
Designing Power-Aware Collective Communication Algorithms for
InfiniBand Clusters

Krishna Kandalla, Emilio P. Mancini, Sayantan Sur and Dhabaleswar K. Panda
Department of Computer Science and Engineering, The Ohio State University

{kandalla, mancini, surs, panda}@cse.ohio-state.edu

Abstract—Modern supercomputing systems have wit-
nessed a phenomenal growth in the recent history owing
to the advent of multi-core architectures and high speed
networks. However, the operational and maintenance costs
of these systems have also grown rapidly. Several concepts
such as Dynamic Voltage and Frequency Scaling (DVFS),
CPU Throttling have been proposed to conserve the power
consumed by the compute nodes during idle periods.
However, it is necessary to design software stacks in a
power-aware manner to minimize the amount of power
drawn by the system during the execution of applications.
It is also critical to minimize the performance overheads
associated with power-aware algorithms, as the benefits
of saving power could be lost if the application runs for
a longer time. Modern multi-core architectures such as
the Intel “Nehalem” allow for DVFS and CPU throttling
operations to be performed with little overheads. In this
paper, we explore how these features can be leveraged
to design algorithms to deliver fine-grained power savings
during the communication phases of parallel applications.
We also propose a theoretical model to analyze the power
consumption characteristics of communication operations.
We use micro-benchmarks and application benchmarks
such as NAS and CPMD to measure the performance of
our proposed algorithms and to demonstrate the potential
for saving power with 32 and 64 processes. We observe
about 8% improvement in the overall energy consumed by
these applications.

I. INTRODUCTION
The advent of multi-core architectures and high per-

formance networks have fueled a sharp growth in the
scale of supercomputing and these systems are allow-
ing applications to scale out to tens of thousands of
tasks. Supercomputing systems are typically comprised
of hundreds of compute nodes based on multi-core
architectures such as the Intel “Nehalem” [?] to satisfy
the computational demands of the current generation
High End Computing (HEC) applications. The number
of compute cores within each node is constantly on
the rise with the current generation systems offering as
many as 4 cores per CPU socket and 8 to 16 cores per
node. High performance networks such as InfiniBand
[?] and 10GigE [?] have also evolved rapidly to sat-
isfy the communication requirements of such systems.
InfiniBand Quad Data Rate - QDR [?] offers a data rate
of 40Gbit/s and is increasingly being used in large scale
supercomputing systems.

The amount of energy consumed by these systems
has rapidly grown in the recent history, mainly due
to the growth in the scale of these systems leading to

This research is supported in part by U.S. Department of Energy
grants #DE-FC02-06ER25749 and #DE-FC02-06ER25755; National
Science Foundation grants #CNS-0403342, #CCF-0702675, #CCF-
0833169, #CCF-0916302 and #OCI-0926691; grant from Wright Cen-
ter for Innovation #WCI04-010-OSU-0; grants from Intel, Mellanox,
Cisco, QLogic, and Sun Microsytems.

very high operational and maintenance costs. These costs
are bound to increase further with the next generation
exascale systems and this poses a serious challenge to
system designers. The next generation supercomputers
need to be designed in a power efficient manner to
minimize their operational costs without sacrificing on
the overall throughput and the performance delivered to
the applications. It is also necessary to design software
and middleware stacks in a power-aware manner to
leverage the benefits offered by these systems.

Message Passing Interface (MPI) [?] is the de-facto
programming model used for designing parallel appli-
cations. The MPI Standard allows application designers
to use point-to-point and collective message exchange
operations to address the communication requirements of
parallel applications. Researchers have proposed energy
aware optimizations to MPI in [?], [?], [?], [?], [?].
These approaches involve identifying communication
phases of parallel applications that are not CPU inten-
sive and using Dynamic Voltage and Frequency Scaling
(DVFS) concepts during such phases to conserve power.
Researchers have also proposed novel ideas such as link-
shutdown [?], [?] to conserve the power drawn by the
interconnection fabric when the network is not being
stressed. Researchers have also explored the possibility
of saving CPU power on clusters based on networks
such that offer RDMA capabilities in [?], [?]. However,
these studies consider communication operations to be
a “black-box” and try to conserve power during these
regions without analyzing the nature of the algorithms
that are used to implement them. In this paper, we
take on the following broad challenge: Can we design
collective message passing algorithms in a power-aware
manner to offer fine-grained power savings with little
performance overheads. We have addressed the follow-
ing major problems in this paper:

• Several optimized collective algorithms have been
proposed and their performance and scalability
characteristics have been deeply analyzed. But, are
these algorithms power efficient?

• The performance overheads associated with power-
aware algorithms are critical. The benefits of saving
instantaneous dynamic power during the operation
will be lost if the overheads are too high. Is it
possible to leverage the benefits offered by modern
multi-core architectures, such as the Intel “Ne-
halem”, to minimize these overheads and deliver
fine-grained power savings to applications?

• Theoretical models have been proposed to analyze
the power consumption characteristics of generic
work-loads, from the computation perspective. Can



we derive models to analyze the power consumption
characteristics of collective communication algo-
rithms?

