinate by its ability to stock information,
such as entire books line by line, or for arithmetic calculations way beyond those one
can achieve normally. Some researchers believe that studying it, and understanding
the way information is treated could lead to the creation of artificial intelligence
for machines. Another very seductive interest is emerging with Brain-Computer
Interface (BCI), where scientists analyze in real time the brain signals most often
measured with EEG, in order to control a computer. This could be of great inter-
est for everyone but most surely for people suffering from locked-in syndrome who
cannot interact easily with their environment (through talking and gestures).

2.1.3 Medical imaging

Medical imaging techniques regroup all the processes used to create images (1D,
2D, 3D, 3D+time) of parts of the (human) body for their clinical study. Most of
them rely on electromagnetic waves, some on radioactivity and some on acoustic
waves. They all have strengths and weaknesses, and provide images with different
spatial and time resolutions, and moreover they are sensitive to specific tissues.
Once data are collected by the machine, they need to be processed to reconstruct
an image. Reconstruction techniques have been a very active field in research for
every imaging modality since its origin.

2.1.3.1 Magnetic resonance imaging

The most famous modality for studying the brain anatomy is the MRI, which
achieves the best resolution for tissues containing water molecules such as the brain.
Magnetic Resonance Imaging is based on the interaction of the protons contained in
the water (proton of H atoms) of the head tissues with a magnetic field generated
by the machine. These interactions measured by the machine reveal the proportion
of water molecules in the tissues, and after image reconstruction, lead to accu-
rate description of the tissues containing water. Different acquisition sequences can
be designed by varying the main magnetic field, and the radio frequency emitted
(mainly T1, and T2 sequences) yielding different contrast for fat, water, skin, bones
; although the skull cannot be perfectly resolved on a MRI see Fig.(2.3).
MRI has given rise to new imaging techniques, such as functional MRI (fMRI)
which is able to measure a certain activity of the brain. This will be discussed
section.2.1.4.2.
Diffusion MRI (dMRI) allows to measure the water molecules diffusion within the
brain along a specified direction. This diffusion would be isotropic in a homoge-
neous material, but is strongly anisotropic in the brain betraying the presence of
elongated structures such as the neuron axons since water molecules do not prop-
agate through them. This anisotropy can be revealed computing a scalar value,
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Figure 2.3 – Sagittal slice of an T1-MRI.Joan’s head

the fractional anisotropy (FA) for each voxel. Having several images for different
directions allows to construct models of this diffusion process within each voxel, the
easiest being a tensor model (DTI for Diffusion Tensor Imaging). The tensor model
being symmetric has six unknowns and can be represented as an ellipsoid. HARDI
(for High-Angular-Resolution Diffusion Tensor Imaging) which is a finer represen-
tation allowing the visualization of fiber crossings. In Fig.(2.4), is displayed the FA
along the principal eigenvector of the reconstructed tensor, where the RGB color
map encodes the x-y-z coordinates of the principal eigenvector.

This gives the diffusion tensor for each voxel of the 3D image, which can be of
great interest for studying the brain connectivity. From the expression of the DTI,
one can estimate the fibers following the principal directions of the ellipsoids. This
has create a brand new imaging technique, the tractography [Mori et al., 1999]-
[Basser et al., 2000] (see Fig.(2.5)). One can also get a tractography based on
HARDI (High Angular Resolution Diffusion Imaging) [Descoteaux et al., 2009].

Figure 2.4 – Axial slice of a FA colored DWI.
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Figure 2.5 – A 3D view of a tractography via DTI.

2.1.3.2 Other imaging techniques

Since the skull does not contain much water, it is difficult to reconstruct it from
classical MRI. On the other hand, X-rays do interact with the skull. These electro-
magnetic waves were discovered in 1895 by Wilhelm Röntgen and are considered to
be the first medical imaging technique. Even if techniques using X-rays such as the
CT (Computed Tomography) appear to be harmless, a long or repeated exposition
to these waves can interact negatively with body cells. In Fig.(2.6) is displayed a
CT scan of a skull, where the artifacts are some machine components.

Figure 2.6 – Computed tomography.

Ultrasound techniques do not allow for brain imaging, since the skull is very
resistant to it. It works fine for soft tissues, muscles and liquids.

These techniques used for brain imaging all provide a scan at one moment, and
do not permit the functional study of the organ.

2.1.4 Observing the brain activity
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2.1.4.1 Invasive techniques

Positron Emission Tomography (PET) requires the injection of a radioactive
material, and obtains images by measuring the radioactive disintegration of the
elements introduced and diffused in regions of interest. In PET imaging, the ra-
dioactive tracer injected into the body focuses on glucose cells that are consumed in
different manner in brain regions. This tracer emits positrons that the system can
indirectly measure when they annihilate with electrons through the pair of gamma
rays produced: e− + e+ −→ γ + γ. A 3D image is reconstructed through tomogra-
phy reconstruction, a slice of which can be seen in Fig.(2.7). Red areas correspond
to an accumulated radioactivity, then showing indirectly the brain activity through
its glucose consumption.

Figure 2.7 – PET scan of the human brain.wikipedia

ElectroCorticoGraphy (EcoG) is an imaging technique very close to electroen-
cephalography, for which electrodes are directly placed on a grid onto the exposed
surface1 of the brain in order to record electrical activity of the cortex. A still more
invasive technique is stereo electroencephalography (sEEG), in which are inserted
depth electrodes within the cortical layers. These techniques thus require a cran-
iotomy, to place the set of electrodes. These modalities are very used nowadays
on patients with pharmaco-resistant epilepsy. The signal is treated to get the lo-
calization of the epileptogenic zone during a seizure, which can in some cases be
removed in order to cure definitively the disease. One must have an insight on the
location of the epileptogenic zone a-priori since the measurements can only infer a
local activity.

1Electrodes may be placed either outside the dura mater (epidural) or under the dura mater

(subdural), but in all cases, under the skull.
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2.1.4.2 Non invasive techniques

functional MRI (fMRI) Functional MRI is a special MRI scan used to measure the
hemodynamic response, which is related to the neural activity of the brain. Oxygen
is delivered to neurons via oxyhemoglobin which is a diamagnetic molecule carried
by the blood. When neurons are very active, they transform these molecules into
desoxyhemoglobin which is paramagnetic. This change leads to small differences in
the MR signal, and is called the BOLD signal (Blood-Oxygen-Level Dependence).
This change does not operate instantaneously and thus limits the temporal reso-
lution of the fMRI to a few seconds. fMRI is especially appealing for the spatial
resolution of the reconstructed map (see Fig.(2.8)), which is at most 2− 3mm, and
independent on the location of the sources, which allows for deep source observa-
tions which is not possible with EEG. Furthermore, results obtained by fMRI are
difficult to interpret since the relation between the neural activity and the BOLD
signal is only a correlation, and one cannot infer one from the other.

Figure 2.8 – fMRI statistics (orange) overlaid on an averaged brain.wikipedia

ElectroEncephalography (EEG) and MagnetoEncephalography (MEG) are two
highly non invasive modalities, since they are passive: they do not rely on any
externally applied field but directly measure the electromagnetic fields generated
by neural activities. Only superficial sources of the brain can be measured, the
ones located close to the cortical surface. Both EEG and MEG achieve a very
good temporal resolution, about 1ms depending on the sampling frequency. The
source localization achieved with their signal has a spatial resolution close to 1cm.
Furthermore, the MEG cannot detect sources radially oriented with respect to
the skull surface such as sources on top of gyri, while EEG can detect all cortical
sources. These modalities will be detailed in sec.(2.2.2).

Fig.(2.9) displays the spatio-temporal resolution of the presented modalities
for brain functional imaging. The spatial resolutions for EEG-MEG and EcoG,
are the estimated spatial errors when doing source localization from the measured
signal, since these modalities do not give a 3D image as PET or fMRI, but rather a
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signal which must be interpreted to recover the sources within the brain producing
it. Note that the time axis (x-axis) is logarithmic. This graph does not show the
different sensitivities with regard to the sources, e.g. the MEG does not see radially
oriented sources, the EEG only sees superficial sources, and the fMRI signal only
measures a correlation correlated with sources activation, the EcoG and sEEG are
only sensitive to their immediate neighborhoods.

Figure 2.9 – Spatial and temporal resolutions for functional brain imaging modal-

ities. The darkness of the circles show the degree of invasivity of the technique.

2.2 EEG-MEG: physical concept, and current applications.

2.2.1 Electromagnetism generators

2.2.1.1 Electrical behavior of a single neuron

As stated section.(2.1), neurons propagate signals called action potentials. A neuron
receives multiple input signals (action potentials) through the synapses of its afferent
neurons connected to its dendrites or directly to its cell body. From these inputs,
the neuron will ’spike’ or not i.e. transmit action potentials that will then be
transmitted through the neuron synapses to other neurons. For most of the neurons
the transmission at synapses is done with chemical molecules, neurotransmitters,
even if some of them can be electrical synapses. Let us have a look at the mechanism
of transmission from one neuron to the other.
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Post-Synaptic Potential: (PSP) When an action potential reaches the end of an
axon terminal, it releases neurotransmitters, these molecules navigate until they
reach another neuron, then their biochemical properties affect the membrane’s per-
meability, so that the ions Na+ and K+ penetrate the cell and disturb it from its
resting ionic equilibrium. This increases the inner cell potential by 10mV for about
10ms. This phenomena is called the post-synaptic potential.

Action Potential: (AP) If many post-synaptic potentials sum up, the cell’s body
can reach a threshold which will make it spike. This action potential consists
of an increase of 100mV from its resting potential in only 1ms and lasts 2-3ms.
The resting potential being the transmembrane voltage which is due to different
concentrations in Ca+ and K+ inside and outside of the cell. After spiking the
resting state is recovered in a few ms, so that the whole phenomenon lasts about
10ms. All processes can be seen in Fig.(2.10). Let us note that the amplitude of
the spiking is always the same. Hence, the brain encodes information by frequency
modulation and not amplitude modulation.

Figure 2.10 – Action potential propagation along the axon. Red codes for the

resting states, Blue for the Action potential, and Green for the recovery. http:

//soe.ucdavis.edu

The potentials created when the neurons become active, (PSP and AP) create
then a displacement of charges and therefore some tiny currents called intracellular
or primary current. In order to be able to detect at a distance the electromagnetic

http://soe.ucdavis.edu
http://soe.ucdavis.edu
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field generated by neurons, these tiny electromagnetic fields have to sum up at
a given time. Primary currents due to AP have a temporal duration of about 1
ms, which make them hard to synchronize. On the other hand, the PSP leads to
currents with 10 ms duration. Furthermore, when looking at the electromagnetic
field created by an AP, it can be represented as a quadrupole i.e. the sum of two
opposite dipoles at a slightly different position. One can see in Fig.(2.10) middle
row this configuration; the positive charges are surrounded by negative ones, which
create these opposite currents. At a distance r, a quadrupole influence decreases in
r3, whereas that of a dipole decreases in r2, this is again a bad point for the AP.
In contrast, the PSP generates currents in only one direction (from the synapse to
the cell body), and thus have a radius of visibility higher. Finally, for all these PSP
currents to sum up, they need to be in the same direction. Such structures do occur
in the brain: these well organized and parallel oriented neurons are called pyramidal
neurons (cells). It has been estimated that 104 neurons must be jointly active to
produce a signal detectable by EEG or MEG (see [Murakami and Okada, 2006]).

2.2.1.2 Pyramidal neurons

Pyramidal neurons are cells located in the gray matter which present elongated
dendrites all oriented toward the gray matter/CSF interface (apical dendrites). One
can see in Fig.(2.11), such a structure whose electric behavior is well represented
by a dipole. In the experiments related in [Murakami and Okada, 2006], different

Figure 2.11 – Pyramidal neurons of a macaque with overlaid a current dipole

representing a PSP. http://brainmaps.org

types of neuron have been modeled, and equivalent current dipoles were computed.
A current dipole is similar to an electrical dipole except that instead of considering
two charges of opposite signs, one considers a current sink and a current source.

http://brainmaps.org
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See Fig.(2.12) for a superposition of a current dipole on an apical dendrite. In

+ -

Figure 2.12 – Electric field (purple arrows) generated by an electric dipole (model

for a PSP current). Blue lines represents iso-lines of the potential.

their experiments, the authors of [Murakami and Okada, 2006] estimated a current
dipole with a moment of 1pA for a single pyramidal neuron. The pyramidal cells
are very numerous in the gray matter: it has been estimated that an area of 1mm2

of the cortex would be detectable, even if in the experiments the minimal detectable
area was closer to 100mm2 [Hämäläinen et al., 1993].
Let us define a current dipole at location r, and orientation m, its strength is
simply the norm of m. One can see Fig.(2.13), the iso current lines for the electric
field generated by a dipole (a 2D view, with axial symmetry). For the case of the
magnetic field, one can see that the field is only in the plane normal to m (3D view),
this will explain the incapacity of the MEG to detect radial sources (null magnetic
field).

2.2.2 EEG and MEG modalities

Electroencephalography (EEG) is a non-invasive technique very useful for study-
ing brain functional activity because of its non invasivity and its high temporal
resolution (several orders of magnitude higher than that of the functional MRI on
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Figure 2.13 – Electric field (left) and magnetic field (right) generated by a current

dipole (in red).

Fig.(2.9)). Electroencephalography records electrical activity on the scalp. EEG
measures voltage fluctuations which result from current flows within the neurons of
the brain. The first EEG recording on a human was made in 1929 by the German
physiologist Hans Berger. Thanks to the recordings he made with only two elec-
trodes, he could observe changing brain activities depending on whether or not the
patient had eyes opened. Later, he also discovered a different electrical phenomenon
when recording an epileptic seizure. This analysis was done by analyzing visu-
ally the curve shape defined by the poor definition encephalogram (see Fig.(2.14)).
Actually, he did not use electrodes placed on the scalp at first, but tiny silver wires

Figure 2.14 – One of the first EEG signal of a young boy overlaid on a 10Hz

signal.wikipedia

introduced under the scalp. This technique was convenient for assuring a good
electrical contact between the device and the head. Nowadays, one can get an EEG
recording wearing a helmet with 19 to 256 electrodes (even 512 in some research
cases). The electrical contact between electrodes and the scalp is ensured using
an electrolyte solution which spreads the contact over a small scalp area. Techni-
cal researchers now try to build dry electrodes for convenience [Taheri et al., 1994].
Having more electrodes allows for constructing higher resolutions map of the elec-
trical activity on the scalp.
How far do we need go in adding electrodes on the scalp ?
Actually, the potential on the scalp is quite smooth, furthermore technical limita-
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tions due to the use of electrolyte solutions do not allow for too close electrodes.
EEG amplitude is less than 10µV, and EEG is amplified by an amplifier that
can sample and convert numerically the data with a sampling rate up to 2kHz.
Fig.(2.15) displays a typical EEG recording.

Figure 2.15 – EEG recording for several sensors along time showing an epileptic

seizure.wikipedia

Magnetoencephalography (MEG) appeared 40 years after EEG in 1968. If the
brain electrical activity generates an electrical field through the head, it also gen-
erates a magnetic field (or from a more general point of view an electromagnetic
field). Although this field is very weak (some fT (10−15Tesla)), it propagates out-
side the head. David Cohen in 1968, invented the field of biomagnetism looking at
the magnetic field generated by a pulsing heart with one sensor, a copper induction
coil. With such tiny values for the magnetic field one must have highly sensitive
detectors. Recalling that the Earth magnetic field is around 50µT=5.10−5T (a
billion times larger than brain generated magnetic field), and a typical urban mag-
netic noise is up to 1µT, have led experimenters to practice in very well shielded
rooms. One year later, James E. Zimmerman invented the SQUIDs (Superconduct-
ing QUantum Interference Device) which are highly sensitive magnetometers able
to measure fields down to 5.10−18T ! David Cohen took advantage of these detec-
tors to measure the first brain activity through magnetic field in a better shielded
room at MIT. Current MEG machines work on the same description, but now with
a very high number of SQUIDS, often packaged by two to measure a component of
the gradient of the magnetic field (gradiometers), that is less noise sensitive. They
have around 200 detectors, and some allow for a simultaneous EEG recordings such
as shown in Fig.(2.16).
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Figure 2.16 – Modern MEG device and a simultaneous EEG 64-electrode helmet.

2.2.3 Brain functional imaging with EEG and MEG

The purpose of EEG research is to analyze the brain functions. From a two-sensor
EEG recording, Hans Berger could observe different brain rhythms. In this exper-
iment, he observed that the signal contained an important 10Hz oscillation when
the subject had his eyes closed. This was the birth of the brain rhythms studies,
where only looking at the main brain frequency one has been able to deduce dif-
ferent cognitive states (see Fig.(2.17)). To study brain rhythms, one only needs

Figure 2.17 – Brain rhythms.

a few electrodes (e.g. a 19-electrode helmet), and to apply an FFT (Fast Fourier
Transform) on the data to get the main frequencies. Inference sometimes depends
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on electrode locations. With such simple procedures one established the following
observations:

γ waves: High brain activity, such as when problem solving or arithmetic calcula-
tions.

β waves: Busy state, conversation, anxious thinking, ’normal’ state.

α waves: Occur at the occipital lobes (above the neck), and are signs of a resting
state, or closing eyes. They offer the highest amplitude (which is why they
were the first to be observed in recordings).

µ waves: Appear with the same frequencies as the α waves but at the motor cortex
(central scalp), and disappear when the subject is moving or intending to
move.

θ waves: Are harder to characterize, they appear during REM sleep, and
are probably due to the hippocampus which is far from the EEG sen-
sors [Buzsáki, 2002].

By looking at a (EEG or MEG) topography, one can get an insight on the
localization of the main brain electrical activity (see Fig.(2.18)). Visually, one gets

Figure 2.18 – EEG and MEG topography. from Hämäläinen presentation.

a rough estimate on the lateralization or the anterior-posterior position, of the
source. For example, a physicist could guess from these topographies that the main
source present in the signal is oriented tangentially, and located somewhere in the
temporal lobe or motor cortex on the left of the patient. From the data acquired,
ideally, one would like to localize all the sources within the brain active at a given
time. This would have the form of a 3D image (as in fMRI), showing the activity of
each part of the brain. Such a case cannot occur as long as we have less data than
unknowns. This would tend to answer the question in sec.2.2.2 about the number
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of sensors. Following this observation one would need as many sensors as unknowns
(at least).
In absence of such a case, one can estimate the parameters (positions/orientations)
of dominant sources, this problem is called the MEEG source localization problem:

Given some data on the boundary, find the sources responsible for this signal.

2.2.4 Source localization in MEEG

From MEG or EEG acquisitions, one wishes to recover the electrical sources inside
the brain that are responsible for the measured components of the electromagnetic
field. This problem is called an inverse problem of localization. Denoting J the
variable representing the brain source activity within the brain volume, we introduce
the function f which gives the strict relation between brain sources and the potential
at sensors Vs. f indeed comes from the forward problem, which given a source, gives
the estimated data that one would observe at sensors. The inverse problem is based
on this forward problem. The inverse problem can be formulated for the EEG case
as:

find J s.t Vs = f(J) . (2.1)

If one could invert the function f , the inverse problem would be solved writing:

J = f−1(Vs).

But this problem is largely under-determined, we only have a few hundred data for
millions of unknowns (e.g. considering J ∈ R3×R3 a vector field and sampling the
brain volume into a 3D image of dimension 128x128x128). One must then resort to
finding an approximate solution J̃ of J, adding a-priori hypothesis on the sources;
this is the field of inverse problem for source localization in MEEG.

2.2.4.1 What kind of model for sources ?

An a-priori hypothesis for the brain electrical activity, is that at a given time, it
is sparse spatially; i.e. only a few regions of the brain are active simultaneously.
’Active’ in the previous sentence means active electrically and detectable by EEG
or MEG. One can distinguish two types of model for sources:

dipolar sources represent the PSP activity within a small volume (106 neu-
rons [Hämäläinen et al., 1993][Nunez, 1981]). It has 6 parameters for each
dipole (3, for the position, 3 for the moment).

distributed sources represent the activity of a small area on a surface. Most
often an imaginary interface between the gray-CSF interface and white-gray
interface is chosen. The sources are then constrained by the normal of the
surface since PSP are oriented normally to the exterior cortex surface. It
restrains the number of parameters to estimate.
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2.2.5 Inverse problem

The inverse problem of localization is tackled as follow: one seeks to find a solution
Ṽs = f(J̃) that is close to the measured data Vs:

J̃ = arg min
J

‖Vs − Ṽs‖ = arg min
J

‖Vs − f(J)‖ . (2.2)

This problem is ill-posed (Hadamard’s sense). A well-posed problem follows the
requirements:

• A unique solution exists;

• This solution depends continuously on the data (in some metric).

Problem (2.2) does not fulfill the first requirement since it is an under-determined
problem, it thus needs regularization which is achieved adding a-priori on the so-
lution. Actually one could think about adding measurements i.e. scalp electrodes
for EEG, but as discussed in [Ryynänen et al., 2004] it depends on the skull con-
ductivity which blurs the signal, and may not be useful in our case to go beyond
256 electrodes, which is much lower than our number of unknowns. One must then
add a-priori on the solution.
Many techniques are then possible, adding a-priori on the source position through
time, or source orientation, or more complex schemes. The methods can be placed
in the following categories:

dipole fitting methods Where we place a set of dipoles in a region of interest,
and try to estimate their position and moment to fulfill as well as possible the
Eq.2.2. For a somato-sensory task, for example, one places dipoles within the
region a-priori responsible of these task (somato-sensory cortex). Methods of
this category include: rotating dipoles, moving dipoles, Minimum Norm,

filtering approaches the space is sampled (often with a Cartesian grid), and one
tries to spatially filter the sources from noise and inter-correlation (beam-
forming methods). An alternative is to extract multiple signals from the data
(using a SVD: Singular Value Decomposition), this is the goal of MUSIC
methods (MUltiple SIgnal Classification).

distributed sources the space is sampled on a Cartesian grid in the brain region
or the gray matter (with constrained orientations or not). Dipoles are placed
at these grid points (often 3 dipoles per grid point, so that all orientations
are covered). MinimumNorm methods try to solve the minimization problem
enforcing a-priori regularity on the solution; either with L1 norm (sparsity),
L2 norm (limited energy), . . . or combination of these [Gramfort et al., 2008].

2.3 The forward problem

The forward problem consists in simulating sources inside the brain and computing
the resulting field at the sensor positions (f in Eq.(2.1)). This resolution is done
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by solving Maxwell’s equations in their quasi-static approximation on a geometry
specific to the subject. Hence, for each subject, one needs the definition of the
tissues, i.e. the geometry of the different layers and their conductivities. Most of
the layers of the head can be extracted from anatomical MRI (Magnetic Resonance
Imaging); the skull still presents some difficulties to be extracted and is often ap-
proximated by inflating the brain. Conductivities of the layers can be evaluated in
different ways ; one can use reference conductivities that have been measured in
vivo on test subjects, or one can estimate the conductivity for each subject using
Electrical Impedance Tomography [Clerc et al., 2005a].

2.3.1 Maxwell’s equations

Maxwell’s equation are a set of PDE (partial differential equations), that relate
in any medium, the electric field, the magnetic field, the distribution of electrical
charges, and the distribution of the currents. These relations are given through
partial differential operators with respect to space and time. We refer the reader
to page.vii concerning the notations used.

A local formulation: Starting from the relations established by Ampère, Gauss,
and Faraday, Maxwell summarized and completed these equations. In their local
form, in a vacuum they write:

∇ ·E = ρ
ε0

(a)

∇ ·B = 0 (b)

∇×E = −∂B
∂t (c)

∇×B = µ0J + µ0ε0
∂E
∂t (d)

(2.3)

For human tissues, the magnetic permeability is the same as the one in the vac-
uum. For the electric permittivity however, it varies a lot from ε0 depending on
the tissue and frequency studied. Writing εr = ε

ε0
the relative permittivity of a

medium of permittivity ε, this ratio is around 4.108 for gray matter, 1.105 for skin
at 10Hz [Gabriel et al., 1996b]. In their local form, for a medium with permittivity
ε and permeability µ = µ0, Eq.(2.3.a) and Eq.(2.3.d) write:

∇ ·E =
ρ

ε
(2.4)

∇×B = µ0J + µ0ε
∂E
∂t

(2.5)

(2.6)

The Quasi-static assumption: When considering these equations for EEG or
MEG problems, one can neglect the time derivatives (see [Hämäläinen et al., 1993]).
This is due to the typical scale of our problems; a head is less than a meter diame-
ter, and the time scale of about 10ms (typical electrical activity of PSP). One can
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then re-write equations (2.3): 
∇ ·E = ρ

ε (a)

∇×E = 0 (b)

∇ ·B = 0 (c)

∇×B = µ0J (d)

(2.7)

The magnetic field and the electric field are then decoupled, and which makes it
possible to solve them independently.

2.3.1.1 A Poisson equation for the electric potential

Equation.(2.7b.) implies that E derives from a scalar potential field, which is the
electrical potential V , and also by definition, the electric field points from high
potentials to region with low potentials:

∇×E = 0 =⇒ E = −∇V (2.8)

The field E is fully determined by V , and V is defined up to a constant. Using now
Eq.(2.7d.), and taking its divergence yields:

∇ · (∇×B) = ∇ · (µ0J) = 0.

Thus the total amount of current density is divergence free. Now splitting J into its
component due to the primary current source, denoted Jp (the one generated by the
PSP), and the passive Ohmic current due to the resistive material (of conductivity
σ) being crossed writes:

∇ · J = ∇ · Jp +∇ · (σE) = 0

This equation is a Poisson equation relating the potential in the head domain, and
the primary current source Jp, using Eq.(2.8) we obtain the following equation
which this thesis will aim at solving: to solve:

∇ · (σ∇V ) = ∇ · Jp (2.9)

2.3.1.2 The Biot-Savart law for a magnetic field equation

Taking the curl of Eq.(2.7d.) and expanding it with the use of Eq.(2.7c.):

∇×∇×B = ∇(∇ ·B)−∆B = −∆B = µ0∇× J, (2.10)

we obtain a set of Poisson equations on the three coordinates of the vector field
B. Knowing the fundamental solution of the Laplace equation ∆G = δ to be: the
Green function

G(r) =
−1

4π‖r‖
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We now use the convolution product in the sense of distribution, so that the solution
to Eq.(2.10) writes:

B(r) =
µ0

4π

∫
R3

∇× J(r′)
1

‖r− r′‖
dr′ + BH ,

where BH is an homogeneous solution to Eq.(2.10). Imposing a null magnetic field
at infinity leads to set BH to zero, we then integrate by parts and get:

B(r) =
µ0

4π

∫
R3

J(r′)×∇
(

1
‖r− r′‖

)
dr′

=
µ0

4π

∫
R3

J(r′)×
(

r− r′

‖r− r′‖3

)
dr′

{now splitting J into its primary current and passive components}

=
µ0

4π

∫
R3

Jp(r′)×
(

r− r′

‖r− r′‖3

)
dr′ − µ0

4π

∫
R3

σ∇V (r′)×
(

r− r′

‖r− r′‖3

)
dr′

B(r) = B0(r)− µ0

4π

∫
R3

σ∇V (r′)×
(

r− r′

‖r− r′‖3

)
dr′ , (2.11)

where B0(r) =
µ0

4π

∫
R3

Jp(r′)×
(

r− r′

‖r− r′‖3

)
dr′ . (2.12)

The magnetic field at any point r can then be written summing up the contributions
of the two currents. Let us note that the term B0, called the primary magnetic
field, only depends on the primary current and not on the conductivities of the
crossed media, thus not either on the patient head geometry. This will be a main
difference between MEG and EEG when solving their forward problems, since the
Poisson equation in (2.9) strongly depends on the patient head modeling (geometry
and conductivity), while the primary magnetic field is not sensitive to it.

2.3.2 Electrophysiological models

In order to solve the forward problem with the Poisson equation.(2.9), or the
Biot-Savart equation.(2.12), one must have the description of the geometry shape
and the conductivities of the tissues of the patient head. MEG and EEG forward
problems do not share the same sensitivity with regards to the geometric modeling
or the conductivity profile. Actually, the primary magnetic field is paramount in
the expression of B, and can be computed analytically without a head model.
However, one would introduce considerable errors not computing the passive
Ohmic current contribution to the magnetic field. A human head can be considered
to be a bounded volume conductor when neglecting the current flow through the
neck. The electric current does not propagate outside the head since the air has
negligible conductivity.
One can then define a head as a set of volume conductors, partitioning where it
is relevant, the head into regions with different conductivity profiles. We define
a relevant partitioning as a splitting of the head domain into regions of very
changing conductivity profile. Considering an homogeneous volume conductor for
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the head would be a really coarse approximation since the skull structure makes it
very low-conductive when compared to other head tissues. Considering the skull
conductivity profile is crucial when solving a forward EEG problem, since it lies
in between the sources and the sensors. On the other hand, for the forward MEG
problem it less important to take the skull into account. Since the primary mag-
netic field is independent of the conductivities, and the passive Ohmic current is
proportional to the conductivity of the medium considered, thus not really affected
by the skull nor by the scalp in which, because of the shielding effect of the skull, do
not lie big Ohmic currents. Assigning isotropic or anisotropic conductivities to each
region is still challenging today, in-vivo measurements being almost impossible and
subject to variability [Baysal and Haueisen, 2004, Lai et al., 2005], this problem
will be addressed later, considering for the moment that the conductivity of the
skull is considered to be between 15 and 80 times lower than the one of the
scalp [Bashar et al., 2009].

In the rest of this section we now present different electrophysiological models,
starting from a coarse geometric description of a head with nested spherical volume
conductors and piecewise homogeneous conductivities, and ending with a realis-
tic head shape extracted from anatomical MRI and associated with appropriate
conductivity profiles for each region considered.

2.3.2.1 Spherical volume conductors

Considering the head as nested spherical conductors such as shown Fig.(2.19) has
been the first model for solving the forward EEG problem [Rush and Driscoll, 1968,
Meijs and Peters, 1987]. In this figure, the head domain Ω is split into three differ-
ent regions Ω1,Ω2,Ω3 with respective conductivities σ1, σ2, σ3. The common model
used for a forward EEG problem considers Ω1 to be the ’brain’, Ω2 the skull and
Ω3 the scalp with respective relative radii 0.87, 0.92, 1. This model presents several

Figure 2.19 – A three-layer spherical head model.
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advantages. The geometry of the patient does not have to be known, we only need
to fit approximately one sphere on the patient head. The solution of the forward
problem equations (2.9)-(2.12) can be solved analytically, and thus very fast, which
is a pro for real time source localization for example [Spinelli et al., 2000]. But
the main con is on the geometry modeling, which does not conform exactly to any
surface. A step forward in the head modeling has been done considering ellipsoidal
description for the volume conductors (see Fig.(2.20)), equations can still be solved
analytically [De Munck, 1988, Kariotou, 2004].

Figure 2.20 – A spheroidal model on the left and ellipsoidal on the right approx-

imating the head geometry.

But still, the geometry approximation leads to considerable errors at least for
the forward EEG problem [Cuffin, 1996, Huiskamp et al., 1999]. Even for the MEG
forward problem, it is considered that concentric spherical models are not good
enough when compared to realistic one [Van Uitert and Johnson, 2002], instead a
spherical model per squid centered is used, which minimize some geometric errors
[Huang et al., 1999] (see [Lalancette et al., 2011] for other similar cases). A step
forward in the geometrical head modeling is to consider realistic geometries.

2.3.2.2 Piecewise homogeneous volume conductors

Segmenting an anatomical MRI, one can extract different surfaces of a head, such
as the white/gray matter interface, the gray-CSF interface, the CSF-skull inter-
face, the skull-scalp interface and finally the scalp-air interface. In Fig.(2.21), one
can see some of the extracted surfaces obtained using the open-source software
Freesurfer [Dale et al., 1999, Fischl et al., 1999] which uses a brain atlas. Using a
T2-weighted MRI, one can detect the CSF and the soft bone, the skull is often in-
ferred from these. For acquisition of the hard bone people rather use proton density
MRI (a kind of sequence).
Using such a piecewise model, the geometry description now conforms with the
patient head but requires at least the anatomical MRI. If the MRI is not available,
a common approach considers using template meshes generated on the average of
several segmented MRI [Darvas et al., 2006].
In such a model a scalar conductivity is assigned for each region. One limitation
of this model comes from the fact that some of the head tissues cannot be consid-
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Figure 2.21 – High definition of triangulated surfaces from segmented MRI:

(fushia)-scalp-(mauve)-skull-(orange)-CSF-(green)-gray matter-(gray)-white matter.

ered to have a constant and isotropic conductivity. This lead us to more refined
modeling, allowing now for all kinds of conductivity profiles.

