
Mobile Agents Self-optimization with MAWeS

Emilio Pasquale Mancini1, Massimiliano Rak2,
Salvatore Venticinque2, and Umberto Villano1

1 Università del Sannio, Benevento, Italy
{epmancini, villano}@unisannio.it

2 Seconda Università di Napoli, Via Roma 29, IT-81031 Aversa (CE), Italy
{massimiliano.rak, salvatore.venticinque}@unina2.it

Abstract. In mobile agents systems, classical techniques for system op-
timization are not applicable due to continuous changes of the execution
contexts. MAWeS (MetaPL/HeSSE Autonomic Web Services) is a frame-
work whose aim is to support the development of self-optimizing auto-
nomic systems for Web service architectures. In this paper we apply the
autonomic approach to the reconfiguration of agent-based applications.
The enrichment of the Aglet Workbench with a Web Services interface is
described, along with the extensions to the MAWeS framework needed to
support the mobile agents programming paradigm. Then a mobile agents
application solving the N-Body problem is presented as a case study.

1 Introduction

The mobile agents programming paradigm is an emerging approach for dis-
tributed programming. Agents-based platforms are considered good solutions in
many fields, such as GRID [1,2,3] or SOA (Service Oriented Architecture) [4,5].
In mobile agents systems, classical techniques for system optimization (such as
ad-hoc tuning, performance engineered software development, ...) are hard to
apply. This is essentially due to continuous changes of the execution contexts,
as an agent is able to suspend its own execution, to transfer itself to another
agent-enabled host and to resume its execution at that destination. So, even if
the mobile agents approach may help to develop performance-oriented applica-
tions, in practice the only solution to guarantee critical requirements seems to
be the use of an architecture able to auto-configure and to auto-tune until the
given requirements are met. Moreover, when an agent moves itself, it impacts
the state of the new system. A prediction of the modified state can help to make
good choices for agents reconfiguration.

Autonomic computing [6,7,8,9], whose name derives from the autonomic ner-
vous system, aims to bring automated self-management capabilities into comput-
ing systems. In previous papers, we have introduced MAWeS (MetaPL/HeSSE
Autonomic Web Services) [10,11], a framework whose aim is to support the de-
velopment of self-optimizing autonomic systems for Web service architectures. It
adopts a simulation-based methodology, which allows to predict system perfor-
mance in different status and load conditions. The predicted results are used for

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 1158–1167, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Mobile Agents Self-optimization with MAWeS 1159

a feedforward control of the system, which self-tunes before the new conditions
and the subsequent performance losses are actually observed.

MAWeS is based on two existing technologies: the MetaPL language [12] and
the HeSSE simulation environment [13]. The first is used to describe the software
system and the interactions inside it; the latter, to describe the system behavior
and to predict performance using simulation. Using MAWeS, it is possible to add
self-adaptive features both at service level, i.e., building up services that optimize
themselves in function of their overall usage [11], and at application level, i.e.,
focusing on the application behavior [10]. In the latter case, a standard client
application interface, MAWeSclient, provides the general services that can be
used and extended to develop new applications.

In this paper we propose to apply the proposed approach to the reconfigura-
tion of agent-based applications integrating the Web Service and mobile agent
programming paradigm. We aim at defining the potentiality of this approach
and at proposing an architecture able to build self-optimizing agents. In order
to achieve this result, we had to extend both mobile agent platforms and the
framework architecture. Moreover, we had to build extensions to the description
language and the simulation engine.

The reminder of the paper is organized as follows. The next section presents
previous work and the scientific background. Section 3 describes our proposal,
presenting the extension made to both the mobile agents platform and the
MAWeS framework. Section 4 deals with an example, showing a mobile agents-
based NBody application and its integration within MAWeS. The paper will
end with our conclusions, which summarize the results obtained, and with a
discussion of our future work.

2 Background

Our proposal for mobile agents self-optimization relies on previous research and
on a large amount of existing software tools. In order to present the work done, in
this section we introduce the main concepts about the mobile agent programming
paradigm adopted, describing the chosen platform. Moreover, we describe the
state of the art of the optimization framework adopted, MAWeS.

A mobile agent is a software agent with an added feature: the capability to
migrate across the network, together with its own code and execution state. This
paradigm allows both a pull and a push execution model [14]. In fact, the user
can choose to download an agent, or to move it to another host. Mobility can
provide many advantages for the development of distributed applications. Sys-
tem reconfiguration by agent migration can help to optimize the execution time
by reducing network traffic and interactions with remote systems. Furthermore,
stateful migration allows to redistribute dynamically the agents for load bal-
ancing purposes. Several different criteria can guide agent distribution, such as
moving the execution near to the data, exploiting new idle nodes, or allocating
agents on the nodes in such a way that communications are optimized.