The rest of the paper is organized in the following
manner. In Section ??, we describe all the necessary
background information that is relevant to this paper.
In Section ??, we discuss some of the ideas that have
already been proposed by researchers in this area. In
Section ??, we briefly describe the nature of the state-
of-the-art algorithms for collective operations on modern
multi-core architectures and demonstrate the potential for
conserving power during these collective operations. In
Section ??, we propose our power-aware algorithms for
collective operations. In Section ??, we propose a set of
models to analyze the power consumption characteristics
of collective algorithms. In Section ??, we describe
our experimental methodology. We also analyze the
performance and power consumption characteristics of
our proposed algorithms and compare them with some of
the well known algorithms. In Section ??, we conclude
our discussion and also provide insights into our future
work. II. BACKGROUND

In this section, we provide the necessary background
information that is relevant to our research.
A. Intel “Nehalem”

Compute nodes based on multi-core architectures fea-
turing as many as 8-16 compute cores have become
ubiquitous in the field of high performance computing.
Current generation architectures have a range of oper-
ational frequencies (P-States) and throttling levels (T-
States). The operating system can choose specific CPU
frequencies and throttling states to conserve power and
to lower the temperature when the CPU is not loaded.
The Intel “Nehalem” architecture offers 4 cores per CPU
socket and allows frequency scaling and CPU throttling
operations to be performed within 10-15 usecs, which
is significantly better when compared to some of the
earlier Intel multi-core architectures. The “Nehalem”
architecture offers eight throttling levels T0 - T7, with
the CPU being 100% active in the T0 state and only
12% active in the T7 state.
B. Message Passing Interface

The Message Passing Interface (MPI) [?] is one of the
popular programming models used for designing parallel
applications. MPI defines primitives for point-to-point
and collective message exchange operations that can be
conveniently used by application designers to address the
communication requirements of parallel applications. In
our work, we use the MVAPICH2 [?] software stack to
design power-aware collective algorithms and to demon-
strate the performance and power characteristics of our
proposed designs. MVAPICH2 is being used by more
than 1,000 organizations world-wide, including several
large scale clusters.
C. InfiniBand

InfiniBand has emerged as the popular I/O intercon-
nect standard and almost 36% of the Top500 Supercom-
puting systems [?] rely on InfiniBand to address the

communication requirements of the current generation
applications. InfiniBand networks allow several network
protocols to be offloaded to the Host Channel Adapters
(HCA), that reside on each compute node. Owing to
this reason, the CPU does not have to be completely
involved in the communication operations. MPI imple-
mentations that are designed for InfiniBand networks
offer two modes of message progression - “polling”
and “blocking” modes. In the “blocking” mode, an MPI
process waits for a new incoming message for a short
period before yielding the CPU. When a new message
arrives, the InfiniBand HCA generates an interrupt and
the process can resume its execution once it is scheduled.
In the “polling” mode, the MPI process constantly spins
while it waits for a new arriving message. MPI imple-
mentations that use the “polling” mode deliver better
performance, but require the CPU to be busy during
communication. The “blocking” mode delivers better
CPU availability to applications with lower performance
for network communication operations due to the over-
heads associated with the interrupts and OS scheduling
policies. Also, MPI implementations cannot offer a high
performance intra-node communication mechanism with
the “blocking” mode, as they fall-back to the network
loop-back based communication instead of using the
shared-memory channels. The performance and power
trade-offs between these modes were demonstrated in
[?]. Like all high-performance MPI stacks, MVAPICH2
uses the “polling” mode as the default mode.
D. Collective Message Exchange Algorithms in MVA-
PICH2

In MVAPICH2, several multi-core aware algorithms
have been proposed for collective operations defined
in the MPI Standard. As shown in Figure ??, these
algorithms rely on detecting the node-level topology
of the systems to create sub-communicators. Processes
that are within the same compute node are grouped
within a shared-memory communicator. One process
per node is assigned as the node-leader process and
another communicator is created to include all the node-
leader processes. In [?], [?], [?], [?], the authors have
demonstrated the performance and scalability of such ap-
proaches. These algorithms involve the following stages
:

• Intra-node phase: All the processes within the same
compute node write their buffers into the explicitly
created shared-memory region. This operation in-
volves no data movement across the network links.

• Network phase: This phase of communication only
involves the node-leader processes and the data is
moved across the network.

• Intra-node phase: Depending on the nature of the
collective operation, there might be an optional
phase in which the non-leader processes read the
data that was written into the shared-memory re-
gions by the leader process after the second step.

III. RELATED WORK
Several researchers have explored the possibility of

saving power in the high performance computing do-
2



Fig. 1. Multi-Core Aware Collective Algorithms in MVAPICH2

main. These studies have involved minimizing power
consumed by both the CPU and the network. In [?], [?],
[?], the authors proposed efficient designs to conserve the
power drawn by the network fabric by shutting down the
network links when the network was not being stressed.
Using DVFS to save CPU power during communication
phases have been proposed by researchers in [?], [?], [?],
[?]. Some of these ideas involved automatically detecting
the communication phases and scaling the voltage and
frequency of the CPU around these regions to conserve
power. In [?], the authors proposed theoretical models
to analyze the power consumption characteristics of
applications on multi-core architectures. However, all
communication phases were considered as an overhead
in the models that were proposed in that paper. In [?],
[?], the authors have studied the potential for saving CPU
power by using DVFS and CPU throttling operations
in clusters that use RDMA based networks. In [?],
the authors have also proposed a tool - PowerPack to
efficiently profile the energy consumption characteristics
of applications on clusters. In [?], researchers have pre-
sented a fine-grained component-level description of the
amount of power consumed by scientific appliciations.
These approaches treat communication operations as a
“black-box” and try to conserve CPU power during these
regions. However, in this paper, we propose a set of
models to analyze the power consumption of the state-
of-the-art algorithms for collective message exchange
operations and we also propose power-aware algorithms
that leverage both DVFS and CPU Throttling to deliver
fine-grained power savings to applications.