2.3.2.3 Inhomogeneous and anisotropic models

The skull has a layered structure, and in some parts, where it is thickest,
it is composed of a layer of soft bone lying in between two layers of hard
bone. The soft bone conductivity can be 4 to 7 times higher than the hard
one [Akhtari et al., 2002, Ramon et al., 2006]. This increases the tangential con-
ductivity which has led the community to consider an anisotropic description for
the skull conductivity. The piecewise model previously discussed could represent
the skull with tiny compartments for the soft bone, but it will require an accurate
geometry of the skull (with soft and hard bone, thus CT-scan, T2-MRI as well the
T1-MRI), and then such small regions will lead in the numerical methods solving
the EEG forward equation to very tiny elements which can be annoying in some
cases.
The white matter is also another example of tissue showing anisotropy. As it is
composed of bundle of fibers due to the neuron axons, it conducts more in the
direction of the fibers than in the tangential one. This should be dealt with an
accurate description of the inhomogeneous electrical tensor.
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2.3.2.4 Assigning conductivities to brain tissues

In order to get a proper forward problem resolution, one must estimate precisely
the different conductivities. This is a challenging task and different opinions can be
considered.

In-vivo, and in-vitro measurements In-vivo measurements are very rare be-
cause they require invasive experiments, in-vitro measurements are however more
common [Gabriel et al., 1996a]-[Gabriel et al., 1996b]. The main issue regard-
ing in vitro conductivities measurements, is that the tissue behaves differently
than in its living environment, and at body temperature. In-vivo measure-
ments are closer to real conductivities, and have led to corrections, for example,
in [Baumann et al., 1997], we learn that the CSF conductivity was under-estimated
of about 44% between 1977-1997. In [Hoekema et al., 2003], the skull conductivity
of several subjects in epilepsy surgery was measured as well as a post-mortem piece
of skull. The conductivities of the craniotomy was much bigger than the one used
by the community and also the one of the post-mortem skull, but suffered from high
variability between subjects. Actually, the skull conductivity highly depends on the
age of the person. That is why the next methods are seductive. See [Lai et al., 2005]
for the brain to skull conductivity ratio.

Electrical impedance tomography (EIT) is a technique similar to EEG. Instead
of measuring the potential at sensors due to the brain electrical activity, one can
consider injecting a current at a pair of electrodes so that, one can calibrate the con-
ductivity values by considering the potential measured on the other sensors. This is
called EIT (see [Kybic et al., 2006]). One can estimate the tissues conductivities for
each patient specifically, before the clinical or research experiment. A study on the
sensitivity on these conductivities with EIT is done in [Vallaghé and Clerc, 2009],
where it is shown that the scalp/skull ratio of conductivities can be well estimated.

Evoked potential In order to calibrate the conductivities of the other tissues, one
can consider having the solution of the inverse problem, and then estimate the
conductivities, such that the forward problem agrees with the measurements in
terms of their topography. For example, knowing the location of the left somato-
sensory sensitivity, one can make an experiment, where the subject is stimulated
in this region, and analyze the results, so that they agree with the forward model-
ing [Gonçalves et al., 2003].

Conductivities used in our experiments Table (2.1) lists the conductivities we
will use. It is based on the previous articles and the extensive survey done
in [Dannhauer et al., 2010]. We also show the normalized conductivities which are
commonly used since solving a forward problem on a computer can be done simi-
larly with real conductivities or normalized ones. The anisotropic ratio is, for the
skull, the radial conductivity compared to the tangential one i.e. σradial

σtangential
. And
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for the white matter it corresponds to the ratio σtransverse
σlongitudinal

which multiplies the
conductivity along the white matter fibers. In Chap.7 we will study this matter in
more detail.

Tissues Conductivities S/m Normalized isotropic Anisotropic ratio
Brain 0.33 1.
Gray Matter 0.33 1.
White Matter 0.33 1 1 : 10
Skull 0.01 0.03 1 : 1.5
Scalp 0.33 1.

Table 2.1 – Conductivities of the human head tissues.

2.4 Solving the forward problems

Let us recall the forward EEG problem to be solved for V in a domain Ω with
boundary Γ (scalp-air interface):{

∇ · σ∇V = ∇ · Jp in Ω

σ∇V · n = 0 on Γ
, (2.13)

where n denotes the normal to the external surface.
On simple geometries such as an unbounded homogeneous medium, or spheri-

cal/elliptic head models with piecewise constant conductivities, one can derive the
analytical formulas. These solutions provide a very high accuracy compared to the
ideal solution, since no hypothesis are introduced, neither on the model, nor on the
solution. For the case of EEG for example, the analytical expression requires an
infinite sum which is truncated in real situations and thus approximated.

2.4.1 Analytical solutions in spherical geometry

2.4.1.1 EEG spherical model

In a spherical geometry, the use of spherical harmonics is judicious. A harmonic
function f (i.e. s.t ∆f = 0) can be written in spherical coordinates (r, θ, φ) as:

f(r, θ, φ) =
∞∑
l=0

l∑
m=−l

(
Almr

−l−1 +Blmr
l
)
Pml (cos(θ)) cos(mφ) , (2.14)

where Alm and Blm, are the coefficients which will be determined so that boundary
conditions and continuity through interfaces hold. P lm is an associated Legendre
function:

P lm(cos(θ)) = (−1)m sinm(θ)
dmPl(cos(θ))
d cosm(θ)

, (2.15)
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and Pl are Legendre polynomials.
Such functions can be used to represent the potential V in each domain where it
is harmonic. In the domain where the source term is located, one gets a slightly
different expression to represent the potential. This leads to a linear system to be
solved whose unknowns are the coefficients A,B for each domain.
Such methods can be found in [Hédou, 1997]. Other formulations which appear to
be faster, are possible when one only wants the potential at some points (or sensors)
lying on the external surface, this was done by [Berg and Scherg, 1994]. It consist
in adding dipole terms in a 1-layer homogeneous model, so that it approximates a
multi-layer model. This can also be done for anisotropic layers (tangential/normal
anisotropy) [Zhang, 1995]. This is the formulation we will use to validate other
methods on spherical models for EEG.

2.4.1.2 MEG spherical model

Let us recall the Biot-Savart equation (stated in Eq.(2.12)) which the magnetic field
satisfies:

B(r) = B0(r)− µ0

4π

∫
R3

σ∇V (r′)×
(

r− r′

‖r− r′‖3

)
dr′ . (2.16)

Consider the geometry described in Fig.2.22. First of all, the integral in Eq.(2.16)

Figure 2.22 – A three-layer spherical head model.

does not need to be computed in all 3D space, since σ is zero in the air. Then one
can split the integral over the total computational domain Ω, into the sum of the
integrals over the constant sub-domains Ωk in order to use the Stokes theorem, and
get to a surfacic writing of the previous equation on each interface Sk = ∂Ωk∩∂Ωk+1

with normal nk(r′) = r′

‖r′‖ :
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B(r) = B0(r)− µ0

4π

∑
k

σk

∫
Ωk

∇V (r′)×
(

r− r′

‖r− r′‖3

)
dr′

= B0(r)− µ0

4π

∑
k

σk

∫
Ωk

∇V (r′)×∇
(

1
‖r− r′‖

)
dr′

= B0(r)− µ0

4π

∑
k

σk

∫
Ωk

∇×
(
V (r′)∇

(
1

‖r− r′‖

))
− V (r′)∇×∇

(
1

‖r− r′‖

)
dr′

= B0(r)− µ0

4π

∑
k

σk

∫
Ωk

∇×
(
V (r′)

(
− r− r′

‖r− r′‖3

))
dr′

= B0(r)− µ0

4π

∑
k

σk

∫
∂Ωk

(
V (r′)

(
r− r′

‖r− r′‖3

))
× ds′

{ as we are dealing with nested geometries: }∫
∂Ωk

ds′ =
∫
Sk

nk(r′)ds′ −
∫
Sk−1

nk(r′)ds′ if Sk−1 exists

= B0(r) +
µ0

4π

∑
k

(σk+1 − σk)
∫
Sk

V (r′)
(

r− r′

‖r− r′‖3

)
× nk(r′)ds′ (2.17)

Expression (2.17) for the magnetic field is due to [Geselowitz, 1970], and also holds
for non-spherical geometries.
As all SQUID sensors, magnetometers and gradiometers, provided by manufactur-
ers are generally oriented radially with respect to the patient scalp, let us look at
the radial component of the magnetic field B(r) · r

‖r‖ , which is easy to express, since
this scalar product with a vector normal to nk is zero. Which means that only the
primary magnetic field is involved in the radial component of the magnetic field:
B(r) · r

‖r‖ = B0(r) · r
‖r‖ .

Concerning the total magnetic field outside of a spherical head model generated
by a dipole, there exists a really simple closed form due to [Sarvas, 1987] which
does not even depend on the conductivity of each layer. Let us derive it for a
dipolar source Jp = mδr0 , first noticing that ∇ × B = 0 outside Ω (because of
Eq.(2.7)d). Then B derives from a magnetic scalar potential which we call U , such
that: B = −∇U . Since Eq.(2.7)c), U is harmonic i.e. ∆U = 0, and one can select
it so that U vanishes at infinity. Starting from a point r /∈ Ω, and integrating
along the radial direction (er = r

‖r‖) to infinity, permits us to write U(r) with the
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following line integral:

U(r) = −
∫ +∞

0
∇U(r + ter) · erdt

=
∫ +∞

0
B(r + ter) · erdt

=
∫ +∞

0
B0(r + ter) · erdt

=
∫ +∞

0

µ0

4π

∫
R3

mδr0(r′)×
(

r + ter − r′

‖r + ter − r′‖3

)
dr′ · erdt

=
µ0

4π

∫ +∞

0
m×

(
r + ter − r0

‖r + ter − r0‖3

)
· erdt

=
µ0

4π
(m× (r− r0)) · er

∫ +∞

0

(
1

‖r + ter − r0‖3

)
· dt

=
−µ0

4π
(m× r0) · r

F
,

where the expression of F is, denoting a = r − r0, a = ‖a‖ and r = ‖r‖: F =
a(ra+ r2 − r0 · r). Then the total magnetic field B writes:

B(r) =
µ0

4πF 2
(Fm× r0 − (m× r0 · r)∇F ) , (2.18)

where ∇F = (r−1a2 + a−1a · r + 2a+ 2r)r− (a+ 2r+ a−1a · r)r0. This formulation
is due to [Sarvas, 1987].

The computation of the magnetic field generated by a dipole in a spherical model
then leads to a closed form which can be evaluated by hand.
This case is an exception, and nowadays computations are done on computer, in
which everything stored is finite, one need to discretize each parameter of the for-
ward problem to solve it: the geometry, the conductivity values, the sensors and
the sources, and even harder, represent the partial differential equation in Eq.(2.13)
in a discrete form.
The simplest way to discretize a PDE is writing the differential operator as finite
differences which approximate these operators. In the following section we will in-
troduce several numerical methods to solve our Poisson equation, namely the FDM
(finite difference method), FEM (finite element method), and BEM (boundary ele-
ment method).

2.4.2 Finite Difference Method

It consists in discretizing each element of the equations stated in (2.13)-(2.12),
most of the time, sampling the 3 directions of the space with a length h, so that a
derivative in one axis direction writes:

∂f

∂x
(r0) = lim

ε→0

f(r0 + ε
2)− f(r0 − ε

2)
ε

'
f(r0 + h

2 )− f(r0 − h
2 )

h
(2.19)
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One can get the value of f at point x+ h
2 with x a grid point, interpolating between

the two values of its neighbors.
The operator ∇ · σ∇V can be discretized using a seven-point scheme:

α0V (r0)−
6∑
i=1

αiV (ri) , (2.20)

where the ri are the neighbors of r0 on a 3D Cartesian grid. Coefficients αi and α0

depend on the conductivities σi at positions ri:

αi = 2h
σ0σi
σ0 + σi

α0 =
6∑
i=1

αi (2.21)

It can be seen as the Kirchoff’s law, which states that at a point in an electrical
circuit, the sum of the in and out currents is zero. The divergence operator can be
discretized using a similar scheme. A dipolar source term is enforced strongly, most
often assigning a high value at two grid points (to represent the two poles). Doing
this for all grid points yields a linear system which is very well structured (band
matrix), and very sparse. See [Hédou-Rouillier, 1999] and [Dang and Ng, 2011] for
fast implementations.

2.4.3 Boundary Element Method

2.4.3.1 Common formalism

Let us introduce some notations regarding the solving of the electric Poisson equa-
tion defined in Eq.(2.13). Considering the nested geometry displayed in Fig.(2.23),
this equation can broken down in each sub-domain Ωi. As the conductivity σ is
considered to be constant in each sub-domain, the potential V satisfies in each
domain Ωi:

σi∆V = fi ,∀i ∈ {1..N}, (2.22)

The term fi defines the restriction of the source term ∇ · Jp to Ωi; i.e. the dipoles
inside the layer Ωi. At interfaces, here denoted Si, we enforce the continuity of the
variable V as well as the normal current σ∂nV , it means that the ’jump’ across Si
(between two sub-domains) is zero:

[V ]Si = 0 (2.23)

[σ∂nV ]Si = 0. (2.24)

In this expression, the jump of a function f is defined as the difference between the
value of the function f at all points r ∈ Si from one side to the other:

[f ]Si = f−Si − f
+
Si

(2.25)

with f±Si = lim
α→0±

f(r + αn) (2.26)

where n denotes the outward normal of the surface, as seen in Fig.(2.23) with black
arrows.
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Figure 2.23 – Nested regions with constant conductivities.

2.4.3.2 A Green formula and its application to EEG due to Geselowitz

Green’s equations Taking two functions u and v twice continuous and differen-
tiable on the open set Ω ⊂ R3, and writing the divergence theorem for the functions
u∇v and v∇u successively gives:∫

Ω
∇ · (u∇v)dr′ =

∫
∂Ω

(u∇v) · n′ ds′ =
∫

Ω
∇u · ∇vdr′ +

∫
Ω
u∆vdr′∫

Ω
∇ · (v∇u)dr′ =

∫
∂Ω

(v∇u) · n′ ds′ =
∫

Ω
∇v · ∇udr′ +

∫
Ω
v∆udr′

Subtracting the two equations leads to the second Green identity:∫
Ω

(u∆v − v∆u) dr′ =
∫
∂Ω

(
u
∂v

∂n′
− v ∂u

∂n′

)
ds′ (2.27)

Let us now consider u as a harmonic function (s.t. ∆u = 0 in R3 \ ∂Ω); and
v(r, r′) = −G(r − r′) = −1

4π‖r−r′‖ , with G(r) the Green solution of the equation
−∆G = δ0 (δ0 is defined p.vii). The previous Eq.(2.27) now writes:∫

Ω
u(r′) δ0(r− r′)dr′ =

∫
∂Ω

(
∂n′uG(r− r′)− u∂n′G(r− r′)

)
ds′ (2.28)

If r ∈ Ω, the first term is simply u(r), conversely if r ∈ R3 \ Ω̄, then it is zero.
Considering r ∈ ∂Ω, one must integrate on a ball centered on r with an infinitely
small radius ε, the domain of this ball ΩB = Bε(r), is split between Ω̄ and R3 \ Ω̄
with a plane interface. The computation of this integral leads to the mean of u(r)
on both sides which is then: 1

2u
−(r) since u+ is zero (see [Nédélec, 2001] for a formal
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proof). The values of the first term in Eq.(2.28) denoted I(r) are summarized here:

I(r) =


u(r) r ∈ Ω
1
2u
−(r) r ∈ ∂Ω

0. r ∈ R3 \ Ω̄

Seen from inside the domain Ω, it writes:

I(r) =
∫
∂Ω

(
∂n′u

−(r′)G(r− r′)− u−(r′)∂n′G(r− r′)
)
ds′.

Doing exactly the same for the domain Ω′ = R3 \ Ω̄ also an open subset of R3, this
time denoting J(r) in place of I(r), we get:

J(r) =


0. r ∈ Ω
1
2u

+(r) r ∈ ∂Ω

u(r) r ∈ R3 \ Ω̄

J(r) =
∫
∂Ω

(
∂n′u

+(r′)G(r− r′)− u+(r′)∂n′G(r− r′)
)
ds′.

When summing up with the expression of I(r) yields:

∫
∂Ω

(
[∂n′u]G(r− r′)− [u] ∂n′G(r− r′)

)
ds′ =

{
u(r) if r ∈ Ω
u−(r)+u+(r)

2 if r ∈ ∂Ω
(2.29)

One can then reconstruct a piecewise harmonic function in all of R3 considering
by only its jump on the interface. For ease of notation, we introduce the two
operators respectively called the single- and double-layer potentials which map a
scalar function f defined on ∂Ω to another scalar function:

(Df)(r) =
∫
∂Ω
∂n′G(r− r′)f(r′)ds′

(Sf)(r) =
∫
∂Ω
G(r− r′)f(r′)ds′ (2.30)

From Eq.(2.29) we now write:

u(r) = −D[u](r) + S[∂nu](r) ∀r ∈ Ω (2.31)

u∓(r) =
(
± I

2 −D
)

[u](r) + S[∂nu](r) ∀r ∈ ∂Ω, (2.32)

where I denotes the identity operator. Considering multiple regions such as the
piecewise constant head model of Fig.(2.23), we can write the same set of equations
for each sub-domain Ωi.
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Geselowitz Starting from the formula previously established, one has to find a
harmonic function which could allow for the computation of the potential V on
the different surfaces. Let us start with the restriction of f the source term to
Ωi, and vΩi the solution of ∆vΩi = fi in Ωi, and harmonic outside. Hence it is
continuous as well as its normal derivative for each surface Sj , and the function
vd =

∑N
i=1 vΩi satisfies ∆vd = f . Now, let ud = σV − vd. It is a harmonic function,

since ∀i: ∆ud = σi∆V −∆vΩi = fi − fi = 0, even for r ∈ R3 \ Ωi. The jump of its
normal derivative is 0 since σ∂nV is continuous across interfaces, and also is vd by
construction. Last the jump [ud]Si = [σV − vd]Si = σiVi − σi+1Vi, which allows us
to write for each surface Sj by applying Eq.(2.32):

vd =
σi + σi+1

2
VSj −

N∑
i=1

(σi+1 − σi)VSi , (2.33)

This formulation is the one given by Geselowitz [Geselowitz, 1967], and can be
called the double-layer formulation since it uses double-layer potentials. It is
still commonly used today, but is prone to certain numerical errors when imple-
mented, especially when the conductivity value drops significantly between two
neighboring regions, which is exactly the case for the EEG problem (because
of the skull). A special care for this change of conductivity has been studied
in [Hämäläinen and Sarvas, 1989].

Single-layer formulation Similarly to what has been done for the double-layer
potentials approach, one can construct a harmonic function us = V −

∑N
i

vΩi
σi

,
and will get a formulation giving an expression for the normal derivative of us.
The solution us is then computed out of the jumps of ∂nus through the integral
operator S defined in Eq.(2.30) (see [Kybic et al., 2005]).

Extending the Green representation theorem see in Eq.(2.32), by computing the
partial derivative toward n, has led Nédélec et al [Nédélec, 2001] to their represen-
tation theorem (see also [Bonnet, 1995]):

Representation Theorem We introduce two more integral operators N,D∗, and
recall the two previous ones introduced in Eq.(2.30):

(
Df
)
(r) =

∫
∂Ω

∂n′G(r− r′)f(r′) ds(r′) ,

(
Sf
)
(r) =

∫
∂Ω

G(r− r′)f(r′) ds(r′) ,

(
Nf
)
(r) =

∫
∂Ω

∂2
n,n′G(r− r′)f(r′) ds(r′) ,

(
D∗f

)
(r) =

∫
∂Ω

∂nG(r− r′)f(r′) ds(r′) ,

(2.34)
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where n, resp. n′, is the outward normal vector at position r, resp. r′. Operator
D∗ is the (L2-)dual of operator D, whence its name. We will say that a function u
satisfies condition H , if it simultaneously satisfies:

H :

 lim
r→∞

r |u(r)| <∞

lim
r→∞

r∂u
∂r (r) = 0 ,

where r = ‖r‖, and ∂u
∂r (r) denotes the partial derivative of u in the radial direction.

The Green function G satisfies the H condition. To condition H corresponds the
physical intuition that an electrostatic field is zero far away from charges. The
fundamental representation theorem on which the Boundary Element Method is
then formulated as:

Theorem 1 (Representation Theorem) Let Ω ⊆ R3 be a bounded open set

with a regular boundary ∂Ω. Let u : (R3\∂Ω)→ R be a harmonic function (∆u = 0
in R3\∂Ω), satisfying the H condition, and let further p(r) def= ∂nu(r). Then

−p = +N[u] −D∗[p] for r /∈ ∂Ω

u = −D[u] +S[p]

−p± = +N[u] +
(
± I

2
−D∗

)
[p] for r ∈ ∂Ω

u± =
(
∓ I

2
−D

)
[u] +S[p]

(2.35)

The Theorem holds in particular for the hollow ball topology depicted in Figure
2.23, i.e. for disjoint open sets Ωi such that Ω = ∪i∈{1..N}Ωi From this theorem,
one can recover the two previous formulations (single and double). This result is
the basis of a third formulation, the symmetric BEM formulation which involves N,
and D∗.

The symmetric BEM developed in [Kybic et al., 2005], considers in each
Ω1, . . . ,ΩN the function:

uΩi =

{
V − vΩi/σi in Ωi

−vΩi/σi in R3\Ωi .
(2.36)

The notation is the one introduced above as Eq.(2.33). Each uΩi is harmonic
in R3\∂Ωi. Considering the nested volume model, the boundary of Ωi is ∂Ωi =
Si−1 ∪ Si. With respect to the orientations of normals indicated in Fig. 2.23, the
jumps of uΩi across Si satisfy the relations

[uΩi ]i = VSi , [uΩi ]i−1 = −VSi−1 , (2.37a)



64 Chapter 2. Introduction

and the jumps of their derivatives

[∂nuΩi ]i = (∂nV )−Si , [∂nuΩi ]i−1 = −(∂nV )+
Si−1

. (2.37b)

In contrast to the previous approaches, none of the jumps are null. We define
pSi = σi[∂nuΩi ]i = σi(∂nV )−Si . Note that since [σ∂nV ] = 0 from the continuity of
the current, we have: pSi = σi(∂nV )−Si = σi+1(∂nV )+

Si
at the interface Si. As uΩi

is harmonic in R3\∂Ωi and satisfies the condition H , we apply Theorem 1 to uΩi ,
and get the following for i = 1, . . . , N :

σ−1
i+1(vΩi+1)Si − σ

−1
i (vΩi)Si =

Di,i−1VSi−1 − 2DiiVSi + Di,i+1VSi+1 − σ
−1
i Si,i−1pSi−1

+ (σ−1
i + σ−1

i+1)SiipSi − σ
−1
i+1Si,i+1pSi+1 , (2.38)

Using the same approach, we evaluate the quantities
(
σi∂nuΩi

)−
Si

=
(
p−∂nvΩi

)−
Si

and
(
σi+1∂nuΩi+1

)+
Si

=
(
p − ∂nvΩi+1

)+
Si

and subtracting the resulting expressions
yields:

(∂nvΩi+1)Si − (∂nvΩi)Si =

σiNi,i−1VSi−1 − (σi + σi+1)NiiVSi + σi+1Ni,i+1VSi+1−
D∗i,i−1pSi−1 + 2D∗iipSi −D∗i,i+1pSi+1 , (2.39)

for i = 1, . . . , N . Here (and in (2.38)) the terms corresponding to non-existing
surfaces S0, SN+1 are to be set to zero. Terms involving pSN must also be set to
zero, since σN+1 = 0 implies pSN = 0. This formulation used for the forward EEG
problem is carried out in [Kybic et al., 2005], and is also compatible for non nested
geometries [Kybic et al., 2006], as well as the EIT problem [Clerc et al., 2005b].

Variational formulation Introducing the shape functions φ, and ψ that will be
used to represent respectively the potential at vertices and the normal current for
each triangle, we multiply Eq.(2.38) by the ψ test function, and integrate over the
surfaces, and similarly we multiply Eq.(2.39) by the φ test function and integrate.
It is not exactly Galerkin’s method, since we do not put against same functions to
represent the variable and test it, but it is the same idea, since it is done to keep the
same order of precision for the scalar products. Indeed, our operators acting on the
variables (the potential V and p) have different regularity behavior, since S increases
the regularity of the function (due to the integral), whereas N decreases it (double
derivative and only one integration), and finally operators D,D∗ do not change it.
When discretizing, φ and ψ will be chosen as piecewise polynomial functions, and
φ will be chosen 1-higher order than the other set of shape function ψ. Indexing
the shape functions with the surface they belong to, these equations (2.38)-(2.39)
now write in weak form:
Using the notation of the L2(S) scalar product defined as: 〈f, g〉 =

∫
S f(r) g(r)ds,
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we multiply Eq.(2.38)-(2.39) with the test functions ψ and φ respectively and inte-
grate over each surface: ∀(φi, ψi) ∈ (L2(Si))2,〈

σ−1
i+1(vΩi+1)Si − σ

−1
i (vΩi)Si , ψi

〉
=〈

Di,i−1VSi−1 , ψi
〉
−2
〈
DiiVSi , ψi

〉
+
〈
Di,i+1VSi+1 , ψi

〉
−
〈
σ−1
i Si,i−1pSi−1 , ψi

〉
+
〈
(σ−1
i + σ−1

i+1)SiipSi , ψi
〉
−
〈
σ−1
i+1Si,i+1pSi+1 , ψi

〉
, (2.40)

〈
(∂nvΩi+1)Si − (∂nvΩi)Si , φi

〉
=〈

σiNi,i−1VSi−1 , φi
〉
−
〈
(σi + σi+1)NiiVSi , φi

〉
+
〈
σi+1Ni,i+1VSi+1 , φi

〉
−〈

D∗i,i−1pSi−1 , φi
〉
+2
〈
D∗iipSi , φi

〉
−
〈
D∗i,i+1pSi+1 , φi

〉
, (2.41)

for i = 1, . . . , N .

Discretization From Eq.(2.40)-(2.41), we set φ to be P1 shape functions (piece-
wise linear) to describe the potential at each vertex i.e. VSk(r) =

∑
i v

(k)
i φ

(k)
i (r)

and choose ψ as P0 functions (piecewise constant) on each triangle to represent the
current i.e. pSk(r) =

∑
i c

(k)
i ψ

(k)
i (r). We can define discretized operators:(

Nkl)ij =
〈
Nklφ

(l)
j , φ

(k)
i

〉 (
Skl)ij =

〈
Sklψ

(l)
j , ψ

(k)
i

〉
(
Dkl)ij =

(
D∗lk)ji =

〈
Dklφ

(l)
j , ψ

(k)
i

〉
(
bk
)
i

=
〈
∂nvΩk − ∂nvΩk+1

, φ
(k)
i

〉 (
dk
)
i

=
〈
σ−1
k+1vΩk+1

− σ−1
k vΩk , ψ

(k)
i

〉
(
vk
)
i

= v
(k)
i

(
ck
)
i

= c
(k)
i

and end up with the symmetric linear system:

(σ1+σ2)N11 −2D∗
11 −σ2N12 D∗

12

−2D11 (σ−1
1 +σ−1

2 )S11 D12 −σ−1
2 S12

−σ2N21 D∗
21 (σ2+σ3)N22 −2D∗

22 −σ3N23 D∗
23

D21 −σ−1
2 S21 −2D22 (σ−1

2 +σ−1
3 )S22 D23 −σ−1

3 S23

−σ3N32 D∗
32 (σ3+σ4)N33 −2D∗

33 . . .

D32 −σ−1
3 S32 −2D33 (σ−1

3 +σ−1
4 )S33 . . .

...
...

. . .


︸ ︷︷ ︸

A



v1

c1

v2

c2

v3

c3

...


︸ ︷︷ ︸

w

=



b1

d1

b2

d2

b3

d3

...


︸ ︷︷ ︸

z

(2.42)

Extension for non-nested geometries Actually the BEM does not require
nested geometries. This extension is described in [Kybic et al., 2006]. The handling
for a hole in the skull is there described. This hole has a much higher conductivity
than the skull, and shares common boundaries with the skull-scalp and brain-skull
interface. These common boundaries are sharp, and can lead to numerical errors if
not discretized finely enough, as discussed in the paper.
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2.4.4 Finite Element Method

2.4.4.1 Common formalism

In finite element methods, as has been done previously for the BEM, we look for
an approximate solution of our problem considering the weak formulation of the
problem. But instead of considering the weak form of the integral equations, we
directly start from the PDE defined on all the computational domain Ω. The
solution is a-priori regular (except at the exact location of the dipole), which is in
our case a good hypothesis. Considering the forward EEG problem in Eq.(2.13), we
multiply by a test function φ ∈ H1(Ω), where H1(Ω) denotes the Sobolev functional
space:

H1(Ω) =
{
f ∈ L2(Ω),

∂f

∂xk
∈ L2(Ω), ∀k ∈ {1, 2, 3}

}
. (2.43)

The forward EEG problem with its boundary condition is given Eq.(2.13). We
multiply this equation by φ and integrate over Ω, which gives the weak formulation:∫

Ω
∇ · (σ∇V )φ dr =

∫
Ω
∇ · Jpφ dr (2.44)∫

Ω
(σ∇V ) · ∇φ dr =

∫
Ω

Jp · ∇φ dr (2.45)

It can be stated as:
a(V, φ) = f(φ) (2.46)

where a(u, v) is a (symmetric) bilinear form, which can be shown easily to be
coercive (or H1-elliptic ), and thus thanks to the Lax-Milgram theorem, this weak
problem is assured to have a unique solution V ∈ H1(Ω).
In Galerkin’s method the same shape functions are used for the test functions φ, and
to represent the potential variable, here V . These shape functions are commonly
chosen with a very small support in Ω, so that the integrals to be computed are
easy, and lead to solving a sparse linear system. The computational domain is
discretized into small volumic elements (tetrahedra, voxels2, hexahedrons), and the
shape function are supported over only a few elements. One often considers shape
functions that are 1 for one vertex, zero for others, and linear in between (P1 shape
functions). Let consider this case for sake of simplicity and write N the total number
of vertices (i.e. the total number of unknowns or degrees of freedom), and Ck the
k-cell of the mesh.
When concerning the right hand side with a dipolar source Jp = mδr0 at location
r0, and momentum m, the delta function is spread over the vertices of the cell, it
is then smoothed, and only represented by these vertex values, i.e. 4 points for
a tetrahedron, 8 for a voxel. . . its good representation then depends strongly on
the shape, the size of the cell and its relative orientation with regard to the dipole
momentum. The source term (RHS of Eq.(2.46)) when considering one dipole at

2voxles are cubic elements, i.e. generalization of pixel for 3D image.
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position r0 lying in one cell indexed j is :

f(φ) =
N∑
i=1

m · ∇φi(r0),

where most of the φi(r0) are zero since this r0 is not in their support, and as the
φi have been chosen piecewise linear, their gradient are constant over the cell and
thus the description of a dipole is at an over-cell resolution.
Regarding the discretization of the conductivity, all conductivity models can be
considered (inhomogeneous, anisotropic,. . . ) as long as it is constant within each
cell. An anisotropic conductivity defined by the tensor Σ, is incorporated in the
bilinear form as:

a(V, φ) =
∫

Ω
∇V · (Σ∇φ) dr .

Using Galerkin’s method, we represent the potential with the same shape functions
as the test functions φ, V then writes:

V (r) =
N∑
i=1

Viφi(r) .

One can now re-write the bilinear form discretized A with these shape functions;
the coefficients of matrix A are:

Aij =
∑
k∈C

akij ,

where k runs along the cells of the mesh, and akij is:

akij =
∫
Ck

∇φi(r) · (Σk∇φj(r))dr .

Different discretization of the domain can be imagined, leading to different approx-
imation of the geometry, different elements, different accuracies.

2.4.4.2 The tetrahedral FEM

In a tetrahedral FEM the domain is split into tetrahedra, the geometry description
of the surface is then piecewise linear and continuous. We refer to sec.2.6, concerning
the mesh generation. Let us take a look at the RHS term of (2.46):

f(φ) =
N∑
i=1

m · ∇φi(r0) = m · (∇φa(r0) +∇φb(r0) +∇φc(r0) +∇φd(r0)),

where the φ indexed with a, b, c, d are the non null shape functions at point r0. We
end up with a linear system, where the unknowns are V at each vertex:

A ·


V1

V2
...
VN

 = F , (2.47)
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where F has only 4 non-zero coefficients.

