RSA Authentication for Secure Flashing of
Automotive ECUs

Eduardo Ciniglio* Emilio P. Mancinif Umberto Villano#

November 17, 2010

Abstract

In many embedded applications in the automotive field, there is
the need to protect the data and software in Electronic Control Units
(ECUs). To avoid illegal write and read operations on flash memo-
ries we propose a method to identify the operator in a secure way,
by means of asymmetric key cryptographic algorithms based on the
RSA standard. We measure the performance and memory usage of
the authentication system, discussing if they are compatible with the
memory footprint and processing power of embedded devices.

1 Introduction

Electronic Control Units (ECUs) have become pervasive in automotive sys-
tems. In most modern vehicles, they monitor a number of subsystems, from
motor to entertainment modules. Moreover, they control virtually every
function in luxury class vehicles. Typically the ECUs are embedded systems
made up of processor, a (small) amount of volatile memory, flash memory
and ROM. Most of the software and the data are stored in flash memories,
to make it possible the variation of control parameters or software upgrades,
as well as the addition of new functionalities.

In these systems, the security of the read/write access to flash memories
is undoubtedly an issue of paramount importance. Allowing the access to
unauthorized operators opens an easy way to frauds (e.g., odometer frauds:
odometer data is stored in flash memory), to the tuning of motor param-
eters to evade legal restrictions (e.g., speed limitations), or to the steal of
intellectual property (the copy of commercial software stored in the unit).

*STmicroelectronics, Via Remo De Feo, 1, 80022 Arzano (NA), Italy, ed-
uardo.ciniglio@st.com

TDip. di Ingegneria, Universita del Sannio, via Traiano 1, 82100 Benevento, Italy,
epmancini@unisannio.it

Dip. di Ingegneria, Universita del Sannio, Piazza Roma 21, 82100 Benevento, Italy,
villano @Qunisannio.it



Furthermore, non-skilled operators, such as the vehicle customers, have to
be prevented from updating the system with not fully-compatible software.

In light of the above, trusted flashing (the secure writing of new flashware
in the flash memory of the ECU) is a priority for ECU designers [10]; it
involves the addition of the concept of trust to the complete delivery process,
from development to the management of the flash memory by the final
operator.

Taking also into account the errors that may arise during the flashing,
the following security goals have been pointed out for the process [6]:

1. error detection: the ECU must be able to check if the flashware is
corrupted due to transmission problems;

2. authenticity: it should be guaranteed that the flashware comes from a
legitimate source;

3. copy protection: the flashware should be copied only on a determinated
ECU;

4. confidentiality: no unauthorized party should be able to read the flash-
ware;

5. authorization of the external programming tool (diagnostic tester) to-
wards the ECU: the diagnostic tester should be suitably recognized by
the ECU, in order to decide if the flashing has to be permitted or not.

This paper is essentially concerned with the last point, i.e., with the
methods that can be used to authenticate the diagnostic tester and/or the
flashing operator in order to prevent unauthorized modifications (or even
unauthorized reading) of the ECU software and data. It should be noted
that only recently this issue has been raised, proposing sufficiently robust
solutions. As a matter of fact, a common authentication method employed
in present-day ECU is based on the use of a digital comparator. This tries to
match a password stored in flash memory with the one that can be provided
by the diagnostic tester through a serial interface. If the passwords match,
the flashing operations are enabled. This protection method is simple and
un-expensive, but it can be easily circumvented by brute force attacks. In
fact, it is relatively simple to supply to the ECU the complete sequence of
keys until the valid one is found, even if this may require a long time. Once
the protection is broken, the key can be successively distributed using illegal
channels.

In order to prevent brute-force attacks, the above mentioned document
[6] defines a security procedure, to be implemented by a security module in
the ECU software. The diagnostic tester authenticates by requesting a seed
from the ECU, and computing a known function of the seed. The ECU
computes the same function of the seed as well. If the two computed keys



match, the authorization is successful and the ECU is “unlocked”. This
procedure prevents the use of brute-force key guessing, provided that the
seed is sufficiently random and, of course, that a “good” function is used for
computing the key from the seed. However, the choice of the function seems
to be left to the OEM [6].

