
Performance Oriented Development and Tuning
of GRID Applications

Emilio Mancini1, Massimiliano Rak2, Roberto Torella2, and Umberto Villano1

1 Universitá del Sannio, Facoltá di Ingegneria
C.so Garibaldi 107, 82100 Benevento, Italy

{epmancini,villano}@unisannio.it
2 DII, Seconda Universitá di Napoli

via Roma 29, 81031 Aversa(CE), Italy
{massimiliano.rak,r.torella}@unina2.it

Abstract. GRID Application development is a hard task. Good applications
should correctly use large distributed systems, whose infrastructure heavily af-
fects the application performance. In this paper we propose a performance oriented
approach to GRID application development, founded on the use of a prototype
language (MetaPL) for the description of the applications and the use of a hetero-
geneous system simulation environment (HeSSE) for performance prediction. We
developed GRID simulation components for the existing simulation environment
(HeSSE) and validated them. After that we extended the MetaPL language in order
to explicitly support GRID application features and simulated a simple case study
to show how the approach works.

1 Introduction

The presence of distributed software systems is pervasive in current computing appli-
cations. In commercial and business environments, the majority of time-critical appli-
cations has moved from mainframe platforms to distributed systems. In academic and
research fields, the advances in high-speed networks and improved microprocessor per-
formance have made clusters or networks of workstations and Computational GRIDS
an appealing vehicle for cost-effective parallel computing. However, the systematic use
of distributed programming can be frustrating, especially if the final application per-
formance is more than an issue. Even if great effort has been putting in developing
methodologies and tools that could help the final programmer to develop application
independently from the underlying architecture, as happen in GRID environment, very
few results have been obtained to support prediction and evaluation of prototypal ap-
plication. In the last few years, our research group has been active in the performance
analysis and prediction field, developing HeSSE [6-7], a simulator of distributed ap-
plications executed in heterogeneous systems, and MetaPL a prototypal-base language,
based on XML, able to support many different programming paradigm. This paper
presents a simulation-based methodology, founded on HeSSE and MetaPL, that makes
it possible to predict GRID application and system performance, even when the execu-
tion environment is not available and the application is not completely developed. This

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 509–518, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

510 Emilio Mancini et al.

methodology can be used as the basis for performance-driven GRID application devel-
opment or GRID system performance tuning and design. The reminder of the paper is
structured as follow: next section will show briefly the related work on the GRID sim-
ulation. Section 3.2 will describe our simulation environment and modeling technique
and the newly developed the GRID extensions; the section will point out the simula-
tion components developed and their validation. Finally the approach will be applied
on a simple case study and then compared to the actual results obtained in the real (i.e.,
non-simulated) GRID environment, discussing the accuracy of the model used and the
effectiveness of the proposed approach. The paper ends with a section on conclusions and
future work.

2 Related Work

The performance analysis and tuning of applications, along with the optimization of
scheduling and resource allocation algorithms, are widely recognized as particularly
hard problems in Grids. Long application running times, non-repeatability of tests, not
to mention economic problems, prevent the use of real applications running on real
hardware to grade the effectiveness of alternative solutions. Most of the contributions
in literature try to predict application running times, network load and end-to-end data
transfer times by statistic models of historical data. An alternative, and probably more
manageable solution, is to resort to simulation environments that enable reproducible,
controlled and systematic evaluation of middleware, applications, and network services
for the Grid. However, none of the simulations environments currently available seems
able to provide accurate, fast and robust performance evaluations and analysis of full-
scale Grid applications and middleware. In particular, the objective of the Bricks project
[4] is to simulate alternative scheduling policies for client-server systems that provide
remote access to computing services over the Grid. Bricks makes it possible to simu-
late alternative resource allocation strategies and policies for multiple clients, multiple
servers scenarios. However, Bricks follows centralized global scheduling methodology
and hence it is not suitable for simulation of environments where there are multiple
un-coordinated schedulers. Microgrid [5] is a simulation environment that provides a
virtual grid infrastructure for the study of Grid resource management issues. In fact, it is
actually an emulator, in that actual application code is executed on a virtual Globus envi-
ronment. While on the one hand this characteristic leads to high accuracy results, on the
other it affects negatively simulation speed. In practice, most applications are executed
in Microgrid in a time longer than the one required in the actual environment, thus mak-
ing the use of the simulator not viable to perform large number of experiments. Simgrid
[6] is instead a C language-based toolkit for the simulation of application scheduling. It
supports the modeling of time-shared resources, taking into account the load which can
be described synthetically or obtained by previously-collected real traces. As Bricks,
Simgrid makes it possible to model environments where there is a single scheduling
entity, with the further constraint that the systems must be time-shared. Hence it is not
directly utilizable for simulating multiple competing users, applications, and schedulers
with different policies, as in most Grid environments, not to mention space-shared ma-
chines. Gridsim [3] is the most recent proposal, and it extends and enhances the previous