2.4.4.3 The implicit FEM

The implicit FEM was developed in [Papadopoulo et al., 2006]-
[Vallaghé and Papadopoulo, 2010], and is based on a mesh-free concept. Actually,
since meshing can be a difficult task, notably for the case of a human head, this
FEM uses a Cartesian grid as the one of the MRI. It then deals with voxels i.e.
cubic elements, but the main difference with the FDM, is the good handling of
the interfaces through the use of level-set. A level-set is a function which is zero
only for r on the surface, and gives the distance to the surface elsewhere. The
implicit FEM takes as input the dimension of the grid, and the level-sets (one for
each surface) constructed from the segmented MRI and then bypasses the mesh
generation step. It then computes the FEM integral over these voxels using Q1
elements with specific integrals in case of voxels crossed by surfaces.

2.5 An ideal numerical resolution of the forward problems

These methods all provide a solution of the forward problem (EEG or MEG), but
at what cost ? And how well do they solve the equation ? Since most of them are
numerical methods, they thus introduce errors, approximation when discretizing
the electrophysiological model. Furthermore, once the numerical system is built,
they might be instable at solving, which can increase significantly the numerical
errors. Finally, they are not able able to represent the same models, since for each
of them special assumptions are made to derive the numerical scheme. Let first see
what are the pros and cons of each of them for the MEEG forward problems.

2.5.1 Pros and cons of the previous numerical methods

Analytical methods: represent their electrophysiological model in the best man-
ner, since most often they allow for having a closed form (like the magnetic
field computation in Eq.(2.18)) which then leads to an exact calculations (at
the machine precision ∼ 10−16). For the EEG problem resolution, one gets a
formula containing an infinite sum which must be truncated. The user then
defines the desired accuracy giving the number of terms. Analytical solutions
on multi-layer spheres designed in [Zhang, 1995] are designed to have a strong
convergence rate, and are thus very fast for given precision. Even if they do
represent the model quite well, the model is very poor, the coarse geometrical
approximation of the head by spheres or ellipsoids lead to considerable errors
for EEG and is still discussed now for MEG [Van Uitert and Johnson, 2002].
The community is starting to accept that realistic models should be used for
MEG also [Lalancette et al., 2011].

BEM: handle the patient’s head geometry through the use of triangulated surfaces
representing the domain boundaries (like Brain-Skull interface, Skull-Skin,
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. . . ), but the handling of complicated geometries such as the gray/CSF inter-
face leads to sharp edges or to a very high number of nodes. Sharp edges can
lead to numerical errors in the BEM’s operators, and having too many nodes
(beyond 30 000 vertices for the symmetric BEM) leads to huge systems that
cannot be solved nowadays without using grid computing techniques which
are most of the time not available for clinicians. Despite its geometric approx-
imation (it requires smooth surfaces), the symmetric BEM achieves very good
accuracy when compared to FEM for a given computation time [Olivi, 2007].
The main limitation of the BEM is its incapacity to handle anisotropic media,
or small compartments such as those in the skull.

FDM: can deal with anisotropy, but the convergence rate of the geometric error
with regard to the grid size is slow since the FDM uses a Cartesian grid;
the way the geometry is approximated leads to a staircase description of the
interfaces. Furthermore it does not allow for having local refinement of the
grid where it is needed such as the dipole location or close to interfaces. On
the other hand, the implementation is very easy and the stiffness matrix is
well structured which gives access to fast solvers [Dang and Ng, 2011].

FEM: can deal with anisotropy, very local refinement, and good approximation of
the geometry. They lead to huge but sparse systems, in our case, symmetric
positive definite stiffness matrices, which allows for the use of fast iterative
methods such as the (preconditioned-) conjugated gradient method. Its main
pro is its flexibility (with regard to the domain description or the conductivity
profiles), and its main drawback resides in its poor handling of sharp source
term (such as the Dirac). The mesh generation is also a crucial step, since
it can be sometimes difficult to generate, and the resulting mesh should not
contain badly shaped elements. The reader can refer to [Wolters et al., 2007],
for a way of generating hexahedral meshes out of Cartesian grid and segmen-
tations.

Fig.(2.24) represents the fidelity of the numerical methods to their input model
after a forward problem resolution. We imagine that through the filter of analytical
methods on the left the result is very faithful to the concentric spheres model; in
the middle, we get a slight blurring representing the numerical errors, on the BEM’s
representation of the piecewise constant model (notably the skull). And finally, on
the right, we estimate the solution on a multi-compartment head model which is
very detailed, but the FEM ’filter’ is not sharp at all, and thus compromises the
overall accuracy.

2.5.2 What method and model to choose for the forward problem ?

Knowing the above pros and cons of each method makes the choice difficult. On
the one hand, one would like to have an accurate electrophysiological model of
the subject’s head, incorporating as faithfully as possible the different head regions
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Figure 2.24 – Sketch on models represented by their numerical method.

with conductivity profiles closest to reality. On the other hand, if the numerical
errors compromise this good description when solving a forward model, it is not
sensible to go further in modeling the head, because a coarser model well solved
numerically may lead to better results. One has better choose the best couple i.e.
the electrophysiological model and the numerical method which best represents it.

2.5.2.1 Choosing models and methods

Let us first state the case of the MEG forward problem.

MEG As discussed in sec.(2.3.1.2), the magnetic field is less distorted by the skull
than the electric field. Actually, the primary source term is dominant in the mag-
netic field computation. Furthermore, as the Ohmic current contribution to the
magnetic field is proportional to the Ohmic current, and thus to the conductivity
of the region, the Ohmic current lying in the skull does not contribute much to the
magnetic field. Then, a valid approach is to simply remove from the computational
domain, the skull and scalp regions [Gramfort et al., 2010]. We can conclude that
for the magnetic field computation, one only needs to consider the brain region,
eventually with the anisotropy brought by the white matter fibers since it can be of
great influence [Wolters et al., 2006]. Still considering the anisotropic fibers, with
the FEM, and the good BEM handling of the source for isotropic media, might lead
to different results which are difficult to analyze. These results may be biased due to
the numerical errors of the FEM, or to the absence of fibers in the BEM modeling.
Thus the choice is still not obvious and needs to be investigated by validating both
methods.

EEG For the EEG problem resolution, it is non avoidable to consider the skull,
and scalp, since electricity needs to propagate through these tissues to reach the
sensors. The structure of the skull must be well taken into account, since it is on the
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direct path between the source and the sensors. As seen in sec.(2.3.2), the skull can
be modeled as a multi-compartment region, or as an equivalent anisotropic conduc-
tivity, or as an isotropic conductor. The FEM can deal with the three descriptions,
the BEM, on the other hand cannot handle many small regions such as the soft
bone within the skull, thus it is limited to the isotropic case. Another common
case in clinical applications, is the modeling of a hole in the skull due to a surgery.
Such holes lead to inhomogeneous skull, which can considerably change the forward
solutions, and cannot be easily taken into account in BEM. The sharp contours of
the hole with the skull boundaries require many elements to be discretized correctly,
thus leading to the memory limitation for the BEM case [Kybic et al., 2006]. It has
nevertheless been successfully applied with standard BEM (double-layer formula-
tion) in [Oostenveld and Oostendorp, 2002]-[Bénar and Gotman, 2002].

2.5.2.2 An ideal case

An ideal numerical method should have the following features:

1. optimal meshing with local refinement where it is needed for a given forward
problem.

2. correct handling of the dipolar source.

3. a faithful description of the conductivity profiles, and finite elements elongated
in the direction of their anisotropy.

4. minimal numerical errors when solving the system.

5. reasonable time and memory consumption.

These features might be contradictory in some cases. For example, the FEM would
need tiny elements for the correct description of the white matter fibers, also for the
dipolar source modeling, which would then lead to very huge systems. Having an
optimal mesh for a given forward problem might be achievable, but would need to
be reiterated for the thousands of sources when building a leadfield. The symmetric
BEM is a good candidate with regards to the numerical error, but still would need
a broader range of conductivity profiles available.

2.5.2.3 A realistic ideal case

Choosing between these methods might be a difficult task because of their respective
pros and cons. One would like a method with both advantages, the BEM’s ability
for dealing with sources, and the FEM’s flexibility for handling conductivities. De-
composition domain methods (DDM) allow for the splitting of the computational
domain, to be dealt by independent solvers. In Chap.4-6 will be exposed an appli-
cation of DDM for the forward EEG problem, where the brain region containing
the sources will be dealt with the BEM, and the other domains by the FEM. We
will see that this coupled method answers partially to the previous requirement,
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notably concerning the correct source modeling and the skull conductivity profile.
In Chap.7, will be introduced a method which should lead to the handling of a kind
of local anisotropy or local inhomogeneities within a BEM framework.

2.5.2.4 Validations

When developing a new method, numerical validation is crucial and can sometimes
be difficult. Most of the time the numerical solvers will be first compared to analyti-
cal solution on spherical models which can include the normal-tangential anisotropy
of the skull [Zhang, 1995]. As soon as inhomogeneities or local anisotropy are intro-
duced, we will use a high resolution FEM to validate the other methods; the FEM
converges toward the true solution when the mesh size decreases. When comparing
the result of a method which is a vector Vnum, with regard to a reference solution
Vref , we will compute the RDM and MAG [Meijs et al., 1989]:

RDM: Relative difference measure, which is a topographical error independent of
the magnitude of the solutions:

RDM(Vref , Vnum) =
∥∥∥∥ Vref
‖Vref‖

− Vnum
‖Vnum‖

∥∥∥∥ (2.48)

MAG: Magnification error, which gives what is missing in the RDM, i.e. the
comparison of their magnitudes:

MAG(Vref , Vnum) =
‖Vnum‖
‖Vref‖

, (2.49)

where the norm ‖.‖ denotes the l2 norm for vectors, i.e. ‖V ‖ =
√∑

i V
2
i .

2.6 From MRI to mesh generation

2.6.0.5 Segmentation

Segmenting a medical image is challenging due to the sometimes poor resolution
of MRI:s. It consists of extracting a surface of a 3D volume which matches some
features in the images, such a high contrast. Regularity and/or topology can be
imposed sometimes [Piovano and Papadopoulo, 2008]. The best segmenting algo-
rithm we have at our disposal is based on a brain atlas, so that it already knows
what kind of surface one is looking for. Freesurfer3 is a software suite for medical
image processing (see [Dale et al., 1999] for cortical surface segmentation). It has
allowed us to obtain from a T1 anatomical MRI of resolution 256x176x256, high
resolution surfaces of the white and gray matter, the brain envelope, the inner skull,
the outer skull, and outer skin.
These surfaces can be defined as very-high resolution meshes (see Fig.(2.25)), or
level-sets.

3http://surfer.nmr.mgh.harvard.edu

http://surfer.nmr.mgh.harvard.edu
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Figure 2.25 – Surfaces segmentated by Freesurfer.

2.6.1 What is a good mesh

Many criteria can be defined, such as the correct representation of the boundaries,
the local refinement in places where the solution we seek varies a lot, or the good
properties for the numerical conditioning when using these meshes in FEM. The
good conditioning is important because it increases the convergence rate of the
iterative solver, and allows for more stable schemes (less numerical errors). Another
constraint one would want is the good agreement with the equation parameters such
as the anisotropy of the conductivity, which should lead to elongated elements in
some directions, since the solution should vary more in one direction than the other.

Figure 2.26 – Good and bad finite elements for conditioning

(from [Shewchuk, 2002a]).

For that, a good mesh must be composed of good elements, that can be hard to
guarantee, see Fig.(2.26). In Delaunay triangulations, some bad tetrahedra persist,
these are called slivers (or flat tets) and are responsible of bad conditioning in
FEM [Shewchuk, 2002b]. A triangulation is Delaunay, if no point lies in the circum-
sphere of any cell.
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2.6.2 Meshing with CGAL

CGAL4 is an open-source project providing easy access to efficient and reliable
geometric algorithms in the form of a C++ library. It is based on Delaunay tri-
angulation, and weighted Delaunay. It allows the generation of surfacic meshes
from the definition of gray level image, re-meshing a more complicated geometry,
or simply an implicit function (such as sphere functions) [Rineau and Yvinec, 2011].
And it also provides 3D meshes [Alliez et al., 2011], with labeled domain, for the
different region such as in Fig.(2.27).

Figure 2.27 – A realistic 4-layer head mesh (with 297 822 vertices).

The mesh quality can be controlled through several criteria such as: on the
surface, the max distance of the elements to the input surface, the edge length of
triangles, their minimum angles, and for the volumic elements, the cell size, the
minimum dihedral angle (which prevents slivers), . . .

2.7 OpenMEEG: Implementation of the symmetric BEM

OpenMEEG is an open-source multi-platform software which implements the sym-
metric BEM (sBEM) for the EEG and MEG forward problem resolution. Given
a geometric model, and the desired piecewise constant conductivities, OpenMEEG
builds and solves the forward problems through a pipeline. The user must supply
the surfacic meshes defining the regions, the sensor locations, the sources which
can either be distributed on an input surface or punctual (dipoles), and finally the
conductivities.

4http://www.cgal.org

http://www.cgal.org
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2.7.1 Implementation

The symmetric BEM (sBEM) as described in sec.(2.4.3) has two types of unknowns,
the potential at vertices which will be denoted V or indexed on each surface with
vi, the normal current noted p or ci. The sBEM in OpenMEEG is implemented
using P1 shape functions for the potential at each vertex xj i.e.:

φj(x) =


1 if x = xj

0 if x = xk , k 6= j

linear if x ∈ T (xj)

0 elsewhere

,

where the notation T (xj) defines the union of triangles which have xj as vertex. P0
shape functions are used for the current on each triangle Tj : ψ(x) = 1Tj (x). The
main matrices are then:

H: the main head matrix which is symmetric (denoted A in Eq.(2.42)).

X: the unknowns, the potential V and the normal current p.

D: the matrix containing the projection of the sources onto the BEM surfaces (a
column of which is denoted z for a single dipole in Eq.(2.42)).

Seeg: the projection matrix which simply uses the P1 approximation of the potential
to interpolate it at EEG sensors on the outer surface.

Smeg the matrix which is applied to X to yield the (Ohmic-) magnetic contribution
to the MEG sensors.

Tmeg the matrix which computes the primary source magnetic contribution to the
MEG sensors.

A typical forward problem resolution is then achieved solving the system:

H ·X = D (2.50)

which is most of the time done inverting the matrix H with LAPACK. In order to
obtain the leadfields one applies the selection matrix to the previously computed
matrix X and one adds the primary contribution for the MEG leadfield:

Leeg = SeegX , Lmeg = SmegX + Tmeg (2.51)

A more efficient way of solving these systems will be explained in the next chapter.

Boundary current injection When solving an EIT forward problem, another
source matrix due to the non-zero boundary condition is built instead of D. This
will be used in chapter 4 for solving Neumann boundary value problems.
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Internal operators To model electrodes inserted within the brain (sEEG), one can
obtain the potential there using another operator also derived from the represen-
tation theorem. This can also be useful in other cases which will be discussed in
the last chapter 5. Let us derive the formula which derives from the Green’s rep-
resentation theorem. It says that for a harmonic function uΩi , its value inside the
domain Ωi can be given by its jump [uΩi ] and the one of its normal derivative [pΩi ]
at the boundary ∂Ωi (refer Eq.(2.31) and (2.35)):

uΩi = −D[uΩi ] + S[pΩi ].

And since in the symmetric BEM uΩi = Vi −
vΩi
σi

, then the potential Vi writes as
the sum uΩi + vΩi

σi
.

Using the notations introduced in sec.(2.4.3), with the sBEM variables, in order to
get the potentials Vj at points rj ∈ Ω which can be located in any sub-domains
Ωi, we take the scalar product of the previous equation with a Dirac (collocation
method) δj located at rj . We recall that we are still in a nested geometry, and that
∂Ωi = Si ∩ Si+1. The previous equation then writes:

Vj =
vΩi(rj)
σi

+ 〈uΩi , δj〉 (2.52)

=
vΩi(rj)
σi

− 〈DjiVSi , δj〉+ 〈Dji+1VSi+1 , δj〉+
1
σj

(
〈SjipSi , δj〉 − 〈Sji+1pSi+1 , δj〉

)
For example, let us take a 3-layer model where the only primary source lies in

the first volume, and ask for the potential at several points within each volume.
The internal operator which acts on the sBEM unknowns X can be constructed
applying the previous formula for each point. Let va,vb,vc be the vectors containing
the potentials requested in domain a, b, c respectively. We also write the BEM’s
unknowns as: X = [v1 p1 v2 p2 v3]T , and denote by v1

a the potential generated by
the dipole in Ω1 as if it was an infinite medium, at the desired a locations. This
writes using the internal operators:

va
vb
vc

 =

−Da1
1
σa

Sa1 0 0 0
Db1 − 1

σb
Sb1 −Db2

1
σb

Sb2 0
0 0 Dc2 − 1

σc
Sc2 −Dc3




v1

p1

v2

p2

v3

+
1
σ1

v1
a

0
0

 . (2.53)

2.7.2 Performances:

OpenMEEG has been compared to other BEM solvers implemented in freely avail-
able softwares in term of accuracy and precision for a given number of mesh nodes,
or given number of unknowns. Concerning the forward EEG problem resolution,
OpenMEEG achieves the best accuracies and precisions when compared to 4 other
softwares [Gramfort et al., 2010]. Excellent results were also obtained for the MEG
forward problem resolution.
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Commands We refer to [Gramfort et al., 2011] for a manual of OpenMEEG.





Chapter 3

The adjoint method for the

forward problem resolution

In this chapter is presented a method which allows for a smarter and faster
computation of the leadfield than the classical approach. The leadfield is defined
as the linear operator (introduced in sec.(2.2.5)) which associates with one unitary
source the resulting set of measurements at each sensor. An accurate computation
of the leadfield results from the good resolution of the forward problem where we
model a source, and the potential (for EEG) or some component of the magnetic
field (for MEG) is computed at sensors. A good leadfield thus requires the use of an
appropriate physiological model represented by a pertinent numerical method; this
implies realistic geometries and thus numerical methods such as the FDM, FEM
or BEM. Furthermore, in order to build the leadfield in the classical approach, the
forward problem is solved for each source, which can represent more than 10 000
dipoles in clinical applications. A clever idea for such an assembly has been given
thanks to reciprocity theorems which consider the problem from the viewpoint of
sensors instead of sources. This drops down the number of resolutions to a few
hundred (number of sensors), and can be as straightforward as solving a classical
forward problem.

Summary

Goals: Accelerate the MEG and EEG forward problem resolution.

Tools: The adjoint operator of the forward problem.

Results: A simple and effective adjoint resolution using the sBEM.
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3.1 The adjoint operator

From a mathematical point of view, when a linear operator A maps an element
of H, an Hilbert space, to another element of H, then due to the Riesz(-Fréchet)
representation theorem, it admits a unique adjoint A∗ such that:

〈Au, v〉 = 〈u,A∗v〉 , ∀(u, v) ∈ H ×H (3.1)

where the notation 〈., .〉 denotes the inner product in H. Before finding what is the
adjoint operator of the EEG forward operator or the MEG one, let us first get an
insight physically of the main idea, expressing reciprocity theorems.

3.1.1 Reciprocity theorems

In electromagnetism, one can find many reciprocity theorems. All of them involve
the interchange of the source of an electromagnetic field and the measurement of
this field. The most famous being the Lorentz reciprocity theorem, which states
that the relationship between an oscillating current and its resulting field is un-
changed if one interchanges the point source of the current with the place where
the field is being measured. Helmholtz reciprocity theorem states analogously that
an emitting light (source) measured at one place (sensor) can be interchanged keep-
ing the same relation. This concept was applied to EEG [Rush and Driscoll, 1969]
and MEG [Malmivuo, 1980] since its very beginning (also it was already known
before for the similar case in electrocardiography (ECG) [Plonsey, 1963]). Let us
take a look at the EIT (Electrical Impedance Tomography) problem, where instead
of measuring the electrical activity of the brain, we inject a tiny current at some
sensors in order to estimate the tissues conductivity. This method can be used
to state the reciprocity theorem as done in [Clerc et al., 2005b]. In case of EEG,
solving the classical formulation of the forward problem for Vf amounts to solving
the Poisson equation:

{
∇ · (σ∇Vf ) = f = ∇ · (mδr0) in Ω

σ∇Vf · n = 0 on Γ
, (3.2)

where Γ denotes the boundary of Ω i.e. the scalp where the measurements are
made. The EIT problem solves for Vj while injecting a (unit) current at location ri
(δ(ri)), and the opposite one at re (δ(re)) :

{
∇ · (σ∇Vj) = 0 in Ω

σ∇Vj · n = j = δ(ri)− δ(re) on Γ
, (3.3)

where the δ(ri) distribution is defined such that
∫

Γ δ(ri) ds = 1 and supp(δ(ri)) = ri.
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Writing the divergence theorem for function σVj∇Vf gives:∫
Γ
Vj(σ∇Vf · n)ds = 0 =

∫
Ω
∇ · (σVj∇Vf ) dr

=
∫

Ω
σ∇Vj · ∇Vf dr +

∫
Ω
Vj∇ · (σ∇Vf ) dr

=
∫

Ω
σ∇Vj · ∇Vf dr +

∫
Ω
Vj f dr (3.4)

Similarly, we write the same for the function σVf∇Vj :∫
Γ
Vf jds =

∫
Ω
σ∇Vj · ∇Vf dr (3.5)

Subtracting the two previous equations leads to:∫
Ω
f Vj dr = −

∫
Γ
Vf jds , (3.6)

which gives:
m · ∇Vj(r0) = Vf (ri)− Vf (re) (3.7)

This shows that the gradient of the EIT solution is a leadfield for the EEG
forward problem. Using the reciprocity concept, one can construct the leadfield
by solving ns (number of sensors) times the system (??), and each time evaluating
the gradient of the solution at the desired dipole locations. This can be of prime
importance, since ns � nd, where nd is the number of dipoles.

3.1.2 The adjoint method for the EEG forward problem

In this section, we will derive the adjoint of the EEG forward operator in a contin-
uous framework. With the adjoint method, we will recover the previous Eq.(3.8),
and extend it. We will describe the method formally, so that the MEG case could
be treated in a similar manner.
Consider H(Ω) to be the Hilbert space L2(Ω) with the inner product defined by:
〈u, v〉L2(Ω) =

∫
Ω u(r)v(r) dr. We define a subspace of H(Ω) called:

W (Ω) = {v ∈ H(Ω) ∩ C1(Ω̄),
∂v

∂xi
∈ L2(Ω) ∀i ∈ {1, 2, 3}}, (3.8)

which is a Sobolev space (derivatives are in a weak sense). We consider a measure-
ment operator m (linear continuous) of the potential V ∈ W (Ω). For example, in
EEG this corresponds to the measurement of the potential on the scalp between
locations r1 and r2, i.e. m is a trace operator which evaluates V at these location,
through two Dirac distributions of opposite signs:

〈m,V 〉L2(Ω) =
∫

Γ
(δ1 − δ2)V (r)dr = V (r1)− V (r2) , (3.9)

where δ1 (resp. δ2) denotes surface Dirac distributions at position r1 (resp. r2).
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The leadfield expression L can be formulated [Nolte, 2003]-
[Weinstein et al., 2000] as a linear operator with the dipole parameter Jp ∈ H (due
to Riesz-Fréchet representation theorem):

L(Jp) =
∫

Ω

∂L
∂Jp (r) · Jp(r) dr , (3.10)

such that a measurement of V is just a projection of the leadfield at the desired
sensors.

We now decide to build up a functional L(p, v, w) adding the measurement of
a variable v ∈ W to a constraint enforced weakly through the parameter w, where
the constraint expresses:

〈Av, w〉 =
∫

Ω
Av w dr = 〈b(p), w〉 (3.11)

As a first stage, we will stay with the notations of A for the linear operator defined
as, in the case of EEG:

Av = ∇ · (σ∇v) (3.12)

and with the linear operator b(.) acting on p the source term:

b(p) = ∇ · p (3.13)

The constraint is then expressed as the weak formulation of our forward EEG
problem, which has a unique solution due to Lax-Milgram theorem for all w ∈W .
The functional L is defined as:

L(p, v, w) = 〈m, v〉+ 〈Av − b(p), w〉, (3.14)

We assume it to be differentiable in all 3 variables. When v = v(p) = V where V is
the forward problem solution with p as source, this system reduces to the measure-
ment, i.e. g(p) = L(p, V, w) = 〈m,V 〉. We introduced the function g(p) since the
measurement can be, as seen in Eq.(3.11), expressed as a linear function of p. And
thus taking the derivative with regard to p writes the leadfield L projected onto the
measure. This functional expression can be seen as a Lagrangian, where usually
we have a function to minimize while enforcing some constraint on the solution
through the Lagrange parameter w. Loosely, the space of functions matching the
constraint generally called Uad for admissible functions, is quite big. The functional
introduced here could be seen as a Lagrangian, where we do not want to minimize
anything, but the space Uad is reduced to the singleton Uad = {V }. We use this
form to get to the adjoint problem easily.
This functional is not linear with respect to v (nor to p neither w), we want the
differential of this functional with regard to v around the point v = v(p) = V to be
zero, since the g(p) should only depend on p.

L(p, v(p) + δv, w)− L(p, v(p), w) = 〈m, δv〉+ 〈Aδv, w〉 = 0 , (3.15)
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where δv is a small perturbation around v(p).
Since there exists a unique adjoint A∗ of the linear operator A, it must verify:

A∗w = −m (3.16)

We thus choose w to be the solution of this adjoint problem. The differential of g
written δg with respect to δp now writes:

δg =
∂L(p, v(p), w)

∂p
δp

= 〈−∂b(p)
∂p

δp, w〉 (3.17)

One can notice, in this expression, that the derivative of g(p), can be obtained with
the derivative of b(p), when w is the solution of the adjoint problem. This can
be interesting since the derivative of g(p) is the leadfield, and that sometimes the
adjoint problem in Eq.(3.17) can be easier to solve.

Let us now express all the previous equations for the EEG case, where we now
call Jp the variable p; the source term b(p) is: b(Jp) = ∇ · Jp, with Jp the dipolar
source: Jp = mδr0 . The adjoint problem using the expression of A derives from
the expression of L, where we use the divergence theorem twice to set up the
differentiations on the variable w:

L(Jp, v, w) = 〈m, v〉+ 〈∇ · σ∇v, w〉 − 〈∇ · Jp, w〉

= 〈m, v〉+ 〈v,∇ · σ∇w〉 −
∫

Γ
σ∇w · n v ds + 〈m δr0 ,∇w〉

= 〈m, v〉+ 〈v,∇ · σ∇w〉 −
∫

Γ
σ∇w · n v ds +∇w(r0) ·m .

(3.18)

As a consequence, the derivative of L with respect to v around the point v = V

leads to the adjoint problem:

0 = 〈m, δv〉+ 〈∇ · σ∇w, δv〉 −
∫

Γ
σ∇w · n δv ds , (3.19)

Then, we choose w to be the solution of this problem, and we get the leadfield
expression:

∂L(Jp, V, w)
∂Jp = ∇w(r0) ·m . (3.20)

To link this with the previous reciprocity theorem, let us take the measurement
on Γ, as in Eq.(3.10) the adjoint problem is then:{

∇ · σ∇w = 0 in Ω

σ∇w · n = δ1 − δ2 on Γ
(3.21)
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which is exactly the EIT problem for which we had derived the reciprocity theorem.
Similarly, taking another measure, this time in Ω would lead to solve the following
adjoint problem: {

∇ · σ∇w = δ1 − δ2 in Ω

σ∇w · n = 0 on Γ
(3.22)

The adjoint problem in Eq.(3.20) has the exact same structure as the forward
problem. This comes from the self-adjoint operator (∇ · σ∇·), only the source
terms change. If one can solve the forward problem numerically, one can then
easily solve the adjoint, and get to the same result (the leadfield) faster. Let us
also point out, that this continuous framework presents the advantage of providing
an expression for the adjoint in case of spatially extended sensors, such as the
common EEG electrodes (small patches) or compositions of magnetometers (planar
gradiometers, axial gradiometers, ...) for MEG. For sake of simplicity we only
present the EEG case of point-like sensors and refer to [Vallaghé et al., 2009]-
[Papadopoulo et al., 2010] for the other cases.

Let us now see an application of this method which turns out to be even simpler
at a discrete level.

3.2 The adjoint at a discrete level: application to the sBEM

3.2.1 Notations

Using the notations defined in sec.(2.7.1), we now recall the principal matrices used
in the sBEM and their dimensions. Let us first define the dimensions encountered:

nse , nsm : the number of sensors for EEG and MEG respectively.

nd: the total number of dipoles.

N : the total number of sBEM unknowns (degrees of freedom at the discretized
potentials and normal currents on surfaces).

A typical order of magnitude for the number of sensors is ns ∼ 102. On the other
hand, a full leadfield computation with dipolar sources requires several thousands
of sources; usually around nd ∼ 104 dipoles. Finally, a typical order for the number
of unknowns achievable with the sBEM goes from N ' 6 000 (when considering a
three-layer head model with 642 vertices per layer) to N ' 25 000 unknowns (for a
4-layer model with 2 562 vertices per layer).
The matrices used in OpenMEEG are:

H: the Head matrix which is symmetric: N ×N .

D: the Source matrix (RHS): N × nd.
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X: the sBEM’s unknowns: N × nd.

Seeg: the projection matrix from the scalp potentials onto the EEG sensors: nse×N

Smeg: the projection matrix from the surfaces potentials onto the MEG sensors:
nsm ×N .

Tmeg: the analytical contribution of the primary source to the MEG sensors: nsm×
nd.

Leeg,Lmeg: the desired EEG and MEG leadfield matrices with respective sizes:
nsm × nd and nsm × nd.

3.2.2 The adjoint EEG problem

Conventional approach When solving an EEG forward problem with the classical
formulation, one has to solve the linear system:

H ·X = D, (3.23)

and then to apply the projection (or selection) matrix to get the desired leadfield:

Leeg = Seeg ·X. (3.24)

In the second equation only a matrix product is needed, whereas in the first one a
system of size N ×nd has to be solved. Several methods can be considered to solve
this system, right now in OpenMEEG this is done inverting the matrix H.

X = H−1D. (3.25)

and thus the leadfield is assembled computing:

Leeg = Seeg ·H−1 ·D. (3.26)

Adjoint approach Actually, taking the transpose of the EEG leadfield expression
(Eq.(3.27)) gives, since the matrix H is symmetric (and also its inverse):

LTeeg = DT ·H−1 · STeeg. (3.27)

Now consider computing the term H−1 · STeeg, by solving the linear system:

H ·Y = STeeg. (3.28)

This linear system is the discrete adjoint equation which can be derived from
Eq.(3.17). It has N × nse unknowns, and thus its resolution is much easier than
for the classical approach. Once the system solved, the leadfield is then assembled
(line-by-line):

LTeeg = DT ·Y (3.29)
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3.2.3 The adjoint MEG problem

Conventional approach For the MEG forward problem, since the Biot-Savart law
(stated in Eq.(2.12)) requires the potentials at surfaces, one also needs to solve
Eq.(3.24). One must also add the contribution of the primary source onto the MEG
sensors, (primary component field B0 in Eq.(2.12) given by the operator Tmeg).

Lmeg = Smeg ·X + Tmeg = Smeg ·H−1 ·D + Tmeg (3.30)

As in Eq.(3.27), the leadfield is built column by column since it is equivalent to
treating each dipole separately.

Adjoint approach Let us have a look at the adjoint way for the MEG leadfield
computation, one needs to solve:

H · Z = STmeg . (3.31)

Once this system solved for Z, the leadfield is then assembled with:

LTmeg = DT · Z + TT
meg , (3.32)

i.e. line-by-line.