It is common belief that the processing power and memory space avail-
able in a ECU do not lend themselves to the use of the time- and space-
expensive public key cryptographic algorithms. As we think that this is not
necessarily true with state-of-the-art devices, we will try to use for authenti-
cation a much more complex (and robust) method, based on the use of RSA
signatures, as defined by the PKCS#1-standard [5]. We have chosen RSA
as it is more widely used than ECC [4], which could be preferred because
of smaller key sizes and possibly lower computational cost. The objective
is not only to present a robust process to secure the access to flash mem-
ories with no additional hardware, but, more in general, to test whether
the complexity of public key cryptographic algorithms is compatible with
the features of present-day ECUs. The implementation that has been de-
veloped makes it possible to enable and disable selectively read /write/erase
operations, with the further possibility to restrict the authorization to one
or more (factory-defined) subsystems of the ECU.

This paper is structured as follows. In Section 2 the related work is
described. In Section 3 the reference scenario is presented and in Section 4
the proposed authentication system is discussed. Then Section 5 presents
the results of our tests as far as computing and memory requirements of the
authentication software are concerned. Finally, in Section 6, the conclusions
are drawn and future work is pointed out.

2 Related work

An effective protection of the flash devices can be implemented in hardware,
at the flash memory chip level [2]. In this solution, the flash memory inte-
grates a RSA module, a signature engine and a random number generator in
order to prevent unauthorized modifications of the memory content. How-
ever, this hardware implementation is relatively complex. This is the reason
for the most common choice in automotive ECUs of different approaches,
based on cryptographic software to be executed in the ECU processor, with
no additional hardware.

Security topics in the automotive field are widely dealt with in the litera-
ture. Weimerskirch, Wolf, and Wollinger describe the state of the art in [11].
They describe the possible attacks for automotive software and hardware,
and the constraints for security systems. Then they present the mechanisms
to protect the hardware, the software and communications, along with some
critical applications.



Adelsbach et al. [1] propose a method for secure delivery and installation
of software for embedded systems. The suggested technique involves the
use of both Public Key Broadcast Encryption and Trusted computing. In
particular, Trusted Computing requires additional hardware, and so the
ECU must be designed to support it. Our proposal, instead, wishes to
enable secure read and flashing with no additional hardware.

The OEM Initiative Software (HIS) proposes several solutions for flash
security. The specifications of the software module (the flashloader) used to
reprogram ECUs based on flashable microcontrollers are reported in [7] and
the underlying software security module in [6].

Stephan et al. [10], instead, focus on the secure flashing process. They
identify and describe the four steps of flashing process (the development,
the provisioning, the distribution and the flashing), and show how a Secu-
rity Management Center can support each step. The Security Management
Center is the entity that manages the cryptographic services. They intro-
duce also the security classes reported by the HIS in [6].

3 The authentication scenario

Public key cryptographic algorithms, also known as asymmetric key algo-
rithms, use a pair of different, but related, keys to encrypt and decrypt data.
In the basic encryption scheme, the first one, named private key, must kept
secret, and should be used to decrypt the data previously encrypted with
the public key, which can be distributed freely. The encrypted data cannot
be decrypted with the same key used for encryption, and the knowledge of
the public key is not sufficient to encrypt data as with the private key.

Public key cryptography is mainly used for encryption (to ensure confi-
dentiality) and for digital signatures (to ensure authenticity). Here we are
concerned with the latter point, as our objective is to authenticate the di-
agnostic tester of the ECU and its operator. In a signature scheme, the
private key is used to sign a message; anyone can check the signature using
the public key.

Our authentication system has the objective to enable some actions only
to the operators that hold the respective rights. Hence, as a first step,
it must properly recognize such operators by authenticating them. After
a successful authentication, it can (partially or totally) unlock the device,
making it possible to perform read or flashing operation on a range of flash
addresses. For simplicity’s sake, we have identified only two actors in the
reference scenario (Fig. 1): the ECU manufacturer, who designs and builds
both the device and the software, and the operator, who wishes to perform
some actions on the ECU through a diagnostic tester connected to the device.

