
ALGEBRAIC AND NUMERICAL
ALGORITHMS1

Ioannis Z. Emiris
National Kapodistrian University of Athens, Athens 15784, Greece
emiris@di.uoa.gr

Victor Y. Pan, Mathematics and Computer Science Department, Lehman Col-
lege, City University of New York, Bronx, NY 10468, USA. vpan@lehman.cuny.edu.
http://comet.lehman.cuny.edu/vpan/

Elias P. Tsigaridas
INRIA - LORIA Lorraine
615, rue du Jardin Botanique, B.P. 101, 54602 Villers-des-Nancy cedex, France.
elias.tsigaridas@loria.fr

1 Introduction

Arithmetic manipulation with matrices and polynomials is a common subject
for algebraic (or symbolic) and numerical computing. Typical computational
problems in these areas include the solution of a polynomial equation and linear
and polynomial systems of equations, univariate and multivariate polynomial
evaluation, interpolation, factorization and decompositions, rational interpo-
lation, computing matrix factorization and decompositions, including various
triangular and orthogonal factorizations such as LU, PLU, QR, QRP, QLP, CS,
LR, Cholesky factorizations and eigenvalue and singular value decompositions,
computation of the matrix inverses, determinants, Smith and Frobenius normal
forms, ranks, characteristic and minimal polynomials, univariate and multivari-
ate polynomial resultants, Newton’s polytopes, and greatest common divisors
and least common multiples as well as manipulation with truncated series and
algebraic sets.

Such problems can be solved based on the error-free algebraic (symbolic)
computations with infinite precision. This demanding task is achieved in the
present day advanced computer library GMP and computer algebra systems
such as Maple and Mathematica by employing various nontrivial computational
techniques such as the Euclidean algorithm and continuous fraction approxima-
tion, Hensel’s and Newton’s lifting, Chinese Remainder algorithm, elimination
and resultant methods, and Gröbner bases computation. The price for the
achieved accuracy is the increase of the memory space and computer time sup-
porting the computations.

0This material is based on work supported in part by IST Programme of the European
Union as a Shared-cost RTD (FET Open) Project under Contract No IST-006413-2 (ACS -
Algorithms for Complex Shapes) (first and third authors) and by NSF Grant CCR 9732206
and PSC CUNY Awards 67297-0036 and 68291–0037 (second author).

1



An alternative numerical approach relies on operations with binary numbers
truncated or rounded to a fixed precision. Operating with the IEEE standard
floating point numbers represented with double precision enables much faster
computations that use much less memory space but requires theoretical and/or
experimental study of the affect of the rounding errors on the output. The study
uses various advanced techniques from approximation and perturbation theo-
ries, forward and backward error analysis, operator theory and numerical linear
algebra. If necessary, more costly computations with the extended precision are
used to yield uncorrupted output. The resulting algorithms are combined in the
high performance libraries and packages of subroutines such as Matlab, NAG
SMP, LAPACK, ScaLAPACK, ARPACK, PARPACK, and MPSolve.

Combining algebraic and numerical methods frequently increases their power
and enables more effective computations. In this chapter we cover some alge-
braic and numerical algorithms in the large, popular and highly important areas
of matrix computations and root-finding for univariate polynomials and systems
of multivariate polynomials. We give some pointers to the bibliography on these
and adjacent subjects and in Section 5 to further references on algebraic and
numerical algorithms. The bibliography is huge, and we usually cite books,
surveys, and comprehensive articles with pointer to further references, rather
than the original technical articles. Our expositions in Sections 1 and 2 largely
follow the line of the first surveys in this area in (203; 204; 209; 210).

We state the complexity bounds under the random access machine (RAM)
model of computation (2). In most cases we assume the arithmetic model, that
is, we assign a unit cost to addition, subtraction, multiplication, and division
of real numbers, as well as to reading or writing them into a memory location.
This model is realistic for computations with a fixed (e.g., the IEEE standard
double) precision, which fits the size of a computer word. In this case the
arithmetic model turns into the word model (115). In other cases we compute
with the extended precision and assume the Boolean or bit model, assigning the
unit cost to every Boolean or bit operation. This accounts for both arithmetic
operations and the length (precision) of the operands. We denote the bounds
on this complexity by OB(·). We always specify whether we use the arithmetic,
word, or Boolean model unless this is clear from the context.

We write ops for “arithmetic operations”, “section.name” for “Section sec-
tion.name”, and “log” for “log2” unless specified otherwise.

2 Matrix Computations

Matrix computations is the most popular and highly important area of scientific
and engineering computing. Most frequently they are performed numerically,
with rounding-off or chopping the input to the IEEE standard double precision.
This is mostly assumed in the present section unless specified otherwise.

