
Application Architecture Adequacy through an FFT case study
Emilien Kofman12 Jean-Vivien Millo1 Robert de Simone1

1 INRIA Sophia-Antipolis, Aoste team (INRIA/I3S/CNRS/UNS), 06560, Sophia-Antipolis, France

2 Univ. Nice Sophia Antipolis, CNRS, LEAT, UMR 7248, 06900 Sophia-Antipolis, France

{emilien.kofman, jean-vivien.millo, robert.de_simone}@inria.fr

http://anr-hope.unice.fr

Modeling HW

This work was conducted in the context of the HOPE project which investigates a

relevant solution for designing power efficient system on chip devices early in the

design flow. HOPE will develop a modeling approach on top of classical design

flows based on existing standards (SystemC OSCI TLM-2.0 , UPF, IP-XACT).

Although it is primarily focused on power modeling, the same workflow allows to

explore other non-fonctionnal aspects.

Future works

SDF allows to model more sophisticated algorithms (ex: h.264

encoder). The multimedia applications are especially interesting

because they have embarassingly parallel computataions which

need to be optimised.

Dataflow

application

Architectural

platform model

Mapping adequacy:

- Fine grain optimisations

- Multi-threading/Multi-processing: Tiling and scheduling.

Code generation

Platform based design flow

H.264 graph annotated with benchmarking results.

Source: “A YAPI system level optimized parallel model of a H.264/AVC video encoder” H.K.

Zrida et al., 2009 IEEE/ACS International Conference on Computer Systems and Applications.

SDF representation of a

4096-samples radix2 FFT

Benchmarking the fft for different tilings within two different plateforms: Kalray MPPA-

Motivations

Application Architecture Adequacy (AAA) aims at tuning an application to a given hardware

architecture. However it is still a difficult and error prone activity. As like as in

Hardware/Software co-design, it requires a model of both the application and the architecture.

With the new highly-parallel architectures, AAA should also allow a fast exploration of different

software mapping granularity in order to leverage better the hardware resources without

sacrificing too much productivity. This work extracts from a case study a methodology based on

dataflow modeling to make the software both faster to develop and suited to the target.

Approach

This is a very broad topic which can be split in different sub problems. For each of them we give

the solutions we have explored or considered. Problems 3 and 4 are related to non-functionnal

specifications (Performance, Temperature, Power) and are studied within the HOPE project

(Hierarchically Organized Power/Energy management).

Dataflow graph representation

An SDF is a graph structure in which every vertex has a type: it is either a Place or an Agent. The

places allow to model data communication between the agents which run the actual algorithm

subfunctions. The places does not describe a physical memory: this is what the implementation

should decide. In this example multiple implementations are possible:

- Merge the places in one physical memory and assume they are never used at the same time.

- Split the places in different physical memories (this allows pipelining).

Tiling and scheduling

This requires either an estimation of agent processing time, or benchmarking these agents in order

to map agents efficiently on devices. The dataflow process network description of SW exposes

clearly the communications and the data sizes. Tiling is efficient (performance and power) if

parallelism is achieved with the maximum data locality. Thus the knowledge of the memory

hierarchy (number of cores: CPUs/GPUs/accelerators, caches, number of DMAs) is required.

Fine grain optimisations

Most of these fine grain optimisations (Vector processing,

VLIW, accelerators) are cumbersome when it comes to

implementation and require deep knowledge and understanding

of the HW.

Some are not in the scope of this study (VLIW optimisations)

but most of them could benefit from an automated description

of the HW (register sizes, DRAM burst sizes, vector sizes...).