In our scenario, for each operation, defined by the pair (type of operation,
address range), where type of operation can be read, write (flashing), or both,



Manufacturer Device Operator

1. Store public key———
2. Store allowed operation data——p»

3. Hand over private key -

|<@-4. Transmit operator authentication data—

|:5. Authenticate signature
’76. Verify data
| .

|

I:?. Enable authorized operation—

<@——8. Read/Write/Erase

Figure 1: The reference scenario

generates a public and a private key. The public key is stored together with
the data specifying the allowed operation in the device (1, 2). The private
key is handed over to the legitimate operator (3). In order to authenticate
himself, the operator generates a signature using his private key (4). This is
transmitted (together with information on the operation to be authorized)
by the diagnostic tester to the ECU, which independently authenticates the
signature using the public key corresponding to the requested operation (5,
6). If authentication is successful, the device is unlocked for the requested
operation (7, 8), until it is finished or the device is reset.
It should be noted that:

e it is very unlikely that a correct signature is generated without the
private key;

e inside the device, only public keys are stored. Even if they are read,
by means of an application code exploit, for example, security is not
compromised, as only the private key can generate valid signatures;

e there is no security leak if an operator makes its private key publicly
available, as the key is in any case tied to the particular operation
allowed to that operator, and, above all, the key is useless on any
other device (where a different public-private key pair is used).

In this scenario, the only performance-critical point is the authentication
(5), which, in our approach, must be executed using solely the computational
resources of the ECU.



4 The authentication system

Key
generator Encrypt Decrypt
. Reduced
RSA library RSA library
Standalone Embedded

Figure 2: The system architecture.

The implemented authentication software is made up of two crypto-
modules, as shown in Fig. 2. The first one is standalone, in that it does not
run on an ECU, but on a host computer, being used by the manufacturer
to generate the unique pair of keys that are associated with every operation
to be enabled/disabled. As is clear, there are no particular performance
requirements for this module. The second one is instead to be executed
in ECUs, to perform the authentication of the flashing operator and to
trigger the “unlocking” of the device. The performance of this module is
critical, due to the lack of memory space and low processing power of the
target devices. The implemented authentication module has been designed
to have as small a footprint as possible, and to be computationally efficient
using processor-specific instructions.

One of the most widely used asymmetric cryptographic algorithms is
RSA. A deep analysis of RSA can be found elsewhere [3,5,8]. In the next
paragraphs we will just outline the algorithm. To compute the two keys
used by RSA, a pair of random prime numbers, p and ¢ has to be chosen.
These can be used to compute the product n=pq. Another random number
e, should be chosen prime with the product (p-1)(g-1). The pair {n,e} is the
public key. The private key, d, can be computed by the equation d = e~*
(mod (p —1)(¢ — 1)). Our software generates the keys both as text and as
constants to be included in C files. The quality of the keys depends on how
random the numbers p and ¢ are. The implementation on which our code
is based (Havege, [9]) exploits the uncertainty introduced in the internal
states of the processor by external events to produce high quality random
numbers.

RSA, unlike other digital signature schemes, has many similarities to an
encryption scheme. So it may be worth to recall briefly that ¢;, the encrypted
version of the message m;, is computed by the equation: ¢; = m{ (mod n).
It can be decrypted by computing m; = cgl (mod n). The use of large keys
implies that such computations cannot be performed with the usual hard-
ware, and so the implementation has to support variable length arithmetic.
This slows down considerably the encrypting/decrypting operations.



Digital tester ECU
Vs -

TN AN
N o | ReadWiie/ |
( Authentication | Erase )
VA / \
\ J N /

\.

Vs ~ Massa;ge
{ as|
Message Hash )

)
\ /
\\7 /

Padding
data

Figure 3: The phases of authentication

One of most used signature schemas is the one with appendix. This
consists of a signature generation operation and a signature verification op-
eration. The signature generation operation produces a signature from a
message with a signer’s private key, and the signature verification operation
verifies the signature on the message with the signer’s corresponding public
key. To verify a signature constructed with this type of scheme it is neces-
sary to have the message itself. It is important to point out that in the RSA
scheme the signature generation and verification operations are essentially
the encryption and decryption primitives [5]. Hence the performance analy-
sis of the authentication schema is also valid for RSA encryption/decryption
operations.

The signature generation operation applies a message encoding operation
to a message to produce an encoded message, which is successively converted
to an integer message representative. A signature primitive is applied to the
message representative to produce the signature. On the other hand, the
signature verification operation applies a signature verification primitive to
the signature to recover a message representative, which is then converted to
an encoded message. A verification operation is applied to the message and
the encoded message to determine whether they are consistent. The encod-
ing method can be deterministic (e.g., EMSA-PKCS1-v1.5) or randomized
(e.g., EMSA-PSS) [5], but these details are out of the scope of this paper.