IV. CPU USAGE IN CURRENT COLLECTIVE
ALGORITHMS

In this section, we study the characteristics of the
state-of-the-art multi-core aware algorithms for a few
important collective operations.
A. Alltoall Personalized Exchange Operation

The Alltoall Personalized Exchange algorithm is the
most dense collective communication operation defined
in the MPI Standard. In this operation, every process
in the process group exchanges distinct messages with
every other process. The performance and scalability
issues with MPI Alltoall were discussed in [?], [?].
In MVAPICH2, the hypercube algorithm [?] for small
messages and the pair-wise exchange algorithms for
large messages is used. In Figure ??(a), we show the
scalability of the Alltoall operation for large messages.
We have run the OSU Alltoall benchmark [?] with
32 processes in 4-way and 8-way configurations (4

processes per node, across 8 nodes and 8 processes per
node, across 4 nodes, respectively). We have also shown
the theoretical estimate of the latency involved for the
MPI Alltoall operation with 32 processes for various
message sizes. We can see that even though the size
of the Alltoall job is the same, the change in the process
allocation pattern has lead to a performance difference
of almost 54% with large messages. This could only be
attributed to contention at various levels of the system
- switches, network links, the HCAs and the internal
system bus. We expect the effects of contention to be-
come even more severe as the number of cores per node
increase further. We would also like to emphasize that
these experiments were performed with InfiniBand QDR
network, which currently offers the highest bandwidth
when compared to other InfiniBand networks. Since we
use the “polling” mode, as the time required for an
MPI Alltoall operation increases, the amount of power
consumed by each compute core during the operation
also increases as the CPU spends a considerable amount
of time in the busy-wait state, as the communication
progresses. Hence, it is necessary to design efficient
algorithms for the MPI Alltoall operation to address
these concerns.
B. Broadcast and Reduction Operations

In MVAPICH2, multi-core aware shared-memory
based algorithms are being used for several collective op-
erations. The nature of these algorithms were described
in Section ??. The entire collective operation can be
viewed as being comprised of two phases - network
communication phase and an intra-node communication
phase. The network communication phase will involve
regular eager and rendezvous point-to-point MPI oper-
ations. As indicated in [?], as the scale of the systems
increases, the network phase will also involve data being
moved across multiple switches. These network flows
will also contend for network bandwidth with other
applications that are using other compute nodes in the
system. The network time will also be affected by
process skews and network noise [?], [?]. For the intra-
node communication phase, processes use the explicitly
created shared-memory buffers to read/write data. Since
this phase of communication happens completely within
a compute node, it does not experience any network
contention. Depending on the memory organization of
the system, a degree of memory contention could be
experienced. However, the impact of network contention
is expected to be more significant when compared to
the effects of intra-node memory contention. Overall,
we expect the costs associated with the network com-
munication phase to be higher than that of the intra-
node communication phase. We have instrumented the
collective algorithms to profile the amount of time
spent in the network phase of the collective operation
and the amount of time spent in the intra-node phase
of the communication. In Figures ??(b) and (c), we
present the comparison between the overall time taken
for a collective operation and just the network phase

3



 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

1M256K64K16K4K1K

La
te

nc
y 

(u
s)

Message Size (Bytes)

Alltoall-4way
Alltoall-8way

Alltoall-Theoretical

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1M256K64K16K4K

La
te

nc
y 

(u
s)

Message Size (Bytes)

Bcast-Default
Bcast-Network-phase

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4K1K 256 64 16 4

La
te

nc
y 

(u
s)

Message Size (Bytes)

Reduce-Default
Reduce-Network-phase

Fig. 2. (a) Alltoall scalability with 32 processes across 4-way and 8-way configurations, (b) Bcast Overall Time Vs Network Time (c) Reduce
Overall Time Vs Network Time

of the collective operation for various message sizes
for MPI Bcast and MPI Reduce with 64 processes.
These figures indicate that the network communication
phase accounts for most of the overall time required for
these collective operations. Since only one process per
compute-node is involved in the network communication
phase and we are using the “polling” mode, this also
leads us to the observation that rest of the processes are
continuously using the CPU, as they wait for the network
communication phase to complete and are not doing any
useful work. This implies that there is a strong potential
to conserve the power consumed by the non-leader
processes in every node with the shared-memory based
multi-core aware collective operations. Broadly, we are
interested in leveraging the low latency power saving
operations offered by the Intel “Nehalem” architecture
to design power-aware collective algorithms.

V. DESIGNING POWER-AWARE COLLECTIVE
ALGORITHMS

In this section, we describe our research methodology
and also present our power-aware algorithms for collec-
tive operations. Since modern architectures such as the
Intel “Nehalem” allow us to perform DVFS operations
and CPU throttling operations with very small overheads,
we have chosen to perform the DVFS operations on a
per-call basis. At the start of each collective operation,
we scale the frequency of all the compute-cores to
the minimum possible frequency and at the end of the
operation, we again scale the frequency up to the peak
frequency supported by the architecture. We would like
to note that the methods proposed by authors in [?],
[?], [?], [?] are definitely applicable on these modern
architectures, as well. However, we have also re-designed
some of the important collective algorithms to deliver
fine-grained power savings to applications with small
performance overheads. We have also focused mainly
on the power consumed by the CPU in this paper. Some
of the existing literature in this field [?] indicate that the
CPU accounts for more than 50% of the overall power
consumption of a compute node.
A. Power-Aware MPI Alltoall algorithm

