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Abstract

With the emergence of multi-core-based processors, it is becoming significantly important to optimize
both intra-node and inter-node communication in an MPI stack. MPICH?2 group has recently introduced
a new Nemesis-based MPI stack which provides highly optimized design for intra-node communication.
It also provides modular design for different inter-node networks. Currently, the MPICH2/Nemesis stack
has support for TCP/IP and Myrinet only. The TCP/IP interface allows this stack to run on the emerging
InfiniBand network with IPolB support. However, this approach does not deliver good performance and can
not exploit the novel mechanisms and features provided by InfiniBand.

In this paper, we take on the challenge of designing a portable InfiniBand network module (IB-netmod)
for Nemesis. The IB-netmod is designed over the Verbs-level interface of InfiniBand and can take advan-
tage of all features and mechanisms of InfiniBand. A complete design of the IB-netmod with the associated
challenges are presented. A comprehensive performance evaluation (micro-benchmarks, collectives and ap-
plications) of the new Nemesis-IB design is carried out against the Nemesis TCP/IP (with IPolIB support on
InfiniBand) and the native IB support of the MVAPICH?2 stack. The new IB-netmod is able to deliver compa-
rable performance to that of the native IB support of MVAPICH2. Compared to the MPICH2/IPolB support
for InfiniBand, the new design is able to deliver significant performance benefits. For NAMD application
with 256 cores, the new IB-netmod is able to deliver 4% improvement compared to the latest MVAPICH?2
release. To the best of our knowledge, this is the first IB-netmod design for the MPICH2/Nemesis framework.
The next release of MVAPICH?2 will be having this new IB-netmod support.

1 Introduction

Rapid growth in the need for high performance computing has resulted in the deployment of
increasing numbers of super computing installations around the world. Commodity clusters, built
on top of multi-core computing platforms and high performance networking interconnects, are in-
creasingly used for the newer installations. As high performance interconnects such as InfiniBand
[10] and 10-Gigabit Ethernet [9] aim at improving the latency and bandwidth between the nodes,
multi-core processors are also being developed to increase the computing power inside a node. In
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this scenario, a software stack that can utilize and maximize the benefits of both high performance
interconnects and multi-core systems is an urgent demand for HPC application designers.

The Message Passing Interface (MPI) is the dominant parallel programming model for cluster
computing. MPICH?2 [15], a very popular implementation of the MPI-2 standard, has recently
been re-designed to run over the Nemesis communication framework. The main goals of Nemesis
design are scalability, high-performance intra-node communication, high-performance inter-node
communication, and multi-network inter-node communication etc. As shown from the ranking the
goals, Nemesis designers strive to minimize the overhead for intra-node communication, even if
this comes at some penalty for inter-node communication [8, 7].

The Nemesis communication framework relies on various network modules (netmod’s) to achieve
multi-network inter-node communication. Currently, Nemesis only has two network moudles:
TCP/IP and Myrinet. As InifiBand is emerging as a popular cluster interconnect, it is also impor-
tant to support Nemesis on it. Whereas using the current network modules, it can only run TCP/IP
netmod on top of IPoIB which does not perform well. Therefore, it is necessary for us to design
and implement a new high performance nefmod based on IB. This leads to the following problems:

e Can a high performance and scalable netmod be designed with InfiniBand Verbs-level inter-
face under the MPICH2/Nemesis framework?

e How much performance gain can be achieved by the new netmod compared to the current
TCP/IP netmod to work for InfiniBand with [PoIB?

e Can the performance and scalability of the new netmod be equal or better to those of the
non-Nemesis-based designs for InfiniBand at the Verbs layer?

In this paper, we take on this challenge to design and implement a new InfiniBand (IB) netmod
to support Nemesis communication framework. We design several schemes according to the new
structure provided by Nemesis, as well as incorporating previous techniques that have been proved
beneficial for MPI applications over InfiniBand into this new netmod. We also evaluate the per-
formance of new IB netmod for Nemesis using standard MPI benchmarks by comparing it with
MPICH2 1.2 Nemesis over TCP/IP and MVAPICH?2 1.4 (which is the latest release of MVAPICH?2)
over IB. From the comparison, a lower latency intra-node communication is observed in the new
netmod, while the performance of InfiniBand inter-node communication is successfully kept. Ap-
plication evaluation shows almost the same performance between the new netmod and MVAPICH2
1.4 for NAS benchmarks with 64 processes. Another application benchmark, NAMD, is also used
for comparison with up to 256 processes. And the same or even slightly better performance of the
new IB netmod also indicate a potential good scalability.