Performance Oriented Development and Tuning of GRID Applications 511

systems, providing modeling of heterogeneous time- and space-shared resources, mul-
tiple static or dynamic schedulers, definition of CPU processing power. However, it is
fairly limited as far as network and I/O devices simulation is concerned.

3 GRID Simulation with MetaPl and HeSSE

HeSSE is a simulation tool that, using a compositional modeling paradigm, allows the
user to simulate the performance behavior of a wide range of distributed systems for a
given application, under different computing and network load condition.

The compositional modeling approach allows to easily describe Distributed Hetero-
geneous Systems that are modeled by interconnecting simple components. Each compo-
nent reproduces the performance behavior of a section of the complete system at a given
level of detail. A HeSSE component is basically an object, hard-coded with the perfor-
mance behavior of a section of the whole system. More detailed, each component has
to reproduce both the functional and temporal behavior of the subsystem it represents.

In HeSSE, the functional behavior of a component is the service set that it exports to
the other components. So connected components can ask other components for services.
The temporal behavior of a component describes the time spent servicing. System mod-
eling is performed primarily at the logical architecture level. For example, physical-level
performance, such as the one resulting from a given processor architecture, is generally
modeled with simple analytical models or by integral, and not punctual behavioral sim-
ulation. In other words, the use of a processor to execute instructions is modeled as
the total time spent in the processor without considering the per-instruction behavior.
Thanks to the chosen approach, HeSSE is capable of describing easily very complex
Distributed Heterogeneous Systems at any given level of detail.

HeSSE uses traces to describe applications. A trace is a file that records all the actions
of a program relevant for simulation. For example, the trace for an MPI application is
a sequence of CPU burst and requests to the run-time environment. Each trace is the
representation of a specific execution of the parallel program.

Trace files are simulation-oriented application descriptions, usually obtained
through application instrumentation. When the application is in development state,
they can be generated using prototypal languages. In the past years we developed an
XML-based language for parallel programs description: MetaPL [10]. It is language
independent and can easily support many different programming paradigms or commu-
nication libraries. It is possible to extend the language, through Language Extensions
XML DTDS, which introduce new constructs to the language; available examples are
PVM, MPI and OpenMP language extensions. Moreover MetaPL is able to generate
HeSSE trace files through a filter mechanism.

Detailed description of the MetaPL approach to program description and trace gen-
eration is out of this paper scope and can be found in [13,12].

The application analysis process can be represented graphically as in Fig. 1. It is
subdivided in three steps: System Description, Simulation and Results Analysis. Analysis
can drive to new models and process analysis repetition.

The System Description phase includes:

512 Emilio Mancini et al.

Model Tuning

System Architecture Modeling

Application Description

Configuration file
generation

Filter

Filter

Application trace

Configuration file

Command file

Simulated run
trace

Simulation log
(Simulated) program
performance analysis

Simulation reports

XML Engine

Application tracing
or MetaPL modeling

Benchmarking and
parameter evaluation

... ...

....
....

....

....

Fig. 1. HeSSE Simulation Session

– MetaPL prototypes development (Application Description);
– system architecture model definition (System Architecture Modelling);
– evaluation of the time parameters (model tuning).

The application description step consists in the MetaPL prototype development.
Thanks to the XML prototype, it is possible to generate the trace files needed to drive the
simulation execution. Second point consists in choosing (developing, if needed) HeSSE
components useful for the simulation, and in composing them through a configuration
file; at the end of this step, we are able to reproduce the system evolution. Last step
consists in running benchmarks on the target system in order to fill the simulator and
the MetaPL description with time information.