In Section ??, we discussed about the performance
impact of network contention on the performance of an
MPI Alltoall operation. In this section, we propose our
novel algorithm to schedule the inter-node exchanges in
an efficient manner and we also leverage the concept
of CPU throttling to conserve power with very little per-
formance overheads. Consider an MPI Alltoall operation
being performed using the pair-wise exchange algorithm,
across P=N*c processes, such that we have N compute

nodes, each node has c cores and N*c is a power of 2.
In the pair-wise exchange algorithm, each process does
P iterations to send and receive distinct messages from
every other process in the system. The first c steps of
this operation will involve intra-node message exchanges
and the remaining (P-c) iterations will involve data being
sent across the network. Since the time spent in the last
P-c steps is almost comparable to the time consumed by
the entire operation, we focus on conserving CPU power
during this part of the operation. Within each node, we
group processes that are on the same CPU socket as
shown in Figure ??. We now have two process groups
within each compute node - A and B. We scale down
the frequency of each core to its minimum frequency,
fmin at the start of the collective and schedule the entire
communication operation in the following manner:

• Phase 1: All the processes perform c iterations to
exchange data only with other processes that are on
the same compute node.

• Phase 2: Throttle down all processes belonging to
process group B to the lowest possible state allowed
by the architecture. Allow only the processes in
the process group A to participate in inter-node
communication.

• Phase 3: Once all the processes in process group A
are done with their message exchange operations,
throttle all these processes down, throttle up the
processes in process group B, and allow only these
processes to participate in the inter-node communi-
cation.

• Phase 4: The final phase of the algorithm involves
N iterations. In each iteration, we pair the compute
nodes i and j such that i < j. Let Ai and Bi be
the two process groups on node i. Similarly, Aj

and Bj be the two process groups on node j. We
first throttle down process groups Bi, Aj and allow
process groups Ai, Bj to communicate. Then, we
throttle down process groups Ai, Bj , throttle up
process groups Bi and Aj and allow only Bi, Aj

to communicate.
In Figure ??, we represent the socket that has been

throttled down by shading it completely and we also
indicate the throttling level as T7. Once the MPI Alltoall
operation is complete, we perform another DVFS oper-
ation to restore each core to its peak frequency, fmax.
We perform the CPU throttling operations in the manner
described above to selectively throttle down only the
processes in the idle socket, while the processes in the
active socket proceed with their inter-node communica-
tion steps. The communication in phases 2 and 3, can be

4



viewed as an Alltoall pair-wise exchange operation with
a system size of (N*c)/2 processes. Since in each of these
steps, only half the processes within each compute node
are involved in inter-node communication, we can expect
the overhead associated with the network contention to
be less than the regular algorithm in this case. This
algorithm provides us with an opportunity to schedule
messages in a way that allows half the cores to be idle for
half of the time required for the MPI Alltoall operation
which can be utilized to conserve power. Also, we would
like to emphasize that a core that has been throttled down
is not involved in any communication operation.
B. Power-Aware Algorithms for Shared-Memory Based
Collectives

In Section ??, we observed that for shared-memory
based collectives, the amount of time spent in the
network communication phase is much higher when
compared to the intra-node communication phase and
the non-leader process keep the CPU busy as they wait
for the network phase of the operation to complete. We
also discussed that on large scale systems with processes
being distributed across different parts of the systems, the
non-leader processes will spend a considerable amount
of time in the busy-wait state during collective operation.
This gives us the opportunity to save CPU power by
throttling down the cores of the non-leader processes
with our shared-memory based algorithms. In our pro-
posed power-aware algorithms, we throttle down the
CPUs of the non-leader processes during the network
phase of the collective operation. The current generation
“Nehalem” architecture allows for the CPU throttling
operation to be performed at the socket-level granularity.
Suppose the node-leader process is on socket A, if we
throttle this socket, this will invariably slow down the
network phase of the communication and this will affect
the performance of the collective operation. Hence, we
throttle down the cores on this socket partially to allow
for some power savings without sacrificing on the perfor-
mance. However, the cores on socket B are not involved
in any communication and can be throttled down to
the lowest possible state offered by the architecture, as
indicated in Figure ??. On architectures that allow for
CPU throttling to be performed at the core-level granu-
larity, we could easily throttle down the compute cores
of all the non-leader processes to the lowest possible
state, thereby leading to higher power savings and can
also minimize the performance overheads as the leader-
process can remain at the T0 state. Note that if were to
use the default binomial exchange algorithm [?] in which
every process is involved in the entire communication
operation, we cannot directly use CPU throttling to
conserve power, without observing significant overheads.

C. Impact of Process Affinity on Power Management
As shown in Figure ??, the Intel “Nehalem” architec-

ture has cores 0,2,4,6 on socket A and cores 1,3,5,7 on
socket B. MVAPICH2 binds processes to sockets such
that processes 0,1,2,3 will be bound to the cores on

Fig. 4. Power-Aware Shared-Memory based Collective Algorithms

Fig. 5. Core-Socket Mapping on the Intel “Nehalem” Architecture

socket A and processes 4,5,6,7 will be bound to the cores
on socket B. This mapping is established at job launch
time and the processes remain bound in this manner
for the entire duration of the application’s life-time. The
power-aware algorithms that we have discussed above,
rely on this mapping so that we can perform DVFS and
CPU throttling operations in the manner that we have
described If we were to choose a different process to
core mapping pattern, it is possible to perform DVFS or
the CPU throttling operations incorrectly and this will
invariably affect the performance of our algorithms.