For our purposes, it worth mentioning that the message is a structure
containing the ECU code, the operator credentials and the details of the
flashing operation to be authorized (type of operation, address range). The
ECU code is redundant, as the private key handed to the operator is uniquely
linked to the ECU. Similarly, the details of the flashing operation are not
really necessary, as they are permanently stored in the ECU ROM along with
the private key to be used. On the other hand, the operator credentials could
be used to implement a higher security level, restricting operations to some
class of operators, even if in possession of the valid private key.

In any case, the phases of authentication are those shown in Fig. 3. It
is worth pointing out that authentication requires the use of an encryption



operation at the operator side. The authentication data transmitted to the
ECU are to be decrypted for authentication purposes at the ECU side. Due
to the padding of original message, the length in bytes of the data encrypted
data will be equal to the key length chosen [8].

9000

8000

7000

6000

5000

Bytes

4000

3000

2000
1000 (““‘W
0
By
2

Key size

Figure 4: Dynamic memory requirements

5 Memory usage and performance analysis of the
embedded module

Our authentication system has been extensively tested, both on embedded
devices and on standard PCs, to evaluate the performance using different key
lengths. For the reasons mentioned in the previous section, authenticating
the operator at the ECU side requires the decryption of a block of data whose
size is equal to the key size. The results that we will present here have been
obtained on an ARM Cortex M3, a Qualcomm 7200 and an Intel Xeon
processor. The first processor is available in a low cost ST development
system, the STM32-PerformanceStick. This provides a Cortex-M3 CPU
running at 72 MHz with 128 KB of Flash and 20 KB SRAM [12]. The
second test device was a Qualcomm 7200 running at 400MHz, under the
Windows Mobile 6.0 operating system. The last test device was a standard
PC with a XEON CPU running at 3.2 GHz under Windows XP. It is clear
that the only platform of interest in the automotive field is the ARM Cortex,
which is widely used for embedded applications. The results on the other
two processors, which are mainly used in hand-held and desktop devices
(for the Qualcomm 7220 and the Xeon, respectively), are provided just as a
reference.

The dynamic memory requirements of the embedded authentication mod-
ule (i.e., the one that has to be executed in the ECU) are presented in Fig.
4. In addition, the authentication framework also needs about 8 KB to store



1000

T
Cortex M3
I 200

0.1

Key size

Figure 5: Execution times

the compiled code (in the case of the Tasking C compiler for Arm Cortex
M3). Of course, different compilers may require different amounts of mem-
ory. This difference may increase for different architectures (e.g., RISC vs.
CISC, 32 bit vs. 64 bit, ...). Clearly, the implementation of additional
functions requires more memory. Another important point is the evaluation
of the the variations of decryption time as a function of key length. A longer
key is more secure, but leads to higher response times and to larger memory

requirements.
Key Cortex M3 Qualcomm 7200 Xeon 3.2
bits ms  cycles (10%)  ms  cycles (10°) ms  cycles (10%)
512 9.66 0.70 2,08 0.62 0,29 0.83
1024  33.46 241 6,68 2.00 0,97 2.67
2048 135.72 9.77 24,98 7.49 3,48 9.99

4096  455.70 32.81 92,00 27.60 13,07 36.80

Table 1: Performance data in ms and clock cycles

The response times presented here for a variety of computing platforms
are the times required for decryption, and do not include any message trans-
mission or delivery time. They are shown in Tab. 1 and in Fig. 5. As was
to expected, the response time trend, as a function of key size, is similar in
different architectures. On the other hand, the response times differ heavily
for each testbed. To make a better comparison on different architectures,
we have also expressed the response time figures in terms of clock cycles.
The results are shown in Fig. 6. In fact, the use of the number of cycles as
performance index shows that there is no great difference between the three
processors, and that the long response times of the Arm Cortex M3 are due
to its slow operating frequency.

Whether the memory requirements of the crypto-libraries used for au-



1e+008

dorlex M3 ——
Qualcor joiecect
X

1e+007 £

Clock cycles

1e+006

100000

«

.
e7
K

%
S
S

ey size (bits)

Figure 6: Performance analysis in clock cycles.

thentication are compatible or not with embedded automotive applications,
depends on the footprint of the memory available in the ECU. 8 KB for data
and about 8 KB for code (the memory requirements for a 4096-bit key) are
not too much, after all. On the other hand, 455 ms (the time required to
decrypt a block in the case of a 4096-bit key) are decidedly a long time. In
the case of authentication, this time penalty has to be paid only one time,
and it is likely to be acceptable. In the case of encrypted communications
between ECU and diagnostic tester, the delay is not tolerable. At the state
of the art, low-frequency CPUs such as the Cortex M3 cannot yet afford
long key lengths. However, the use of the CPU-eager RSA cryptography
with shorter keys is certainly feasible at the state of the art.