1160 E.P. Mancini et al.

Due to previous experiences and for the facilities it offers, we chose to adopt
the Aglet Workbench, developed by IBM Japan research group [15]. Af far as
interoperability is concerned, the Aglet Workbench is compliant with the MASIF
specification [16]. It relies on a transport protocol that is an extension of http.

The MAWeS Framework has been developed to support the predictive auto-
nomicity in Web Service-based architectures. It is based on two existing tech-
nologies: the MetaPL language [12] and the HeSSE simulation environment [13].
The first is used to describe the software system and the interactions inside it;
the second, to describe the system behavior and to predict performance using
simulation.

MetaPL is an XML-based meta-language for parallel program description,
which, like other prototype languages, can also be used when applications are
not (completely) available [12]. It is language independent, and can be adopted
to support different programming paradigms. It is structured in layers, with a
core that can be extended through Language Extensions, implemented as XML
DTDS. These extensions introduce new constructs into the language. Starting
from a MetaPL program description, a set of extensible filters makes it possible
to produce different program views.

HeSSE is a simulation tool that allows to simulate the performance behavior
of a wide range of distributed systems for a given application, under different
computing and network load conditions. It makes it possible to describe dis-
tributed heterogeneous systems by interconnecting simple components, which
reproduce the performance behavior of a section of the complete system (for
instance a CPU, a network . . .). These components have to reproduce both the
functional and temporal behavior of the subsystem they represent.

The MAWeS framework uses MetaPL descriptions and HeSSE configuration
files to run simulations. Through the execution of multiple simulations, differ-
entiated by one or more parameter values, it chooses the parameter set that
optimizes the software execution. MAWeS is structured in three layers. The first
one is the front-end, which contains the software modules used by final users
to access the MAWeS services. The second one is the core, which includes the
components that manage MetaPL files and make optimization decisions. The
last one contains the Web Services used to obtain simulations and predictions
through MetaPL and HeSSE.

MAWeS operates adopting two strategies:

Service Call optimizations (simulation, evaluation of the choices and applica-
tion tuning) take place at application startup (increasing the application
startup latency).

Reactive optimizations (simulation, evaluation of the choices and application
tuning) take place asynchronously with the application and do not affect the
application performance, except when the framework decides to change the
application behavior.

The MetaPL/HeSSE WS interface defines a set of services that make it pos-
sible to automate the application of the methodology. When the MAWeS frame-
work is firstly used, it is necessary to describe the components in MetaPL. This

Mobile Agents Self-optimization with MAWeS 1161

can be done before starting the development to obtain a prototype view to an-
alyze (and to optimize), or, in parallel with it, to verify the design choices.

Inside the meta-description, it must be suitably identified the set of parame-
ters that can be modified by the optimization engine. MAWeS will automatically
perform a set of simulations varying the values of these parameters to find the
optimal value set. The user can specify the tunable parameters by means of
the autonomic MetaPL extensions, which define new MetaPL elements for the
Mapping section [10].

3 MAWeS and Agents Integration

As pointed out in the introduction, the mobile agents paradigm is a powerful pro-
gramming technique, which can help to reconfigure an application in a very easy
and clean way, distributing data in a distributed system and possibly achieving
better performance through load balancing. On the other hand, evaluation of
overhead and actual performance of the application may be a hard task: agents
run in an hosted environment (the mobile agent platform) that hides completely
the hardware behavior. So, it is difficult to find out the best configuration for
an application. The most viable solution seems to be the development of self-
adapting applications.

The MAWeS Framework was initially developed in order to help applica-
tion self-configuration, embedding into them a client that evaluates many dif-
ferent hardware/software configurations (i.e., distributions of software onto a
distributed system and application parameters) in a completely different context,
namely Web Services and hence service-oriented applications. In order to adapt
the MAWeS framework to applications based on the mobile agents paradigm, it
is necessary:

– to describe the evolution of a mobile agent application, in order to make it
possible the prediction of its performance behavior on the target environ-
ment. This leads to the requirement for a Mobile Agent Extension for the
MetaPL description language;

– to simulate the execution of the mobile agent based application. This involves
the development of a new HeSSE library modeling the agents and their run-
time support;

– the framework should be able to control and to change the mobile agents-
based application. So it has to communicate with agents and/or their
platform and to be able to move/clone/destroy/. . . the agents and to com-
municate with them through messages. Moreover, an agent should be able to
invoke the framework in order to notify new changes into the environment.