We built a simple MetaPL extension that supports GRID specific information, similar
to the data that can be retrieved from a globus RSL file, like the number of gatekeeper
involved. GRID MetaPL commands will be used by the trace generation mechanism
to define high level behavior, like the number of parallel tasks started in the GRID
environment.

In order to simulate the GRID infrastructure (i.e. the components of a real GRID
environment) we developed a new set of HeSSE components. Following sections will
give details about the simulation models adopted.

3.1 GRID Components in HeSSE

Our aims in this paper is to predict the performance of a given application (not completely
developed) in a GRID environment in terms of the overall application response time,
the time effectively spent in execution or the time needed to be started on the GRID
environment.

Performance Oriented Development and Tuning of GRID Applications 513

Basic components in HeSSE (see [8,9]) are able to reproduce main features of com-
mon cluster systems, like ethernet and myrinet networks, operating system scheduling
and job management, process synchronization and message passing software layers. To
reproduce the full GRID environment infrastructure overhead, we need to choice a real
implementation to mimic; in the following we will focus on the globus GRID platform
solution, mainly on two components: GRAM and GIS. The first one, GRAM, manages the
application allocation on the target system. The GIS, component manages the GRID
environment security problems, mainly the user authentication. Good description of the
cited components can be found in [1].

We developed three libraries containing a number of components needed to a com-
plete simulation. These components are:

– GlobusClient: formally the user submitting single or batch jobs to the system.
– GlobusServer: this component simulate the gatekeeper in the globus environment.
– GlobusProxy: this one simulate the ability of the gatekeeper to connect to other

gatekeepers in the case that more, or different, clusters need to be used to complete
the job.

– GPAM (GRID Process Allocation Manager): the work carried out by this compo-
nent is to allocate processes on a cluster, execute them or waiting for an external
synchronization if more clusters are used. It formally simulate the GRAM section
in the globus environment.

– Barrier: it simulate the synchronization infrastructure, DUROC in globus, needed
to guarantee the contemporaneous execution of all the processes in a multi-cluster
application.

– SSL: obviously simulate the overhead due to secure communication in a GRID
environment.

Now let’s have a deeper look to how the simulation is carried out. When the simulation
starts, the GlobusClient sends a job execution request to his default GlobusServer and
waits for the results. The communication between the client and the server is secure so
the SSL component is used. When a server receive a request, verify if he has a GPAM
and if it is free or busy. From the request, the server sees if the job must be executed on
a single cluster or on multiple clusters. If the server’s GPAM is free and the job must
be executed on a single cluster, the server sends the request to his GPAM that allocate
the tasks on his cluster’s machines. If the server GPAM is busy, the server sends the
request to his GlobusProxy asking for forwarding to another server. In the case that
the job must be executed on multiple clusters, the server sends the job to his GPAM.
The GPAM allocates the tasks and waits for the Barrier synchronization. Then the server
sends the job to proxy which forward it to the other servers. When all the tasks have been
allocated, the Barrier unlock the GPAMs that start the task execution. At the completion,
each GPAM sends to his server the results that are forwarded back to the first server and
then to the client.

The autenticatio process heavily affects the system performances, iIn order to show
the kind of interactions that take place in the startup phase of the application, figure 2
exploits the message exchange in the authentication process, when two different GRID
environments are involved. Simulation environment reproduces the complete messag

514 Emilio Mancini et al.

exchange. A detailed verifying process was carried on, monitoring both real environment
and the simulation to grant that exactly the same messages are sent at any layer of the
network stack.

�������
...

Send Client
Hello

Send Server Hello
Publ. certificates
Req certificatesVerify Certificates

Generate Keys

Send
Certificate

Send End
Exchange key

Send End
Exchange key

Server
Sync

Submit
Jobs

Send Client
Hello

Send Server Hello
Publ. certificates
Req certificatesVerify Certificates

Generate Keys

Send
Certificate

Send End
Exchange key

Send End
Exchange key

Server
Sync

Submit
Jobs

Fig. 2. Message exchange in globus autentication

3.2 Simulation Validation

To validate the correctness of the infrastructure simulation, we tried a simple test ap-
plication, the unix command True, a standard GNU application which simply terminate
with error level zero. In that way, the application execution time is almost nought and
the measured response time is all due to processes allocation through the clusters. We
launched the test application on the target environment (an SMP cluster better described
later) in many different configurations. One of the configurations was used to tune the
simulation parameters, the others were used to verify the simulation.