VI. MODELING PERFORMANCE AND POWER FOR
COLLECTIVE OPERATIONS

In this section, we derive a set of theoretical models
to analyze the performance and power consumption
patterns of the collective algorithms that we discussed
in Section ??. In [?], the authors proposed a set of theo-
retical models to analyze some of the classical collective
algorithms on traditional systems based on Ethernet
networks and single-core compute nodes. We extend
these models for analyzing power and performance on
multi-core clusters. As discussed in Section ??, the time
spent in pure intra-node communication operations is
very small for both MPI Alltoall and shared-memory
based collectives and for brevity, we are not going to
include these times in our models. We use the terms
Odvfs and Othrottle to represent the overhead involved
in performing the DVFS and CPU Throttling operations,
A. Modeling Performance

Let ts−intra−node be the start-up cost associated
with an intra-node message exchange operation and
tw−intra−node be the cost involved in sending a word of
data to a peer process within the same node. Similarly, let
ts−inter−node and tw−inter−node be the costs associated
with an inter-node message exchange operation. We
consider a system with N nodes, with each node having
c cores and the size of the message to be M bytes.
As discussed in Section ??, we need to account for
the network contention while modeling the performance
of collective operations. We introduce the parameter
Cnet, such that, Cnet > 1, to account for the network
contention effects.

5



Fig. 3. Power-Aware Alltoall Personalized Exchange Algorithm
1) Default Algorithms: The cost of performing an

MPI Alltoall or MPI Alltoalv operation with a message
size of M across N*c processes, with the pair-wise
exchange algorithm can be expressed as :

TAlltoall = tw−inter−node(P − c)(Cnet)M (1)
As we discussed in Section ??, for a collective like

MPI Bcast, the entire operation is performed across the
leader and the shared-memory communicators. For the
inter-leader operation with medium and large messages,
the Scatter-Allgather algorithm is used to broadcast the
data across all the leaders. If the size of the message to
be broadcast is M bytes, first the data are scattered across
all the leader processes in the leader communicator and
then an alltoall-broadcast operation is done across all
the leaders to achieve the desired result. Once all the
node-level leader processes have the entire buffer, they
broadcast the data to all the processes that are within the
same compute node using the shared-memory commu-
nicator. Hence, the performance of a medium or large
message MPI Bcast operation across N*c processes can
be modeled as:
tscatter = M ((N − 1)/N) tw−inter−node

tallgather = M(N − 1)tw−inter−node
TBcast = M(N − 1)tw−inter−node(1 + (1/N)) (2)
2) Proposed Power-Aware Alltoall Algorithm: In Sec-

tion ??, we proposed our power aware algorithm for
the MPI Alltoall operation. The algorithm is designed
to allow only half of the processes to be active for half
of the time during the inter-node exchange steps, and
we completely throttle down the idle cores. Since the
volume of data exchanged by any node is now reduced
by a factor of 2, we expect the network contention to also
improve by 50%, along the lines of the discussion in ??.
In phase-2, the cost of throttling down all the processes
on socket-B can be hidden as the processes on socket-
A would have started their communication operation. In
phase-3, the processes on socket-B can be throttled up
only after phase-2 is complete and each process incurs
the cost Othrottle once. In each iteration of phase-4, the
cost associated with one of the CPU throttling operations
can be hiddlen, but each process will incur the cost
Othrottle once and there are N-1 iterations. Hence, we
can model the performance of our proposed algorithm
in the following manner:tPhase−2 = tw−inter−nodeNc(Cnet/4)M

tPhase−3 = tw−inter−nodeNc(Cnet/4)M

tPhase−4 = tw−inter−nodeNc(Cnet/4)M

tAlltoall−power = (3/4)tw−inter−nodeNcCnetM +

+2 ∗Odvfs +N ∗Othrottle (3)

In equation (3), we can see that the performance
overhead associated with our proposed algorithm is lin-
early proportional to the number of nodes in the system.
So, we do not expect to see much difference in the
raw performance between our proposed algorithm and
the default pair-wise exchange algorithm, even though
we could theoretically see a maximum improvement of
about 25% in the raw performance of the algorithm
(without any power optimizations). However, we do
expect to see benefits on slower networks such as the
InfiniBand DDR or SDR [?], where the impact of
contention can be more significant. We can also infer that
if the costs associated with the DVFS and CPU throttling
operations are further minimized in the next generation
multi-core architectures, it is possible to minimize the
performance overheads associated with our proposed
algorithm.

3) Proposed Power-Aware Shared-Memory based Al-
gorithms : As discussed in Section ??, in our pro-
posed power-aware shared-memory based collective al-
gorithms, we throttle the CPUs of the non-leader pro-
cesses when the leader processes are involved in the
inter-leader communication operations. However, since
the throttling operation is being performed at the socket-
level granularity, and we are throttling down the socket
on which the leader process is mapped to, we expect
to see some performance degradation. If future archi-
tectures allow for the CPU throttling to be performed
at core-level granularity, we could minimize the perfor-
mance impact on the inter-leader operation by throttling
only the non-leader processes. So, we introduce the
parameter Cthrottle > 1 to account for the performance
overhead introduced by throttling the leader processes.
Also, all the processes are throttled down at the start of
the inter-leader operation and throttled up at the end of
it. So, we can model the performance of our proposed
MPI Bcast algorithm in the following manner:

tBcast−power = (M(N − 1)tw−inter−node ·
·(1 + 1/N))Cthrottle + 2 ∗Odvfs ·
·+ 2 ∗Othrottle (4)

If the next generation multi-core architectures allow
us to perform CPU throttling operations at the core-level
granularity, then the inter-leader operations can proceed
without any performance degradation and the overheads
introduced by our algorithm will be a constant factor.
Hence, on such systems, as the job size scales, our
algorithms can deliver higher power savings with almost
negligible performance overheads.6



B. Modeling Power
Suppose there are no power optimizations being used,

each core in the system will operate at its peak frequency,
fmax, when the system is loaded.