The last point opens a new universe of problems, as it involves the integration
between mobile agents application and the web services programming paradigm,
which is the only form of interaction supported by MAWeS. We focused on two
different ways to integrate a WS interface to mobile agent systems:

1162 E.P. Mancini et al.

Mobile Agents as WS clients. A mobile agent is able to access to an exter-
nal web services, i.e., it directly performs SOAP requests. This approach lets
an agent to invoke MAWeS services.

Mobile Agent Platform as a WS server. The mobile agents platform has
a Web Services interface. A WS client can access the mobile platform and
send messages to the agents and/or change their state (clone, migrate, ...)

In order to simplify the implementation, here we focus only on the MAWeS
Service Call Optimization strategies. This means that we aim at optimizing the
starting distribution of the mobile agents to the distributed environment. Once
the application is started, its behavior does not change. As a consequence, we
implemented only the second proposed technique for mobile agent and WS inte-
gration, modifying the existing Aglets platform in order to add a Web Services
interface.

Moreover, we assume that the available distributed environment does not
change frequently, and so the data about the available platforms and their per-
formance may be collected off-line, thus being available when the application
starts. This implies that the MAWeS framework does not need to discover dy-
namically the changes in the execution environment (such as the availability of
a new agent platform), as this information is provided to the framework off-line.

3.1 Mobile Agents and Web Services

To support the interaction between a mobile agent system and MAWeS, we en-
riched the Aglet Workbench [15] with a Web Service interface. We developed a
Web Service that implements a SOAP bridge, enabling any requestor to invoke
the agent platform facilities and to interact with the agents hosted locally or
with remote ones. Furthermore, many basic platform facilities such as creation,
cloning, dispatching have been exported as services. The available methods pro-
vide functionalities for agents creation, disposal, cloning, migration and discov-
ery, along with point-to-point and multicast messaging. These methods invoke
the Aglets API to exploit the functionalities of the agent context that has been
created at startup. In order to add a Web Service interface to the agent platform,
we turned it into a web application, to let it be executed in a container of the
chosen application server, Jakarta Tomcat.

It should be noted that communication among agents and among agent servers
exploits the Agent Transfer Protocol. On the other hand, communication be-
tween web service clients and the platform relies on SOAP messages, which are
handled directly by Tomcat. SOAP messages may be service requests, such as
agent creation or migration, or messages to be forwarded to the agents. The
enhanced web agent platform will take care of distinguishing between the two,
forwarding the incoming SOAP messages to the agents or performing the invoked
service.

3.2 The MAWeS Agent Extended Architecture

Mobile agent-based applications launch depends on the platform chosen for their
execution. Usually the graphical interface offers a screen in which the user

Mobile Agents Self-optimization with MAWeS 1163

chooses the class to be executed. The agents code is already on the server or
accessible from a remote codebase. Thanks to the newly developed Web Services
interface, we are able to create and to run an agent through a web services client
application, which invokes the target environment. This client application is an
extension of the standard MAWeS client.

The agent-based MAWeS client contains the description of the target mobile
agents, MetaPL documents, and the link to their code (i.e., the link needed by the
platform to create and to start up the agent). When the user starts up the client,
it queries the MAWeS engine, which returns the list of servers to be adopted, the
number of agents to start on each server and, possibly, application-dependent
parameters.

The MAWeS core was extended in order to maintain information about the
available mobile agents platforms. At the state of the art, the core retrieves
the list of the available hosts and their performance parameters using an UDDI
register. This means that parameters are statically stored. Future extensions will
provide a protocol to check that the platforms are active and to measure their
performance. The resulting architecture is shown in Figure 1.

Fig. 1. The MAWeS Extended Framework for Mobile Agents

3.3 MetaPL Extension

The newly developed MetaPL extension defines a set of new MetaPL elements:

Agent this element replaces the standard MetaPL Task element and contains
all the agent code. name and id attributes identify the agent.

Create this element represents an operation of agent creation. It describes the
case in which an agent invokes the platform in order to create a new agent
locally. The attribute agent contains the name of the type of agent created.

1164 E.P. Mancini et al.

Clone this element represents an operation of cloning by an agent; it describes
the case in which an agent invokes the platform in order to duplicate itself.

Dispose this element represents an operation of disposal by an agent (or an
application). It describes an invocation to the platform in order to destroy
an agent. The attribute agentID contains the identifier of the agent to be
disposed.

Activate/Deactivate these elements represent an operation of activation/de-
activation by an agent, an invocation to the platform in order to pause or
awake an agent. The attribute agentID contains the identifier of the agent
affected by the instruction.

handleMessage this element represents the activation of the message handling
mechanism inside the agent. Message passing adopts the standard message
passing MetaPL extension.