3.2.4 Numerical algebraic solvers

In the classical approaches, for both leadfields the Eq.(3.24) need to be solved. This
is a system of size N×nd. Since nd >> N , OpenMEEG currently inverts the matrix
H, which is then a problem of size N×N . This is done using LAPACK a package of
linear algebra routines, which are implemented for fast computations and based on
BLAS low-level optimized functions (matrix-vector product, matrix-matrix prod-
uct, . . . ). LAPACK inversion (DSPTRI routine) requires a factorization of the
matrix first (DSPTRF routine). The matrix inversion routine consists in solving a
triangular system for an identity matrix as RHS (of size N ×N).
For solving the adjoint equations in Eq.(3.29), and Eq.(3.32), inverting the matrix
would lead to no improvement compared to the classical approach, we therefore
choose to solve the systems which are of size N × nse and N × nsm respectively;
which are smaller than the conventional system. Next we will present this solution,
considering both the LAPACK solver, and the (multi-threaded) GMres solver.
The LAPACK solver also needs the factorized matrix as input, and then solve the
triangular system for only ns RHS (DSPTRS routine).
The GMres (Generalized Minimum Residual) algorithm is an iterative procedure
based on the Krylov subspace, which means that it deals with matrix-vector prod-
ucts, and does not try to factorize the whole matrix. This is convenient for large
systems. The GMres method is well suited for indefinite matrices which is our case;
in our case, it was also optimized for symmetric matrices.
Other algorithms have been tested, such as the MinRes, and QRsym, but led to
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slower convergence rate. The main problem was that these solvers asked for a pos-
itive definite preconditioner, and it is difficult to get a good preconditioner. For
the GMres method, we used a Jacobi preconditioner which was easy to implement,
to store, and does not need to be positive definite (diagonal of H). The use of the
very fast conjugated-gradient method was not possible since the H is indefinite.
The GMres solver was slower than the LAPACK solver, even if in contrast with the
LAPACK, GMres were multi-threaded (one column of RHS per thread).

3.2.5 Numerical results

3.2.5.1 Quantitative comparisons

In the following experiments we study the time comparisons as well as the peak
memory consumption for solving a forward EEG problem with the classical way
(LAPACK inversion), the adjoint way using the LAPACK solver, and the adjoint
way using the GMres solver. These comparisons have been done with different
numbers of unknowns (indexed Ni, i = 1..4) for 10 242 dipoles, and simulated
256-electrodes helmet. These parameters are shown in table (3.1). Computations

nse 256
nd 10 242
N1 206
N2 806
N3 3 206
N4 12 806

Table 3.1 – Problem parameters.

were done on a 8-processor Intel-Xeon CPU with a CPU clock of 3.20GHz. Multi-
threading with 8 cores was used for the assembly of matrices H, D, and for the
system resolution with GMres. The next table (3.2) shows the results obtained in
terms of:

Elapsed time: displaying the total elapsed time (total time) in seconds.

User time: the sum of the time spent on each processor in seconds.

Memory: the maximum resident set size (RSS) in MB.

These results are plotted in Fig.(3.1), on a logarithmic scale for the y-axis. One
can see that although the GMres solver is the slowest, it is the cheapest in terms of
memory usage and could be the only one possible for bigger problem sizes due to
the machine memory limits. The adjoint resolution using LAPACK is almost twice
faster and twice cheaper than the classical approach. Note that for this experiment,
256 sensors were used which is already a lot, for EEG. In the next section only 128
EEG sensors will be used, which spares computations in the adjoint, while it does
not for the classical approach.
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Methods N Elapsed time User time Peak RSS

Classic -
N1 13.94 39.38 745
N2 54.17 271.85 1 587

Lapack inversion
N3 613.5 3 556.46 5 403
N4 6 398.72 14 000.00 27 874

Adjoint -
N1 11.45 36.41 462
N2 26.25 136.28 500

Lapack solver
N3 397.44 2 470.48 1 094
N4 3 484.99 11 693.79 15 493

Adjoint -
N1 12.91 47.30 466
N2 36.38 210.98 506

GMres solver
N3 752.71 4 872.75 1 100
N4 15 148.44 103 907.58 11 196

Table 3.2 – Time and memory consumptions.

3.2.5.2 A realistic case

In this section we propose to compare the adjoint and the classical approaches on
a realistic model (displayed in Fig.(3.2)), which is the template model provided in
the software SPM (SPM canonical mesh1). It represents a 3-layer head model with
2 562 vertices per layer (d.o.f N = 12 806), and has 20 484 sources.

The number of sensors was 128 for the EEG helmet, and 579 magnetometers
(CTF system) for the MEG detectors. Note that this number of magnetometers,
represents the total number of computations of the magnetic field needed, in reality
most of the CTF sensors are planar gradiometers which measure the derivative of
the radial component of the magnetic field in a tangent direction ∂Br

∂nt
, these values

are obtained in OpenMEEG by linear combination of magnetometers.
On Fig.(3.3) are shown the elapsed times and memory consumption (RSS) when
assembling a leadfield with the classical approach and the adjoint approach. One
can see for each method, 3 columns, corresponding to computing a EEG leadfield,
a MEG leadfield, and both leadfields together. Actually when computing both
leadfields for the classical approach, as we do compute the system unknowns (matrix
X) for the EEG leadfield computation, it is faster to get the MEG leadfield, since
almost everything has been computed. In contrast, with the adjoint method the
system to be solved is now:

H ·
(

Y
Z

)
=
(

STeeg
STmeg

)
Which is still a smaller system than the one obtained with the classical method
since: (nse + nsm) < N . The leadfields have then been assembled together line-by-
line to compute only once the matrix D.

1SPM: http://www.fil.ion.ucl.ac.uk/spm/

http://www.fil.ion.ucl.ac.uk/spm/
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Figure 3.1 – Times and memory for classical approach vs adjoint approaches.
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Figure 3.2 – 4-layer realistic (BEM) head model.

Figure 3.3 – Times and memory consumption for classical approach vs adjoint

approaches.

3.2.6 Implementation in OpenMEEG

Let us show the commands in OpenMEEG to get to the leadfields using the classical
approach and the conventional approach. The input files are:
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geometry file (*.geom) which contains the path to the meshes, and their ordering
the nested geometry description.

conductivity file (*.cond) which contains the conductivity values of the different
regions.

dipole file (*.dip) a file containing the list of position and orientation of each
dipole.

sensor files (*.sen) for the EEG sensors locations. For the MEG sensors locations
and orientations are written and the linear combination which must be applied
to get to gradiometers if needed.

Output files are all matrices (*.mat).

Common part, the assembly of H where one can see the operators introduced in
sec.(2.7.1), computed separately.

> om_assemble -HM canonical.geom canonical.cond hm.mat

-----------------------

Sorted List : 1 0 2

Sorted Domains : Brain Skull Scalp Air

Total number of points : 7686

Total number of triangles : 15360

OPERATOR S... (arg : mesh m1, mesh m2)

OPERATOR S... (arg : mesh m1, mesh m2)

OPERATOR S... (arg : mesh m1, mesh m2)

OPERATOR N... (arg : mesh m1, mesh m2)

OPERATOR N... (arg : mesh m1, mesh m2)

OPERATOR N... (arg : mesh m1, mesh m2)

OPERATOR D... (arg : mesh m1, mesh m2)

OPERATOR D... (arg : mesh m1, mesh m2)

OPERATOR D... (arg : mesh m1, mesh m2)

OPERATOR D... (arg : mesh m1, mesh m2)

OPERATOR S... (arg : mesh m1, mesh m2)

OPERATOR S... (arg : mesh m1, mesh m2)

OPERATOR N... (arg : mesh m1, mesh m2)

OPERATOR N... (arg : mesh m1, mesh m2)

OPERATOR D... (arg : mesh m1, mesh m2)

-------------------------------------------

| User Time: 9546.66 s.

-------------------------------------------

Classical approach for EEG, and MEG leadfields In the classical approach the
matrices H−1, D, Seeg, Smeg and Tmeg are built separately before being assembled
with the ’om gain’ command.
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>#--------------------------------- CLASSICAL APPROACH

> om_minverser hm.mat hm_inv.mat

-------------------------------------------

| User Time: 9051.4 s.

-------------------------------------------

> om_assemble -DSM canonical.geom canonical.cond cortex_20484.dip dsm.mat

-----------------------

Sorted List : 1 0 2

Sorted Domains : Brain Skull Scalp Air

Total number of points : 7686

Total number of triangles : 15360

-------------------------------------------

| User Time: 7101.88 s.

-------------------------------------------

> om_assemble -H2EM canonical.geom canonical.cond eeg_sensors.sen h2em.mat

-------------------------------------------

| User Time: 0.45 s.

-------------------------------------------

> om_gain -EEG hm_inv.mat dsm.mat h2em.mat eeg_leadfield.mat

-------------------------------------------

| User Time: 17.83 s.

-------------------------------------------

> om_assemble -H2MM canonical.geom canonical.cond meg_sensors.sen h2mm.mat

-------------------------------------------

| User Time: 63.74 s.

-------------------------------------------

> om_assemble -DS2MM cortex_20484.dip meg_sensors.sen ds2mm.mat

-------------------------------------------

| User Time: 6.38 s.

-------------------------------------------

> om_gain -MEG hm_inv.mat dsm.mat h2mm.mat ds2mm.mat meg_leadfield.mat

-------------------------------------------

| User Time: 114.71 s.

-------------------------------------------

Adjoint approach for EEG, and MEG leadfields For the adjoint approach, only
the matrices Seeg, Smeg and Tmeg need to be computed first, the leadfield is then
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assembled with the command ’om gain’ and an ’adjoint’ option.

>#---------------------------------- ADJOINT APPROACH

> om_gain -EEGadjoint canonical.geom canonical.cond cortex_20484.dip

hm.mat h2em.mat eeg_leadfield_adjoint.mat

-----------------------

Sorted List : 1 0 2

Sorted Domains : Brain Skull Scalp Air

Total number of points : 7686

Total number of triangles : 15360

-------------------------------------------

| User Time: 12152.1 s.

-------------------------------------------

> om_gain -MEGadjoint canonical.geom canonical.cond cortex_20484.dip hm.mat

h2mm.mat ds2mm.mat meg_leadfield_adjoint.mat

-------------------------------------------

| User Time: 15435.4 s.

-------------------------------------------

> om_gain -EEGMEGadjoint canonical.geom canonical.cond cortex_20484.dip hm.mat

h2em.mat h2mm.mat ds2mm.mat eeg_leadfield_adjoint2.mat meg_leadfield_adjoint2.mat

-------------------------------------------

| User Time: 23651.2 s.

-------------------------------------------



Chapter 4

A Domain Decomposition

framework for the EEG forward

problem

As discussed in sect.2.5.1, each numerical solver has pros and limitations depending
on the problem to solve. Ideally, we would like to use the best numerical method
possible. On the other hand, once an electrophysiological model has been chosen,
one ends up with different conductivity profiles for each sub-domain: either
homogeneous, isotropic or inhomogeneous, anisotropic. One could now want to
use the most appropriate numerical method for each sub-domain. The domain
decomposition framework allows such a splitting of a global computational domain
into smaller ones that can be handled with different numerical methods. In
this chapter, we propose a decomposition of the domain Ω in Eq.(2.13) in order
ultimately to use a BEM for the volume where the sources are (the brain), and a
FEM for the rest of the computational domain.

Summary

Goals: Sub-divide the forward EEG problem into smaller ones, to obtain
a flexible expression allowing for different numerical solvers.

Tools: Using a domain decomposition framework, dividing the original
computational domain in smaller ones where the interfaces are phys-
ical interfaces (e.g. brain-skull interface).

Results: Coupled formulations through iterative boundary value prob-
lems.
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4.1 A domain decomposition framework

The forward EEG problem aims at solving for V the following Poisson equation:{
∇ · (Σ∇V ) = ∇ · Jp in Ω

Σ∇V · n = 0 on Γext
, (4.1)

where Σ denotes the electrical conductivity tensor, which can, depending on the
sub-domain, be either a scalar or a 3× 3 positive definite matrix. Γext = ∂Ω is the
exterior surface (i.e. the scalp-air interface), where we impose no current outflow
(since σair = 0).

4.1.1 Introduction

Domain decomposition methods (DDMs) for the numerical solution of partial dif-
ferential equations is a relatively new field. It is nowadays mostly used to divide
a problem into sub-problems defined on sub-domains of the initial computational
domain. These techniques allow for the numerical solving of very-large scale prob-
lems which could not be solved on a single machine. DDM allow for the use of
parallel architecture because the sub-problems they generate can most of the time
be solved in parallel. The flexibility of the developed algorithms allow for the use of
different numerical solvers within each sub-domain. (This will be of particular in-
terest in our case.) DDM generate sub-problems that need to communicate at their
interface somehow. This communication will be done through iterative processes,
until the methods ’agree’ at their common interface. The sub-domains treated are
either overlapping or non-overlapping. The first family of domain decomposition
methods, Schwarz methods, uses overlapping domains.

Schwarz methods are the first example of DD approaches, they were introduced
by Schwarz in 1869, but mostly gained interest for second order elliptic PDE in
the mid-20th century. Let Ω be the computational domain, an overlapping domain
decomposition into two regions (Ω1, Ω2) is such that: Ω = Ω1 ∪ Ω2 with Ω1,2, the
domain defined as Ω1,2 = Ω1 ∩Ω2, non empty. In Fig.(4.1) such a domain partition
is displayed, where the spiraled region corresponds to Ω2, and the gray one to Ω1.
Γ1, and Γ2 are the two interfaces defined as: Γ1 = ∂Ω1, and Γ2 = ∂Ω2∩Ω1 Note that
the interfaces Γ1 and Γ2 do not represent the skull-scalp or CSF-skull interface, but
only imaginary interfaces. Solving the forward EEG problem using Schwarz method
writes:
Find V k

1 , V
k

2 for all k ≥ 1, so that:{
∇ · Σ1∇V k+1

1 = ∇ · Jp
1 in Ω1

V k+1
1 = V k

2 on Γ1

,
∇ · Σ2∇V k+1

2 = ∇ · Jp
2 in Ω2

V k+1
2 = V k+1

1 on Γ2

Σ2∇V k+1
2 · n = 0 on ∂Ω2 ∪ ∂Ω

,
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Figure 4.1 – An overlapping domain partition: Ω = Ω1 ∪ Ω2 with Ω1 the gray

domain and Ω2 the spiraled one. Ω1 straddles Γ2, and Ω2 straddles Γ1.

where V 0
2 = 0, and Jp

i for i = 1, 2 denote the restriction to Ωi of the source term Jp.
Such an approach is known as the ’multiplicative Schwarz method ’. When looking at
these equations, one can see that they cannot be solved in parallel since the second
equation (on Ω2) needs the result V k+1

1 . This led to the so called ’additive Schwarz
method ’, in which the equation V k+1

2 = V k+1
1 on Γ2 is replaced by V k+1

2 = V k
1 . This

then allows for parallel algorithms.
The full solution V in Ω is recovered at convergence by taking V = V1 in Ω1

and V = V2 in Ω2, (Note that V1 should be equal to V2 in Ω1 ∩ Ω2). The main
problem encountered for the Schwarz techniques, is the convergence rate which
directly depends on the ’size’ of the shared domain Ω1∩Ω2. It thus leads to a critical
choice, which is, increase the shared domain to get faster convergence at the expense
of heavier computations (since both domains Ω1 and Ω2 are bigger). This led the
DDM community to investigate further in so-called ’optimized Schwarz methods’,
which are techniques that investigate new communications at interface to faster
convergence. Some even allow for non-overlapping domain partitions [Lions, 1989].

Fully coupled methods When dealing with non-overlapping domains, such as the
one displayed in Fig.(4.2), the problem that one has to solve can be written, when
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Figure 4.2 – A non-overlapping domain partition: Ω = Ω1∪Ω2 with Γ = ∂Ω1∩∂Ω2.

considering the case of the EEG forward problem for a source located in Ω1, as:

∇ · Σ1∇V1 = ∇ · Jp in Ω1

V1 = V2 on Γ

Σ1∇V1 · n = Σ2∇V2 · n on Γ

∇ · Σ2∇V2 = 0 in Ω2

Σ2∇V2 · n = 0 on Γext

. (4.2)

It can be shown that this multi-domain problem is equivalent to the Poisson Eq.(4.1)
(see [Quarteroni and Valli, 1999] for a very similar case).
Let us now express, as an example of fully coupled method, the case of a BEM-FEM
coupling. Sub-domain Ω1 will be handled by the BEM (supposing homogeneous
isotropic conductivity σ1), and Ω2 dealt by the FEM. The key point is to express
boundary value problems (b.v.p) in each sub-domain and then to write one b.v.p
with the solution of the other. This leads to consider a fully coupled method, where
the BEM’s equations are incorporated into the FEM stiffness matrix. Such a cou-
pled method was applied successfully in [Fischer et al., 2000] for the case of ECG
(Electrocardiography). Let us consider such a BEM-FEM coupling on a realistic
head geometry. We suppose that both grids (or meshes) are matching at the in-
terface Γ i.e. they share the same vertices. Such a model is displayed Fig.(4.3)
(sagittal cut of a head mesh).
The Dirichlet problem in Ω1 writes:{

σ1∆V1 = ∇ · Jp in Ω1

V1 = VΓ on Γ
(4.3)

One can write this Dirichlet b.v.p with the BEM’s integral operators. Imposing
the potential VΓ at Γ, we write AB the BEM’s stiffness matrix corresponding to a
Dirichlet problem, JB the source term due to the primary source Jp, and DB the
right hand side which projects the given Dirichlet data on Γ (a vector written VΓ)
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Figure 4.3 – A non-overlapping partition meshed for a BEM-FEM coupling.

onto the BEM’s variable. We write n the number of vertices on Γ, which is also
the number of degrees of freedom for the imposed potential (size of VΓ), we solve
for j1 = σ1∂nV1, which represents the normal current crossing each of the 2n − 2
triangles of Γ, the equation:

AB · j1 = JB + DB ·VΓ , with j1 =


j1
j2
...

j2n−2

 . (4.4)

On the other hand, let us solve a Neumann problem in Ω2:


∇ · Σ2∇V2 = 0 in Ω2

Σ2∇V2 · n = jΓ on Γ

Σ2∇V2 · n = 0 on Γext

(4.5)

We denote AF the FEM’s stiffness matrix corresponding to a Neumann problem
whose unknowns are the potential at all mesh vertices denoted V2 (displayed in
red in Fig.(4.3)), including the one on the boundary Γ (in blue in Fig.(4.3)). As
there is no source term (except the Neumann boundary data on Γ written jΓ), the
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system to solve is:

AF ·V2 = TF · jΓ , with V2 =



v1
...
vn
vn+1

...
vN


, (4.6)

where N � n denotes the total number of vertices in the FEM mesh, and TF the
operator acting on the Neumann data. Extracting j1 from Eq.(4.4), and setting
jΓ = j1 into Eq.(4.6) yields:

AF ·V2 −TFA−1
B · (JB + DBVΓ) = 0 (4.7)

And as we want V1 to be equal to V2 at interface i.e. VΓ = V2|Γ, we write VΓ as
a subset of V2, such that:(

AF −
[
TFA−1

B ·DB 0
0 0

])
·V2 = TFA−1

B · JB, (4.8)

where the 0 mean null block matrices with appropriate sizes. Eq.(4.8) is a BEM-
FEM fully coupled system. Such a system fulfills the continuity requirements in
Eq.(4.2), and allows to obtain the solution in ’one shot’ on the global computational
domain Ω. But it requires first the assembly of the BEM matrices for the same
vertices on Γ as the one of the FEM. This is a bad point since the FEM can handle
very detailed mesh because of the sparse structure of its linear system, and thus
having too many elements for the BEM might be difficult (or impossible) due to
the machine resources. Furthermore, from an algebraic point of view, the solving
of the linear system in Eq.(4.8) might be difficult since the coupled matrix (left
hand side) is not sparse, and may not be symmetric, nor positive definite, unlike
the FEM stiffness matrix. This restrains the choice for algebraic numerical solvers,
and the iterative solution may be very slow to converge. Such method should not
even be considered as domain decomposition method, but as a coupling technique,
since the resulting algorithm is not decomposed into sub-domains.
We next review more flexible methods for solving the multi-domain Eq.(4.2).

Iterative substructuring methods Starting from the multi-domain problem in
Eq.(4.2), we will generate sequences of sub-problems posed in Ωi, i ∈ {1, 2}, for
which independent solvers can be used (we consider the same geometry as in
Fig.(4.2)). The key point is to express boundary value problems, where the values
of the boundary conditions will evolve through iterations until the two numerical
methods agree on these boundary values. This family of DDM are often referred to
as iterative substructuring methods [Quarteroni and Valli, 1999]. One can express
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this iterative process as follow:

1©

{
∇ · Σ1∇V k+1

1 = ∇ · Jp
1 in Ω1

f(V k+1
1 ,Σ1∇V k+1

1 · n) = Bk
1 on Γ

,

2©


∇ · Σ2∇V k+1

2 = ∇ · Jp
2 in Ω2

g(V k+1
2 ,Σ2∇V k+1

2 · n) = Bk
2 on Γ

Σ2∇V k+1
2 · n = 0 on Γext

, (4.9)

where the functions f and g represent the type of boundary condition, and Bk
1 , Bk

2

denote the values of the boundary conditions at iteration k. For example taking
f(V, p) = V would state Dirichlet boundary conditions for the first problem (the
one on Ω1).
Such a formulation allows for the solving of a general problem using independent
solvers, such as the BEM if we consider an homogeneous and isotropic conductivity
(σ1) for problem 1©, and the FEM for 2©, without having a requirement on
matching grid at interface, provided that the scheme converges to a solution
where V1 = V2, and σ1∂nV1 = Σ2∇V2 · n on Γ. If so, the solution would satisfy
the multi-domain Eq.(4.2) and also the global forward EEG problem taking

V =

{
V1 in Ω1

V2 in Ω2

.

In the next section, we will see some of the possibilities for choosing function f
and g with appropriate boundary values.

4.1.2 Alternating on boundary value problems

As explained previously one can choose between types of boundary conditions and
definition of the sub-problems to be solved, namely boundary conditions will either
be Dirichlet (imposing the potential at interface), Neumann (the normal current),
or Robin (imposing a linear combination of both potential and normal current at
interface). In an iterative substructuring method, the boundary values of the sub-
problem evolves, not the type of boundary condition.
Such an algorithm should be designed so that it converges toward the solution of
the multi-domain equation (4.2), at the best convergence rate. Let us note that the
interface to be defined for the coupling could be anywhere in principle, but will be
in our case the brain/skull interface. This choice is led by the conductivity profile
of the skull which we want the FEM to handle.

4.1.2.1 Dirichlet-Neumann mapping

The Dirichlet-Neumann coupling described in [Bjorstad and Widlund, 1986]-
[Marini and Quarteroni, 1987]-[Marini and Quarteroni, 1989]-
[Quarteroni and Valli, 1999] can be defined as follows:
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Find V k
1 , V

k
2 for all k ≥ 1, so that:{

∇ · Σ1∇V k+1
1 = ∇ · Jp

1 in Ω1

V k+1
1 = V k

2 on Γ
, (4.10)

λk+1 = (1− ω)λk + ωΣ1∇V k+1
1 · n on Γ (4.11)


∇ · Σ2∇V k+1

2 = ∇ · Jp
2 in Ω2

Σ2∇V k+1
2 · n = λk+1 on Γ

Σ2∇V k+1
2 · n = 0 on Γext

, (4.12)

where the initial conditions are (V 0
2 = 0, λ0 = 0). In Eq.(4.11) appears a variable

λk which is the relaxation variable of the iterative scheme, it is homogeneous to a
current, and serves for the convergence. In fact, this scheme may or may not con-
verge depending on the parameter ω which controls the strength of the relaxation.
ω is chosen in the range [0, 1]. The closer to zero, the slower will be the convergence,
but the higher probability for it to converge; on the other hand choosing ω close to
one, may decrease the number of iterations provided the scheme does not diverge.
Considering a relaxation on the Dirichlet data instead of Neumann leads to the
exact same convergence considerations.
What about the choice of the Dirichlet or Neumann side ? Are there clues for
choosing Ω1 on which we solve a Dirichlet problem and Ω2 for the Neumann one ?
Either configuration can be chosen, leading to different algorithms. We will see that
in the case of the EEG forward problem, the electrophysiological model is better
suited to have a Neumann-Dirichlet coupling.

4.1.2.2 Robin-Robin mapping

Find V k
1 , V

k
2 for all k ≥ 1, so that:{

∇ · Σ1∇V k+1
1 = ∇ · Jp

1 in Ω1

V k+1
1 + γ1Σ1∇V k+1

1 · n = V k
2 + γ1Σ2∇V k

2 · n on Γ
, (4.13)


∇ · Σ2∇V k+1

2 = ∇ · Jp
2 in Ω2

V k+1
2 + γ2Σ2∇V k+1

2 · n = V k+1
1 + γ2Σ1∇V k+1

1 · n on Γ

Σ2∇V k+1
2 · n = 0 on Γext

, (4.14)

where the initial condition is (V 0
2 = 0), in such a method relaxation is not needed

if the Robin parameters γi are correctly chosen. We see that setting γ1 to a high
value tends to solve a Neumann problem in Ω1 while it would be a Dirichlet one
for γ1 = 0. Even if we do not have to choose a relaxation parameter, the choice
for the Robin parameters are not obvious, in [Quarteroni and Valli, 1999] can be
seen a proof of convergence when choosing γ1 = γ2, or refer to [Lions, 1989] for the
general case.
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4.1.2.3 Other mapping choices

Other choices of iterative substructuring methods can be made which do not solve
equation (4.9), but rather different problems, the solutions can be then recovered out
of these subproblem, see for example [Agoshkov and Lebedev, 1990] for Neumann-
Neumann coupling, and other formulations which we did not investigate in this
thesis.

4.1.2.4 A one dimensional illustration of the Neumann-Dirichlet coupling

Let us look at the following elliptic problem in one dimension:
Find u ∈ C2([0, 1]) s.t.: 

∂2

∂x2 (σ(x)u(x)) = 0,

u(0) = 0,

u(1) = 0.

which has a unique solution u(x) = 0. We consider a discontinuous conductivity
profile σ (see Fig.(4.4)):

σ(x) =

{
σ1 if x ∈ [0, λ]

σ2 if x ∈ [λ, 1]
.

Let us consider a Neumann-Dirichlet coupling where we solve iteratively these prob-
lems:
Find uk1, u

k
2 for all k ≥ 1, s.t.:

σ1u
′′k
1 (x) = 0,

uk1(0) = 0,

σ1u
′k
1 (λ) = θk−1

and


σ2u

′′k
2 (x) = 0,

uk2(λ) = uk1(λ),

uk2(1) = 0

where we look for polynomial solutions: u1(x) = a1x
2 + b1x + c1 and u2(x) =

a2x
2 + b2x+ c2, and start the iterative scheme with arbitrary parameters. The b.c.

of the problem 1 is ensured with a relaxation term θk = (1 − ω)θk−1 + ωσ2u
′k
2 (λ),

with ω ∈ [0, 1] a relaxation parameter. Due to the previous equations we can deduce
the following relations:

∀k ≥ 0 , ak1 = ck1 = a2 = 0

bk1 =
θk−1

σ1

ck2 = −bk2

bk2 =
−bk1λ
1− λ

If the iterative scheme converges, the limit solutions u1 and u2 are null. Let us
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Figure 4.4 – Description of the 1D domain. The segment [0, 1] is decomposed into

[0, λ] and [λ, 1], with constant conductivities σ1 and σ2 respectively.

have a look at the relaxation parameter θ at iteration k:

θk = (1− ω)θk−1 + ωσ2u
′k
2

= (1− ω)θk−1 + ωσ2b
k
2

= (1− ω)θk−1 + ωσ2
−bk1λ
1− λ

= Aθk−1,

with A = (1 − ω + ω σ2
σ1

−λ
(1−λ)). Thus we can say that this scheme will converge if

‖A‖ < 1, since θk = Akθ0. A then defines the convergence rate of the scheme.
Let us first state under which conditions the scheme converges if no relaxation is
used i.e. ω = 1, then:

‖A‖ < 1 =⇒ σ2

σ1

λ

(1− λ)
< 1 (4.15)

For example if σ1 = σ2, then the scheme will be convergent with no relaxation
provided that the Dirichlet domain is bigger than the Neumann’s one.

A numerical example: In Fig.(4.5) are displayed the solutions for 5 iterations of
the iterative scheme, where we have set up λ = 0.3, ω = 0.3, σ1 = 1. and θ0 = 0.1.
Results are displayed varying the parameter σ2 from 0.1 to 20. The solutions uk1(x)
are displayed in blue, while uk2(x) are in red. One can see that for σ2 ≥ 16, the
scheme is divergent and never reaches the true solution u(x) = 0. This is due to
the bad choice of the relaxation parameter ω for this conductivity, i.e. ‖A‖ > 1.
With a lower ω this scheme would be convergent; but taking a too small relaxation
parameter leads to a poor convergence rate. The optimal ω could be computed for
this 1D problem leading to a total resolution in only one step. ωopt should satisfy
‖A‖ = 0 =⇒ ωopt = 1

1+
σ2
σ1

λ
1−λ

.

Interpretation: This 1D example of a Neumann-Dirichlet coupling procedure is
interesting since it allows to get an idea of the behavior of such a coupling. It can
be applied for other coupling strategies such as Robin-Robin method.
From Eq.(4.15), i.e. looking at the iterative scheme without relaxation, one can
see that for a constant ratio λ

1−λ , the convergence rate depends on the ratio of the
conductivities. A very low ratio σ2

σ1
� 1 would imply a high convergence rate. This

is in agreement with the following intuition: Viewed from Ω1, having a (near-)zero



106 Chapter 4. A DD framework for the EEG forward problem0 0.5 1−0.0500.05 sigma2=0.1 0 0.5 1−0.0500.05 sigma2=4.1 0 0.5 1−0.0500.05 sigma2=8.10 0.5 1−0.0500.05 sigma2=12.0 0 0.5 1−0.0500.05 sigma2=16.0 0 0.5 1−0.0500.05 sigma2=20.0
Figure 4.5 – Solutions through 5 iterations varying σ2. uk1 , and uk2 are plotted in

blue and red respectively. Only the first three iterations are indexed i.e. k = 1, 2, 3.

conductivity outside of the domain (in Ω2) tends to reduces the problem to an
homogeneous Neumann problem, since the current crossing the boundary will be
(near-) zero.
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4.2 Neumann-Dirichlet coupling for solving the forward

problem in EEG

4.2.1 From the multi-domain equation to interface equations

In this section we want to split the computational domain (Ω) into several smaller
ones (e.g Ω1 and Ω2). The first step in the decomposition is to write the multi-
domain problem equation which we recall here considering an isotropic conductivity
σ1 for domain Ω1: 

σ1∆V1 = ∇ · Jp in Ω1

V1 = V2 on Γ

σ1∇V1 · n = Σ2∇V2 · n on Γ

∇ · Σ2∇V2 = 0 in Ω2

Σ2∇V2 · n = 0 on Γext

. (4.16)

Following the work of [Quarteroni and Valli, 1999], we will develop these equations
in order to obtain sub-problems which share a condition on their common interface
Γ.

The Steklov-Poincaré operator: Let us write two Dirichlet problems in sub-
domains Ωi, for i = 1, 2:
Find wi for all i = 1, 2, s.t.:


∇ · Σi∇wi = fi in Ωi

wi = λ on Γ

Σi∇wi · n = 0 on Γext

. (4.17)

We see that considering Σ1 = σ1, f1 = ∇·Jp and f2 = 0, we have wi = Vi, provided
that the second continuity requirement is valid i.e. σ1∂nw1 = Σ2∇w2 · n at Γ.
The solution w1 can be written as a harmonic part plus another term handling
the source. Writing H1 the operator which given a Dirichlet data on the boundary
associates its harmonic extension in the domain:

H1 : H
1
2 (Γ) →H1(Ω1)

λ 7→H1λ i.e. s.t

{
σ1∆H1λ = 0 in Ω1

H1λ = λ on Γ
,

(4.18)
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where, H
1
2 (Γ) is the trace space of H1(Ω1). We also introduce still for Ω1 an

operator G1 s.t.:

G1 : L2(Ω1) →H1(Ω1)

f 7→G1f i.e. s.t

{
σ1∆G1f = f in Ω1

G1f = 0 on Γ
,

(4.19)

and since ∂Ω1 ∩ ∂Ω = ∅, we see that the solution H1λ+ G1f satisfies Eq.(4.17) in
Ω1. And since we have chosen the appropriate Sobolev spaces for the solutions and
the data, we can assure the uniqueness of this solution through the Lax-Milgram
theorem which is then w1 = H1λ+ G1f .
In Ω2, we introduce the operator H2, similar to H1 but handling the conductivity
as a tensor, and ensuring a null Neumann condition on Γext = ∂Ω2 ∩ ∂Ω:

H2 : H
1
2 (Γ) →H1(Ω2)

λ 7→H2λ i.e. s.t


∇ · Σ2∇H2λ = 0 in Ω2

H2λ = λ on Γ

Σ2∇H2λ · n = 0 on Γext

.
(4.20)

Similarly we write w2 thanks to this operator i.e. w2 = H2λ, and the continuity
condition is valid: w1 = w2, since both are λ on Γ. Enforcing the condition for
identifying wi with Vi i.e. σ1∂nw1 = Σ2∇w2 · n at Γ, yields:

σ1∂nH1λ+ σ1∂nG1f = Σ2∇H2λ · n on Γ

(σ1∂nH1 − Σ2 · n ∂nH2)λ = −σ1∂nG1f

Sλ = χ (4.21)

The latter equation which holds on Γ is called the Steklov-Poincaré interface
equation, with S the Steklov-Poincaré operator.
If λ satisfies this equation, then solving the sub-problems defined in Eq.(4.17),
is equivalent to solving our forward EEG problem. To solve Eq.(4.21), we will
consider iterative schemes for solving the multi-domain equation (4.16), which will
amounts to expressing an iterative solution of the Steklov-Poincaré equation. But
first we introduce a very similar way of handling such a multi-domain problem
which is the Poincaré-Steklov operator [Agoshkov and Lebedev, 1990].