The remaining parts of the paper is organized as follow: In Section 2, we provide an introduction
to the necessary background of InfiniBand and MPICH2 Nemesis design; In Section 3, we describe
the new design and utilized optimization techniques in the new IB netmod for nemesis; Section 4
and Section 5 give the microbenchmarks and application level evaluation on the new IB netmod;
Related works are introduced in Section 6; We conclude and point out future work in Section 7.

2 Background

2.1 InfiniBand

The InfiniBand Architecture is a switched fabric that designed for interconnecting processing
nodes and I/O nodes [10]. In recent years, it has been primarily used in high-performance com-
puting area, as a high-speed, general-purpose Ij()2 interconnect to connect commodity machines in



large clusters. There are two sets of communication semantics of InfiniBand: channel and memory
semantics. Channel semantics include send and receive operations that are common in traditional
interfaces, such as sockets, where both sides of sender and receiver must be aware of commu-
nication. Memory semantics include one-sided operations, which are referred as Remote Direct
Memory Access (RDMA). These operations can allow a host to access memory from a remote
node without a posted receive. Both of the two semantics require communication memory to be
registered with InfiniBand hardware and pinned in memory.

In order to support popular TCP/IP network protocol stack, the IP over IB ( IPoIB) is defined by
the IETF Internet Area IPoIB working group [1]. IPoIB can provide standardized IP encapsulation
over InfiniBand fabrics. When IPolB is applied, an InniBand device is assigned an IP address and
accessed just like any regular TCP/IP hardware device.

2.2 MPICH2 Nemesis overview

MPICH is a freely available, complete implementation of the MPI specification developed by
ANL, which provides support for the MPI-1 standard. As one of the most popular MPI implemen-
tation, it’s designed to be portable and efficient. After MPI-2 standard released by MPI Forum,
MPICH2 was started as a successor of MPICH, aiming to support not only MPI-1 standard, but
also new features in MPI-2 standard, such as dynamic process management, one-sided commu-
nication and MPI I/O. Figure 1 shows the implementation structure of MPICH2. The ADI3 (the
third generation of the Abstract Device Interface) provides a portability layer for MPICH?2 to con-
nect the application layer above it and the device layer below it. CH3 is a layer that implements
the ADI3 functions, and provides an interface consisting of only a dozen functions. A “channel”
implements the CH3 interface. Channels exist for different communication architectures such as
sockets, shmem and so on. By implementing a channel, a new communication subsystems can be
ported for MPICH?2, with implementing fewer functions than in ADI3 interface. As showing in
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Figure 2. The main modules of InfiniBand network layer.

Figure 1, Nemesis is ported to MPICH2 by implementing as a CH3 channel for current design.
Nemesis communication subsystem was designed to provide scalability, high-performance intra-
node communication, high-performance inter-node communication, and multi-network inter-node
communication for MPICH2, with features listed in order of priority.

Initially Nemesis uses lock-free queues in shared memory to build the basis for intra-node
communication [7, 8]. In addition to this, Nemesis further introduces a kernel-based mechanism
KNEM specially optimized for intra-node large message transfer [6].



2.3 MVAPICH2

MVAPICH?2 [16] is a popular open-source MPI implementation over InfiniBand. It is based on
MPICH2 and MVICH [3]. The latest release is MVAPICH2 1.4. To implement IB netmod for
Nemesis, we merged latest MVAPICH2 with MPICH2 1.2 and incorporate IB netmod into the new
version of MVAPICH2. In the following subsections, MVAPICH2 nemesis-ib refers to the new
IB netmod for Nemesis design. And we also choose MVAPICH2 1.4 as a reference, in order to
compare the performance of the new 1B netmod.