To emulate many GRID environment on a single cluster, we used each node as a
different GRID cluster. Varying the number of tasks allocated on the GRID allows to
show peculiarity in the allocation time. In particular, has been noted that, from two to
eight tasks, the allocation time vary linearly while there is a big gap between one and
two. This is due to the fact that all the job submission to multiple clusters are made in
parallel by the first cluster.

Figure 3 shows both the real environment and the simulation behavior, varying
the number of GRID nodes. Upper side of the figure shows the response time, while
lower side contains the percentage simulation error. Note that the behavior showed by
simulation correspond to the real system one.

4 An Example: The Gauss-Siedel Application

Aiming at clarify how proposed development approach works, we have applied it on
a single case study: development of the Gauss-Siedel method for resolving iteratively
linear equations systems. We modeled and simulated the target application. After the
analysis, we developed and ran it on the real environment. The execution results were

Performance Oriented Development and Tuning of GRID Applications 515

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8

"true.mean"
"true.mean.sim"

 0

 5
 10

 15
 20

 25
 30

 1 2 3 4 5 6 7 8

"true.mean.err"

Fig. 3. Gauss-Siedel Simulation

compared with the predicted ones. As previously pointed out the development method-
ology founds on the following steps:

Application Modeling MetaPL Description of the target application
GRID Environment Modeling Definition of one (or more) HeSSE configuration able

to reproduce the target environment(s)
Model Tuning Execution of simple application benchmark able to define the time pa-

rameters for the developed models (see [14] for further details)
Application Analysis Application Simulation on the target(s) GRID environments, in

order to understand final application performance behavior.

The Gauss-Siedel method for resolving iteratively linear equations systems calculate,
at each step, the new unknowns values using those calculated at the previous step. At
first step a set of random values is chosen. It works under the assumption that the
coefficient matrix is a dominating-diagonal one. Due to the particular method chosen,
the parallelization is very simple. In fact each task calculates only a subset of all the
unknowns and then gathers with the other tasks the rest of the unknowns vector needed
for the next step. Figure 4 shows a partial MetaPL description of the above described
application (in order to improve readability, we cut away XML tags and code section
not useful for code understanding).

In order to validate the approach, the proposed application was developed and run
on a real (even if little) GRID environment: the cluster Cygnus. This cluster is composed
of four Pentium III bi-processor nodes with 512MB of memory each and a front-end
Pentium IV Xeon with 1GB of main memory. The nodes are connected each other
through a switched 100Mbps ethernet LAN while the frontend has two ethernet cards,
one private, connected to the switch, and the other public connected to the external world.

Figure 5 shows the results of application execution in the real environment (the clus-
ter) and its simulation; figure upper side contains the response time graph, for both real
and simulated executions, while lower side contains relative percentage error between
real timings and the simulation prediction. Note that the application trend in simulated
and real environment are the same.

516 Emilio Mancini et al.

<MetaPL>
<Code>
<Task name="Gauss"> <Block>
<Command time="t1" name="readdata"/>
<Broadcast dim="1024" />
...

</Block> </Task>
<Code>
<Mapping>
<NumberOfProcesses value="6" />
<NumberOfGatekeeper value="2" />
<Gatekeeper id="1">
<Scheduler="fork">
</Gatekeeper>
</Mapping>

</MetaPL>

Fig. 4. Gauss-Siedel MetaPL description

 20

 22

 24

 26

 28

 30

 32

 34

 1 2 3 4 5 6 7 8

"gauss.globus"
"gauss.globus.sim"

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 1 2 3 4 5 6 7 8

"gauss.globus.err"

Fig. 5. Gauss-Siedel Simulation

5 Conclusions

This paper shows a performance-oriented approach to GRID application development,
founded on the adoption of a simulation environment (HeSSE) and a prototypal language
(MetaPL) for performance evaluation of the application at any step of the target software
development.

We developed GRID simulation components for the existing simulation environment,
able to reproduce the main globus components performance behavior. The proposed
components were validated on a test-bed, built upon an SMP cluster.

Then a simple application was developed in the prototypal language (MetaPL), adopt-
ing the newly developed GRID extensions, in order to drive the simulations and its
performances were predicted.