Platform this element, containedin the mapping section, represents an avail-
able platform. It supports the platformID attribute, which identifies the
platform.

AgentInstance this element, contained in the mapping section, represents an
available agent. It supports the agentID attribute, which uniquely identifies
the agent and a StartPlatformID, which describes the platform on which
it is created at startup.

All the elements support an optional PlatformID attribute, which reports
the identifier of the target mobile agent platform. Figure 2 shows an example
of MetaPL description. It contains the description of an agent A which creates
an agent B and migrates on a new platform. Agent B just migrates on a new
platform.

3.4 HeSSE Library

HeSSE is a complex simulation environment, easily extensible due to the adop-
tion of a component-based approach. It is out of the scope of this paper to give

<MetaPL>
<Code>
<Agent name="A">

<Create name="B" /> <Migrate aglet="test" platformID="2" />
</Agent>
<Agent name="B"> <Migrate aglet="test" platformID="2" /> </Agent>

</Code>
<Mapping>
<Platform platformID="1"/> <Platform platformID="2"/>
<AgentInstance name="A" platformID="1"/>
<AgentInstance name="B" platformID="1"/>

</Mapping>
</MetaPL>

Fig. 2. An Example of Mobile Agent MetaPL Description

Mobile Agents Self-optimization with MAWeS 1165

a detailed description of the simulation models adopted by the simulator and
of the details of the models developed to simulate the agents. This section will
give an overview of the newly developed components and of their behavior and
usage. In order to simulate the Aglets mobile agents platform, we developed a
library that extends the features of an existing Message Passing library. The
newly developed library offers the following components:

Aglet Daemon. It is the Aglets daemon, and corresponds to the mobile agent
platform. This component offers to the simulation environment the service
to control the agents.

Aglet Data. This component is used only to maintain common information
among multiple platforms.

Aglet. It reproduces the behavior of a single agent. It is fed with a trace file,
whose format is the same of the “original” HeSSE Message Passing trace files,
extended with constructs to take into account the typical agent operations
(create, clone, dispose, migrate, activate, deactivate).

4 An Example of Tool Execution

As case study, we propose a mobile agent application able to solve the problem
of gravitational interaction between n different bodies (NBody problem) [14].
The sequential algorithm that solves the well-known N-body problem computes,
during a fixed time interval, the positions of N bodies moving under their mutual
attraction. The program repeats, in steps of a fixed time interval, the construc-
tion of an octal tree (octree) whose nodes represents groups of nearby bodies,
the computation of the forces acting on each particle through a visit of the oc-
tree, the update of position and speed of the N particles. Figure 3 describes the
behavior of the application. Note that the application involves a set of different
agents. The main agent, master, waits for a message from the available workers,
in order to coordinate them. Each worker, once created, signals the master and
starts computations. The MAWeS Client contains the MetaPL descriptions, and
at application startup, it sends them to the MAWeS Core. In this case we does
not take into account any application specific parameter, so the tool has only
to get the list of available platforms, and decide how many agents to start and
where. The list of available platforms is stored in an UDDI register together
with their performance indexes useful for simulation. The MAWeS core, so, gen-
erates a new set of mapping sections, as shown in Figure 3 (mapping section)
composed of the list of available platforms, the Number of Agents to be created
and the list of Agent Instances. The tool generates a different mapping section
for each different configuration to be tested. By default, it generates a number
of mapping sections that is two times the number of available platforms, with
an increasing number of agents of the worker type. The resulting document is
given to the MAWeS component, which performs performance evaluations (MH-
Client), simulating the configuration and returning the predicted response time.
The MAWeS core returns to the client the mapping section, together with a

1166 E.P. Mancini et al.

<Code>
<Agent name="master" >

<Loop iteration="Nstep" > <Block>
<Loop iteration="NAgentstep" > <Block>

<Receive kind="ready" />
</Block></Loop>
<Multicast kind="go" /> <Multicast kind="subtree"/>
<Multicast kind="subforces"/> <Multicast kind="posANDvel"/>

</Block></Loop>
</Agent>
<Agent name="Worker">
<CodeBlock region="Initialize" />
<Loop iteration="Nstep" > <Block>

<Send to="master" kind="ready" /> <Receive kind="go" />
<Codeblock region="BuildTree" />
<Multicast kind="subtree" /> <Receive kind="subtree" />
<Codeblock region="Compute" />
<Multicast kind="subforces"/> <Receive kind="multicast" />
<Codeblock region="Update" />
<Multicast kind="posANDvel"/> <Receive kind="posANDvel" />

</Block></Loop>
</Agent>

</Code>
<Mapping>

<Platform platformID="1"/> <Platform platformID="2"/>
<NumberOfAgents value="3" variable="NAgent"/>
<AgentInstance name="master" platformID="1"/>
<AgentInstance name="worker" platformID="1"/>
<AgentInstance name="worker" platformID="2"/>

</Mapping>

Fig. 3. NBODY with mobile Agent MetaPL Description

link to the available platforms. Then the MAWeS client starts the agent on the
chosen platforms.