If these collective operations were performed without
any power optimizations, and each core will operate at its
peak frequency, fmax. Let pcore,i(t) be the instantaneous
power drawn by the core i at time t. Suppose a collective
operation occurred in the interval [t1, t2], such that
the difference (t2− t1) is equivalent to the expressions
derived in equations (1) and (2). Since we have a total
of N*c cores in the system, the total power drawn by the
system can be expressed as :∫ t2

t1

N∗c∑
i=1

pcore,i,fmax(t) dt (5)

Suppose we perform only the DVFS operations for
all the compute cores before and after each collective
communication operations, each of the CPU cores will
be running at their minimum frequency, fmin during
the communication operations and at their peak fre-
quency, fmax, during the computation phases of the
application. Since the communication operations are now
being performed at a lower frequency, the time required
to complete these operations can be higher. Suppose,
the collective operation in the time interval [t1,t2′],
such that (t2′ > t2), to account for the possibility of
incurring a performance overhead when operating at a
lower frequency. The overall power consumed by the
system during these collective operations with the DVFS
operation can be expressed as:∫ t2′

t1

(
N∗c∑
i=1

pcore,i,fmin
(t)) dt (6)

If the ith core is throttled to the Tj state, at a time
instant t, we consider the power drawn by this core to
be cj ∗ pcore,i(t), where cj is in the interval [0,1]. Since
we have 8 different throttling levels [T1, T7], with T7
being the state where the CPU is only 12% active, we
can say that c1 > c7.

1) Power-Aware MPI Alltoall algorithm: In our al-
gorithm, in phases 2 through 4, a given core will spend
half of the time in the completely throttled state, and
the remaining time in the T0 throttled state, and the
frequency of each core during the operation is fmin.
If the time elapsed for the MPI Alltoall operation is
[t1,t3′] we can model the power consumption of our
proposed algorithm in the following manner:∫ t3′/2

t1

(

(N∗c)∑
i=1

pcore,i,fmin(t))dt+

+

∫ t3′

t3′/2

(

(N∗c)∑
i=1

c7pcore,i,fmin(t)) dt (7)

On comparing equations (6) and (7), we can see
that our proposed algorithm can deliver greater power
savings, as the amount of power consumed by each core
has been reduced by a factor of c7 for half of the time
interval. Despite the fact that our algorithm has a slightly
higher performance overhead, we are able to demonstrate
power-savings with applications in Section ??.

2) Power-Aware Algorithms for Shared-Memory
Based Collectives: In Section ??, we proposed our
power-aware algorithms for shared-memory based
collectives. During the inter-node operation, we are
throttling down Socket B to the T7 state, and socket
A to T4 state. Suppose our power-aware MPI Bcast
operation was executed in the time interval [t1,t3’],
we can model the power consumption of our proposed
power-aware algorithm in the following manner:∫ t3′

t1

(

(N∗c)/2∑
i=1

c4pcore,i,fmin
(t) +

+

(N∗c)/2∑
i=1

c7pcore,i,fmin(t)) dt (8)

From equations (6) and (8), we can see that with our
proposed power-aware shared-memory based collective
algorithms can deliver greater power savings as the
amount of power consumed by the processors on socket
B, is now lower by a factor of c7. The amount of
processors on socket A is also lower by a factor of c4,
but there is a performance overhead associated with our
algorithm. We already discussed the potential advantages
of architectures that allow core-level CPU throttling. On
such systems, the amount of power consumed by all
the non-leader processors can be lowered by a factor of
c7, leading to greater power savings without additional
performance overheads.

VII. EXPERIMENTAL EVALUATION
In this section, we describe the experimental testbed

used for our experimental methodology.
A. Experimental Testbed

We have used a cluster comprising of 8 compute nodes
based on the Intel “Nehalem” architecture. Each node
has 2 CPU sockets, with each socket having 4 compute
cores that can operate in the frequency range 1.6GHz to
2.4GHz. The 8 compute nodes are connected together
through InfiniBand QDR links and a Mellanox QDR
Switch. We use a MASTECH MS2205 Digital Clamp
Power Meter with RS232 Interface to measure the power
drawn by a single compute node and log the data on
a remote machine. We have repeated the experiments
by changing the application’s hostfile to measure the
power consumed by the other compute nodes. The
power meter generates instantaneous power consumption
readings with intervals of 0.5s. We have used this power
meter to measure the amount of power consumed by a
single node with micro-benchmarks. However, we need
a high resolution power meter to capture the power
consumption data during every communication phase in
applications. For this paper, we have profiled the appli-
cations to learn about how much time processes spend
in various collective operations and we use the power
consumption data gathered from the benchmark results
to estimate the potential power benefits in applications.
B. Benchmarks and Applications

We have used OSU MPI Benchmarks, a freely avail-
able benchmark suite that is distributed with the MVA-
PICH/MVAPICH2 [?] software stacks to measure the