3 Designing IB Support for Nemesis

Nemesis uses internal network modules (netmod) to access to the network devices. All the net-
work modules connect with Nemesis channel through specific interface functions [2]. Following
this specification, we designed of a new module to use the InfiniBand advanced functionalities for
the inter-node communication. As shown in Figure 2, the Infiniband network unit is modularized
in order to decouple it from the upper layers. It interfaces the Nemesis components only through
the integration modules. These depend on communication modules and then on HCAs manage-
ment components. The effort of decoupling the single functional components has also the goal to
make the netmod independent from the MPI middleware, to improve the reusability.

3.1 Credit-based InfiniBand Netmod Header

remote_credits

type rdma_credits

vc_addr packet from Nemesis layer

Figure 3. IB netmod header structure.

The InfiniBand network use buffers on each pair of processes to receive incoming packets. To
avoid the error raised up due to no free buffer, IB netmod must maintain a flow-control mechanism.
Our design realizes this by a credit-based structure kept between each pair of sender and receiver.
The credit information, which represents local and remote buffer availability, is attached to each
packet and thus being transferred along data message. As the packet type passed from upper
Nemesis layer is fixed, the IB netmod generate a new header for the transfer of credits the message
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credits are readjusted, that is, in MPI_Wait function. To avoid a congestion of message and utilize
the network efficiently, an “eager poking” is added at the end of send interface functions: iSend-
Contig and iStartContigMsg. By eager poking, both credits and buffers information can be updated
promptly, which helps the bandwidth of underlying network being utilized more efficiently. Figure
4 shows the effect of eager_poking on bi-directional bandwidth for inter-node communication.

3.3 Other Optimization Techniques

In the Nemesis over IB netmod implementation, we also utilized some designs that have been
proved beneficial to inter-node communication on high-performance networks. These include
RDMA fast path, header caching and Shared Receive Queue (SRQ). More details on these op-
timization can be found in [12], [13] and [17].

4 Micro-benchmarks evaluation

4.1 Experimental Testbed

Multiple clusters were used for our experimental evaluation. Cluster A consists of 4 Intel Ne-
halem machines equipped with ConnectX QDR HCAs. Each node has 8 Intel Xeon 5500 pro-
cessors organized into two sockets of four cores each clocked at 2.40 GHz with 12 GB of main
memory. Cluster B consists of 32 Intel Clovertown based systems equipped with ConnectX DDR
HCAs. Each node in this cluster is has 8 Intel Xeon processors each organized into two sockets
of four cores each clocked at 2.33 GHz with 6 GB of main memory. RedHat Enterprise Linux
Server 5 was used on all machines along with OFED version 1.4.2. Cluster A was used for all the
micro-benchmark level experiments, while Cluster B was used for the IBM and application level
evaualtion.

4.2 Intra-node Communication Performance

Before looking into the performance of inter-node communication, we want first show the per-
formance improvement of intra-node communication brought by Nemesis subsystem.
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Figure 5. Intra-node latency: (a) small messages, (b) medium messages, and (c) large messages

Figure 5 shows the intra-node latency performance comparison between MVAPICH2 1.4 and
MVAPICH2 nemesis-ib, which are represented by MV2-1.4 and MV2-NEMESIS-IB in the fig-
ures. From Figure 5 (a), we notice that the intra-node communication design helps reduce the
latency for small message by 30 ns. For message size of 8k, the improvement reaches nearly
40%, due to different eager threshold in Nemesis and MVAPICH2 intra-node communication.
This latency result and later bandwidth result show that for middle size message less than 64K,
shared memory performs better than kernel-based message transfer mechanism. Figure 6 shows

the performance difference of bandwidth and bi-directional bandwidth between MVAPICH2 1.4
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and MVAPICH?2 nemesis-ib. From Figure 6(a), the bandwidth of large messages in MVAPICH2
nemesis-ib performs slightly better than in MVAPICH2 1.4, which is introduced by the difference
mechanism of KNEM and LiMIC2 design. However, when looking into the bi-directional band-
width in Figure 6(b), a drop starting from message size of 32k shows that MVAPICH2 nemesis-ib
performs even worse between message 32k to 256k. The reason should be due to an un-smoothly
change from shared memory transfer to KNEM mechanism.
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4.3 Inter-node Communication Performance
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Figure 7. Inter-node latency: (a) small messages, (b) medium messages and, (c) large messages
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Figure 8. Inter-node (a) bandwidth and (b) bi-directional bandwidth performance