In the chapter of this size we must omit or just barely touch many impor-

2



tant subjects of matrix computations. The reader can find further material and
bibliography in the surveys (199; 203; 204) and the books (11; 14; 27; 29; 73;
79; 82; 126; 128; 135; 213; 240; 250; 258; 259; 266; 277). For more specific
subject areas we further refer the reader to (11; 73; 126; 240; 259; 266; 277) on
the eigendecompositions and SVDs, (14; 73; 79; 126; 135; 258; 266) on other
numerical matrix factorizations, (30; 165) on the over- and under-determined
linear systems, their least-squares solution, and various other numerical com-
putations with singular matrices, (27; 126; 241) on parallel matrix algorithms,
and to (57; 64; 84; 85; 115; 118; 122; 127; 205; 230; 216; 218; 226; 264; 265; 276)
on “Error-free Rational Matrix Computations”, including computations in fi-
nite fields, rings, and semirings that output the solutions to linear systems of
equations, matrix inverses, ranks, determinants, characteristic and minimum
polynomials, and Smith and Frobenius normal forms.

2.1 Dense, Sparse and Structured Matrices.

Their Storage and Multiplication by Vectors

An m × n matrix A = [ ai,j , i = 0, 1, . . . ,m − 1; j = 0, 1, . . . , n − 1 ], also

denoted [ai,j ]
m−1,n−1
i,j=0 and [A0, . . . ,Am−1], is a 2-dimensional array, with the

(i, j)th entry [A]i,j = ai,j and the jth column Aj . AT is the transpose of
A. A is a column vector A0 of dimension m if n = 1. A is a row vector of
dimension n if m = 1. We write v = [vi]

n−1
i=0 to denote an nth dimensional

column vector and w = Av = [wi]
m−1
i=0 , wi =

∑n−1
j=0 ai,jvj , i = 0, . . . ,m − 1, to

denote the matrix-by-vector product. The straightforward algorithm computes
such a product by using (2n − 1)m ops. This is the sharp bound for general
(that is, dense unstructured) m × n matrix, represented with its entries. In
actual computations, however, matrices are most frequently special and instead
of mn entries can be represented with much fewer parameters.

An m×n matrix is sparse if it is filled mostly with zeros, that is, if it has only
φ << mn nonzero entries. An important example is banded matrices [bi,j ]i,j ,
whose all nonzero entries lie near the diagonal, so that bi,j = 0 unless |i − j| ≤
w for a small bandwidth 2w + 1. This class is generalized to sparse matrices
associated with graphs that have families of small separators (120; 125; 171). A
sparse matrix can be stored economically by using appropriate data structures
and can be multiplied by a vector fast, theoretically in 2φ − m ops. Sparse
matrices arise in many important applications, in particular, to solving ordinary
and partial differential equations (ODEs and PDEs).

Dense structured n×n matrices can be defined by O(n) parameters and can
be multiplied by a vector by using O(n log n) or O(n log2 n) ops. Such matrices
are omnipresent in computations in signal and image processing, coding, ODEs,
PDEs, integral equations, particle simulation, and Markov chains. Most popular
are Toeplitz matrices T = [ti,j ]

m,n
i,j=0, ti,j = ti+1,j+1 for all i and j. Such a matrix

is defined by m + n − 1 entries of its first row and first column. Toeplitz-by-
vector product T v is defined by “Vector Convolution” (see Chapter 17). It
can be computed by using O((m + n) log(m + n)) ops. Close ties between the

3



computations with Toeplitz matrices and polynomials enable acceleration in
both areas.

Similar properties of the Hankel, Bézout, Sylvester, Frobenius (companion),
Vandermonde, and Cauchy matrices can be extended to more general classes of
structured matrices via associating linear displacement operators. (See (27; 213)
and Chapter 17 for the details and the bibliography.) Finally, dense structured
semiseparable matrices generalize banded matrices, are expressed via O(n) pa-
rameters and multiplied by vectors in O(n) ops (269).

2.2 Matrix Multiplication and Some Extensions

The straightforward algorithm computes the m × p product AB of m × n by
n × p matrices by using 2mnp − mp ops, which is 2n3 − n2 if m = n = p.

The latter upper bound is not sharp. The subroutines for n × n matrix
multiplication on some modern computers, such as CRAY and Connection Ma-
chines, rely on algorithms by Strassen 1969 and Winograd 1971 using O(n2.81)
ops (126; 135). The algorithms of Coppersmith and Winograd in (65) use at
most Cnω ops for ω < 2.376 and a huge constant C such that Cnω < 2n3 only
for extremely large values n. Coppersmith and Winograd in (65) combine their
technique of arithmetic progression with various previous advanced techniques.
Each of these techniques alone contributes a dramatic increase of the overhead
constant that makes the resulting algorithms practically noncompetitive. The
only exception is the technique of trilinear aggregating that alone supports the
exponent 2.7753 (see (160; 199)). The recent practical numerical algorithms in
(149) rely on this technique. For matrices of reasonable sizes they use about as
many ops as the Strassen’s and Winograd’s algorithms but need less memory
space and are more stable numerically.

One can multiply a pair of n × n structured matrices in nearly linear arith-
metic time, namely, by using O(n log n) or O(n log2 n) ops, where both input
and output matrices are represented via their short generator matrices having
O(n) entries (see (27; 213) or “Structured Matrices” in Chapter 17).