7



performance and power consumption characteristics of
communication operations. We have also used NAS Par-
allel Benchmarks [?] and the CPMD application [?], to
analyze the performance and potential for power savings
of our proposed power-aware collective algorithms. In
the NAS suite, we have used the Class C FT and IS
kernels in our experiments.
C. Polling Vs Blocking Power and Performance Char-
acteristics

In Figure ??, we demonstrate the performance and
power characteristics of the “blocking” and the “polling”
message progression modes with MPI Alltoall with 64
processes for medium and large message sizes. In Sec-
tion ??, we indicated that the latency of intra-node
communication was very poor with the “blocking” mode.
However, with the pair-wise exchange algorithm, we
spend little time performing pure intra-node exchanges.
So, the performance difference between the “blocking”
and “polling” modes in Figure ??(a), can be considered
to be purely due to the interrupt and scheduling over-
heads associated with the “blocking” mode. In Figure
??(b), we compare the amount of power consumed
by one compute node during the benchmark execution
with the “polling” and “blocking” modes. When we
use the “polling” mode, each node consumes almost
2.3 KW of power at each sampling instant. However,
with the ”blocking” mode, each node consumes about
2 KW of power at each sampling point. This can be
attributed to the fact that, each process yields the CPU
after ”polling” for a short time. The InfiniBand HCA
generates an interrupt when a new message arrives and
the OS schedules the task onto the CPU upon servicing
the interrupt. We can see that the ”blocking” mode has
the potential for conserving power, but since the overall
performance is poor, it is not a desirable option. Also,
in Figure ??(b), we can see that the curve corresponding
to “blocking” involves larger number of sampling points
indicating that the benchmark has taken a longer time to
complete, when compared to the “polling” mode.

 0

 50000

 100000

 150000

 200000

 250000

1M256K64K16K

La
te

nc
y 

(u
s)

Message Size (Bytes)

Alltoall-Polling
Alltoall-Blocking

 1.6

 1.8

 2

 2.2

 2.4

 28 24 20 16 12 8 4

P
ow

er
 C

on
su

m
ed

 (
K

W
)

Time (s)

Alltoall-Blocking
Alltoall-Polling

Fig. 6. Blocking Vs Polling with MPI Alltoall 64 Processes: (a)
Performance Performance and (b) Power
D. MPI Alltoall and MPI Alltoallv

In Figure ??(a), we compare the performance of
the power-aware alltoall algorithm that we discussed
in Section ?? with the original algorithm that does
not involve any power-optimizations and the version in
which we perform only the frequency scaling operation
on a per-call basis. We can observe that the performance
difference between the default version and the power-
aware algorithms is only about 10% and that there is very
little difference between our proposed algorithm and the

algorithm that performs only the DVFS operations. This
indicates that the overhead of the throttling operation
is actually quite low and the factor (N ∗ Othrottle) in
equation (3) affects the performance by only a small
amount. We would also like to stress that our methods
can work well in conjunction with the methods pro-
posed in [?] to minimize the overheads associated with
the DVFS operations, leading to higher power savings.
In Figure ??(b), we compare the power consumption
characteristics of the three algorithms. In the default
case, each node consumes about 2.3 KW of power at
each sample point. With the algorithm that performs
only the DVFS operations, we can see that the power
consumption drops down to about 1.8 KW at each
sampling point. However, we can see that with our
proposed algorithm, we can minimize the amount of
power consumed to about 1.6 KW at each sampling
point. We can see similar results even in Figures ??(a)
and (b) for the MPI Alltoallv operation.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

1M256K64K16K

La
te

nc
y 

(u
s)

Message Size (Bytes)

Alltoall-No-Power
Alltoall-Freq-Scaling

Alltoall-Proposed

 1

 1.5

 2

 2.5

 3

 52 48 44 40 36 32 28 24 20 16 12 8 4

P
ow

er
 C

on
su

m
pt

io
n 

(K
W

)

Time (s)

Alltoall-No-Power
Alltoall-Freq-Scaling

Alltoall-Proposed

Fig. 7. Alltoall with 64 processes:(a) Performance and (b) Power

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

1M256K64K16K4K1K 256 64 16 4

La
te

nc
y 

(u
s)

Message Size (Bytes)

Alltoallv-No-Power
Alltoallv-Freq-Scaling

Alltoallv-Proposed

 1

 1.5

 2

 2.5

 3

 40 36 32 28 24 20 16 12 8 4

P
ow

er
 C

on
su

m
pt

io
n 

(K
W

)

Message Size (Bytes)

Alltoallv-No-Power
Alltoallv-Freq-Scaling

Alltoallv-Proposed

Fig. 8. Alltoallv with 64 processes:(a) Performance and (b) Power
E. MPI Bcast

In Section ??, we discussed our power-aware opti-
mizations to the current set of shared-memory based
collective algorithms in MVAPICH2. In Figures ??(a)
and (b), we evaluate these designs from both the power
and performance perspectives for the MPI Bcast op-
eration. In Figure ??(a), we compare the performance
of the three designs - default case, the algorithm that
performs only the DVFS operations and our proposed
algorithm that throttles down the idle CPU’s during
the inter-leader phase of the broadcast operation. With
either of the power-aware algorithms, we can see that
there is an overhead of about 15% when the message
size is 1MB. However, there is very little difference
between the performance of the algorithm that performs
only the DVFS operation and our proposed algorithm.
In Figure ??(b), we compare the power consumption
patterns of the three algorithms. In the default case,
each compute node consumes about 2.3 KW of power at
each sampling point. The algorithm that only performs
the frequency scaling operation consumes about 1.8
KW of power at each point. But, with our proposed