5 Conclusions and Future Work

In this paper we have proposed an extension to the MAWeS framework for
building self-optimizing mobile agent applications. We have shown its new ar-
chitecture, and the main extension to the description language MetaPL and to
the HeSSE simulator. Moreover, the Aglet mobile agents platform has been ex-
tended to turn it into a web application. We have shown how the framework can
work on a simple example. As this paper presents only the tool architecture and
its main features, a next step for our research will be a detailed performance
analysis of the approach, pointing out the conditions in which the tool can be
useful.

Mobile Agents Self-optimization with MAWeS 1167

References

1. Zhang, Z.R., Luo, S.W.: Constructing grid system with mobile multiagent. In: Int.
Conf. on Machine Learning and Cybernetics, vol. 4, pp. 2101–2105 (November
2003)

2. Tveit, A.: jfipa - an architecture for agent-based grid computing. In: AISB’02 Con-
vention, Symposium on AI and Grid Computing (2001)

3. Aversa, R., Martino, B.D., Mazzocca, N., Rak, M., Venticinque, S.: Mobile agents
approach the grid. In: Martino, B.D.M., et al. (eds.) Engineering the Grid: status
and perspective, American Scientific Publishers (2006)

4. Greenwood, D., Calisti, M.: Engineering web service - agent integration. In: IEEE
Conference of Systems, Man and Cybernetics, The Hague, IEEE Computer Society
Press, Los Alamitos (2004)

5. Lyell, M., Rosen, L., Casagni-Simkins, M., Norris, D.: On software agents and web
services: Usage and design concepts and issues. In: 1st International Workshop on
Web Services and Agent Based Engineering, Sydney, Australia (July 2003)

6. Birman, K.P., van Renesse, R., Vogels, W.: Adding high availability and autonomic
behavior to web services. In: Proc. of 26th Int. Conf. on Soft. Eng., Edinburgh,
UK, pp. 17–26. IEEE Computer Society Press, Los Alamitos (2004)

7. IBM Corp.: An architectural blueprint for autonomic computing. IBM Corp., USA
(October 2004)

8. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

9. Zhang, Y., Liu, A., Qu, W.: Software architecture design of an autonomic system.
In: Proc of 5th Australasian Workshop on Software and System Architectures,
Melbourne, Australia, pp. 5–11 (April 2004)

10. Mancini, E., Rak, M., Torella, R., Villano, U.: Predictive autonomicity of web
services in the MAWeS framework. J. of Computer Science 2(6), 513–520 (2006)

11. Mancini, E., Rak, M., Villano, U.: Autonomic web service development with
MAWeS. In: Proc. of 20th Int. Conf. AINA06, Austria, pp. 504–508 (April 2006)

12. Mazzocca, N., Rak, M., Villano, U.: MetaPL a notation system for parallel program
description and performance analysis. In: Malyshkin, V. (ed.) PaCT 2001. LNCS,
vol. 2127, pp. 80–93. Springer, Heidelberg (2001)

13. Mancini, E., Mazzocca, N., Rak, M., Torella, R., Villano, U.: Performance-driven
development of a web services application using MetaPL/HeSSE. In: Proc. of 13th
Euromicro Conf. on Parallel, Distributed and Network-based Processing, Lugano,
Switzerland (February 2005)

14. Grama, A., Kumar, V., Sameh, A.: Scalable parallel formulations of the barnes-hut
method for n-body simulations. Parallel Computing 24, 797–822 (1998)

15. Lange, D., Oshima, M.: Programming and Deploying Java Mobile Agents with
Aglets. Addison-Wesley, Reading (1998)

16. Milojicic, D., et al.: Masif: The omg mobile agent system interoperability facility.
In: Rothermel, K., Hohl, F. (eds.) MA 1998. LNCS, vol. 1477, pp. 50–67. Springer,
Heidelberg (1998)

	Mobile Agents Self-optimization with MAWeS
	Introduction
	Background
	MAWeS and Agents Integration
	Mobile Agents and Web Services
	The MAWeS Agent Extended Architecture
	MetaPL Extension
	HeSSE Library

	An Example of Tool Execution
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