The Poincaré-Steklov operator: Instead of two Dirichlet problems (4.17), let us
write two Neumann problems in sub-domains Ωi, for i = 1, 2:
Find wi for all i = 1, 2, s.t.:

∇ · Σi∇wi = fi in Ωi

Σi∇wi · n = λ on Γ

Σi∇wi · n = 0 on ∂Ωi ∩ ∂Ω

, (4.22)
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where Σ1 is still equal to σ1. We have wi = Vi, provided that they share the same
value on Γ. In the same spirit, the solution wi is composed of a harmonic part in Ω1,
i.e. writing N1 the operator which to Neumann data on the boundary associates
its harmonic extension in the domain:

N1 : H−
1
2 (Γ) →H1(Ω1)

λ 7→N1λ i.e. s.t

{
σ1∆N1λ = 0 in Ω1

σ1∂nN1λ = λ on Γ
.

(4.23)

Operator G1 is introduced similarly as before, but matches Neumann condition this
time on Γ s.t.:

G1 : L2(Ω1) →H1(Ω1)

f 7→G1f i.e. s.t

{
σ1∆G1f = f in Ω1

σ1∂nG1f = 0 on Γ
,

(4.24)

w1 then writes w1 = N1λ + G1f . In Ω2, we introduce the operator N2, similarly
to N1 but handling the conductivity as a tensor, and ensuring a null Neumann
condition on Γext:

N2 : H−
1
2 (Γ) →H1(Ω2)

λ 7→N2λ i.e. s.t


∇ · Σ2∇N2λ = 0 in Ω2

Σ2∇N2λ · n = λ on Γ

Σ2∇N2λ · n = 0 on Γext

,
(4.25)

w2 writes thanks to this operator: w2 = N2λ, and the continuity condition w1 = w2

compulsory to associate wi to Vi implies:

N1λ+ G1f = N2λ on Γ

(N1 −N2)λ = −G1f

Pλ = χ (4.26)

The latter equation which holds on Γ is called the Poincaré-Steklov interface equa-
tion, with P the Poincaré-Steklov operator.
We will later refer to this equation instead of the Steklov-Poincaré one (4.21) in
order to study the convergence of the coupled scheme.

4.2.2 The Neumann-Dirichlet coupling

Here we propose a Neumann-Dirichlet problem for a nested geometry as seen
Fig.(4.6). We consider a Neumann problem for the innermost domain (Ω1), and
solve a mixed Dirichlet/homogeneous Neumann problem in (Ω2∪Ω3), to obtain the
(zero-mean) potential on the outermost surface (e.g. the scalp Γext):
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Figure 4.6 – Domain partition for a Neumann-Dirichlet coupling. A Neumann

problem is solved in Ω1, while a mixed Dirichlet-homogeneous Neumann problem is

solved in Ω2 ∪ Ω3.

Find V k
1 , and V k

2 for all k ≥ 1, s.t.:

Neumann b.v.p

{
σ∆V k+1

1 = ∇ · Jp in Ω1

(σ ∇V k+1
1 ) · n = λk on Γ,

(4.27)

Mixed DhN b.v.p


∇ · Σ∇V k+1

2 = 0 in Ω2 ∪ Ω3

V k+1
2 = V k+1

1 on Γ

(Σ∇V k+1
2 ) · n = 0 on Γext,

(4.28)

where λ is the variable (homogeneous to a current) on which we relax the scheme
through iterations.

λk+1 = (1− ω)λk + ω(Σ ∇V k+1
2 · n)|Γ (4.29)

We will now introduce a different way to write this problem using the previously
defined operators for the definition of the Poincaré-Steklov operator in Eq.(4.26).
Actually the Neumann problem is known to have a solution defined up to a constant,
furthermore, a necessary condition is to have a zero mean data λ on Γ; this is called
the compatibility condition, and is physically equivalent to the non accumulation
of charge. In other words, supposing a solution v1 ∈ H1(Ω), then applying the
divergence theorem in Ω1 shows that this solution satisfies

∫
Γ σ∇v1 · ds = 0, thus

for each homogeneous Neumann problem we will see, we will suppose the Neumann
data to be in the space:

λ ∈ Ĥ
1
2 (Γ)⇔ λ ∈

{
H

1
2 (Γ) s.t

∫
Γ
λds = 0

}
, (4.30)

Still, the solution is defined up to a constant which will need to be fixed; one can
choose to set one point as reference, or restrained the solution to be zero mean in
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total or on some surface. This will be done numerically using the so-called deflation
technique.
Using the operators N1 and G1 defined in Eq.(4.23) and (4.24) respectively, we write
the solution V1 of problem Eq.(4.27): with the contribution of the source f = ∇·Jp:

V1 = N1λ+ G1f .

Finally let us define operator D2 for the mixed problem in Ω2 ∪ Ω3 (which is sim-
ply operator H2 in the Steklov-Poincaré definition (Eq.(4.20)) extended for two
domains):

D2 : H
1
2 (Γ) →H1(Ω2 ∪ Ω3)

u 7→v2 = D2u i.e. s.t


∇ · Σ∇v2 = 0 in Ω2 ∪ Ω3

Σ∇v2 · n = 0 on Γext
v2 = u on Γ

,
(4.31)

We can now rewrite the solution of Eq.(4.27)-(4.28), inserting the previously defined
operators: {

V k+1
1 = N1λ

k + G1f

V k+1
2 = D2V

k+1
1 |Γ

, (4.32)

which now allows us to express Eq.(4.29). Actually we will see later on that in the
case of the EEG forward problem such a coupling does not require a relaxation on
λ. Let us write down this equation with ω = 1 which also increases readability
(although the same can be done with a relaxation parameter):

λk+1 =
(

Σ∇V k+1
2 · n

)∣∣∣
Γ

=
(

Σ∇(D2 V
k+1

1 |Γ) · n
)∣∣∣

Γ

=
(

Σ∇(D2(N1λ
k + G1f)|Γ) · n

)∣∣∣
Γ

=
(

Σ∇(D2(N1λ
k)|Γ) · n

)∣∣∣
Γ

+ (Σ∇(D2(G1f)|Γ) · n)|Γ

= Aλk + B (4.33)

We are thus left with an affine sequence for the Neumann boundary data λ. Where
we need some conditions on the operator A for the sequence to converge. Note that
A does not depend on the source term f .
In fact introducing a variable ξk = λk + C, such that C verifies:

−AC + B + C = 0 ,
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the convergence of Eq.(4.33)is equivalent to the one of:

ξk+1 = Aξk (4.34)

⇐⇒ ξk = Akξ0 (4.35)

In order to keep stability the norm of operator A must satisfy:

|‖A|‖ < 1 (4.36)

|‖(Σ ∇(D2(N1 · )|Γ) · n)|Γ ‖ < 1 (4.37)

Next, in our experiments we will check the spectral radius of the numerical ap-
proximation of A to verify whether or not the iterative scheme will be converging.

Actually this sequence can be expressed in terms of Steklov-Poincaré operator,
and leads to a Richardson procedure for the solving of equation (4.21). We refer
to [Quarteroni and Valli, 1999]-[Wohlmuth, 2001], where they provide a proof for
the convergence of this iterative scheme, establishing first good properties for the
Steklov-Poincaré operator which inherits its properties from the original problem
(it is symmetric, positive-definite and coercive). This proof is also given in the
finite-dimensional case for the case of matching grids. Let us formulate Eq.(4.29)
using the Poincaré-Steklov operator:
We recall that solutions V k

1 , V
k

2 can be written using the operators defined in
Eq.(4.23)-(4.24)-(4.25):

V k+1
1 = N1λ

k + G1f (4.38)

V k+1
2 = N2

(
Σ∇V k+1

2 |Γ · n
)

(4.39)

The Poincaré-Steklov equation (4.26) writes:

N2

(
Σ2∇V k+1

2 · n
)

= −χ+N1λ
k (4.40)

Which now allows us to re-write Eq.(4.29) as:

λk+1 = (1− ω)λk + ω
(

Σ∇V k+1
2 · n

)
= (1− ω)λk + ωN−1

2

(
N1λ

k − χ
)

= λk + ωN−1
2

(
N1λ

k −N2λ
k − χ

)
= λk + ωN−1

2

(
Pλk − χ

)
, (4.41)

which is then the writing of an iterative procedure called Richardson with operator
N2 acting as preconditioner for the solution of the Poincaré-Steklov equation in
Eq.(4.26).
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4.2.3 The Dirichlet-Neumann coupling

For sake of completeness, we also present a Dirichlet-Neumann coupling in a similar
way as the previous coupling. This coupled method will not be used in practice
because of convergence problems.
The Dirichlet-Neumann coupling is defined as:
Find V k

1 , and V k
2 for all k ≥ 1, s.t.:

Dirichlet b.v.p

{
σ∆V k+1

1 = ∇ · Jp in Ω1

V k+1
1 = V k

2 on Γ
, (4.42)

λk+1 = (1− ω)λk + ω(σ∂nV k
1 ) on Γ (4.43)

Neumann b.v.p


∇ · Σ∇V k+1

2 = 0 in Ω2 ∪ Ω3

(Σ ∇V k+1
2 ) · n = λk on Γ

(Σ∇V k+1
2 ) · n = 0 on Γext

, (4.44)

where λ is still the relaxation variable (homogeneous to a current). Similarly, one
can define operators D1,G1,N2 such that the solutions write:

V1 = D1V2|Γ + G1f and V2 = N2λ (4.45)

We thus end up with a similar affine sequence for the relaxation variable λ, where
this time we consider the case of a relaxed scheme (i.e. ω 6= 0):

λk+1 = (1− ω)λk + ω
(
σ∂nV

k+1
1

)
= (1− ω)λk + ω

(
σ∂n

(
D1V

k
2 |Γ + G1f

))
= (1− ω)λk + ω

(
σ∂n

(
D1(N2λ

k)|Γ
))

+ ωσ (∂nG1f)

= ((1− ω)I + ωσ∂n (D1(N2 · )|Γ))λk + ωσ (∂nG1f)

= ADNλk + BDN (4.46)

We will show next, that ADN does not have good properties for our electrophysio-
logical problem of EEG.

4.2.4 The Neumann-Dirichlet-Neumann coupling

As our first intention for the coupling is to use the FEM for the skull, we also
consider a Neumann-Dirichlet-Neumann coupling, where the FEM is only used for
the skull i.e. Ω2 (see Fig.(4.7)). We thus consider isotropic conductivities σ1, and σ3

for the sub-domains Ω1 and Ω3 respectively, and an inhomogeneous or anisotropic
conductivity Σ2 in Ω2. The iterative scheme writes:
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Figure 4.7 – Domain partition for a Neumann-Dirichlet-Neumann coupling.

Find V k
1 , V k

2 , V k
3 for all k ≥ 1, s.t.:

Neumann b.v.p

{
σ1∆V k+1

1 = ∇ · Jp in Ω1

(σ1∇V k+1
1 ) · n = λk1 on Γ1,

(4.47)

Dirichlet b.v.p


∇ · Σ2∇V k+1

2 = 0 in Ω2

V k+1
2 = V k+1

1 on Γ1

V k+1
2 = V k

3 on Γ2,

(4.48)

Neumann b.v.p


σ3∆V k+1

3 = 0 in Ω3

(σ3∇V k+1
3 ) · n = λk2 on Γ2,

(σ3∇V k+1
3 ) · n = 0 on Γ3,

(4.49)

where λk1 and λk2 are the variables (homogeneous to a current) on which we relax
the scheme through iterations.{

λk+1
1 = ω1λ

k
1 + (1− ω1)(σ2 ∇V k

2 · n)|Γ1

λk+1
2 = ω2λ

k
2 + (1− ω2)(σ2 ∇V k

2 · n)|Γ2

(4.50)

From this point of view this problem seems more difficult to handle, since there
are two indefinite problems (two Neumann problems), thus two constants to set,
which cannot be independent. Furthermore it seems difficult to express the iterative
sequence for the scheme to converge, since there are two relaxation variables.
Instead we choose to consider a Neumann-Dirichlet problem with this time a Neu-
mann problem on the disjoint domain Ω1∪Ω3, and a pure Dirichlet problem instead
of the mixed Dirichlet-homogeneous Neumann as previously. We call this problem
a ’Sandwiched Neumann-Dirichlet ’ coupling.
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4.2.5 The Sandwiched Neumann-Dirichlet coupling

Variables in the domain Ω1,3 = Ω1 ∪ Ω3 will be indexed 1,3. The iterative scheme
writes:
Find V k

1,3, and V k
2 for all k ≥ 1, s.t.:

Neumann b.v.p


σ1,3∆V k+1

1,3 = f1,3 in Ω1,3

(σ1,3∇V k+1
1,3 ) · n = λk on Γ1,3,

(σ1,3∇V k+1
1,3 ) · n = 0 on Γext,

(4.51)

Dirichlet b.v.p

{
∇ · Σ2∇V k+1

2 = 0 in Ω2

V k+1
2 = V k+1

1,3 on ∂Ω2

(4.52)

λk+1 = (1− ω)λk + ω(Σ2∇V k+1
2 · n)|∂Ω2 (4.53)

We write V1,3 using similar operators as in Eq.(4.23)-(4.24)-(4.31):

V k+1
1,3 = N1,3λ

k + G1,3f1,3 (4.54)

V k+1
2 = N2

(
Σ2∇V k+1

2 · n|∂Ω2

)
(4.55)

Then Eq.(4.53) writes:

λk+1 = (1− ω)λk + ω(Σ2∇V k+1
2 · n)|∂Ω2

= (1− ω)λk + ωN−1
2

(
N1,3λ

k + G1,3f1,3

)
= λk + ωN−1

2

(
Pλk − χ

)
(4.56)

In order to study numerically the convergence, we will write this sequence as in
Eq.(4.33), with operator A defined in this case as:

ASND = (1− ω)I + ω (Σ2∇(D2(N1,3 · )|∂Ω2) · n)|Γ1,3
(4.57)

4.2.6 Choosing between the different couplings

In the next chapter we consider these coupled formulations using BEM. Such a
coupling was a first step (in this thesis) in the establishment of a BEM-FEM
coupling, this allowed for using the same mesh for both methods, and trying out
the iterative scheme, without the difficulty of using different numerical solvers. We
will see that such coupled methods can also be interesting for sparing computation
time and dispatching memory.

As seen for the 1D example, the choice of the Dirichlet or Neumann side can be
crucial depending on the shape of the space, and the assigned conductivities. The
next chapter will show, examining numerically the discrete version of operator A in
Eq.(4.33), that the good choice is to consider a Neumann-Dirichlet coupling. This is
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also in agreement with the common physical thinking, since the skull conductivity
is very much lower than the brain’s, it can be considered that the currents crossing
Γ are small (also keeping in mind that the sources lie in the brain), hence the inner
problem is close to an homogeneous Neumann problem.

4.3 Conclusion

In this chapter, after introducing the reader with domain decomposition methods,
we focused on iterative substructuring methods and mainly on Neumann-Dirichlet
coupling. This coupling was first analyzed and described with the Steklov-Poincaré
operator, which allow a reduction of the problem to an interface equation, whose
resolution ensures the continuity requirements of our physical initial problem.
Then we focussed on an operator which will govern the convergence of the iterative
scheme. This operator will be studied numerically later, and will allow for choosing
a relaxation parameter if needed.



Chapter 5

Implementation of BEM-BEM

coupled methods

As a first step, before studying an iterative substructuring method with a BEM
coupled with a FEM, we decide to study BEM-BEM couplings. The utility of such
a coupling is not obvious regarding our first goal which is to be able to take into
account the inhomogeneous conductivity profile of the skull. But we will see that
BEM-BEM couplings allow for resolution of bigger (isotropic) problems than the
classical BEM, which can be interesting in some cases. Furthermore studying the
convergence of the presented schemes is crucial, and this is independent of the
numerical methods used, and of the different mesh resolutions used.

Summary

Goals: Try several coupled formulations, as a first step for a BEM-FEM
coupling. Establish convergence properties of the different schemes.

Tools: The previously developed formulations for the forward EEG prob-
lem, based on domain decomposition methods.

Results: Interesting coupled formulations faster than the classical sBEM
formulation.



118 Chapter 5. Implementation of BEM-BEM coupled methods

Contents

5.1 The symmetric BEM operators . . . . . . . . . . . . . . . . . 119

5.2 The BEM’s equations for the coupled methods . . . . . . . 120

5.2.1 BEM-BEM coupling with the Neumann-Dirichlet coupling . . 120

5.2.2 BEM-BEM coupling with the Dirichlet-Neumann coupling . . 123

5.2.3 BEM-BEM-BEM coupling, with the Sandwiched Neumann-
Dirichlet coupling . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Numerical results on BEM-BEM coupled methods . . . . . 129

5.3.1 Spherical models . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.2 Accuracies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.3 Convergence of the coupled methods . . . . . . . . . . . . . . 130

5.3.4 Time and memory comparisons . . . . . . . . . . . . . . . . . 132

5.4 Conclusions on BEM-BEM coupled methods . . . . . . . . . 133



5.1. The symmetric BEM operators 119

5.1 The symmetric BEM operators

We recall here the representation theorem (1) stated p.63:
Let Ω ⊆ R3 be a bounded open set with a regular boundary ∂Ω. Let u : (R3\∂Ω)→
R be a harmonic function (∆u = 0 in R3\∂Ω), satisfying the H condition. Then
∀r ∈ ∂Ω

− ∂nu± = +N[u] +
(
± I

2
−D∗

)
[∂nu] (5.1)

u± =
(
∓ I

2
−D

)
[u] + S[∂nu] (5.2)

which is applied for the symmetric BEM for the harmonic function uΩi

uΩi =

{
V − vΩi/σi in Ωi

−vΩi/σi in R3\Ωi

, (5.3)

where the function vΩi satisfies the equation: ∆vΩi = fΩi = f · 1Ωi , f the source
term, which in our case will be considered to be only in the first volume Ω1.
With regard to the outward normal such as displayed in Fig.(5.1), we have the
following jumps for uΩi :

[uΩi ]i = VSi , [uΩi ]i−1 = −VSi−1 , (5.4)

and for ∂nuΩi :

[∂nuΩi ]i = (∂nV )−Si , [∂nuΩi ]i−1 = − (∂nV )+
Si−1

. (5.5)

In the next sections, we will write the BEM equations for different boundary
value problems (b.v.p), and we will formulate the equations using the representation
theorem. The unknowns will either be the potential V at surface Si denoted Vi
and/or the normal current pi = σi [∂nuΩi ]i = σi (∂nV )−i , which, as its is continuous,
is also equal to pi = σi+1 (∂nV )+

i .
Then we will write the discretized versions of the integral operators to express the
matrix systems. The discretized potential Vi at surface Si will be denoted Vi,
which is a vector containing one potential value per mesh node, and pi for the
normal current (one current value per triangle).
As explained in sec.2.4.3, the potential at surface Sk is discretized with P1 functions
φ

(k)
i so that Vk =

∑
i viφ

(k)
i , and with P0 functions for the current such that

pk =
∑

i piψ
(k)
i . And the discretized version of integral operators N, D, S, . . . are

obtained:

(Nkl)ij = 〈Nklφ
(l)
i , φ

(k)
j 〉 , (Skl)ij = 〈Sklψ

(l)
i , φ

(k)
j 〉

(Dkl)ij = 〈Dklφ
(l)
i , ψ

(k)
j 〉 , (D∗kl)ij = 〈D∗klψ

(l)
i , φ

(k)
j 〉

(Ikl)ij = 〈Iklφ
(l)
i , ψ

(k)
j 〉 , (I∗kl)ij = 〈I∗klψ

(l)
i , φ

(k)
j 〉

(5.6)

In these equations, one can note that (D∗kl)ij = (Dlk)ji, since the operator D∗

is the adjoint of D (it can be seen easily from Eq.(2.34) p.62). Concerning the
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discrete version of the identity operator I, it does not represent an identity matrix
anymore since it deals with φ and ψ functions. If the two functions have disjoint
supports, its value is zero, (Ikl)ij = 0, in particular for disjoint surfaces (k 6= l):
(Ikl)ij = 0 ,∀(i, j). Furthermore, as for operator D the following relation holds:
(I∗kl)ij = (Ilk)ji.

5.2 The BEM’s equations for the coupled methods

Figure 5.1 – Domain partition for a BEM-BEM coupling with isotropic conduc-

tivities.

5.2.1 BEM-BEM coupling with the Neumann-Dirichlet coupling

We propose here a domain decomposition such as in Fig.(4.6), where the domain
Ω1 is handled by a BEM with Neumann condition on Γ, and the domains Ω2 and
Ω3 are handled by a mixed Dirichlet-homogeneous Neumann BEM (denoted DhN).
We solve the following iterative problem, to obtain the potential on the outermost
surface (i.e. the scalp Γext):
Find V k

1 , and V k
2 for all k ≥ 1, s.t.:

BEM Neumann


σ1∆V k+1

1 = ∇ · Jp in Ω1

σ1∂nV
k+1

1 = σ2∂nV
k

2 on Γ

, (5.7)

BEM mixed DhN


σ2∆V k+1

2 = 0 in Ω2 ∪ Ω3

V k+1
2 = V k+1

1 on Γ

σ2∂nV
k+1

2 = 0 on Γext,

. (5.8)
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The previous algorithm is stopped when the relative residual, computed as:∥∥∥σ2∂nV
k+1

2 |Γ − σ2∂nV
k

2 |Γ
∥∥∥

‖σ2∂nV k
2 |Γ‖ ,

(5.9)

is below 10−6.
We now express these b.v.p in terms of the BEM operators applying the represen-
tation theorem, and then get to the discrete problem. First of all, we write the
Neumann problem for the inner volume, and next we will see the mixed Dirichlet-
Neumann problem for the lasting sub-domains (the skull and scalp).

(exterior-)Neumann problem in Ω1: From Eq.(5.1)(minus):

− (σ1∂nuΩ1)−S1
= − (p− ∂nvΩ1)−S1

= σ1N∂Ω1 [uΩ1 ]−
(

I∂Ω1

2
+ D∗∂Ω1

)
[∂nuΩ1 ]∂Ω1

(5.10)

For the first domain, we have ∂Ω1 = S1. Hence the discretized version of this
equation writes using the jumps in Eq.(5.4)-(5.5), and the discrete operators in
Eq.(5.6):

−I∗11 · p1 + ∂nv1 = σ1N11 ·V1 − (
I∗11

2
+ D∗11) · p1

σ1N11 ·V1 = (−I∗11

2
+ D∗11) · p1 + ∂nv1

We denote HN the symmetric Head matrix (stiffness) for the Neumann problem,
DN the Neumann operator which acts on the given current on Γ, and DJp the
source term due to the dipole source in Ω1:

HN =
[
σ1N11

]
, DN =

[
− I∗

2 + D∗11

]
, DJp =

[
∂nv1

]
. (5.11)

We get the following matrix system to solve for V1:

HN ·V1 = DN · p1 + DJp (5.12)

Note that this problem is defined up to an additive constant, so the matrix HN has
to be deflated, which is done considering a zero-mean potential on Γ.

Dirichlet-Neumann problem in Ω2∪Ω3: Equations for the mixed boundary value
problem: Dirichlet data on the inside, and homogeneous Neumann on the outside
i.e. p3 = 0.
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equation on S 1 From Eq.(5.2)(plus):

(uΩ2)+
1 = I∂Ω1V1 =

(
−I∂Ω2

2
−D∂Ω2

)
[uΩ2 ]∂Ω2

+ σ−1
2 S∂Ω2 [∂nuΩ2 ]∂Ω2

(5.13)

For the second domain, we have ∂Ω2 = S1 ∪ S2, hence:

I11V1 =
(

I11

2
+ D11

)
·V1 −D12 ·V2 − σ−1

2 S11 · p1 + σ−1
2 S12 · p2

−σ−1
2 S11 · p1 −D12 ·V2 + σ−1

2 S12 · p2 =
(

I11

2
−D11

)
·V1 (5.14)

equations on S 2 From Eq.(5.1) (plus-minus):

σ2N21 ·V1 −D∗21 · p1 − (σ2 + σ3)N22 ·V2 + 2D∗22 · p2 + σ3N23 ·V3 = 0 (5.15)

−D∗21 · p1 − (σ2 + σ3)N22 ·V2 + 2D∗22 · p2 + σ3N23 ·V3 = −σ2N21 ·V1

and from Eq.(5.2) (plus-minus):

D21 ·V1 − σ−1
2 S21 · p1 − 2D22 ·V2 + (σ−1

2 + σ−1
3 )S22 · p2 + D23 ·V3 = 0 (5.16)

σ−1
2 · S21p1 + 2D22 ·V2 − (σ−1

2 + σ−1
3 )S22 · p2 −D23 ·V3 = D21 ·V1

equations on S 3 From Eq.(5.1) (minus):

σ3N32 ·V2 −D∗32 · p2 − σ3N33 ·V3 = 0 (5.17)

Writing HDN the Head matrix for the mixed Dirichlet-homogeneous Neumann prob-
lem, and DDhN its right hand side, i.e. the source term due to the potential imposed
on S1, we get the following matrix system to solve for p1, V2, p2, V3:

HDN ·


p1

V2

p2

V3

 = DDhN ·V1 (5.18)

with the symmetric HDN :

HDN =


−σ−1

2 S11 −D12 σ−1
2 S12

−D∗21 −(σ2 + σ3)N22 2D∗22 σ3N23

σ−1
2 S21 2D22 −(σ−1

2 + σ−1
3 )S22 −D23

σ3N32 −D∗32 −σ3N33

 (5.19)

the DDhN :

DDhN =


I11
2 −D11

−σ2N21

D21

0

 (5.20)
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We will now write down the convergence of the Neumann data writing Eq.(4.33)
with these matrices:

A = (σ2∂n(D2(N1 · )|Γ))|Γ (5.21)

One can see how to write operators N1, D2 with the discretized ones:

(N1pΓ)|Γ =⇒ H−1
N ·DN · p1 (5.22)

(σ2∂nD2VΓ)|Γ =⇒ P ·H−1
D ·DD ·VΓ (5.23)

We express A with these operators:

AND = P ·H−1
D ·DD ·H−1

N ·DN . (5.24)

Thus we will study the spectrum of AND, computing its maximum eigenvalue (in
absolute value). Note that P in the previous equations is just a selection opera-
tor, which simply gives a sub-matrix of its input (in this case, it extracts p1 see
Eq.(5.18)).

5.2.2 BEM-BEM coupling with the Dirichlet-Neumann coupling

Still with the domain decomposition shown in Fig.(4.6), the domain Ω1 will be
handled by a BEM with Dirichlet condition on Γ this time, and the domains Ω2

and Ω3 by a Neumann-homogeneous Neumann BEM:
Find V k

1 , and V k
2 for all k ≥ 1, s.t.:

BEM Dirichlet


σ1∆V k+1

1 = ∇ · Jp in Ω1

V k+1
1 = V k

2 on Γ = S1

, (5.25)

BEM Neumann


σ2∆V k+1

2 = 0 in Ω2 ∪ Ω3

σ2∂nV
k+1

2 = λk on Γ = S1

σ2∂nV
k+1

2 = 0 on Γext = S3

, (5.26)

with λk the relaxation variable initialized λ0 = 0 and defined as:

λk+1 = (1− ω)λk + ω(σ1∂nV
k+1

1 )|Γ (5.27)

Let us first write down the Dirichlet problem for the innermost volume (the
brain), and next the Neumann problem for the lasting sub-domains (skull and
scalp).
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(exterior-)Dirichlet problem in Ω1: From Eq.(5.2)(minus):

(uΩ1)−S1
=
(
V1 −

vΩ1

σ1

)−
S1

=
(

I∂Ω1

2
−D∂Ω1

)
[uΩ1 ]1 + σ−1

1 S∂Ω1 [∂nuΩ1 ]∂Ω1
(5.28)

For the first domain, we have ∂Ω1 = S1. Hence:

I11 ·V1 − σ−1
1 · v1 =

(
I11

2
−D11

)
·V1 + σ−1

1 S11 · p1

σ−1
1 S11 · p1 =

(
I11

2
+ D11

)
·V1 − σ−1

1 v1 (5.29)

Writing HD the Head matrix for the Dirichlet problem, DD the Dirichlet operator
which acts on the potential given on Γ, and DJp the source term due to the dipole
source in Ω1, we get the following matrix system to solve for p1:

HD · p1 = DD ·V1 + DJp (5.30)

with the symmetric HD:
HD =

[
σ−1

1 S11

]
(5.31)

the DD:
DD =

[
I11
2 + D11

]
(5.32)

and the term due to the source the DJp :

DJp =
[
−σ−1

1 v1

]
(5.33)

Neumann-Neumann problem in Ω2 ∪ Ω3: Equations for the Neumann boundary
value problem: with Neumann data on the inside, and homogeneous Neumann on
the outside i.e. p3 = 0.

equation on S 1 From Eq.(5.1)(plus):

−(σ2∂nuΩ2)+
S1

= − (p− ∂nvΩ2)+
1 = σ2N∂Ω2 [uΩ2 ]∂Ω2

+
(

I∂Ω2

2
−D∗∂Ω2

)
[∂nuΩ2 ]∂Ω2

(5.34)

In Ω2, we have ∂Ω2 = S1 ∪ S2 and as there is no source in the second domain,
∂nvΩ2 = 0. Hence:

− σ2N11 ·V1 + σ2N12 ·V2 −
(

I11

2
−D∗11

)
· p1 −D∗12 · p2 = −p1 (5.35)

σ2N11 ·V1 − σ2N12 ·V2 + D∗12 · p2 =
(

I∗11

2
+ D∗11

)
· p1
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equations on S 2 From Eq.(5.1) (plus-minus):

σ2N21 ·V1 −D∗21 · p1 − (σ2 + σ3)N22 ·V2 + 2D∗22 · p2 + σ3N23 ·V3 = 0 (5.36)

−σ2N21 ·V1 + (σ2 + σ3)N22 ·V2 − 2D∗22 · p2 − σ3N23 ·V3 = −D∗21 · p1

and from Eq.(5.2) (plus-minus):

D21 ·V1 − σ−1
2 S21 · p1 − 2D22 ·V2 + (σ−1

2 + σ−1
3 )S22 · p2 + D23 ·V3 = 0 (5.37)

D21 ·V1 − 2D22 ·V2 + (σ−1
2 + σ−1

3 )S22 · p2 + D23 ·V3 = σ−1
2 S21 · p1

equation on S 3 From Eq.(5.1) (minus):

− (σ3∂nuΩ3)−S3
= 0 = σ3N∂Ω3 [uΩ3 ]−

(
I∂Ω3

2
+ D∗∂Ω3

)
[∂nuΩ3 ]∂Ω3

(5.38)

− σ3N32 ·V2 + D∗32 · p2 + σ3N33 ·V3 = 0 (5.39)

Writing HNN the Head matrix for the Neumann-Neumann problem, and DNhN

its right hand side, i.e. the source term due to the current imposed on S1, we get
the following matrix system to solve for V1, V2, p2, V3:

HNN


V1

V2

p2

V3

 = DNhN p1 (5.40)

with the symmetric HNN :

HNN =


σ2N11 −σ2N12 D∗12

−σ2N21 (σ2 + σ3)N22 −2D∗22 −σ3N23

D21 −2D22 (σ−1
2 + σ−1

3 )S22 D23

−σ3N32 D∗32 σ3N33

 (5.41)

and the DNhN :

DNhN =


I∗11
2 + D∗11

−D∗21

σ−1
2 S21

0

 (5.42)

Similarly the convergence of the Neumann data is obtained by writing Eq.(4.46)
with these matrices:

ADN = (Σ ∇(N2(D1 · )|Γ) · n)|Γ (5.43)

One can now write operators D1, N2 with the previous matrices which leads to the
expression:

ADN = (1− ω)I + ω ·H−1
D ·DD ·P ·H−1

NN ·DN (5.44)
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5.2.3 BEM-BEM-BEM coupling, with the Sandwiched Neumann-
Dirichlet coupling

Figure 5.2 – Domain partition for a BEM-BEM-BEM coupling.