If the input values are reasonably bounded integers, then matrix multipli-
cation (as well as vector convolution in Chapter 17) can be reduced to a sin-
gle multiplication of two longer integers, by means of the techniques of binary
segmentation (cf. (200, Sect. 40); (203), or (27, Examples 3.9.1–3.9.3)). The
Boolean cost of the computations does not decrease, but the techniques can be
practically useful where the two longer integers still fit the computer precision.

Many fundamental matrix computations can be reduced to O(log n) or a
constant number of n×n matrix multiplications (27, Chapter 2). This includes
the evaluation of det A, the determinant of an n × n matrix A; its inverse
A−1 (where det A 6= 0); the coefficients of its characteristic polynomial

cA(x) = det( xI − A ) and minimal polynomial mA(x), for a scalar variable x;
the Smith and Frobenius normal forms; the rank, rank A; the solution vector x =
A−1 v to a nonsingular linear system of equations A x = v; various orthogonal
and triangular factorizations of the matrix A, and a submatrix of A having the
maximal rank, as well as some fundamental computations with singular matrices.

4



Furthermore, similar reductions to matrix multiplication are known for some
apparently distant combinatorial and graph computations such as computing
the transitive closure of a graph (2), computing all pair shortest distances in
graphs (27, p. 222), and pattern recognition. Consequently, all these operations
use O(nω) ops where theoretically ω < 2.376 (2, chap.6), (27, chap. 2).

In practice, however, due to the overhead constants hidden in the “O” no-
tation for ω < 2.775 for matrix multiplication, additional overhead for its ex-
tensions, the memory space requirements, and numerical stability problems, all
these extensions of matrix multiplication use the order of n3 ops (126). Never-
theless, the reduction to matrix multiplication is practically important because
it allows to employ block matrix algorithms. Although they use the order of n3

ops, they are performed on multiprocessors much faster than the straightforward
algorithms (126; 241).

Let us conclude this subsection by demonstrating two basic techniques for the
extension of matrix multiplication. Hereafter we denote by 0 the null matrices
(filled with zeros) and by I the identity (square) matrices (which have ones on
their diagonals and zeros elsewhere).

One of the basic ideas is to represent the input matrix A as a block matrix
and to operate with its blocks (rather than with its entries). For example,
compute det A and A−1 by first factorizing A as a 2 × 2 block matrix,

A =

[
I 0

A1,0A
−1
0,0 I

] [
A0,0 0

0 S

] [
I A−1

0,0A0,1

0 I

]

where S = A1,1 − A1,0A
−1
0,0A0,1. Note that the 2 × 2 block factors are readily

invertible, detA = (det A0,0) det S and (BCD)−1 = D−1C−1B−1, so that the
original problems for the input A are reduced to the same problems for the
half-size matrices A0,0 and S. It remains to factorize them recursively. The
northwestern blocks (such as A0,0), called leading principal submatrices, must
be nonsingular throughout the recursive process, but this property holds for
the large and highly important class of positive definite matrices A = CT C,
det C 6= 0, and can be always achieved by means of symmetrization, pivoting,
or randomization (2, chap. 6), (27, chap. 2), (213, sects. 5.5 and 5.6)).

Another basic technique is the computation of the Krylov sequence or Krylov
matrix [Biv]k−1

i=0 for an n×n matrix B and an n-dimensional vector v (126; 128;
250). The straightforward algorithm uses (2n − 1)n(k − 1) ops, which is about
2n3 for k = n. An alternative algorithm first computes the matrix powers

B2, B4, B8, . . . , B2s

, s = ⌈ log k ⌉ − 1 ,

and then the products of n×n matrices B2i

by n×2i matrices, for i = 0, 1, . . . , s:

B v ,

B2 [ v, Bv ] =
[

B2v, B3v
]

,

B4
[
v, Bv, B2v, B3v

]
=

[
B4v, B5v, B6v, B7v

]
,

...

5



The last step completes the evaluation of the Krylov sequence in 2s + 1 matrix
multiplications, by using O(nω log k) ops overall.

Special techniques for parallel computation of Krylov sequences for sparse
and/or structured matrices A can be found in (206). According to these tech-
niques, Krylov sequence is recovered from the solution of the associated linear
system (I − A) x = v , which is solved fast in the case of a special matrix A.

In the next two subsections, we more closely consider the solution of a linear
system of equations, A x = b, which is the most frequent operation in practice
of scientific and engineering computing and is highly important theoretically.

2.3 Solution of linear systems of equations

General nonsingular linear system of n equations A x = b can be solved in
(2/3)n3) + O(n2) ops by means of Gaussian elimination. One can perform it
numerically and (in spite of rounding errors) arrive at an uncorrupted output
by applying pivoting, that is, appropriate interchange of the equations (and
sometimes also unknowns) to avoid divisions by absolutely smaller numbers. A
by-product is factorization A = PLU (or A = PLUP ′), for lower triangular
matrices L and UT and permutation matrices P (and P ′).