6 Conclusions

In the automotive field securing the access to data is a challenge. Intellec-
tual properties steals, or malicious tuning of vehicle parameters should be
prevented. New market paradigms, such as value-added software vending,
make this a very important point.

In this paper, we have presented an authentication system that can be
used for embedded devices in the automotive field, to enable only authorized
flashing operations. Our system is based on the authentication procedure of
the RSA standard, and can run in embedded devices without any additional
hardware.

It is widespread opinion that RSA authentication is too complex for em-
bedded devices, which are typically provided with simple and rather slow
CPUs and small memory footprints. We have measured the performance of
our implementation on various architectures, finding that memory require-
ments are not too high, but that long keys (e.g, 2048-4096 bits) require a
processing power inadequate to low frequency ECU processors. As the au-

10



thentication is based on RSA encryption/decryption operations, this results
is also true if the RSA standard is chosen to provide encrypted communica-
tion between diagnostic tester and ECU. However, we believe that the use
of the standard and of asymmetric key cryptography is currently possible,
if shorter keys are used.

Currently we are porting our code to ST Power Train & SafetyProducts,

which are based on the Power PC Architecture. We expect that this family
of processor will enable the use of longer keys, which is prohibitive with
most CPUs available currently in ECUs.

References

1]

André Adelsbach, Ulrich Huber, and Ahmad-Reza Sadeghi. Secure
software delivery and installation in embedded systems. In Embedded
Security in Cars, pages 27-49. Springer Berlin Heidelberg, 2006. http:
//www.springerlink.com/content/m848u3w345776k16/.

Tiago Alves and John Rudelic. ARM Security Solutions and Intel Au-
thenticated Flash, 2007. available on-line.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, Second Edition. The MIT Press,
September 2001.

Darrel R. Hankerson, Alfred J. Menezes, and Scott A. Vanstone. Guide
to Elliptic Curve Cryptography. Springer-Verlag, 2004.

RSA Laboratories. PKCS 1: RSA cryptography standard, 2006. ftp:
//ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf.

Thomas Miehling, Burkhard Kuhls, Heiko Kober, Hart-
mut Chodura, and Marcus Heitmann. HIS Security Mod-
ule Specification, version 1.1. Technical report, Daimler
Chrysler AG, 2007. http://www.automotive-his.de/download/
HISSecurityModuleSpecificationV1.1.pdf.

Thomas Miehling, Pavel Vondracek, Martin Huber, Hartmut
Chodura, and Gerhard Bauersachs. HIS Flashloader Spec-
ification, version 1.1. Technical report, Daimler Chrysler
AG, 2006. http://wuw.automotive-his.de/download/
HISFlashloaderSpecificationvl.1.pdf.

Bruce Schneier. Applied Cryptography, Second Edition: Protocols, Al-
gorthms, and Source Code in C. Wiley Computer Publishing, 2 edition,
1996.

11



[9]

[11]

[12]

André Seznec and Nicolas Sendrier. HAVEGE: a user-level software
heuristic for generating empirically strong random numbers. In ACM
Transaction on Modeling and Computer Simulations (TOMACS), vol-
ume 13, pages 334—-346, october 2003.

Winfried Stephan, Solveig Richter, and Markus Miiller. As-
pects of secure vehicle software flashing. In Embedded Se-
curity in Cars, pages 17-26. Springer Berlin Heidelberg, 2006.
http://www.springerlink.com/content/pk72544uvnp15t63/7p=
493bfbc3b7b2481c8acbc755e6f543cakpi=1.

A. Weimerskirch, M. Wolf, and T.Wollinger. State of the art: Em-
bedding security in vehicles. FURASIP Journal on Embedded Systems,
Special Issue: Embedded Systems for Intelligent Vehicles, 2007. http:
//www.hindawi.com/GetArticle.aspx?doi=10.1155/2007/74706.

Joseph Yiu. The Definitive Guide to the ARM Cortex-M3. Newnes,
August 2007.

12