In Figure 7 and 8, we compare the inter-node performance between MPICH2 1.2 over IPolB,
MVAPICH2 Nemesis-IB and MVAPICH?2 1.4, which are represented by MPICH2-NEMESIS-
TCP/IP, MV2-NEMESIS-IB and MV2-1 .4, respectively. As introduced in Section 2, IPoIB allows
MPICH?2 1.2 using TCP/IP netmod running over InfiniBand fabrics. From the results, it can be
observed that new IB netmod helps reduces the short message latency of Nemesis from 27ms by
using TCP/IP through IPoIB to 1.5ms by using InfiniBand, as while increases the large message
bandwidth from less than 1000MB/s to more than 3000MB/s. It clearly shows that the IB netmod
efficiently utilizes the high performance feature of InfiniBand network.

And when we compare the performance between MVAPICH2 Nemesis-IB and MVAPICH?2 1.4,
the very similar results indicate that the IB netmo6d for Nemesis has not only incorporated Nemesis



Subsystem’s intra-node design, but also successfully remains InfiniBand’s original excellent per-
formance by utilizing various optimization techniques. For midium-sized messages, the new IB
netmod even performs slightly better, due to small optimizations in header caching.

4.4 IMB Benchmark Performance

show results up to 64 128 256 cores
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S Application-level Evaluation

5.1 NAS Benchmark Performance

The NAS Parallel Benchmarks [5] are a selection of kernels that are typical in various Compu-
tational Fluid Dynamics (CFD) applications. Thus, they are widely used as a good tool to evaluate
the performance of MPI library and parallel machines. Clearly, the results shown in Figure 16
exhibit that the performance of MVAPICH2 nemesis-ib and MVAPICH2 1.4 with 64 cores for
various different NAS Benchmarks achieved almf)st the same performance.
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5.2 NAMD Benchmark Performance

NAMD is a fully-featured, production molecular dynamics program for high performance sim-
ulation of large bio molecular systems [11]. NAMD is based on Charm++ parallel objects, which
is a machine independent parallel programming system. There are various datasets in NAMD, we
choose the apoal dataset, which is generally used for benchmarking. From Figure 17, we can
observe that for 32 processes and 64 processes, MVAPICH2 nemesis-ib and 1.4 get the same per-
formance. As scale increases, new IB netmod for Nemesis slightly performs better than 1.4, with
4% improvement when 256 processes are involved. The result shows that, the new IB netmod for
Nemesis can achieve the same or even slightly better performance when the number of processes
increases, which suggests a potentially good scalability in MVAPICH2 nemesis-ib design.

6 Related Work

Buntinas et al. describe the design of the MPICH2-Nemesis subsystem in [6, 7, 8]. They devel-
oped Nemesis to optimize the intra-node communication using a shared memory based approach.
In this paper, we present the design of an InfiniBand network interface for Nemesis that exploits
the advanced features of modern network technologies for inter-node communication. Mercier et
al. [14] describe the integration of Nemesis into the NewMadeleine communication library. Like
our design, NewMadeleine optimizes the inter-node communication by utilizing new advanced
features, while focusing on different network technologies (GM/Myrinet, MX/Myrinet etc) [4].

7 Conclusion

In this paper, we implemented and evaluated a new IB netmod to support MPICH2 Nemesis
over InfiniBand, in order to complement a native high-performance network support for inter-
node communication to the excellent intra-node communication design of Nemesis subsystem.
We adjust the structure of the new IB netmod into a more modularized way, as well as design and
integrate multiple optimized techniques, in order to keep the performance of InfiniBand network
while support MPICH2-Nemesis design. In the future work, we will improve the netmod with
more scalability. Utilization of fine-grained multi-threading, which has just added into MPICH2-
1.2.1p1 will also be included in the future design of Nemesis over IB netmod.

Software Distribution: The proposed design is planned to be included in the next MVAPICH?2
[?] release.
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