For sparse and positive definite linear systems, pivoting can be modified to
preserve sparseness during the elimination and thus to yield faster solution (79;
82; 120; 123; 124; 171; 205; 230). Gaussian elimination with the (generalized)
nested dissection policy of pivoting requires only O(s(n)3) ops to solve a sparse
positive definite linear system of n equations whose associated graph has a
family of separators of diameter s(n). s(n) = O(

√
n) for a large and important

class of sparse linear systems arising from discretization of ODEs and PDEs.
For general sparse linear systems s(n) can be as large as n, and we also have no
formal proof for any better uppers bounds than O(n3) for Gaussian elimination
under any other policy of pivoting. Some heuristic policies (such as Markowitz
rule), however, substantially accelerate sparse Gaussian elimination according
to ample empirical evidence.

Both Gaussian elimination and the (Block) Cyclic Reduction algorithm use
O(nw2) ops for banded linear systems with bandwidth O(w). This is O(n)
where the bandwidth is constant, and similarly for the (dense) semiseparable
(rank structured) matrices (269).

Likewise, we can dramatically accelerate Gaussian elimination for dense
structured input matrices represented with their short generators, defined by
the associated displacement operators. This includes Toeplitz, Hankel, Vander-
monde, and Cauchy matrices and matrices with similar structures. By applying
the recursive 2 × 2 block factorization in the previous subsection (with proper
care about preserving matrix structure in the recursive process), we arrive at
the MBA divide-and-conquer algorithm (due to Morf 1974/1980 and Bitmead
and Anderson 1980) that solves nonsingular structured linear systems of n equa-
tions in O(n log2 n) ops (see (27; 213)), although this computation is prone to
numerical stability problems unless the input matrix is positive definite.

6



For indefinite nonsingular Cauchy-like and Vandermonde-like linear systems
of n equations, pivoting preserves matrix structure, and Gaussian elimination
can be performed by using O(n2) ops in numerically stable algorithms. The
latter property is also true for linear systems with the Toeplitz/Hankel struc-
tures. Pivoting destroys their structure, but their solution can be reduced to
Cauchy/Vandermonde-like systems by means of “Displacement Transformation”
(see Chapter 17).

A popular alternative to Gaussian elimination is the iterative solution algo-
rithms such as the Conjugate Gradient and GMRES algorithms (17; 56; 126;
128; 250; 271). They compute sufficiently long Krylov sequences (defined in the
previous section), approximate the solution with linear combinations

∑
i ciB

ib

for appropriate coefficients ci, and stop where the solution is approximated
within a desired tolerance to the output errors. Typically, the algorithms per-
form every iteration step at the cost of multiplying the input matrix and its
transpose by two vectors. This cost is small for structured and sparse matrices.
(We can even call a matrix sparse and/or structured if and only if it can be
multiplied by a vector fast.)

The multilevel methods (108; 177; 229) are even more effective for some
special classes of linear systems arising in discretization of ODEs and PDEs.
In the underlying algebraic process (called the algebraic multigrid) one first
aggregates an input linear system, then solves the resulting smaller system, and
finally disaggregates the solution into the solution of the original system (186).
The power of this technique is accentuated in its recursive multilevel application.

Generally, iterative methods are highly effective for a sparse and/or struc-
tured linear systems (and become the methods of choice) as long as they con-
verge fast. Special techniques of preconditioning of the input matrices at a low
computational cost enable faster convergence of iterative algorithms for many
important special classes of sparse and structured linear systems (17; 56; 128),
and more recently, for quite a general class of linear systems (222).

Even with all known preconditioning techniques we cannot deduce compet-
itive upper bounds on the worst case complexity of iterative solution unless we
can readily approximate the inverse M−1 of the input matrix M . An approx-
imation X0 serves well as long as the norm ν of the residual matrix I − MX0

is noticeably less than one. Indeed, in this case we can rapidly refine the ini-
tial approximation, e.g., with Newton’s iteration, Xi+1 = 2Xi − XiMXi, for

which we have I − MXi+1 = (I − MXi)
2 = (I − MX0)

2i+1

and, therefore,

||I − MXi+1|| ≤ ν2i+1

for i = 0, 1, . . .. See more on Newton’s iteration in
(224; 232) and the references therein.

A Newton iteration step uses two matrix multiplications. This is relatively
costly for general matrices but takes nearly linear time in n for n×n structured
matrices represented with their short displacement generators (see Chapter 17).
The multiplications gradually destroy matrix structure, but some advanced tech-
niques in (213, chapters 4 and 6), (221; 228; 234; 235) counter this problem.