Performance Oriented Development and Tuning of GRID Applications 517

To validate the approach, we developed the application and compared the results
with the predicted ones, showing that the simulated behavior correspond to real system
evolution.

Acknowledgment

This work was partially supported by "Centro di Competenze" regione Campania. We
want to thank Raffaele Vitolo for his technical support and Rocco Aversa for his contri-
bution.

References

1. I. Foster, C. Kesselman, J. Nick, and S. Tuecke: “The physiology of the grid: An open grid
services architecture for distributed systems integration". Technical report, Open Grid Service
Infrastructure WG, Global Grid Forum, June 2002.

2. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual
organizations. International J. Supercomputer Applications, 15(3), 2001.

3. Buyya, R. , Murshed, M.: “GridSim: A Toolkit for the Modeling and Simulation of Distributed
Resource Management and Scheduling for Grid Computing", The Journal of Concurrency
and Computation: Practice and Experience (CCPE), Wiley Press, May 2002.

4. Takefusa Bricks: A Performance Evaluation System for Scheduling Algorithms on the Grids.
JSPS Workshop on Applied Information Technology for Science (JWAITS 2001). 2001.01.

5. Huaxia Xia, Holly Dail, Henri Casanova and Andrew Chien, The MicroGrid: Using Emu-
lation to Predict Application Performance in Diverse Grid Network Environments, In Pro-
ceedings of the Workshop on Challenges of Large Applications in Distributed Environments
(CLADE ’04), held in conjunction with the Thirteenth IEEE International Symposium on
High-Performance Distributed Computing, Honolulu, Hawaii, June 2004 .

6. Henri Casanova and Arnaud Legrand and Loris Marchal, Scheduling Distributed Applications:
the SimGrid Simulation Framework,Proceedings of the third IEEE International Symposium
on Cluster Computing and the Grid (CCGrid’03)

7. Aversa, R., Mazzeo, A., Mazzocca, N., Villano, U.: Developing Applications for Hetero-
geneous Computing Environments using Simulation: a Case Study. Parallel Computing 24
(1998) 741-761

8. Mazzocca N., Rak M., Villano U. 2000. “The Transition from a PVM Program Simulator
to a Heterogeneous System Simulator: The HeSSE Project". Recent Advances in Parallel
Virtual Machine and Message Passing Interface, in J. Dongarra et al. (eds.) Lecture Notes in
Computer Science, Vol. 1908, Springer-Verlag, Berlin 2000, (pp. 266-273).

9. N. Mazzocca, M.Rak, R. Torella, E. Mancini and U. Villano, The HeSSE simulation environ-
ment. Proc. ESMc’2003, 27-29 Oct. 2003, Naples, Italy, pp. 270-274.

10. Mazzocca N., Rak M., Villano U., 2001. “MetaPL: a Notation System for Parallel Program
Description and Performance Analysis" Parallel Computing Technologies, in Malyshkin. V.
(ed.), Lecture Notes in Computer Science, Vol. 2127, Springer-Verlag, Berlin 2001,(pp. 80-93)

11. Labarta, J., Girona, S., Pillet, V., Cortes T., Gregoris, L.: DiP: a Parallel Program Development
Environment. Proc. Euro-Par ’96, Lyon, France (Aug. 1996) Vol. II 665- 674

12. E. Mancini, N. Mazzocca, M. Rak, and U. Villano, Integrated Tools for Performance-Oriented
Distributed Software Development. Proc. SERP’03 Conference, Las Vegas (NE), USA, June
23-26, 2003, vol. I, pp. 88-94

518 Emilio Mancini et al.

13. N. Mazzocca, M. Rak, U. Villano, The MetaPL approach to the performance analysis of
distributed software systems. Proc. 3rd International Workshop on Software and Performance
(WOSP02), IEEE Press (2002) 142-149

14. E. Mancini, M. Rak, R. Torella, “U. Villano, Off-line Performance Prediction of Message-
Passing Applications on Cluster Systems, Lecture Notes in Computer Science, Vol. 2840,
Springer-Verlag, Berlin 2003, (pp. 45-54).

	Introduction
	Related Work
	GRID Simulation with MetaPl and HeSSE
	GRID Components in HeSSE
	Simulation Validation

	An Example: The Gauss-Siedel Application
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