As explained in sec.(4.2.5), we treat this problem as a Neumann problem in
a disjoint domain (Ω1 ∪ Ω3), and solve a Dirichlet problem in Ω2. In our case
this resorts to considering in total three independent BEM. The iterative problem
writes:
Find V k

1 , V k
2 , V k

3 for all k ≥ 1, s.t.:

BEM Neumann


σ1∆V k+1

1 = ∇ · Jp in Ω1

σ1 ∂nV
k+1

1 = λk1 on Γ1,

(5.45)

BEM Neumann


σ3∆V k+1

3 = 0 in Ω3

σ3∂nV
k+1

3 = λk2 on Γ2,

σ3∂nV
k+1

3 = 0 on Γ3,

(5.46)

BEM Dirichlet


σ2∆V k+1

2 = 0 in Ω2

V k+1
2 = V k+1

1 on Γ1

V k+1
2 = V k+1

3 on Γ2,

(5.47)

where λk1 and λk2 are the relaxation variables such that:(
λk1
λk2

)
= λk (5.48)
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with λk defined in Eq.(4.53). The stopping criterion of this scheme was defined as
the condition on the relative residual:∥∥λk+1 − λk

∥∥
‖λk‖

< 10−6 (5.49)

(exterior-)Neumann problem: The first Neumann system to solve is the one seen
in Eq.(5.12).

Dirichlet-Dirichlet problem: The second sub-problem is now a pure Dirichlet
boundary value problem with conditions on the two interfaces Γ1 and Γ2:

equation on S 1 From Eq.(5.2) (plus):
For the second domain, we have ∂Ω2 = S1 ∪ S2 and as there is no source in the
second domain, vΩ2 = 0. Hence:

(uΩ2)+
1 = I∂Ω2V1 =

(
−I∂Ω2

2
−D∂Ω2

)
[uΩ2 ]∂Ω2

+ σ−1
2 S∂Ω2 [∂nuΩ2 ]∂Ω2

(5.50)

I11 ·V1 =
(

I11

2
+ D11

)
·V1 −D12 ·V2 − σ−1

2 S11 · p1 + σ−1
2 S12 · p2

σ−1
2 S11 · p1 − σ−1

2 S12 · p2 = −
(

I11

2
+ D11

)
·V1 −D12 ·V2 (5.51)

equation on S 2 From Eq.(5.2) (minus):

(uΩ2)−1 = V2 =
(

I∂Ω2

2
−D∂Ω2

)
[uΩ2 ]∂Ω2

+ σ−1
2 S∂Ω2 [∂nuΩ2 ]∂Ω2

(5.52)

V2 = D21V1 +
V2

2
−D22 ·V2 − σ−1

2 S21 · p1 + σ−1
2 S22 · p2

−σ−1
2 S21 · p1 + σ−1

2 S22 · p2 = −D21 ·V1 +
(

I22

2
+ D22

)
·V2 (5.53)

Writing HDD the Head matrix for the Dirichlet-Dirichlet problem, and DDD its
right hand side, i.e. the source term due to the potential imposed on S1 and S2,
we get the following matrix system to solve for p1 and p2:

HDD

[
p1

p2

]
= DDD ·

[
V1

V2

]
(5.54)

with the symmetric HDD:

HDD = σ−1
2

[
S11 −S12

−S21 S22

]
(5.55)

and the DDD:

DDD =
[
− I11

2 + D11 −D12

−D21
I22
2 + D22

]
(5.56)
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Neumann-Neumann problem: Finally, the third sub-problem is a Neumann b.v.p,
with a Neumann condition on the interior surface S2 and an homogeneous Neumann
condition on S3 i.e. p3 = 0:

equation on S 2 From Eq.(5.1) (plus):

−(σ3∂nuΩ3)+
S2

= − (p− ∂nvΩ3)+
2 = σ3N∂Ω3 [uΩ3 ]∂Ω3

+
(

I∂Ω3

2
−D∗∂Ω3

)
[∂nuΩ3 ]∂Ω3

(5.57)

In Ω3, we have ∂Ω3 = S2∪S3 and as no source are in the second domain, ∂nvΩ3 = 0.
Hence:

−p2 = −σ3N22 ·V2 + σ3N23 ·V3 − (
I22

2
−D∗22) · p2

σ3N22 ·V2 − σ3N23 ·V3 = (
I∗22

2
+ D∗22) · p2

equation on S 3 From Eq.(5.1) (minus):

0 = −σ3N32 ·V2 + D∗32 · p2 + σ3N33 ·V3

−σ3N32 ·V2 + σ3N33 ·V3 = −D∗32 · p2

Writing HNN the Head matrix for the Neumann-Neumann problem, and DNhN

its right hand side, i.e. the source term due to the current imposed on S2, we get
the following matrix system to solve for V2 and V3:

HNN ·
[
V2

V3

]
= DNhN · p2 , (5.58)

with the symmetric HNN :

HNN = σ3

[
N22 −N23

−N32 N33

]
(5.59)

Note that this problem is defined up to an constant, so this Head matrix has to be
deflated to get a zero mean potential on the inner surface S2. DNhN is defined as:

DNhN =

[
I∗22
2 + D∗22

−D∗32

]
(5.60)

Writing the operator ASND in Eq.(4.57) with the sBEM yields:

ASND = (1− ω)I + ω ·H−1
D ·DD ·

(
H−1
N ·DN

PH−1
NN ·DNN

)
, (5.61)

with P an operator which extracts V2 from Eq.(5.58).
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5.3 Numerical results on BEM-BEM coupled methods

In this section we propose to validate the proposed coupled methods, comparing for
several mesh sizes their accuracy, time and memory consumption as well as their
convergence. These comparisons are done on 3-layer spherical models for several
dipoles which allow for the comparisons with an analytical solution.

5.3.1 Spherical models

The meshes used are made from icosahedra (12 points regularly sampled on the
sphere), which are then regularly refined to approximate the sphere (see Fig.(5.3)).
Let n be the number of vertices of one mesh, we have used several mesh resolutions,
namely: n ∈ {42, 162, 642, 2 562}. Out of these unit spheres 3-layer models were

Figure 5.3 – Spherical mesh at different resolutions: 42, 162, 642, 2 562 vertices.

made whose layers represent the brain, the skull, and the scalp, with respective radii
0.87, 0.92, 1. To these layers were assigned the conductivities 1, 0.03, 1 respectively,
as discussed in sec.(2.3.2.4). Comparisons were done using a set of 15 unit dipoles
placed on the z-axis, with different orientations, namely:

positions: 5 positions on the z-axis: z ∈ {0.4650, 0.6150, 0.7650, 0.8075, 0.8415}.

momentum: 3 unit momentum given in Cartesian coordinates by:
1√
2

[1, 0, 1] , 1√
2

[1, 1, 0] , [0, 0, 1].

as these dipoles approach the inner sphere, the error is as expected to increase,
since the dipole is a singularity.
We propose to overlay the comparisons to the reference solution (analytic formula),
for the sBEM (abbreviated BEM), the Neumann-Dirichlet BEM-BEM coupling
(abbreviated BB ND), and the Sandwiched Neumann-Dirichlet which is a BEM-
BEM-BEM coupling (abbreviated BBB SND).
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5.3.2 Accuracies

We now plot the errors (RDM on first row, and MAG second row) of the three meth-
ods (BEM, BB ND, and BBB SND) where the x-axis represents the z-coordinates
of the dipoles, and the three columns their orientations. This is done for the 4
model resolutions in Fig.(5.3) in order to see the convergence aspect (diminution
of the errors) with respect to the mesh size. This is displayed in Fig.(5.4). Please
note that the y-scale changes for each resolution.

One can see that the three methods are convergent with the grid size, i.e. both
RDM, and MAG diminish when n increases. BEM, BB ND, BBB SND have similar
accuracies, except in the more refined case (n = 2 562), where the BBB SND seems
to converge more slowly than the others.

5.3.3 Convergence of the coupled methods

We evaluated numerically the spectral radius of the operators defined in Eq.(5.24)-
(5.61), which defines the convergence property of the iterative scheme and we found
the following values:

n 42 162 642 2 562 ω

ρ(AND) 0.140142 0.140077 0.14005 0.140092 1
ρ(ASND) 0.699944 0.699941 0.699991 0.699993 0.3

Table 5.1 – Estimated spectral radius of A.

These values do not seem to be dependent on the mesh size, but appear to be
more specific to the electrophysiological model, we will come back to this further for
a realistic geometry for the case of a BEM-FEM coupling. In [Berninger et al., 2007]
such a behavior is also related for a 2D case.
For the BB ND coupled method, these values are clearly below 1. and motivate
the use of a non-relaxed scheme (ω = 1) to accelerate convergence. Actually, for
each of the head models, the scheme converged (with a relative residual lower than
ε = 1e − 6) for 8 iterations, i.e. only 16 b.v.p to solve. This is actually very
fast once the main matrices are built and inverted, since it simply requires matrix
multiplications. Note that taking the spectral radius to the power of 8 (the number
of iteration) as in Eq.(5.24) gives 1.4878e− 7, which is below ε.
For the analysis of the convergence of the BBB SND, we had to use a relaxation of
ω = 0.3 in order to get a good convergence rate. For ω > 0.45, the scheme diverges,
and for ω ' 0.45, and ω < 0.45, the scheme converges but oscillates a lot, thus the
convergence was slow. The number of iterations to reach convergence at ε = 1e− 6
was 33, for every head model.

It is interesting to see how the spectral radius of such operators evolves with the
skull conductivity or the relaxation parameter. This is plotted in Fig.(5.5), for the
case of the Neumann Dirichlet coupled method. One can see that taking no relax-
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Figure 5.4 – Errors of BEM-BEM coupled methods. Number of vertices per mesh

is increased from top to bottom. For each resolution both RDM and MAG are shown

depending on the orientation of the dipole (one orientation per column). The x−axis

always represent the z-coordinate of the dipoles.



132 Chapter 5. Implementation of BEM-BEM coupled methods

Figure 5.5 – Spectral radius ρ(AND) varying the skull conductivity and the re-

laxation parameter.

ation (i.e. ω = 1), the red curve has lower spectral values for small conductivities
of the skull, which is our case, since the skull is considered to be 0.03 in our ex-
periments. On the other hand, for higher skull conductivity > 1, the scheme would
not converge without a relaxation. One can see that enforcing a strong relaxation
leads to convergence in all cases, but with a low convergence rate.
For the case of the Dirichlet Neumann coupled method, we could not find any re-
laxation parameter which would make the scheme convergent, even if it is in theory
always possible to converge with an appropriate relaxation parameter. This might
be due to an implementation problem. However we were able to solve successfully
a Dirichlet Neumann coupling using only two domains, i.e. the brain handled by a
Dirichlet BEM, and the skull by a Neumann BEM (thus dropping the scalp.). This
scheme was convergent for ω = 0.0001, but its rate of convergence was extremely
slow, after 2 000 iterations the best relative residual (for the first dipole) was only
' 0.025.

5.3.4 Time and memory comparisons

In Fig.(5.6), one can see plotted the elapsed time and memory consumption (peak
RSS (Resident Set Size)) for the three methods, i.e. the standard sBEM, the
BB ND, and the BBB SND.

These values are also summarized in table.5.2: One can see from these data, that
the Neumann Dirichlet Neumann is the fastest, and almost 3 times faster than the
classical BEM. The Neumann Dirichlet coupled method (BB ND) also spares a
good percentage of time when compared to the classical BEM. These improvements
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Figure 5.6 – Elapsed time and memory peak (RSS).

are due to the fact that the problems to solve are smaller thanks to the domain
decomposition; there are more problems to solve but easier ones. Actually, the main
gain in time is from the matrix inversion which is much reduced when reducing the
matrix size. When looking at the memory consumption, the coupled methods are
slightly more expensive than the classical method, since they require more RAM
memory.

5.4 Conclusions on BEM-BEM coupled methods

We have seen how to couple BEM methods using iterative substructuring methods,
thanks to the definition of b.v.p on sub-domains. Tools for studying the convergence
properties of these coupling schemes were given in the numerical case. We have seen
that the spectral properties of operatorA guide the choice of a relaxation parameter.
From a numerical point of view, these DD coupling techniques are very efficient since
they reduce the time for similar accuracies. It moreover allows for parallelization
i.e having one domain handled by only one machine, this can be very interesting
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Methods n Elapsed time User time Peak RSS worst RDM

Classic BEM
42 7.940 3.88 16 0.2849
162 15.170 24.52 67 0.1227

(Lapack inversion)
642 313.500 1 559.46 853 0.03000
2562 5948.720 11 355.00 13 353 0.0061

BEM-BEM
42 1.1 3.9 58 0.2710
162 7.3 40.0 123 0.1274

(BB ND)
642 132.7 640.9 1 180 0.04884
2562 4 160.0 12 349.45 17 614 0.0061

BEM-BEM-BEM
42 1.0 3.8 57 0.3241
162 6.0 34.4 118 0.1486

(BBB SND)
642 106.0 529.2 1 079 0.0482

2 562 2 417.0 9 274.5 15 970 0.01051

Table 5.2 – Time and memory consumptions.

in our case, since BEM are generally limited by memory consumption. Indeed one
can thanks to these techniques deal with higher problem sizes in order to get very
high definition solutions.



Chapter 6

Coupling BEM and FEM

within a Domain Decomposition

Framework

Using the previous conclusions made on the iterative substructuring methods, we
choose to implement the Neumann-Dirichlet coupled method, with a BEM in the
inner domain containing the source (e.g. the brain), coupled with a tetrahedral
FEM handling the inhomogeneous conductivity profile of the skull, and the
isotropic scalp. After validating the coupled formulation using analytical solutions
on spheres, we will see a numerical example on a realistic head model, where the
patient presents a highly inhomogeneous skull due to a craniotomy. Since no analyt-
ical solution exists, we will compare these results with the standard FEM and BEM.

Summary

Goals: Use the FEM in inhomogeneous or anisotropic domains (here the
skull), and improve the forward EEG problem accuracy.

Tools: The Neumann-Dirichlet coupled method whose behavior was stud-
ied before, for the use with a tetrahedral FEM coupled with the
sBEM.

Results: An effective, cheap coupling which improves the accuracy of the
forward EEG problem.

The following sections are inspired from a submitted article in collaboration
with Maureen Clerc, Théodore Papadopoulo and Mariette Yvinec.



136 Chapter 6. Coupling BEM and FEM within a DD framework

Contents

6.1 Respective merits of FEM and BEM . . . . . . . . . . . . . . 137

6.2 A DD framework for coupling BEM and FEM. . . . . . . . 138

6.2.1 Alternating on boundary condition Neumann/Dirichlet . . . 139

6.2.2 Interface: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.3 Comments on non-matching grids, and meshes . . . . . . . . 141

6.2.4 Mesh generation: . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2.5 A numerical convergence study: . . . . . . . . . . . . . . . . . 145

6.3 Numerical validation on spheres . . . . . . . . . . . . . . . . 146

6.4 BEM-FEM coupling on a realistic head shape . . . . . . . . 152

6.4.1 From MRI to meshes: segmenting and meshing: . . . . . . . . 152

6.4.2 Comparing methods . . . . . . . . . . . . . . . . . . . . . . . 153

6.4.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



6.1. Respective merits of FEM and BEM 137

6.1 Respective merits of FEM and BEM

Finite Element Methods (FEM) can in principle handle inhomogeneous or
anisotropic conductivity fields such as the one of the skull. On the other hand
Boundary Element Methods (BEM) can only handle piecewise homogeneous con-
ductivity. Conversely, with the BEM, dipolar sources can be represented very ac-
curately, whereas with the FEM they are more difficult to handle.
The choice of a model and of the numerical method to solve it are thus clearly
inter-dependent: one has to consider whether or not a numerical method is able
to cope with a conductivity and a source model. Furthermore, one must analyze
the relative benefits of the model complexity and numerical accuracy, in order to
balance the two sources of errors, and to avoid wasting resources.

The goal of this chapter is to introduce a method based on domain decompo-
sition, which allows for the use of different numerical solver for each sub-domains;
the objective is to take advantage of having the sources represented with the BEM,
and also the conductivity profiles handled by the FEM for the other regions.

We refer to sec.(2.4.4) for the introduction of the general FEM, and recall here
aspects of the tetrahedral FEM. We use a Galerkin FEM with tetrahedral elements,
and the potential is represented with P1 basis functions.
When modeling a dipole source in a tetrahedron, the potential at its vertices is
enforced weakly considering the P1-basis functions of the tetrahedron against the
dipole function. The dipole function is then spread on these 4 vertices and the
quality of representation strongly depends on the shape of this element, and its
relative orientation to the dipole moment. This is the reason for the poor modeling
of dipole sources with this FEM.
The system is then assembled into a huge but sparse stiffness matrix, and is solved
for vF the potential at vertices using a preconditioned conjugate gradient taking
advantage of the positive definiteness of the problem:

AF · vF = SF , (6.1)

where SF incorporates the imposed boundary value (either Dirichlet or Neu-
mann) and/or an eventual source term.

6.1.0.1 Comparison:

Comparing BEM and FEM in terms of time and memory footprint to achieve a given
accuracy is delicate. Both techniques do not share the same geometry, since the
FEM requires a volumic partitioning of all the regions, and only surfacic meshes are
needed for the BEM. When comparing BEM and FEM, one should then incorporate
the cost of obtaining the discretized geometry plus running the codes. Furthermore,
BEM to FEM comparison is delicate because both methods cannot handle the same
conductivity profiles, and may only be compared on a restriction of the possible
models. In this chapter we will show BEM to FEM comparisons for realistic problem
sizes i.e. with a high number of elements for the BEM, and the FEM. See table
(6.1) where their principal differences are summarized.
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Symmetric BEM Tetrahedral FEM

Conductivity piecewise constant arbitrary
Mesh surface volume

Primitive element h h

Typical number of vertices 486 < N < 10 248 20 000 < N < 10 000 000
Degrees of freedom (d.o.f) 806 < d.o.f < 17 928 20 000 < d.o.f < 10 000 000
System matrix symmetric and dense per block symmetric sparse (∼ 8% full)
Solver Matrix inversion or GMres (preconditioned-) conjugate gradient

Table 6.1 – Summary on BEM and FEM.

In the rest of this chapter the BEM acronym will denote the symmetric BEM,
and FEM the tetrahedral FEM.
We propose first a method which combines the advantages of these two numerical
methods, then a validation of this method on spheres where an analytical solution
is available. Finally, we conclude by an application demonstrating the benefits of
this approach on a realistic geometry incorporating inhomogeneity in the skull.

6.2 A domain decomposition framework for coupling BEM

and FEM.

JpΩB: BEMΩF: FEMΓΓEXT

Figure 6.1 – Domain partition for the coupled method.

Splitting Ω into two nested regions ΩB, (resp. ΩF ) with homogeneous constant
conductivity σ (resp. inhomogeneous anisotropic conductivity tensor Σ), and con-
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sidering the continuity conditions across the interface Γ = ∂ΩB ∩ ∂ΩF , our Poisson
equation becomes: 

σ∆VB = ∇ · Jp in ΩB

VB = VF on Γ
(σ ∇VB) · n = (Σ ∇VF ) · n on Γ

∇ · (Σ∇VF ) = 0 in ΩF

(Σ ∇VF ) · n = 0 on Γext

(6.2)

where n denotes the outward normal to the surface (Γ or Γext), and VB (resp. VF )
denotes the BEM’s (resp. the FEM’s) solution.

We choose to alternate between Neumann-Dirichlet problems for BEM and FEM
to reach a stationary state where BEM and FEM solutions fulfill the above system
(6.2) in a sense to be defined.

6.2.1 Alternating on boundary condition Neumann/Dirichlet

We consider an iterative procedure solving first a Neumann boundary value problem
(b.v.p) for the innermost domain ΩB, and then a mixed Dirichlet/homogeneous
Neumann b.v.p on the outer domains. The iterative procedure will stop when the
proposed algorithm converges, in the sense that their boundary conditions reach a
stationary state:

k = 0; residual = 1; V 0
F = 0;

while residual > 5.10−4 do

Solve with BEM


σ∆V k+1

B = ∇ · Jp in ΩB

(σ∇V k+1
B ) · n = (Σ∇V k

F ) · n on Γ,

(6.3)

Solve with FEM


∇ · (Σ∇V k+1

F ) = 0 in ΩF

V k+1
F = V k+1

B on Γ

(Σ∇V k+1
F ) · n = 0 on Γext,

(6.4)

residual =

∥∥∥(σ∇V k+1
B − Σ∇V k+1

F ) · n
∥∥∥

2

‖σ∇V k+1
B · n‖2

on Γ (6.5)

k = k + 1

At first iteration, a homogeneous Neumann b.v.p is solved with the BEM, then
using its potential values on Γ, a mixed Dirichlet/homogeneous Neumann b.v.p is
set up, and solved using the FEM. For all following iterations, the FEM current
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crossing a BEM triangle element is computed, and the scheme keeps on alternating
between the two methods until convergence is reached.
Convergence was declared when the relative residual term on the BEM Neumann
data was below 5.10−4. We did not go below 10−6 as in the previous chapter on
BEM-BEM couplings, to accelerate the problem resolution, furthermore the results
did not evolve anymore significantly after reaching such a threshold.
At convergence, the BEM and FEM solutions satisfy Eq.(6.3) and Eq.(6.4)
respectively. Concerning the continuity of the potential and of the normal current
at interface Γ so that Eq.(6.2) is valid, this is explained in the next section.
As explained in [Quarteroni and Valli, 1999] p.12, the previous iterative scheme
does not necessarily converge, depending on the shape and assigned conductivities
of the domains ΩB and ΩF . But as seen in the previous chapter, the Neumann-
Dirichlet coupling converges in the case considered here.

6.2.2 Interface:

One of the goals of the proposed coupled method is for the numerical solvers to
be as independent as possible, so that independent meshes can be used for each
solver. More specifically, the coupled method should support non-matching grids,
i.e. meshes that do not share the same vertices at interface. This allows for having
arbitrary discretization sizes which is desirable because the FEM requires smaller
elements than the BEM to achieve the same accuracy.
Even if non-matching grids are used, the numerical methods must describe the
same interface. Fig.(6.2) illustrates, in 2D, different kind of mesh and geometry
compatibility at interface.

a) shows matching grids, where the BEM and the FEM share the same vertices at
the interface, and thus assure the same geometry representation.

b) shows non-matching grids, in which the geometry representation of the FEM
is more accurate than the one of the BEM. This case would introduce errors
when interpolating from BEM to FEM boundary values.

c) shows non-matching grids sharing the same geometry representation.

Transmission between BEM and FEM variables at interface Γ, as seen in
Eq.(6.3)-(6.4) must be defined. Using the same notation, the transmission of the
BEM potential VB to the FEM boundary value variable VF is enforced point-wise;
using the P1-finite elements of the BEM to compute the potential at FEM vertices
location.

The transmission from FEM to BEM of the normal current crossing Γ is done
considering a 16-point Gauss quadrature scheme on a BEM triangle [Bonnet, 1999].

Other transmission strategies can be considered for non-matching grids. Notably
the mortar finite element method [Bernardi et al., 1994]. Instead of considering
a point-wise continuity condition for the potential, the mortar method enforces
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Figure 6.2 – Matching and non matching grids and geometries. a). BEM and

FEM share the same vertices on Γ, b). non-matching grids where both methods

do not represent the same interface, c). non-matching grids and same geometry

representation.

weakly the continuity, using the test functions of both methods. This method has
the advantage of providing an optimal bound for the a-priori error estimate. In
3D, it has rarely been used to our knowledge because of implementation difficulties
(see [Belgacem, 2004]-[Ben Belgacem and Maday, 1997]). In this article, we restrict
our attention to non-overlapping domains with non-matching grids, and to strongly
enforced boundary conditions. We detail this issue in the next subsection.

6.2.3 Comments on non-matching grids, and meshes

DD techniques are meant to treat the sub-problems as independently as possible,
in order to make use of parallelization techniques or to deal with different solver re-
quirements. Mortar element methods [Bernardi et al., 1994] allow for the complete
handling of non-matching grids at interface and provide convergence properties for
iterative scheme as mentioned above. The key point in mortar finite elements is to
enforce the continuity of variable weakly, using some Lagrangian parameter. Vari-
ables VB, and VF are represented within their finite element framework, with φi the
family of BEM test functions and ψj for the FEM’s. An example of such a represen-
tation of non-matching grids and different finite elements is shown in 2D Fig.(6.3),
where the black dots represent the vertices for the domain on the left hand side,
and the white diamonds the ones of the right hand side. We have represented P1
finite elements for φi and ψj , as it is the case here.

In order to have continuity of the potential called VB in ΩB, and VF in ΩF , one
should have:

VB = VF on Γ (6.6)

which may be impossible due to the representation of VB and VF within their
respective finite elements i.e. there might be a jump between these solutions:

∀r ∈ Γ u(r)− v(r) 6= 0 . (6.7)
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Figure 6.3 – Example of non-matching grids at interface.

Mortar finite elements enforce instead the following weak condition:∫
Γ
(u− v)µds = 0 on Γ , (6.8)

where parameter µ must be expressed either in the finite elements basis of ΩB,
or of ΩF . This defines a master domain and a slave. Still there are integral
computations needed of one basis against the other since VB =

∑
i V

i
Bφi, and

VF =
∑

j V
j
Fψj . This can be affordable in 2D, since it is the computation of the area

of an intersection between triangles; but it becomes radically more complicated in
3D (see [Belgacem, 2004]-[Ben Belgacem and Maday, 1997]).
Another important point is the geometry defined by the two methods as discussed
previously for Fig.(6.2). If we consider a planar interface in 3D, this is rather simple
(see Fig.(6.4)).

In case of a non planar interface, the two meshes cannot be independent, one
must impose one mesh to match at interface the geometry definition of the other,
otherwise one is in the case b. of Fig.(6.2). In 2D, one way to achieve the same ge-
ometry representation for the two methods, is to impose the vertices of one mesh to
the other, and then to refine the second mesh according to the convex hull defined
by the first mesh. This is done in case c. of Fig.(6.2), where the BEM’s nodes are
imposed as FEM nodes. This leads to non-matching grid with matching interface
representation.
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Figure 6.4 – Example of non-matching grids at interface in 2D.

In 3D this is more complicated. In fact, in order to keep the same interface represen-
tation by the two methods, one must enforce the edges (and not only the vertices)
of the first mesh onto the other. This can be done using a brand new feature
of CGAL called ’sharp edges’, where one can impose edges to be matched, when
meshing. One example is shown in Fig.(6.5), where the black edges correspond to
the BEM mesh, and the finer white edges to the FEM mesh. One can see that
the FEM mesh is simply (at the interface) a subdivision of the BEM mesh. Using

Figure 6.5 – Non-matching grids in 3D, with matching geometry. (luminance

codes for the 3D). The black triangles represent the BEM meshes, whereas the white

the FEM’s.

such a mesh in a coupled method, such as we did with the BEM-FEM coupling, is
very convenient. Actually, in the presented coupled method, we solved a Neumann
problem with the BEM and then a mixed Dirichlet-Neumann problem using the
FEM. We thus imposed the potential at Γ from the BEM potential (defined on the
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BEM mesh) to the FEM potential (defined on the FEM mesh). And as we were
using a P1 representation of the potential in both cases, we could assure that there
was no jump at Γ i.e. contrarily to Eq.(6.7):

∀r ∈ Γ VBEM (r) = VFEM (r) . (6.9)

For these reasons, we did not use the mortar element method, which would have
made the solution more complicated.
The main problem we had in the following experiments, was that this feature for
handling sharps edges with CGAL, did not work for all meshes, i.e. we could not
obtain all meshes as in Fig.(6.5). The problem was either due to bugs in this new
feature or to a non-correct use of it. Instead we were able to generate the FEM
meshes, where we used as input the BEM mesh vertices, but not its edges. In this
case, we can say that the potential of the BEM at Γ VB is ’almost’ the same as VF
for all the points on Γ, since actually there are some triangles that do not fulfill this
condition. Experiments were run with such meshes, and the Neumann-Dirichlet
coupling with BEM-FEM was robust to that approximation.

6.2.4 Mesh generation:

Geometrical models with matching geometries and non-matching grids at interface
were generated with CGAL (see sec.(2.6)). CGAL is able to give, from implicit
functions or 3D gray level images, surfacic and volumic triangulations having good
properties for numerical methods. These triangulations are Delaunay triangula-
tions and provide well shaped elements [Rineau and Yvinec, 2011]. For the volu-
mic meshes a special care is taken to eliminate slivers, these tetrahedra with a very
small dihedral angle but fulfilling the Delaunay criterion, that introduce numerical
errors in FEM. When generating these meshes with CGAL, all tetrahedra with a
dihedral angle below 12◦were removed. In order to get both surfacic and volumic
meshes sharing the same geometry representation for the proposed coupling, we
first generated the surfacic meshes, and set their vertices as input seeds for the
volumic mesher; the mesher then inserted vertices at locations constrained by the
input surfacic meshes.
In the next section we will compare the forward results of the BEM, the FEM,
and the coupled BEM-FEM method for spherical head-models. The BEM meshes
were generated using the implicit sphere function for the different radii; out of
these BEM meshes were generated the volumic meshes. The FEM and the coupled
BEM-FEM used the same meshes, although only the skull and the scalp part of the
domains were used for the coupled method. Different resolution meshes were gen-
erated. For generating surfacic meshes out of sphere functions, the distance bound
criterion of CGAL was used. It controls the distance between the facets and the
implicit surface. For the volumic meshes, two criteria have to be used, one surfacic,
one volumic. The distance bound ensures a maximal distance for the facets of the
tetrahedra defining the surface to the input surface, and a criterion on tetrahedra
sizes called cell bound provides an upper bound on the circumradii of the mesh
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tetrahedra. Note that even if we wanted the two meshes to describe the same inter-
face, the mesher guarantees the same geometric representation up to the volumic
mesher parameter distance bound (which can be set very small).

6.2.5 A numerical convergence study:

In order to prove the convergence of the iterative scheme (6.3)-(6.5), it is necessary
and sufficient to prove that the Neumann boundary condition (σ∇V k

B) ·n converges
when k →∞.

We express the Neumann boundary condition as a sequence with variable
ck = (σ∇V k

B) · n
∣∣
Γ
, under the form: ck = E ck−1 + F, and study the norm of the

operator E.
At iteration k, ck = (Σ∇V k−1

F ) · n
∣∣∣
Γ
; V k−1

F in Eq.(6.4) is computed solving the

linear system: AF · V k−1
F = DF · V k−1

Γ where AF denotes the FEM’s stiffness
matrix previously introduced, and DF the source term dealing with the Dirichlet
boundary condition on Γ. V k−1

Γ represents the potential at the FEM vertices on Γ,
which is computed solving the BEM system (6.3), and interpolating its boundary
value, thanks to the BEM P1 approximation of the potential. Let PB2F be this
projector. V k−1

Γ writes V k−1
Γ = PB2F · A−1

B · (SB + NB · ck−1). Finally, when
computing the current flow crossing Γ from the FEM’s variable VF , one can apply
an operator PF2B that computes the current density crossing each BEM triangle
such that ck writes:

ck = (Σ ∇V k−1
F · n)|Γ

= PF2B · V k−1
F

= PF2B ·A−1
F · (DF · V k−1

Γ )

= PF2B ·A−1
F · (DF ·PB2F ·A−1

B · (SB + NB · ck−1))

= E · ck−1 + F, (6.10)

where E = PF2BA−1
F DFPB2FA−1

B NB.
Let us notice that the convergence of this sequence does not depend on the source
Jp. Provided that ρ(E) = maxi |ei| < 1, where the ei denotes the eigenvalues of
E, the previous scheme is convergent. Using the power iteration method, we can
evaluate the spectral radius of E for different meshes and see whether or not a
relaxation is needed. This will be done for each new coupled BEM-FEM procedure
with different geometries.
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6.3 Numerical validation on spheres

Validation against analytical solutions is crucial when analyzing the accuracy of a
method. Using the analytical solution provided by [Zhang, 1995] in case of multi-
layer sphere model as reference, we propose to compare the solutions of the FEM,
the BEM and the coupled BEM-FEM to the reference analytical solution.