7



2.4 Error-free Rational Matrix Computations

Rational matrix computations for a rational or integer input (such as the solu-
tion of a linear system and computing the determinant) can be performed with
no errors. To decrease the computational cost, one should control the growth
of the precision of computing. We refer the reader to (13) and (118) on some
special techniques that achieve this in rational Gaussian elimination. A more
fundamental tool of symbolic (algebraic) computing is the reduction of the com-
putations modulo one or several fixed primes or prime powers. Based on such
a reduction, the rational or integer output values z = p/q (e.g., the solution
vector for a linear system) can be computed modulo a sufficiently large integer
m. Then the desired rational values z are recovered from the values z mod
m by means of the continued fraction approximation algorithm, which is the
Euclidean algorithm applied to integers (115; 275), in our case to the integers
m and z mod m. If the output z is known to be an integer lying between −r
and r and if m > 2r then the integer z is readily recovered from z mod m as
follows:

z =

{
z mod m if z mod m < r
−m + z mod m otherwise .

For example, if we compute integer determinant, we can choose the modulus
m based on the Hadamard’s bound. The reduction modulo a prime p can turn
a nonsingular matrix A and a nonsingular linear system Ax = v into singular
ones, but this can occur only with a low probability for a random choice of the
prime p in a fixed sufficiently large interval as well as, say, for a reasonably large
power of two and a random integer matrix (226).

The precision of log m bits for computing the integer z mod m can be ex-
cessively large for a large m, but one can first compute this integer modulo k
smaller relatively prime integers m1,m2, . . . ,mk (we call them coprimes) such
that m1m2 · · ·mk = m, and then one can apply the Chinese Remainder algo-
rithm. The error-free computations modulo mi require the smaller precision of
log mi bits, whereas the computational cost of the subsequent recovery of the
value z mod m is dominated by the cost of computing the values z mod mi for
i = 1, . . . , k.

For matrix and polynomial computations, there are effective alternative tech-
niques of p-adic (Newton–Hensel) lifting, (115). Moenck and Carter 1979 and
Dixon 1982 have elaborated upon them for solving linear systems of equations
and matrix inversion, thus creating symbolic counterparts to well known numer-
ical techniques of Newton’s iteration and iterative refinement in linear algebra.

Newton’s lifting begins with a prime p, a larger integer k, an integer ma-
trix M , and its inverse Q = M−1 mod p, such that I − QM mod p = 0.
Then one writes X0 = Q, recursively computes the matrices Xj = 2Xj−1 −
Xj−1MXj−1 mod (p2j

) observing that I−XjM = 0 mod (p2j

) for j = 1, 2, . . . , k,

and finally recovers the inverse matrix M−1 from Xk = M−1 mod p2k

.
Hensel’s lifting begins with the same input complemented with an integer

8



vector b. Then one writes r(0) = b, recursively computes the vectors

u(i) = Qr(i) mod p, r(i+1) = (r(i) − Mu(i))/p, i = 0, 1, . . . , k − 1,

and x(k) =
∑k−1

i=0 u(i)pi such that Mx(k) = b mod (pk), and finally recovers the
solution x to the linear system Mx = b from the vector x(k) = x mod (pk).

Newton’s and Hensel’s lifting are particularly powerful where the input ma-
trices M and M−1 are sparse and/or structured. Then a lifting step takes O(n)
ops up to a polylog factor. This includes, e.g., Toeplitz, Hankel, Vandermonde,
Cauchy, banded and semiseparable matrices, and the matrices whose associated
graphs have small separators families. Newton’s lifting uses fewer steps, but re-
cursively doubles the precision of computing. Hensel’s lifting is performed with
the precision in O(log p) and, as proved in (216; 226), enables the solution in
nearly optimal time under both Boolean and word models. Moreover, the com-
putations can be performed modulo the powers of two, which allows additional
practical benefits of applying binary computations.

2.5 Computing the Signs and the Values of Determinants

The value and frequently just the sign of detA, the determinant of a square
matrix A, are required in some fundamental geometric and algebraic/geometric
computations such as the computation of convex hulls, Voronoi diagrams, alge-
braic curves and surfaces, multivariate and univariate resultants and Newton’s
polytopes. The faster numerical methods are preferred as long as the correct-
ness of the output can be certified, which is usually the case in actual geometric
and algebraic computations. In the customary arithmetic filtering approach,
one applies numerical methods as long as they work and, in the rare cases when
they fail, shifts to the slower algebraic methods.

Numerical computation of detA can rely on the factorizations A = PLUP ′

(see Section 2.2) or A = QR (59; 126). One can certify the output sign where the
matrix A is well conditioned (237). The advanced preconditioning techniques
in (222) can be employed to improve the conditioning of this matrix.

One can bound the precision of the error-free computations by performing
them modulo sufficiently many reasonably bounded coprime moduli mi and
then recovering the value detA mod m, m =

∏
i mi, by applying the Chinese

Remainder algorithm. Some relevant techniques are elaborated upon in (34). In
particular, to minimize the computational cost, one can select random primes
or prime powers mi recursively until the output value modulo their product
stabilizes. This signals that the product m is likely to exceed the unknown
value 2|det A|, so that (det A) mod m is likely to produce the correct value
of detA. Typically for many applications, the value |det A| tends to be much
smaller than the Hadamard’s upper estimate for |det A|. Then much fewer
moduli mi and hence much less computations are needed.