8



algorithm, we can minimize the power consumption to
about 1.6 KW at each point. As discussed in Section ??,
if future architectures allow the throttling operation to
be performed at the core-level granularity, we would be
able to conserve more power by throttling down all the
non-leader processes to the lowest state.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1M256K64K16K

La
te

nc
y 

(u
s)

Message Size (Bytes)

Bcast-No-Power
Bcast-Freq-Scaling

Bcast-Proposed

 1

 1.5

 2

 2.5

 3

 8 6 4 2

La
te

nc
y 

(u
s)

Message Size (Bytes)

Bcast-No-Power
Bcast-Freq-Scaling

Bcast-Proposed

Fig. 9. Bcast with 64 processes. Performance and Power

F. CPMD Application
The CPMD code is a parallelized plane

wave/pseudopotential implementation of Density
Functional Theory, particularly designed for ab-initio
molecular dynamics [?]. We have used the datasets wat-
32-inp-1, wat32-inp-2 and ta-inp-md available at [?] for
our experimental evaluation. In Figure ??, we compare
the performance of the default and the power-aware
schemes with the CPMD application run across 32 and
64 processes in the strong-scaling mode. The profiling
information available in the CPMD output logs indicate
that the time spent in the MPI Alltoall operation
dominates the overall communication time. For brevity,
we compare only the overall execution time and the
amount of time spent in the MPI Alltoall operation in
these figures. We can see that with increasing the system
size from 32 to 64 processes, the overall application
run-time reduced by almost 50%, as we are using the
same problem size. However, the amount of time spent
in the MPI Alltoall operations has changed by a small
amount. This is because the cost associated with the
pair-wise exchange algorithm is linearly proportional to
both the system size and the message size. We can also
see that with either of the power optimizations, there is
a performance degradation of about 2 - 5% and there is
very little difference between the version that performs
only the DVFS operations and our proposed versions,
indicating that the overhead of the throttling operations
is very negligible. In Table ??, we compare the total
amount of power consumed with the three different
data-sets and across 32 and 64 processes. We observe
about 8% energy savings with ta-inp-md dataset with a
system size of 64 processes.
G. NAS FT and IS Application Kernels

In Figure ?? and Table ??, we compare the per-
formance and energy consumption statistics of class C
FT and IS NAS kernels. The performance and power
characteristics are similar to what was observed with the
CPMD benchmarks and we observe about 8% energy
savings with the IS kernel.

’

VIII. CONCLUSION
Most applications spend a significant amount of their

run-times performing collective operations. As the size
of the systems continues to scale, various factors affect

Fig. 11. NAS : Overall Execution time and Alltoall time with 32 and
64 Processes (a)FT Kernel (b) IS Kernel

TABLE II
NAS APPLICATION : POWER STATISTICS

32 Processes (KJ) 64 Processes(KJ)
FT IS FT IS

Default (No-Power) 16.36 3.412 17.056 3.8456
Freq-Scaling 15.588 3.248 16.32 3.608
Proposed 15.472 3.16 16.16 3.52

the performance of collective operations and several
researchers have proposed various algorithms to improve
the performance of collective operations on such sys-
tems. However, with the sharp growth in the amount of
power being consumed by large scale supercomputers,
it is also necessary to design collective algorithms in a
power-aware manner to minimize the total amount of
power consumed by the system with acceptable per-
formance overheads. In this paper, we have proposed
efficient power-aware algorithms for collective opera-
tions that utilize the Dynamic Voltage and Frequency
Scaling concepts along with CPU throttling to de-
liver fine-grained power savings. We have demonstrated
through micro-benchmarks, and application benchmark
suites that our proposed methods can deliver higher
power-savings than some of the existing power-aware
algorithms. Our evaluations have shown that we are
able to conserve about 8% of energy with applications
such as CPMD and NAS class C kernels. We are keen
on extending these power-aware optimizations to the
topology-aware algorithms [?] to conserve power on
large scale clusters by throttling down all the processes
in a rack, during the inter-rank communication phases.
Also, since the modern architectures allow for DVFS
operations to be performed at the core-level granularity,
we are also interested in exploring how intra-node point-
to-point operations can be designed to conserve power.
We also predicted the potential for power savings with
our proposed algorithms if the next generation multi-
core processors allowed CPU throttling to be performed
at the core-level granularity. Also, the current generation
InfiniBand networks do not allow us to dynamically shut-
down the links during computation intensive phases of
applications. We would also be interested in exploring
the design challenges involved with conserving network
power dynamically during application execution.

IX. ACKNOWLEDGMENTS
We would like to thank Dr. K. Cameron, Dr. R.

Teodorescu, Dr. K. Tomko and Hung-Ching Chang for
their valueable inputs.

9



Fig. 10. CPMD Application : Overall Execution time and Alltoall time with 32 and 64 Processes (a)Wat-32-inp-1 (b) Wat-32-inp-2 (c)ta-inp-md

TABLE I
CPMD APPLICATION : POWER STATISTICS

32 Processes(KJ) 64 Processes(KJ)
Wat-32-inp-1 Wat-32-inp-2 ta-inp-md Wat-32-inp-1 Wat-32-inp-2 ta-inp-md

Default (No-Power) 28.4736 32.76 265.56 31.79 38.68 304.5312
Freq-Scaling 27.096 31.72 259.48 29.944 38.84 289.20
Proposed 27.20 31.36 258.96 29.49 38.13 281.04

10