Two spherical models were studied, the first one modeling 3 layers, the brain,
the skull and the scalp, and the second model with 4 layers, splitting the brain into
a gray matter and CSF component. Assigning a conductivity profile to the skull has
been the topic of many papers; when considering an isotropic description the studies
[Vallaghé and Clerc, 2009] and [Dannhauer et al., 2010] proposed to consider the
radial conductivity of the skull as the skull conductivity for the isotropic model;
on the other hand, when considering an anisotropic description the latter concludes
that the tangential conductivity of the skull should be between 1.3 to 1.7 times
higher than the radial one. This ratio between radial and tangential conductivities
is not as big as the community used to believe (10 times lower); thus the results for
a 1.5 anisotropy were not demonstrative and we chose to present here the method
comparison on isotropic layers even if, in opposition to the BEM, the coupled BEM-
FEM method also copes with anisotropy. Radii and conductivities used in this paper
are shown table 6.2.

Models Domains Radii Conductivities

3-layer
Brain 0.87 1.
Skull 0.92 0.03
Scalp 1.0 1.

4-layer
Brain 0.85 1.
CSF 0.87 3.
Skull 0.92 0.03
Scalp 1.0 1.

Table 6.2 – spherical models

Forward computations were run for several dipoles placed on the z-axis with dif-
ferent positions and orientations, since the accuracy of all methods highly depends
on these parameters. The next figures plot two errors measures: the RDM and the
MAG (see sec.(2.5.2.4), Eq.(2.48) and Eq.(2.49)). The closer to 0, the better for
the RDM, and to 1 for the MAG.
Several mesh resolutions were used to demonstrate the proper behavior of the pro-
posed coupled method according to the BEM and FEM mesh sizes. For the surfacic
meshes, we generated the 4 surfaces (out of the implicit sphere functions with radii
0.85, 0.87, 0.92, 1.0) using the distance bound criterion introduced before. We gen-
erated two sets of BEM meshes with 2 different bounds, leading to two resolutions
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b1 and b2 (see table (6.3)). For the volumic meshes, meshes with two different cell
sizes were generated out of the 2 sets of surfacic meshes for the two head models (3
and 4 layers). The resolution f1 ensures that cell sizes are below 0.05, and f2 below
0.02. These resolutions are shown in table (6.4) (and in Fig.(6.6) a FEM mesh is
displayed), where the number of points represents the number of points per surface
for the BEM, and the total amount of points (brain included) for the FEM.

Resolutions Interfaces Nb of points Mean edge length

b1

Brain/CSF 1 112 0.09915
CSF/Skull 1 145 0.09986
Skull/Scalp 1 153 0.10533
Scalp/Air 1 204 0.11202

b2

Brain/CSF 1 606 0.08241
CSF/Skull 1 665 0.08304
Skull/Scalp 1 658 0.08772
Scalp/Air 1 665 0.09510

Table 6.3 – Surfacic mesh resolutions

Resolutions Layers Nb of points Typical cell size

f1 b1
3 59 179 < 0.05
4 80 895 < 0.05

f2 b1
3 387 016 < 0.02
4 391 263 < 0.02

f1 b2
3 73 452 < 0.05
4 95 952 < 0.05

f2 b2
3 393 374 < 0.02
4 399 587 < 0.02

Table 6.4 – Volumic mesh resolutions

These mesh resolutions correspond to what is nowadays considered as a reason-
able model, in terms of problem size. A very high precision FE mesh would have
around five million vertices, and a very high precision BE mesh with 5 000 vertices
per layer.
For the 3-layer model, the brain was handled by the BEM, and the skull as well as
the scalp were handled by the FEM. For the 4-layer model, the BEM was used for
the two inner regions: the brain and the CSF. In both cases, Γ was the inner skull
surface.

Convergence of the proposed coupling was studied numerically by checking
whether ρ(E) < 1. The estimation of the spectral radius of the coupling opera-
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Figure 6.6 – FE mesh resolution f2 b2 with 4 layers.
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Figure 6.7 – Forward solution comparisons for an isotropic 3-layer model – (b1).

tor was for both the 3-layer and the 4-layer model between 0.11 — 0.14 for all mesh
resolutions. Since ρ(E) is clearly below 1, the coupled method scheme was conver-
gent without need for relaxation. See table 6.5, for the computed spectral radii.
The number of iterations until the relative residual expressed in Eq.(6.5) reached

5.10−4, was 4 or 5, i.e. only 8-10 boundary value problems to solve. Note also
that most of the time was spent solving the sparse linear system of the FEM with
the gradient descent; although each new iteration benefits from the near previous
solution, and thus less time was needed after the first iteration. For the BEM part
of the coupled method, once the main matrices were built, obtaining a new solution
to a b.v.p was straightforward (just a matrix multiplication).
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Figure 6.8 – Forward solution comparisons for an isotropic 4-layer model – (b1).
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Figure 6.9 – Forward solution comparisons for an isotropic 3-layer model – (b2).

Results While the first row in Fig.(6.7)-(6.10) represents the RDM, the second
shows the MAG error. Columns indicate the different dipole orientations, respec-
tively Cartesian directions [1 0 1], [1 1 0], [0 0 1]. The horizontal axis represents
the 5 dipole locations on the z-axis. The blue curves represent the solution of the
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Figure 6.10 – Forward solution comparisons for an isotropic 4-layer model – (b2).

Coupled BE-FE mesh resolutions 3-layer 4-layer
b1+f1 b1 0.1304 0.1156
b1+f2 b1 0.1343 0.1191
b2+f1 b2 0.1307 0.1157
b2+f2 b2 0.1347 0.1192

Table 6.5 – Estimated spectral radii: ρ(E).

pure FEM, one can see that at least for deep dipoles they display the lowest accura-
cies. One can also notice a staggering behavior for the FEM because, as discussed
earlier, results depend on which tetrahedron the dipole falls in. The green error
curves (BEM) are better than the FEM’s, and degrade when the dipoles approach
the inner surface, as expected. Finally, red curves show the coupled BEM-FEM
error, better in almost all cases than their respective counterparts in BEM and
FEM at same resolution. Since we are in an isotropic model, one can see that the
improvement gained through the coupling compared to using the BEM alone, is due
to the finer mesh resolution of the FEM. From another point of view, the poorer
FEM results are due to the less accurate modeling of the source. Furthermore, we
notice a limited gain using the coupled BEM-FEM, compared to the BEM, for a
tangential dipole really close to the inner surface. Let us add that such tangential
dipoles appear, when building a lead-field matrix for sources constrained by the
white matter or gray matter surface, in the gyrus, thus not as close to the inner
surface as the radial dipoles see Fig.(6.11).
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Figure 6.11 – Typical dipoles orientations when constrained to be normal to the

white/gray matter interface.

Finally, while for the 3-layer models (Fig.(6.7) and Fig.(6.9)), one can see a sig-
nificative improvement when increasing the FEM mesh size for the coupled method,
the benefit is not obvious for the 4-layer models. This shows that the accuracy of
the coupled method was limited by the FEM mesh in this case, and by the BEM
mesh in the other cases. Also notice that the results of the three methods on the
4-layer models were a bit less good than for the 3-layer models, because the inner
surface (in this case the brain/CSF interface) is closer to the dipoles.

Time and memory consumption Table (6.6) shows the time repartition and mem-
ory consumption for each method run for the highest mesh resolutions on the 4-layer
model i.e. resolution b2 for the BEM, f2 b2 for the FEM, and b2+f2 b2 for the
coupled method. The memory values shown are the maximum RSS (Resident Set
Size) obtained when running the codes. Note that the FEM solver is the slowest
but cheapest in term of memory usage. A better preconditioner than Jacobi would
probably decrease the number of iterations of the conjugate gradient descent, but at
the expense of the memory. The BEM solver is the fastest at the expense of a very
high memory consumption. Finally, the coupled BEM-FEM method, is almost as
fast as the BEM with the memory consumption of the FEM. Note that the coupled
code has not been optimized yet, and considering a system resolution instead of
inverting the BEM stiffness matrix AB would save considerable time in this case
(for less dipoles than problem unknowns). Furthermore, the time spent in the build
of PF2B is mostly due to a search in the FEM mesh structure and could be reduced
by adding an octree representation for the FEM mesh.
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Methods Parts CPU Time (in s) Max RSS (in MB)

BEM

Assembling of AB 5 933 1 544
Assembling of SB 4 77
System resolution 1 436 12 738
total for 15 dipoles 7 373 12 738

FEM
Assembling of AB + 1 resolution 2 119
total for 15 dipoles 31 792 6 852

Coupled
Assembling of AB ,NB ,PB2F 2 002
Inverting AB 2 378

BEM-FEM
Assembling of AF 21
Assembling of PF2B 2 307
total for 15 dipoles 10 239 6 995

Table 6.6 – Time and memory repartition for the highest resolutions: b2, f2 b2 –

4 layers.

6.4 BEM-FEM coupling on a realistic head shape

6.4.1 From MRI to meshes: segmenting and meshing:

Freesurfer1 is a software suite for medical image processing (see [Dale et al., 1999]
for cortical surface segmentation), which has been used to segment and obtain high
resolution surfaces from a T1 anatomical MRI of resolution 256x176x256: the brain
envelope, the inner skull, the outer skull, and the outer skin as seen Fig.(6.12).
Meshes generated by Freesurfer were of high resolution, and needed a re-meshing

Figure 6.12 – Surfaces segmented by Freesurfer.

to be usable on a BEM model. Volumic meshes with tetrahedra were also needed
for the FEM. Using CGAL we were able to first re-mesh the surfaces with the
desired number of vertices, and also provide volumic meshes out of these surfacic
meshes, such that both surfacic and volumic meshes describe the same geometry
(as discussed in subsection.6.2.4). In Fig.(6.13), the data processing from the MRI
segmentation to the mesh generation is displayed.

1http://surfer.nmr.mgh.harvard.edu

http://surfer.nmr.mgh.harvard.edu
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T1 MRI 

Segmentation

using Freesurfer:
- brain envelope surface

- inner skull surface

- outer skull surface

- outer skin surface

Surfacic meshing

using CGAL surface mesher:
- brain surf. #vert. = 1400

- inner skull surf. #vert = 1304

- outer skull surf. #vert = 1445

- outer skin surf #vert = 1679

Volumic meshing

using CGAL volumic mesher:
Complete models with 297k vertices in 

total (for the 4 layers)

Figure 6.13 – The meshing process from MRI to BEM and FEM meshes.

6.4.2 Comparing methods

Figure 6.14 – Realistic 4-layer model where the big arrow illustrates the set of

dipoles oriented toward the z-axis, and approaching the skull hole.

We propose here to model a cylindrical-shaped hole in the skull of a patient
head. Such skull inhomogeneities occur in patients who have undergone brain
surgery for a resection of an epileptogenic lesion. This hole was supposed to
be of diameter 1cm and filled with a skin-like tissue material, and thus it was
assigned a conductivity of 1. We located the hole at the top of the patient
head, and ran the forward computations for 15 dipoles approaching the hole on
the z-axis and oriented toward it. Such a hole has been modeled in BEM in
[Bénar and Gotman, 2002, Oostenveld and Oostendorp, 2002], but requires a very
fine meshing in its vicinity, and thus many elements. The current implementation
of the sBEM in OpenMEEG does not allow for non-nested geometries proposed
in [Kybic et al., 2006]. On the other hand the FEM is able to take into account
the hole easily, and hence we propose to use the coupled BEM-FEM method and
to handle the skull by the FEM in the proposed domain partition.
The FEM will use the model with the inhomogeneity produced by the hole. For
the coupled BEM-FEM, the BEM will deal with the brain and the CSF, and the
FEM with the skull (with the hole), and the scalp. We will show the results of the
BEM for homogeneous layers, because of the previously mentioned difficulties for
handling the hole. Table (6.7) presents the models used by the different methods,
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Figure 6.15 – Potential at the closest sensor S0 to the hole.

and the number of points.

Methods Models Conductivities Number of vertices

BEM

Brain 1. 1 400
CSF 3. 1 304
Skull 0.03 1 445
Scalp 1. 1 679

FEM

Brain 1. 96 551
CSF 3. 134 127
Skull 0.03 132 783
Hole 1. 146
Scalp 1. 115 672

Coupled
Brain 1. 1 400
CSF 3. 1 304

BEM-FEM
Skull 0.03 132 783
Hole 1. 146
Scalp 1. 115 672

Table 6.7 – Meshes resolution

In order to analyze the results of the three methods, we plotted in Fig.(6.15) the
potential at a sensor located very close to the hole on the patient scalp (labeled S0),
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see Fig.(6.14). One can see from these curves that the BEM largely underestimates
the potential by not modeling the very conductive hole; the BEM curve is almost
linear, which is not the case for the two other methods. The staggering behavior
of the blue curve (FEM result) is again due to the coarse dipole modeling within
the FEM. The coupled BEM-FEM curve presents both advantages, with the high
regularity of the BEM, and the good modeling of the hole, and thus the smooth
exponential behavior when the dipole approaches the hole. It is likely, taking into
account the results on the sphere models, that the coupled curve is the closest to
reality. On Fig.(6.16), one can see the EEG topography plotted on the same scale
for a 120-sensor helmet. Each line represents a method, the first one being the
FEM, the second the coupled BEM-FEM method and lastly the BEM with intact
skull. The columns represent 5 different dipole locations on z.

Figure 6.16 – EEG topography results for different dipole positions approaching

a hole in the skull on the z-axis. First row the FEM results, second row the coupled

BEM-FEM results, and lastly the BEM results.

6.4.3 Perspectives

Although [Wolters et al., 2006] have shown the tissues anisotropy in vicinity of the
sources to be particularly influential on both EEG and MEG results, we have not
incorporated it to our model, since the BEM was taking care of all the domains
inside the inner skull, thus considering all the brain as homogeneous. Regarding
the mesh generation, our first goal was to be able able to generate independent
meshes for the BEM and the FEM. But the problems at interface regarding the
interpolation between the two methods’ variables constrained us to generate the
FEM mesh out of the BEM ones in order to guaranty the same geometry definition
(case c. in Fig.(6.2)). We have also run the coupled method for the spherical
models with fully independent meshes (case b. in Fig.(6.2)), and obtained very
similar results. These results let us think that the interpolation error is negligible
(for these mesh sizes at least), and that fully independent meshes could be used for
the coupled method.
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6.4.4 Conclusion

In this chapter, a coupled BEM-FEM formulation has been studied. This coupled
method used iterations between Neumann and Dirichlet boundary value problems
until convergence. The convergence was guaranteed by an upper bound that can be
verified numerically. The accuracy has been proved, and is better than using a pure
FEM, furthermore it allows for more conductivity profiles than the standard BEM,
allowing for inhomogeneities and anisotropy in the skull as shown on a realistic
model.
In this discrete framework, we commented the convergence properties of the pro-
posed scheme not in terms of the discrete version of the Poincaré-Steklov operator
(often called Schur complement), but rather studying the norm of an operator which
directly appears from our sub-problem expression (operator E in Eq.(6.10)).
Numerical results were shown, where one can see the improvements gained using
DD techniques in order to get faster, and more accurate solutions of the forward
EEG problem.



Chapter 7

Handling anisotropy or

inhomogeneities in BEM

As seen in introduction, the brain contains white matter whose color is due to
the myelin of axons. These axons have preferred orientations depending on the
brain area. Although the white matter has a lower mean electrical conductivity
than the gray matter, it is believed to be highly anisotropic 1 : 10 along the fibers
directions. As pointed out in recent studies, this anisotropy has influence on the
result of MEEG. Moreover in EEG, inhomogeneities in the skull also influence
highly the results. The BEM cannot handle inhomogeneities, and not anisotropies
that are not homogeneous. In this chapter, we propose a new method for dealing
with such conductivities.

Summary

Goals: Allow for the use of anisotropic or inhomogeneous conductivities
within a BEM framework.

Tools: Consider a locally non isotropic conductivity tensor, as a main
isotropic part plus a locally anisotropic or inhomogeneous part. Split-
ting the main operator into a component due to the isotropic part,
and consider the rest as a perturbation.

Results: A very flexible formulation allowing for local anisotropy and/or
inhomogeneity implemented with the sBEM.
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7.1 Estimating the anisotropy of the white-matter

7.1.1 Diffusion MRI

Diffusion MRI allows to measure within voxels in a tissue the diffusion of water
molecules. This diffusion would be isotropic if the medium were homogeneous.
But because of the fiber structures present in the white matter, on can infer the
principal directions of the diffusion by analyzing the diffusion tensor. This tensor
can be represented as a symmetric 3× 3 matrix for each voxel:

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (7.1)

After diagonalizing D, one gets the eigenvalues (λ1, λ2, λ3) with their eigenvectors
(v1, v2, v3):

D = S ·

λ1

λ2

λ3

 · ST

where S corresponds to the transformation matrix made of the normalized eigen-
vectors. Diffusion tensor imaging (DTI) hence provides a 3D image, containing in
each voxel a 3× 3 tensor.

7.1.2 Fiber tractography

From these diffusion images a new imaging technique has arisen to recover the fiber
structures: fiber tractography [Mori et al., 1999]-[Basser et al., 2000]. It provides
images of the fibers contained in our brain (as seen in Fig.(2.5)). Tractographies
are curvilinear structures defined by a high probability of having a white matter
fiber in this direction at this location.

7.1.3 From the diffusion tensor to the conductivity tensor

Having the diffusion tensor for each voxel of a patient head, a relationship has
been derived in [Tuch et al., 2001] showing that the conductivity tensor Σ and the
diffusion tensor D share the same eigenvectors:

Σ = S ·

σ1

σ2

σ3

 · ST . (7.2)

Knowing that, one still needs to establish a relationship between the eigenvalues of
the tensors. Although a relation between their eigenvalues is given in the cited arti-
cle, a few papers [Wang et al., 2008]-[Wolters et al., 2006] propose different formu-
las for estimating the eigenvalues. In [Shimony et al., 1999] the ellipsoidal profiles
have been investigated in 12 regions of interest within the gray and white matter,
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they most often relate prolate shapes for the tensor in white matter regions, whereas
isotropic behavior was found in the gray matter. This comforts our intention of con-
sidering an isotropic conductivity for the gray matter, and to use only two values
σl and σt to represent the anisotropy at a given location. The first parameter σl
denotes the conductivity along the fiber’s direction (longitudinal), while the second
one denotes the transversal conductivity (which is thus considered the same in the
two orthogonal transverse directions of the fiber). The conductivity tensor now
writes:

Σ = S ·

σl σt
σt

 · ST (7.3)

We know that σl ≥ σt, and sometimes have some insight on the mean con-
ductivity of the white matter, which is believed to be ∼ 2.5 times lower than
the gray matter [Geddes and Baker, 1967]. The common anisotropic ratio used is
∼ 1 : 10, which means σl ' 10σt [Tuch et al., 2001]-[Shimony et al., 1999]. In fact
the model for estimating the conductivity tensor detailed in [Tuch et al., 2001] pre-
dicts a strong linearity, explained by the fact that in the white matter both processes
(diffusion and electrical conduction) happen mostly in the extracellular space.

7.2 Dealing with anisotropy in FEM

7.2.1 Existing studies

The FEM can deal with any kind of conductivity profile at an over-element
resolution i.e. each mesh element (cells: e.g. tetrahedra) must have a con-
stant anisotropic or isotropic conductivity value. A few studies relate the use
of white matter anisotropy in FEM for the MEEG forward problems resolu-
tion [Haueisen et al., 2002]-[Wolters et al., 2006]-[Gullmar et al., 2006].
In [Haueisen et al., 2002] an eleven-compartment realistic head model was studied,
with the use of anisotropic conductivities for the white as well as the gray mat-
ter. The relationship between the diffusion tensor and the conductivity tensor was
supposed strongly linear as advised in [Tuch et al., 2001]:

Σ =
σe
de

D , (7.4)

where the coefficients σe and de denote the extracellular conductivity and diffusivity,
respectively. In this study they compared the EEG and MEG results using the full
model (2 regions anisotropic, 9 isotropic) as reference to a simple 3-layer isotropic
model. Similarly, [Wolters et al., 2006] has studied the influence of the white matter
and skull conductivity profiles on the forward results for the EEG problem as well
as the MEG problem on a realistic head model. There, two kinds of determination
of the anisotropic value were examined, the so-called Wang constraint, which states
that the following equality must hold:

σl · σt = σiso (7.5)
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and a volume constraint, which compares the volume of the prolate tensor, with
the spherical isotropic one:

4
3
πσl(σt)2 =

4
3
πσ3

iso . (7.6)

In the latter study, no influence of the skull anisotropy on the MEG was found as
expected, but up to 0.11 RDM (sec.(2.5.2.4)) error for the EEG leadfield. Both
studies agree with a high influence of the white matter anisotropy on the MEG
results (about 0.1 RDM and up to 0.15 for deep sources), and a weaker one for
the EEG results (0.05 RDM and 0.1 for deep sources). Neglecting both skull and
white matter anisotropies led to 0.13 RDM error for EEG (in mean and for both
constraints).

7.2.2 Comments

In the cited studies the conductivity models were compared using the same geometry
for all experiments. Thus the electrophysiological models were the same except for
the conductivity part of the model. In the first one ([Haueisen et al., 2002]), a
FEM with hexahedral (cubic) elements were used, whereas in the other tetrahedral
elements were used. What we can conclude out of these studies is the importance of
modeling the skull and white matter anisotropy for the EEG, and mostly the white
matter anisotropy for the MEG. We still do not know if the results of an isotropic
BEM would be better than those of an anisotropic FEM, since the true solution is
then unknown. Two ways for validating such an approach could be explored:

Experimental way computing the forward leadfields with the two approaches,
and comparing the inverse solution for a SEP (Somatosensory Evoked Poten-
tial ) task, such as moving a finger whose activity is associated with some
brain area in the motor cortex. In that case one could then affirm, the best
solution (at least for this source location).

Diminishing the mesh size as the FEM should converge toward the true so-
lution, a convergence study of the potential at sensors with regard to the
mesh size could be investigated. One should then estimate after which mesh
size the FEM results could be considered as stable, and compare the multi-
compartment anisotropic FEM, the isotropic BEM, with the reference FEM
solution at convergence.

The first case would be more appreciated, since the second one would also depend
on the conductivity values assigned for every tissue which is still challenging to
estimate, and could thus introduce errors. Note that, in the first case, the same
inverse problem resolution should be applied on both leadfields.
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7.3 Toward the handling of anisotropy/inhomogeneity in

BEM

BEM methods do not allow for non-homogeneous anisotropic conductivities, no
BEM formulation allows to handle a non constant anisotropic region for the 3D
Laplace equation, even in the case of very structured anisotropy such as the one of
the skull model, where the tangential conductivity is a few times larger than the
radial one. This problem arises from the basis of BEM, the Green function for the
Laplace equation which has to be invariant with space. A common trick when using
a BEM in mechanics (elasticity) with an anisotropy in one Cartesian direction, is
done considering an homothety dilation along that direction, with the value of the
anisotropic ratio [Wang and Denda, 2007].
Anisotropy is quite common within the head, one example being the skull which
is reported to be correctly modeled with an anisotropic ratio of 1.5 in the latest
studies [Dannhauer et al., 2010]. Another anisotropy is due to the presence of white
matter fibers very close to the sources and appears to play an important role on
the forward EEG and MEG results as discussed previously.
In addition to anisotropy, inhomogeneity of conductivity is also also difficult to
handle with the BEM. For example, after a surgery leading to a hole in the skull
(craniotomy), this hole is often filled with a skin-like tissue which is highly con-
ductive compared to the bone of the skull and thus can lead to big changes in
current propagation (and thus the forward problem). Although this hole region
is considered to be isotropic, it can be difficult to handle in a BEM framework
since sharp edges at the interface of the skull/hole can lead to numerical errors (see
Fig.(7.15)). BEM has anyway been successfully applied for the EEG problem with a
hole in the skull in [Oostenveld and Oostendorp, 2002]-[Bénar and Gotman, 2002]
but [Kybic et al., 2006] suggest a very high number of elements to avoid numerical
errors.
In this section a method is proposed to handle a perturbation on the conductivity
profile within the BEM framework. As a first step we will consider the anisotropy
due to the white matter fibers.

7.3.1 A BEM handling local anisotropy

A standard EEG problem which is often solved with the BEM is a 3-layer nested
model (see Fig.(7.1)). The equation solved is the Poisson equation, which in each
domain Ωk boils down to a Laplace equation, since the conductivity is constant:

σk∆V = ∇ · Jp
k ∀r ∈ Ωk

[Vk] = 0 ∀r ∈ ∂Ωk[
σk

∂V
∂n

]
= 0 ∀r ∈ ∂Ωk

, (7.7)

where Jp
k denotes the source term if there is one in the volume Ωk. The bracket

notation still stands for the jump across the interface, to show that the poten-
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Figure 7.1 – A typical 3-layer nested model for BEM.

tial and the normal current are continuous. In Ω1 let us introduce an anisotropic
conductivity represented by the tensor Σ1:

∇ · Σ1∇V = ∇ · Jp
1 ∀r ∈ Ω1 (7.8)

The problem is that this equation cannot be dealt with the BEM since we do not
have a Laplacian in the domain containing the anisotropy.

Figure 7.2 – Some bundles of white matter fibers overlaid on the right white

matter region.

For the forward EEG problem, the most important part of this anisotropy, is
the one due to the fibers that lie close to the source, because for a source lying far
away from fibers this conductivity tensor can be well approximated by an isotropic
one.
We propose to formulate a tensor expression, which takes into account the local
anisotropy due to the fibers that are close to the source for which we solve the
forward problem. Let us write Σ = Σ1 the conductivity tensor in the innermost
domain (the brain), and for sake of exposition we consider only one fiber f . In
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this medium, the conductivity is thus perturbed along this fiber. One can consider
the conductivity tensor of such medium containing the fiber f described with a
characteristic function χf defined as:

χf (r) =

{
1 if r ∈ f
0 if r ∈ Ω \ f

, (7.9)

We express the conductivity tensor as an isotropic one plus a perturbation due to
the fiber conductivity Σf (r), where we consider the conductivity of the fiber to be
anisotropic along its local direction nf (r) such that:

Σf (r) = σI + (σf (r)− σ)nf (r)nTf (r) , (7.10)

with σf (r) the conductivity along the fiber at location r. The overall conductivity
tensor then writes (see Fig.(7.3)):

∀r ∈ Ω1, Σ(r) = σI + (σf (r)− σ)nf (r)nf (r)T χf (r) (7.11)

Figure 7.3 – Perturbed conductivity tensor expression.

Plugging in this tensor expression in the Poisson equation yields:

∇ · (Σ∇V ) = ∇ · Jp in Ω1

σ∆V +∇ · ((σf (r)− σ)nf (r)χf (r)∇V · nf (r)) = ∇ · Jp in Ω1 (7.12)

We now have a Laplacian term, but the problem still cannot be solved with a
BEM, since the correction term due to the fiber depends on the unknown V .
We next propose two methods for dealing with this correction term. In the first one,
we consider discretizing the characteristic function χf into weighted points which
is equivalent to discretizing the tensor. This was published in [Olivi et al., 2011a].
In the second method, we will instead try to take into account the full correction
term instead.
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Figure 7.4 – A sketch of a white matter fiber.

7.3.2 First method: Discretizing the conductivity tensor

For sake of exposition, we consider one fiber f with (local-) cylindrical shape with
radius rf (x), a total finite length L, with the previous notations for its direction,
and conductivity. Such a fiber is displayed Fig.(7.4).

We now propose to discretize this fiber into weighted points, so that each dis-
cretization point will then play the role of a dipole later on.
The spatial extension of the fiber was denoted χf and we discretize it into N points
along its curvilinear abscissa (denoted θf : R→ R3). Writing ri the N points along
the fiber, s.t ri = θf

(
L
N (i− 1

2)
)
, we write χf as:

∆N (χf ) =
L

N
π

N∑
i=1

rf (ri)2δ (r− ri) , (7.13)

where δ denotes a Dirac distribution (in R3) centered at r = ri.
Now, plugging in this discretized version of χf into Eq.(7.11), the conductivity
tensor becomes:

∀r ∈ Ω1, Σ(r) = σI +
N∑
i=1

π
L

N
rf (ri)2(σf (ri)− σ)nf (ri)nf (ri)T δ(r− ri) . (7.14)

This will allow pieces of fibers to be considered as weighted points.
From now we introduce the notation:

εi = π
L

N
rf (ri)2(σf (ri)− σ) , (7.15)

δi = δ(r− ri) , (7.16)

ni = nf (ri) , (7.17)

which leads the more digest expression:

∀r ∈ Ω1, Σ(r) = σI +
N∑
i=1

εininTi δi . (7.18)

Re-writing the Poisson Eq.(7.12):

σ∆V = ∇ ·
(
Jp −

∑N
i=1 εi∇V (ri) · niniδi

)
in Ω1 (7.19)
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we then end up with an expression containing a Laplacian term, and on the right-
hand side, terms due to the anisotropic part of the conductivity tensor that act
like source terms. Indeed, writing Ji = miδi, where mi = εi∇V (ri) · nini, one
recognizes the expression of a dipolar source term, as the one of the primary source
current Jp.
Each Ji is a dipole located at a discretization point ri, with direction n(ri), and a
momentum ‖mi‖ = εi∇V (ri) · ni. In the following these new dipoles will be called
virtual dipoles to differentiate them from the primary dipoles. Eq.(7.19) becomes:

σ∆V = ∇ ·
(
Jp −

∑N
i=1 miδi

)
in Ω1 (7.20)

The problem to solve now is that the strength of the source terms ‖mi‖ depends
on the actual unknown V .
Let us solve Eq.(7.19) using an iterative scheme (k), where we set up V 0 = 0:

σ∆V k+1 = ∇ ·

(
Jp −

N∑
i=1

εi∇V k(ri) · niniδi

)
in Ω1. (7.21)

At the first iteration, an isotropic problem is solved. Then, we compute thanks to
the internal operators of the BEM (described in sec.2.7.1) the value∇V k(ri)·ni , ∀i.
At the second iteration, we then include the contribution of the fibers to the prob-
lem; the fibers contribution can be seen as virtual dipoles. The results obtained
solving the second iteration are then the results of an anisotropic problem, where
the anisotropy due to the fibers is taken into account. Actually this is only a first
step, since the influence of the dipole onto the fibers is taken into account, but
neither the fibers between fibers interaction nor the fiber and model interaction are
considered, e.g. there is no conduction within the fiber as if it was an electric wire
which should be almost the case in reality. A completion will be seen in the second
method.
Let us present some numerical results of the proposed method at the second iter-
ation. To do so, we expose here a validation experiment, where the FEM will be
taken as reference, but first of all we expose the discrete problem for solving this
iterative procedure using the symmetric BEM operators.