In an alternative approach in (201, Appendix), (202; 1; 86) detA is recovered
as a least common denominator of the rational components of the solutions to
linear systems Ay(i) = b(i) for random vectors b(i). The power of Hensel’s
lifting is employed for computing the solution vectors y(i).

9



Storjohann in (260; 261) advances randomized Newton’s lifting to yield detA
directly in the optimal asymptotic Boolean time O(nω+1) for ω < 2.376.

Wiedemann in 1986 and Coppersmith in 1994, followed by a stream of pub-
lications by other researchers, extended the Lanczos and block Lanczos classical
algorithms to yield detA. The most costly stages are the computation of the
Krylov or block Krylov sequence (for the preconditioned matrix A and ran-
dom vectors or block vectors) and the solution of a Hankel or block Hankel
linear system of equations. To the advantage of this approach versus the other
ones, including Storjohann’s, the Krylov computations are relatively inexpen-
sive for sparse and/or structured matrices. An important application is the
computation of multivariate resultants, which are the determinants of sparse
and structured matrices associated with the systems of multivariate polynomial
equations. Here the approach becomes particularly attractive because the struc-
ture and sparseness enable us to multiply the matrices by vectors fast but hardly
allow any other computational benefits. In (100) the extension of the algorithms
to the multivariate determinants and resultants have been elaborated upon and
analyzed in some detail.

Even for general matrix A, however, the bottleneck was initially at the stage
of the solution of the block Hankel linear system (146). The structured Hensel
lifting has finally become both theoretical and practical way out, which allowed
both to decrease the exponent of the randomized Boolean complexity for com-
puting the determinant of a general matrix from 10/3 in (146) to 16/5 and to
keep all computational blocks practically valid (215; 218).

3 Univariate Polynomial Root-Finding,

Factorization, and Approximate GCDs

3.1 Complexity of Univariate Polynomial Root-Finding

Solution of an nth degree polynomial equation,

p(x) =

n∑

i=0

pi xi = pn

n∏

j=1

(x − zj) = 0 , pn 6= 0,

that is, the computation of the roots z1, . . . , zn for given coefficients p0, . . . , pn,
is a classical problem that has greatly influenced the development of mathemat-
ics throughout four millennia, since the Sumerian times (209). The problem
remains highly important for the theory and practice of the present day alge-
braic and algebraic/geometric computation, and dozens of new algorithms for
its solution appear every year.

Polynomial root-finding requires an input precision exceeding the output
precision by the factor of n, so that we need at least (n + 1)nb/2 bits (and
consequently at least ⌈(n + 1)nb/4⌉ bit operations) to represent the input co-
efficients p0, . . . , pn−1 to approximate even a single root of a monic polynomial
p(x) within error bound 2−b. To see why, consider, for instance, the polynomial

10



(x− 6
7 )n and perturb its x-free coefficient by 2−bn. Observe the resulting jumps

of the root x = 6/7 by 2−b, and observe similar jumps where the coefficients pi

are perturbed by 2(i−n)b for i = 1, 2, . . . , n− 1. Therefore, to ensure the output
precision of b bits, we need an input precision of at least (n − i)b bits for each
coefficient pi, i = 0, 1, . . . , n − 1.

It can be surprising, but we can approximate all n roots within 2−b by
using bn2 Boolean (bit) operations up to a polylogarithmic factor, that is, we
can approximate all roots almost as soon as we write down the input. We
achieve this by means of the divide-and-conquer algorithms in (207; 209; 214)
(see (154; 196; 251) on the related works). The algorithms first compute a
sufficiently wide root-free annulus A on the complex plane, whose exterior and
interior contain comparable numbers of the roots (that is, the same numbers
up to a fixed constant factor). Then the two factors of p(x) are numerically
computed, that is, F (x), having all its roots in the interior of the annulus,
and G(x) = p(x)/F (x), having no roots there. The same process is recursively
repeated for F (x) and G(x) until factorization of p(x) into the product of linear
factors is computed numerically. From this factorization, approximations to all
roots of p(x) are obtained.

It is interesting that both lower and upper bounds on the Boolean time
decrease to bn (up to polylog factors) (214) if we only seek the factorization,
rather than the roots, that is, if instead of all roots zj , we compute some scalars
aj and bj such that ||p(x) − ∏n

j=1(ajx − cj)|| < 2b for the polynomial norm

defined by ||∑i qix
i|| =

∑
i |qi|.

Combining these bounds with a simple argument in (251, Section 20) readily
supports the record complexity bound of ÕB((τ + n)n2) on the bit-complexity
of the isolation of real roots of a polynomial of degree n with integer coefficients
in a range (−2τ , 2τ ).

3.2 Root-Finding via Functional Iterations

The record computational complexity estimates for root-finding can be also
obtained based on some functional iteration algorithms if one assumes their
convergence rate based on the ample empirical evidence, although never proved
formally. The users seem to accept such an evidence instead of the proof and
prefer the latter algorithms because they are easy to program, have been care-
fully implemented, and allow to tune the precision of the computation to the
precision required for every output root (which must be chosen higher for clus-
tered and multiple roots than for the single isolated roots).

For approximating a single root z, the current practical champions are mod-
ifications of Newton’s iteration, z(i + 1) = z(i)− a(i)p(z(i))/p′(z(i)), a(i) being
the step-size parameter (174), Laguerre’s method (110; 132), and the Jenkins–
Traub algorithm (136). One can deflate the input polynomial via its numerical
division by x − z to extend these algorithms to approximating the other roots.

To approximate all roots simultaneously, it is even more effective to apply
the Durand–Kerner’s (actually Weierstrass’) algorithm, which is defined by the

11



following recurrence:

zj(l + 1) = zj(l) −
p (zj(l))

pn

∏
i6=j (zj(l) − zi(l))

, j = 1, . . . , n, l = 1, 2, . . . . (1)

Here, a simple customary choice (see (23) for some effective alternatives) for the
n initial approximations zj(0) to the n roots of the polynomial p(x) is given by
zj(0) = Z t exp(2π

√
−1/n) , j = 1, . . . , n, where t > 1 is a fixed tolerance and

Z is an upper bound on the root radius, such that all roots zj lie in the circle
on the complex plane having radius Z and centered in the origin. This holds,
e.g., for

Z = 2max
i<n

|pi/pn|
1

n−i . (2)

For a fixed l and for all j, the computation according to (1) is simple. We
only need the order of n2 ops for every l or only O(n log2 n) ops with deteri-
orated numerical stability if we use the fast multipoint polynomial evaluation
algorithms (2; 27; 33; 213).

We refer the reader to (29; 178; 179; 180; 181; 209) on this and other
effective functional iteration algorithms and on further extensive bibliography
and to (23) on the one of the most advanced current implementation MPSolve,
based on the so called Aberth’s algorithm (published first by Börsch–Supan and
then Ehrlich).

3.3 Matrix Methods for Polynomial Root-Finding

Some recent highly effective polynomial root-finders rely on matrix methods.
The roots are approximated as the eigenvalues of the associated (generalized)
companion matrices, that is, the matrices whose characteristic polynomial is
exactly the input polynomial. To the advantage of this approach, it employs
numerically stable methods and the excellent software of matrix computations.
Matlab’s polynomial root-finder relies on the QR algorithm applied to the Frobe-
nius companion matrix. This is effective because this algorithm is the present
day champion in the eigenvalue computation. Malek and Vaillancourt in 1995
and then Fortune (109) succeeded by applying the same algorithm to other gen-
eralized companion matrices. They improve the approximations recursively by
alternating the QR algorithm with Durand–Kerner’s, which was the basis for
the Fortune’s competitive root-finding package EigenSolve.

The generalized companion matrices can be chosen highly structured, e.g.,
one can choose the Frobenius companion matrix or a diagonal plus rank-one
(hereafter DPR1) matrix. The algorithms in (22; 24; 25; 219) exploit this
structure to accelerate the eigenvalue computations. At first this was achieved
in (22) based on the inverse (power) Rayleigh-Ritz iteration, which turned out to
be also closely related to Cardinal’s effective polynomial root-finder (cf. (219)).
Then in (24; 25) the same idea was pursued based on the QR algorithm. All
papers (22; 24; 25) use linear space and linear arithmetic time per iteration step
versus quadratic in the general QR algorithm used by Matlab and Fortune. We

12



refer the reader to (223) on various aspects of this approach and on some related
directions for its further study.

3.4 Extension to Eigen-solving

According to ample empirical evidence (126), the cited structured eigen-solvers
(aoolied for polynomial root-finding) typically use from 2 to 3 iteration steps to
approximate an eigenvalue of a matrix and the associated eigenvectors. For an
n× n DPR1 matrix, this means O(n2) ops for all eigenvalues and eigenvectors,
versus the order of n3 for general matrix. The paper (220) extends these fast
eigen-solvers to generic matrix by defining its relatively inexpensive similarity
transform into a DPR1 matrix. (Similarity transforms A ← S−1AS preserve
eigenvalues and allow readily reconstruct eigenvectors.)

3.5 Real Polynomial Root-Finding

In many algebraic and geometric applications, the input polynomial p(x) has
real coefficients, and only its real roots must be approximated. When all roots
are real, the Laguerre algorithm, its modifications, and some divide-and-conquer
matrix methods (28) become highly effective, but all these algorithms do not
work that well where the polynomial has also nonreal roots. Frequently, the
real roots make up only a small fraction of all roots.

Somewhat surprisingly, the fastest real root-finder in the current practice is
still MPSolve, which uses about the same running time for real roots as for all
complex roots.

Some alternative algorithms specialized to approximation of only real roots
are based on using the Descartes rule of signs or the Sturm or Sturm–Habicht
sequences to isolate all real roots from each other. The record complexity of
the isolation is again based on the factorization of a polynomial in the complex
domain (see the end of Section 3.1).