7.3.2.1 Discrete problem:

In this section we use the notation exposed in sec.2.7.1. At the first iteration, the
isotropic solution V1 = Viso is computed at sensors:

X1 = H−1 ·D (7.22)

V1 = Seeg ·X1 , (7.23)

where the matrix D is the source term due to the primary source current Jp, i.e.
it is the discretization of ∇ · Jp. Then we need to compute the value ∇V 1 · ni(ri)
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in Eq.(7.21) at each discretization point. As explained in the section on internal
operators (sec.2.7.1), the potential in a domain is composed of two parts; the one
due to the dipole as if it was in an infinite medium, and the component due to the
correction of the geometry, so that the potential at point r is:

V (r) =
{

Sr ·X if r ∈ Ω with no sources
Sr ·X + Φr(Jp) if r ∈ Ω with sources

, (7.24)

where Φr represents the analytical part (potential generated by a current dipole in
an infinite medium of conductivity σ), and Sr the internal operators. As the white
matter fibers are here considered to be in the same volume as the source Jp, we are
in the second case.
The potential in an infinite medium of conductivity σ generated by a current dipole,
is undefined at the exact location of the dipole, and is obtained analytically else-
where with the formula Φr(Jp), where Jp = mpδrp , as :

Φr(Jp) =
1

4πσ
mp · (r− rp)
‖r− rp‖3

(7.25)

But we need to compute the value ∇V 1(ri) ·ni, and not the potential. Let us use a
finite difference (parameter ε) to estimate it for the term depending on the internal
operator, and use the analytical formula for the term due the source, i.e:

∂niV
1(ri) =

1
ε

(Sri+
εni
2
− Sri− εni2

) ·X1 + Ψni,ri(J
p) , (7.26)

where Ψni,ri writes:

Ψni,ri(J
p) = ∂niΦri(J

p)

=
1

4πσ
(mp · ∇)

(ri − rp)
‖ri − rp‖3

· ni =
1

4πσ
(mp · ∇)∇

(
−1

‖ri − rp‖

)
· ni

=
1

4πσ
(mpx∂x + mpy∂y + mpz∂z)

(
∂x

−1
‖ri − rp‖

nx + ∂y
−1

‖ri − rp‖
ny + ∂z

−1
‖ri − rp‖

nz

)
(7.27)

The Hessian matrix H of −1
‖r−rp‖ is needed:

H =

∂x∂x ∂x∂y ∂x∂z
∂y∂x ∂y∂y ∂y∂z
∂z∂x ∂z∂y ∂z∂z

( −1
‖r− rp‖

)
= 3

(r− rp)⊗ (r− rp)
‖r− rp‖5

− I3

‖r− rp‖3
(7.28)

so that it writes:

Ψni,ri(J
p) =

1
4πσ

( (mpxnx)H1,1 + (mpyny)H2,2 + (mpznz)H3,3

+(mpynx + mpxny)H1,2

+(mpznx + mpxnz)H1,3

+(mpynz + mpzny)H2,3 ). (7.29)
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For sake of simplicity we introduce the operators:

∆i =
1
ε

(Sri+
εni
2
− Sri−

εni
2

)

Tp
i = Ψni,ri(J

p) (7.30)

Thanks to these operators, the solution of the anisotropic problem at the second
iteration is then:

X2 = X1 −H−1 ·

(
N∑
i=1

Dp
i

)
V2 = Seeg ·X2 (7.31)

where the RHS term Dp
i depends on X1 and Jp, and is the contribution of the i-th

virtual dipole located at ri, oriented ni with strength ‖mi‖ = εi(∆i ·X1 + Tp
i ).

7.3.2.2 Numerical validation:

In order to validate the proposed method we compared the results of the standard
isotropic BEM (1st iteration), the anisotropic BEM at 2nd iteration, with the refer-
ence solution a high resolution FEM, on a 3-layer model displayed in Fig.(7.5) and
Fig.(7.6) and defined as:

Model: 3-layer spherical model modeling the brain, the skull, and the scalp, with
respective radii 0.87, 0.92, 1., and isotropic conductivity 1., 0.03, 1..

Fiber: We added a fiber oriented vertically (z-axis), with a cylindrical shape with
radius rf = 0.04, and a conductivity ten times higher than the brain one i.e.
σf = 10 (along its direction ez). the fiber length was L = 1, starting at the
Cartesian coordinates [0.2, 0,−0.5] and ending at [0.2, 0, 0.5].

Dipoles: We ran the computations for 24 dipoles oriented either paral-
lel to the fiber [0, 0, 1] (green arrows) or [1, 0, 1] (orange arrows) with
unit momentum. They were located on the z-axis at z-coordinates in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.68, 0.72, 0.765, 0.79, 0.8075, 0.8415}.

Reference solution: A high resolution tetrahedral FEM was used with 590 747
vertices, which could take the anisotropy into account easily. We ran the
forward computations for each dipole, and obtained the results for 642 nodes
on the scalp.

BEM meshes had 642-vertices per layer.

The comparisons in term of RDM, and MAG errors (defined in sec.2.5.2.4
p.(2.48)) are displayed Fig.(7.7). The first row displays the results for the dipoles
with orientation [0, 0, 1] (RDM left and MAG at right), and the second row corre-
sponds to [1, 0, 1]. The x-axis always represents the z-coordinate of the dipole.
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Figure 7.5 – Validation model, 3-layer spherical model plus a fiber.

Figure 7.6 – Zoom on the validation model and sketch of the virtual dipoles.

In these plots we have computed the anisotropic results, discretizing the tensor
in N = 100 points, i.e. the fiber was discretized into N points, and it acted like N
virtual dipoles. Several comments can be made on these figures.

a. When looking at the first RDM curves (for [0, 0, 1]), the curves are very close
to each other. For all other plots the green curve (anisotropic BEM) is the
best solution (closer to 0 for the RDM and 1 for the MAG).
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Figure 7.7 – BEM results with and without fibers.

b. For the first RDM results (for [0, 0, 1]) we can add that the virtual dipoles are
oriented in the same direction as the real dipoles, which explains the small
changes in the results (See Fig.(7.6)).

c. For any plot, the curves are very close to each other when the z-coordinate of
the dipole is > 0.6, this seems coherent since the dipole is then far from the
fiber (which ends at 0.5), and thus the fiber no longer has much influence on
the results.

d. Finally one can comment saying that the FEM may not be that close to the
true solution, because of its difficulty to handle dipolar sources as discussed
in sec.2.5.1. Thus the errors might be biased by this aspect.

Let us investigate the last comment:
Dropping the fiber but otherwise keeping the same model, we propose to com-

pare the BEM and the FEM results to the analytical ones to first check whether or
not the high resolution FEM can be a reference solution. These results are shown
Fig.(7.8). One can see the good RDM results of the FEM despite its staggering
behavior already commented upon in the previous chapter. The BEM’s MAG is
slightly better than the FEM but both of them have a good behavior. This confirms
the choice for the FEM to be taken as reference solution for the anisotropic problem
(since we do not have analytical solution).
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Figure 7.8 – Isotropic BEM and FEM results compared with the analytical solu-

tion.

It is interesting to plot the previous results shown in Fig.(7.7) with now overlaid
the expected error between BEM and FEM, which is the comparison between the
BEM and the FEM in the isotropic case. One can see Fig.(7.9) that the results
using the anisotropic BEM are quite close to the expected error, it then means
that the error on the model (the anisotropy model with discretization point) is well
minimized after only one iteration (at least for this configuration of dipoles and
fibers).

What about the influence of parameter N ? Actually we obtained similar results
as soon as N > 8, which is a poor discretization of the fiber. This discretization
parameter should depend on the problem geometry and overall on the distance
of the fibers to the dipole, since the electromagnetic field becomes sharp (high
variations) close to the dipole. Let us have a look at the RDM for the dipoles with
direction [1, 0, 1] for N ∈ {2, 4, 6, 8}. This is shown in Fig.(7.10). One can see that
before N = 6 results are very bad, this is mostly due to the dipole which is too
close to a discretization point and has a big weight. In fact the influence of the
dipole on this point is the same when N > 6, but its weight is proportional to 1

N

which reduces its influence.
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Figure 7.9 – BEM results with and without fibers.

What about the third iteration ? At the third iteration, the current to be com-
puted is now indefinite at all fibers locations since there is a dipole on it. Indeed,
∇V 2(ri) · ni needs to be computed, and this is at the exact location of the i-th
virtual dipole. The analytical formula ψni,ri(Ji) in Eq.(7.29), is indefinite at this
location. It means that discretizing the conductivity tensor may not be the correct
way to deal completely with our local anisotropy, even if the results at second iter-
ation seem already promising.
This has led us to consider the second method.

7.3.3 Second method: Representing the conductivity tensor within the
Poisson equation

Let us re-write the Poisson Eq.(7.12) which uses the conductivity tensor described
in Eq.(7.11):

σ∆V = ∇ · Jp − (σf − σ)∇ · (nf (r)χf (r)∇V · nf (r)) (7.32)

We now split the characteristic function χf into a sum of smaller characteristic
functions χdi (whose supports are centered at ri = θf

(
L
N (i− 1

2)
)
):

χf =
N∑
i=1

χdi , (7.33)
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Figure 7.10 – BEM RDM for dipoles oriented [1 0 1], with and without fibers

varying N.

actually each support of χdi represents a small slice of cylinder of length d (see
Fig.(7.11)).
We now look for the virtual dipole Ji = miδi = miniδi located in the center of the
support of χdi , that best approximates the conduction in this slice of cylinder i.e.
∀i find mi = mini such that:

∀φi ∈ D(R3),
〈

(σf − σ)∇ · (niχdi∇V · ni), φi
〉
' 〈∇ ·miδi, φi〉 = −mini · ∇φi(ri)

(7.34)
Then Eq.(7.32) can be approximated by:

σ∆V = ∇ ·

(
Jp −

N∑
i

miδi

)
(7.35)

This equation looks the same as Eq.(7.12), and the main difference is the way of
computing mi = ‖mi‖.
One can write the solution of this equation using linearity as:

V = Vp −
N∑
j=1

mjVj (7.36)

where Vj , j ∈ {1..N} solves: σ∆Vj = ∇·Jj , and similarly Vp solves σ∆Vp = ∇·Jp.
Actually one simply needs to find these coefficients to get the (approximate) solution
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Figure 7.11 – Example of a cylindrical fiber subdivided into smaller cylinders. A

virtual dipole is located at each black dot.

of an anisotropic problem.
Re-writing Eq.(7.34) we use the divergence theorem, and the nullity of the test
functions on the border to get:

∀φi ∈ D(R3),〈
(σf − σ)∇ · (niχdi∇V · ni), φi

〉
= −(σf − σ)

〈
niχdi∇V · ni,∇φi

〉
= −(σf − σ)

〈χdi∇Vp · nini,∇φi〉− N∑
j=1

mj

〈
χdi∇Vj · nini,∇φi

〉
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Considering ∇φi constant in the support of χdi , which can be reorganized as:
∀i = 1 . . . N ,

mi =

Ai − N∑
j=1

mjB
j
i


(1 +Bi

i)mi =

Ai −∑
j 6=i

mjB
j
i

 (7.37)

Eq.(7.37) is a linear system whose unknowns are the coefficients mi, which gives
the handling of the anisotropy.


1 +B1

1 B2
1 . . . BN

1

B1
2 1 +B2

2 . . . BN
2

. . . . . . . . . . . .

B1
N B2

N . . . 1 +BN
N



m1

m2

. . .

mN

 =


A1

A2
...
AN

 (7.38)

Let us specify the values of Ai, B
j
i , and Bi

i . These require the evaluation of ∇Vj ·ni
for ∀i, and ∀j ∈ {1 . . . N, p}, which as explained previously are composed of an
analytical part due to the dipole infinite medium component and the correction
due to the boundedness of the domain. For the sequel, we will assume the second
part to be smooth i.e. constant in χdi , and concentrate on the analytical part which
we will consider constant if we are far enough from the dipoles and not constant
close to a dipole.

• Finding Ai: We can consider ri is quite far from rp, and so consider ∇Vp · ni
as constant in χdi , then:

Ai = (σf − σ)∇Vp(ri) · ni
∫

R3

χdi dr

= (σf − σ)∂niVp(ri)
∫ 2π

0

∫ R

0

∫ d
2

− d
2

ρdρdθdz

= (σf − σ)πR2d ∂niVp(ri) (7.39)

• For the Bj
i terms when j 6= i, ∇φi is still considered constant:〈

χdi∇Vj · nini,∇φi
〉

(7.40)

therefore we write:

Bj
i = (σf − σ)

∫
R3

χdi∇Vj(r) · nidr

= Cji + (σf − σ)
∫

R3

χdiΨni,r(Jj)dr (7.41)
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where Cji expresses the correction term due to the boundedness of the domain.
And as the dipole Jj is not in the support of χdi , the value of ∂niVj(r) is obtained
by the formula in Eq.(7.29) by Ψni,r(Jj). In other words, this integral can be
computed easily either considering an analytical expression as we will do in the
experiments or considering numerical integration, or if rj is considered far enough
from the support of χdi , the function Ψni,r(Jj) can be considered as constant and
the integral immediately computed.

• For the Bi
i terms, ∇φi is still considered as constant:〈

χdi∇Vi · nini,∇φi
〉

(7.42)

This integral should be handled with care because of the singularity at ri. Let us
now use polar coordinates (with the z-axis oriented toward ni) to write Vi. At a
distance r > ε > 0 from the source at ri, the potential is written as in Eq.7.25:

Vi(r) =
1

4πσ
z√

ρ2 + z2
3

Bi
i = Cii + (σf − σ)

∫
S(χdi )

∂Vi(r)
∂z

dr (7.43)

= Cii + (σf − σ)

(
lim
ε→0

∫ R

ε

∫ 2π

0

∫ d
2

− d
2

∂Vi(r)
∂z

ρdρdθdz

)

= Cii + (σf − σ)

(
lim
ε→0

4π
∫ R

ε

∫ d
2

0

∂Vi(r)
∂z

ρdρdz

)

= Cii + (σf − σ)
(

lim
ε→0

4π
∫ R

ε
[Vi(r)]

d
2
0 ρdρ

)
= Cii +

σf − σ
σ

(
lim
ε→0

∫ R

ε

d/2 · ρ√
ρ2 + d2/4

3dρ

)

= Cii +
σf − σ
σ

lim
ε→0

[
−d/2√
ρ2 + d2/4

]R
ε


= Cii +

σf − σ
σ

(
lim
ε→0

(
− d/2√

R2 + d2/4
+

d/2√
ε2 + d2/4

))

= Cii +
σf − σ
σ

(
1− d√

4R2 + d2

)
(7.44)

where Cii expresses the correction term due to the boundedness of the domain.

7.3.3.1 Discrete problem:

Here for sake of simplicity, we consider the same shape and conductivity for all χdi .
Writing ε = 4πR2d(σf − σ), and using the discrete operators defined in Eq.(7.30)
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which we recall here, also introducing a new one:

∆i =
1
ε

(Sri+
εni
2
− Sri−

εni
2

)

Tj
i = Ψni,ri(Jj)

Rj
i =

∫
χdi

Ψni,r(Jj)dr

so that the coefficients of system Eq.(7.38) are:

Ai = εi(T
p
i + ∆iX

p)

Bj
i = εi∆iX

j + (σf − σ)Rj
i for i 6= j

Bi
i = εi∆iX

i + (σf − σ)( 1
σ + Ri

i)

The algorithm is then as follows:

1. Assembling of H, D and ∀i ∈ {1 . . . N} Di, ∆i and also ∀j ∈ {1 . . . N}, Rj
i

and Tj
i

2. Computation of H−1

3. Obtaining the solutions Xj ∀j ∈ {1 . . . N} ∪ {p} such that: Xj = H−1Dj

4. Resolution of the system A ·M = E

5. Full solution: X = Xp + M
[
X1 X2 . . .XN

]
7.3.3.2 Numerical validation:

We have now expressed the relation between the fiber coefficients relatively to the
dipole, to the fibers themselves, and to the head model. The construction of such
a system, only requires solutions in isotropic medium for the dipole, as well as for
the virtual dipoles newly introduced, and internal operators. Several assumptions
were made, notably:

1. the electrical conduction in the fiber can be modeled by a finite set of virtual
dipoles along its axis.

2. the correction term denoted Cji was supposed constant in each χdi .

3. the term ∇Vp · ni was also supposed constant in each χdi .

Knowing these assumptions the full system solution incorporates the interactions
between the fibers, the model and the primary source. In contrast with the first
method only interactions of the dipole, and the model onto the fibers were taken
into account.
One can see Fig.(7.12) the result of this method denoted ’BEM with fibers’ for the
same experiment as sec.(7.3.2.2), on which we have overlaid the previous results.
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Figure 7.12 – BEM results with and without fibers. Results of the red curves, as

well as the green one, are for N=100.

Note that the number of volumes χd was N = 100.
One can notice a slight improvement gained using the new method. But still new
experiments should be done to say whether the second method is better than the
first one. In Fig.(7.13), we have plotted the same results but this time running
the experiment with N = 6 i.e the whole fiber discretized in only 6 cylinders. The
results are still very good, much better than the ones of the first method with N = 6
in Fig.(7.10). This suggest that a coarser sampling would have been sufficient.
The aspect of sampling (or discretization or decomposition) will be discussed in
conclusion.

7.3.4 Application on a realistic model containing inhomogeneities in the
skull

In this section, we will illustrate how one can easily handle inhomogeneities in BEM.
In order to validate this method, we propose to work on the same realistic exper-
iment as in the previous chapter for illustrating the BEM-FEM coupled method
(sec.(6.4)). The geometry is a 4-layer realistic model, modeling the brain, the CSF,
the skull and the scalp on which are placed the sensors. An artificial hole was per-
formed in the skull with a diameter of 1cm, and the same conductivity as the scalp
was assigned to the hole i.e. σhole = 1. This hole was of cylindrical shape along the
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Figure 7.13 – BEM results with and without fibers. Results of the red curves are

for a fiber modeled as 6 smaller cylinders.

z−axis.
Sequentially, the solutions are compared for 15 dipoles approaching the hole (see
Fig.(7.14)). Four methods will be compared here: the tetrahedral FEM, the
isotropic BEM (thus neglecting the hole), the BEM-FEM coupled method, and
the method described in sec.(7.3.2) (the first of the two methods presented earlier).
In the last method, we consider discretizing the conductivity tensor of the skull
which we denote Σ with discretized points lying in the hole. Let us denote by
χh the characteristic function of the hole which is a truncated cylinder at bound-
ary due to the inner skull surface and the outer skull surface such as one can see
Fig.(7.15). The cylinder has a radius of R = 4.905, is oriented toward the z−axis,
and has a center located at point [0, 0, 75.4]1. As the radius of the hole is not so
small (compared to the typical sizes) as was the radius of the fibers of the white
matter studied before, we not only discretized along the z−direction of the hole but
also in the plane section of the hole which defines a disc. We thus discretized the
characteristic function of the hole, denoted χh, with equidistant points generated
out of a Cartesian grid with at most n points in each direction, such that these
points are in the cylinder and in the skull region (see Fig.(7.16) where n = 10 i.e
at most 10 points in each direction.). Writing ri the Nh ' N = n3 points within

1the units on this realistic geometry are inherited from the MRI which was 2563, that is why

there are high value for coordinates.
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Figure 7.14 – Realistic 4-layer model where the big arrow illustrates the set of

dipoles oriented toward the z-axis, and approaching the skull hole.

Figure 7.15 – Zoom on the hole which can be modeled as a cylinder intersected

by the inner and outer skull surfaces.

the hole, we discretize χh into Nh weighted points:

∆N (χh) =
Vh
Nh

Nh∑
i=1

δ (r− ri) , (7.45)
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Figure 7.16 – Zoom on the hole with the discretization points (white dots) placed

on a Cartesian grid, with n = 10. These points will be the locations of the virtual

dipoles.

where Vh represents the volume of the hole, and Nh is the actual number of points
within the hole. This expression is similar to Eq.(7.13), where we have an uncer-
tainty regarding the volume of χh. We know that Vh is slightly bigger than the
volume of the cylinder included in χd. Manually we have estimated the length of
this cylinder to be L ' 7.5, which is the maximum length before the cylinder in-
tersects the other surfaces (inner and outer skull), so that the volume Vh should be
higher than V (L = 7.5) = πR2L ' 567.
Denoting the inhomogeneous conductivity tensor of the skull Σ, which is equivalent
to a scalar conductivity σ = 0.03 out of the hole and σh = 1 in the hole, the Poisson
equation in Ω3, the skull, writes:

∇ · (Σ∇V ) = 0 in Ω3

σ∆V +∇ · (χh(r)(σh − σ)I∇V ) = 0 in Ω3 (7.46)

and we write the homogeneous conductivity (σh − σ)I as the sum of anisotropic
conductivities Σx,Σy, and Σz such that (σh − σ)I = Σx + Σy + Σz:

Σx = (σh − σ)exeTx , Σy = (σh − σ)eyeTy , Σz = (σh − σ)ezeTz (7.47)

such that Eq.(7.46) writes also plugging the discrete version of χh:

σ∆V = −∇ ·

(
N∑
i=1

(Jxi + Jyi + Jzi )

)
in Ω3 , (7.48)
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with Jxi = (σh − σ)VhN ex∇V (ri) · exδ(r − ri), and similarly for Jyi and Jzi . Thus
at each discretized point ri we place 3 virtual dipoles oriented toward ex, ey, ez
respectively.
Similarly as in sec.(7.3.2.1), we use internal operators as well as analytical formulas
to obtain the value of ∇V (ri), ∀i. There remains to find the value of the volume
Vh and choose the number of discretization points n in each direction. Instead we
will show the results and comment them for several values of n and L (and thus
different volumes approximating Vh).

Results: In this paragraph we consider once more the results from the previous
chapter (see sec.(6.4) p.152). We compare the plots of the potential at sensor S0
(the closest sensor to the hole) given by the FEM, the BEM coupled with the FEM
(denoted BEMtFEM) and the inhomogeneous BEM (still denoted BEM fibers).
We also compare the BEMtFEM taking the FEM as reference even if we com-
mented already about its staggering behavior due to the coarse handling of dipolar
sources. These plots are shown for different values of n, namely n ∈ {5, 10, 15}
(i.e. at most N ∈ {125, 1000, 3375} discretized points and thus 3 times more vir-
tual dipoles (one per direction)), and L the estimated length of the hole, namely
L ∈ {7., 7.5, 8., 8.5}.

Figure 7.17 – Potential at sensor S0 (close to the hole) given by the different

methods. L, the estimated length of the hole, varies from 7. to 8.5 and so the results

of the inhomogeneous BEM with fibers varies. n = 5.
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In Fig.(7.17), one can see plotted (similarly as in chapter 6 Fig.(6.15)) the
potential at sensor S0, where we added the inhomogeneous BEM (still called BEM
with fibers) with n = 5 i.e. Nh ' 125 points in total at most. One can see that
the results are very similar to the ones of the BEMtFEM which we assume to be
the closest to reality. Actually, one can compare the RDM and MAG values of
this method, and the BEMtFEM method with the FEM as the reference. This is
plotted in Fig.(7.18). One can see that the case with L = 7. is the closest to the
results of the BEMtFEM method (MAG curves similar), but is even more accurate
than the BEMtFEM (i.e. it has a RDM curve closer to 0).

Figure 7.18 – RDM and MAG values of the BEM with fibers and BEMtFEM

compared to the FEM (reference). L varies from 7. to 8.5. n = 5.

Finally, we can see the convergence of the proposed method showing the same
plots for L = 7., and n varying from 5 to 15. This is shown Fig.(7.19) and Fig.(7.20)
where one can see the proper coherence of these results.

Concerning the computation time, the time needed to solve an anisotropic prob-
lem instead of an isotropic problem increased by 60 seconds for n = 5, by 12 min-
utes for n = 10 and by 48 minutes for n = 15. We recall that the total time for an
isotropic solution with this 4-layer problem and 15 dipoles was about 2 hours.
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Figure 7.19 – Potential at sensor S0 (close to the hole) given by the different

methods. n varies from 5,10 and 15.

7.4 Conclusion

In this chapter we have introduced new methods for handling local changes in
the conductivity profiles within a BEM framework. Methods were given and com-
mented. Still more analysis should be done in order to get clues concerning the
discretization of the inhomogeneous part of the conductivity. The first method de-
veloped appears efficient and cheap. Tools should be developed in the future to
allow the easy use of such a method by clinicians, such as:

1. build of an estimator of the smoothness of the value ∂nVi(r) within the domain
to know where to have finer discretization (estimator of the smoothness of
Eq.(7.26)).

2. easy computation of 3D volume (as for the case of the skull hole for example).

3. generation of discretized points in this volume following the density defined
by the estimator.

Furthermore, let us add in the case of inhomogeneities such as the one we presented,
that even if we put the theoretical values for the hole volume or its conductivity,
the real (electrophysiological) values are unknown. For example, we can imagine
that some of the CSF is actually spread into the hole, and thus increases its mean
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Figure 7.20 – RDM and MAG values of the BEM with fibers and BEMtFEM

compared to the FEM (reference). n varies from 5,10 and 15.

conductivity. Clinical experiments should be designed in such a case, with first a
calibration step, which aims at estimating whether or not the electrophysiological
model chosen (and the respective conductivities) is in agreement with the experi-
ments. EIT (Electrical Impedance Tomography) or SEP (Somato-sensory Evoked
Potential) can be precious tools for this calibration.





Chapter 8

Conclusion

Summary

In this thesis, we focused on the resolution of the MEEG forward problems. MEEG
achieve very good temporal resolution, but a relatively poor spatial resolution when
compared to other brain imaging modalities (notably fMRI see Fig.(2.9) p.38). Im-
proving this spatial resolution is then critical for the benefit of fine-grained spatio-
temporal brain exploration in the future of MEEG. The good resolution of the
forward problems aims at improving the comprehension of the electromagnetic be-
havior of the head. This problem is only part of the computational effort that one
must achieve in order to recover the sources within the brain responsible for a mea-
sured signal. But the better the forward problem resolution, the better chances one
has to get a higher spatial resolution.
We have seen the several numerical methods able to solve this problem in the state
of the art exposed in introduction.
In Chapter (3), a method based on the adjoint problem of the forward problem
was exposed. This method allows for a smarter (and thus faster) resolution of the
forward problem (EEG and MEG) using any numerical method. An application
was shown using a BEM; the method was particularly efficient in terms of time and
memory consumption, which then allows the problem size to be increased and thus
the accuracy of the solution to be improved.
To further improve the forward problem resolution, a domain decomposition frame-
work was studied in chapter (4) in order to split the global computational domain
made of several head layers, into smaller domains which could possibly be han-
dled by different numerical solvers. This is particularly interesting, to balance the
strengths and weaknesses of each numerical method when dealing with a specific
problem or conductivity profile. Alternating between Neumann-Dirichlet boundary
value problems, we have applied several coupled schemes in case of BEM-BEM cou-
pling in chapter (5), and later for BEM-FEM coupling in chapter (6). Each method
developed was particularly efficient, in terms of accuracy, time and memory con-
sumption. A realistic case showed the gain when using such a coupled method for
solving a forward EEG problem.
Finally, chapter (7) introduced a method for dealing with locally anisotropic or
inhomogeneous media within a BEM framework. This method improves the accu-
racy of the forward problem by expanding the range of possible electrophysiological
models that can be dealt with the BEM. Furthermore, the representation of the
white matter fibers within a BEM framework, thanks to the good resolution of
tractography, could be better in terms of precision than the classical conductivity
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tensor which is then a more global expression of underlying phenomena. This would
need further investigation, and moreover validation with clinicians.

Perspectives

Note that the methods presented independently in each chapter could be com-
bined. Indeed one could think of using the adjoint for the BEM-BEM coupling,
or the BEM-FEM coupling with a slightly different coupling scheme. Similarly the
handling of local inhomogeneities in the BEM could be used with a BEM-BEM
coupling. The author believe that using the adjoint approach with a BEM handling
of local inhomogeneities can be achieved.
MEEG devices will play an important role in the future. Even if MEG has quite
important constraints when compared to EEG devices, it is nevertheless interesting
to study this modality because of its differences with EEG (slightly higher spatial
resolution, and allowing for deep source observation). EEG is most surely a device
which will keep on interesting scientists, clinicians but also industrials (like game
designers), due to its low cost. BCI (Brain Computer Interfaces) are of great inter-
est in several application domains (clinical, ergonomy, games, . . . ).
Source localization methods have been improving constantly and still are. The com-
munity is starting to validate what are good a-priori on the solutions sought with
their correlations through time and through networks in the brain. The forward
problem is the basis of a good inverse problem resolution, and the author believe
that a subject-specific calibration step would highly increase its accuracy. Indeed,
there are uncertainties about some quantities such as for example the conductiv-
ity of the skull or its inhomogeneities. In fact, one can thanks to EIT (Electrical
Impedance Tomography) or SEP (Somato-sensory evoked potential) validate some
solutions on an electrophysiological model, and estimate some of its parameters.
One could design a calibration experiment which would have to be performed be-
fore the clinical application, which by using as much a-priori information as avail-
able, would improve the electrophysiological model for the next experiments. The
method exposed in chapter (7) i.e. the inhomogeneous/anisotropic BEM is a good
candidate, since one could think about placing virtual dipoles at possible inho-
mogeneities in the skull (like common locations for soft bone), and then run the
validation step to estimate the strengths that these virtual dipoles should have.
The highest coefficient should correspond to the soft bone compartments.
Furthermore, one could extend this calibration step, so that even subjects whose
anatomical MRI is not available (and thus not their head geometry) could benefit
from the analysis on template models. For example, one can imagine thanks to
3D reconstruction, that having some sets of pictures of a subject head, a software
could estimate its scalp surface, out of which, could be deduced the skull and brain
deformation one has apply onto the template model. This would yield EEG source
localization methods available for all, without resorting to the painful steps of ob-
taining the MRI, segmenting it, and meshing the segmented surfaces. One can see
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in [Acar and Makeig, 2010], such a possibility for wrapping a template with the
sensor locations as input.





Bibliography

[Acar and Makeig, 2010] Acar, Z. and Makeig, S. (2010). Neuroelectromagnetic
forward head modeling toolbox. Journal of neuroscience methods, 190(2):258–
270. 189

[Agoshkov and Lebedev, 1990] Agoshkov, V. and Lebedev, V. (1990). Variational
algorithms of the domain decomposition method. Russian Journal of Numerical
Analysis and Mathematical Modelling, 5(1):27–46. 104, 108

[Akhtari et al., 2002] Akhtari, M., Bryant, H., Mamelak, A., Flynn, E., Heller, L.,
Shih, J., Mandelkern, M., Matlachov, A., Ranken, D., Best, E., DiMauro, M.,
Lee, R., and Sutherling, W. (2002). Conductivities of three-layer live human
skull. Brain Topography, 14(3):151–167. 26, 53

[Alliez et al., 2011] Alliez, P., Rineau, L., Tayeb, S., Tournois,
J., and Yvinec, M. (2011). 3D mesh generation. In CGAL
User and Reference Manual. CGAL Editorial Board, 3.8 edition.
http //www.cgal.org/Manual/3.8/doc html/cgal manual/packages.html#Pkg Mesh 3.
74

[Bashar et al., 2009] Bashar, M. R., Li, Y., and Wen, P. (2009). Eeg analysis on
skull conductivity perturbations using realistic head model. In Proceedings of the
4th International Conference on Rough Sets and Knowledge Technology, RSKT
’09, pages 208–215, Berlin, Heidelberg. Springer-Verlag. 23, 51

[Basser et al., 2000] Basser, P., Pajevic, S., Pierpaoli, C., Duda, J., and Aldroubi,
A. (2000). In vivo fiber tractography using DT-MRI data. Magnetic Resonance
in Medicine, 44:625–632. 6, 34, 159

[Baumann et al., 1997] Baumann, S., Wozny, D., Kelly, S., and Meno, F. (1997).
The electrical conductivity of human cerebrospinal fluid at body temperature.
IEEE Transactions on Biomedical Engineering, 44(3):220–223. 26, 54

[Baysal and Haueisen, 2004] Baysal, U. and Haueisen, J. (2004). Use of a priori
information in estimating tissue resistivities - application to human data in vivo.
Physiol. Meas., 25:737–748. 23, 51

[Belgacem, 2004] Belgacem, F. B. (2004). A stabilized domain decomposition
method with nonmatching grids for the stokes problem in three dimensions. SIAM
J. Numerical Analysis, 42(2):667–685. 141, 142

[Ben Belgacem and Maday, 1997] Ben Belgacem, F. and Maday, Y. (1997). The
mortar element method for three dimensional finite elements. Modélisation
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[Gonçalves et al., 2003] Gonçalves, S., de Munck, J., Verbunt, J., Heethaar, R., and
Lopes da Silva, F. (2003). In vivo measurement of the brain and skull resistivities
using an EIT-based method and the combined analysis of SEF/SEP data. IEEE
Transactions on Biomedical Engineering, 50(9):1124–1128. 27, 54

[Gramfort et al., 2008] Gramfort, A., Papadopoulo, T., Cottereau, B., Baillet, S.,
and Clerc, M. (2008). Tracking cortical activity with spatio-temporal constraints
using graph-cuts. In Biomag. 20, 47

[Gramfort et al., 2011] Gramfort, A., Papadopoulo, T., Olivi, E., , and Clerc, M.
(2011). Forward field computation with OpenMEEG. Computational Intelligence
and Neuroscience. v, 77

[Gramfort et al., 2010] Gramfort, A., Papadopoulo, T., Olivi, E., and Clerc, M.
(2010). OpenMEEG: opensource software for quasistatic bioelectromagnetics.
BioMedical Engineering OnLine, 9(45). v, 70, 76

[Gullmar et al., 2006] Gullmar, D., Haueisen, J., Eiselt, M.and Giessler, F., Flem-
ming, L., Anwander, A., Knosche, T., Wolters, C., M., D., D., T., and J., R.
(2006). Influence of anisotropic conductivity on EEG source reconstruction: in-
vestigations in a rabbit model. IEEE Trans. on Biomed. Engin., 53(9):1841–1850.
160
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