3.6 Extension to Approximate Polynomial GCDs

Polynomial root-finding has been extended in (211) to the computation of ap-
proximate univariate polynomial greatest common divisor (gcd) of two polyno-
mials, that is, the gcd of the maximum degree for two polynomials of the same
or smaller degrees lying in the ǫ-neighbourhood of the input polynomials for a
fixed positive ǫ. When the roots of both polynomials are approximated closely,
it remains to compute a maximal matching in the associated bipartite graphs
whose two sets of vertices are given by the roots of the two polynomials and
whose edges connect the pair of roots that lie near each other (211).

This computational problem is important in control. The Euclidean algo-
rithm is sensitive to input perturbations and can easily fail (94). Partial reme-
dies rely on other approaches (see the bibliography in (111; 211)), notably via
computing the singular values of the associated Sylvester (resultant) matrices.
These approaches are more sound numerically than the Euclidean algorithm but

13



still treat the gcds indirectly, via the coefficients, whose perturbation actually
affects the gcds only via its affect on the roots.

3.7 Univariate real root isolation

In the current section, we consider only exact algorithms; algorithms that in-
volve computations with rational numbers. Consider the following polynomial
of degree d,

f(x) = ad xd + . . . + a1 x + a0,

where the coefficients are known exactly, that is they are rational numbers. Let
τ = 1 + maxi≤n{lg |ai|} be the maximum bit size of the coefficients.

Real root isolation consists of computing disjoint intervals with rational end-
points that contains one and only one real root of f and every real root is con-
tained in some interval. In addition we may also need to report the multiplicities
of the real roots. The process differs from the one of the previous section, since
we are interested only in the real roots and we wish to isolate them instead of
approximating them to a desired accuracy.

An important ingredient for the performance and the analysis of the real
root isolation algorithms is the minimal distance between the roots of f , the so
called separation bound. It can be shown, e.g. (183; 182; 280), that this is at

most d−(d+2)/2(d + 1)(1−d)/22τ(1−d), or roughly speaking 2−
eO(dτ).

3.7.1 Subdivision algorithms

The most frequently used exact algorithms for real root isolation are the sub-
division algorithms, that mimic the binary search algorithm. They consider an
initial interval that contains all the real roots and then they repeatedly subdi-
vide it until is, some how, certified that the tested interval contains 0 or 1 real
root. The subdivision algorithms differ in the way that they count real roots of
a polynomial in an interval. Best known are the algorithms sturm, descartes
and bernstein.

The algorithm that resembles the most to the binary search algorithm is
sturm, that was introduced by Sturm in 1835 (262). Initially the algorithm
computes the (signed) polynomial remainder sequence of f and its derivative
(see also section “The Sylvester resultant”). In order to compute the number
of real roots in an interval, say [a, b], where the endpoints are not roots of f , we
evaluate the polynomial remainder sequence on the left endpoint of the interval
and we count the number of sign variations, resulting a number Va ∈ N. We
do the same for the right endpoint, getting a number Vb ∈ N. Now the number
of distinct real roots of f in [a, b] is Va − Vb. If the interval contains more
that one real root then we subdivide it and we continue the algorithm on each
subinterval. The complexity of the algorithm accounts the number of steps
that it executes, that is the number of intervals that examines, times the time
needed to evaluate the polynomial remainder sequence over a rational number
of magnitude, in the worst case, proportional to the separation bound. Notice
that the sturm algorithm does not assume a square-free polynomial.

14



Probably the first complete analysis of sturm is due to Heidel (134), see also

(63), that achieved a complexity of ÕB(d7τ3). The number of steps that the
algorithm performs is O(dτ+d lg d) (71; 72; 81; 98). Using the fast algorithms for

polynomial remainder sequences evaluation (243; 170) we can prove a ÕB(d4τ2)
bound for the overall algorithm (71; 81; 98) and that in the same time we can
also compute the multiplicities of the real roots.

descartes algorithm relies on Descartes’ rule of sign, which states that the
number of sign variations in the coefficient list exceeds the number of positive
real roots of f by an even number. It assumes a square-free polynomial. In
general this rule provides an overestimation on the number of positive real roots.
However, when the number of sign variations is zero or one, then we get the
exact number of positive real roots. Thus, in order to count the number real
roots of f in an interval, we transform the polynomial to another polynomial,
the real roots of which in (0,∞) correspond to the real roots of f in the initial
interval. If the number of real roots in greater than one, then we subdivide it and
the we continue the algorithm on each subinterval. Notice that the polynomial
transformations needed can be performed by shifting appropriately the variable
x. The complexity of the algorithm is the number of intervals that it considers
times the time needed for shifting the polynomial by a number of magnitude,
in the worst case, proportional to the separation bound. For fast algorithms for
polynomial shifts, the reader may refer to (27; 114; 115). The correctness and
the termination of the algorithm depend on Vincent’s theorem (270) and/or
on the one and two circles theorems (6; 62; 157). The descartes algorithm
presented in its modern form by Collins and Akritas (61), see also (137; 156)
and (249) for a unified scheme, concerning the way we traverse the subdivision
tree and optimal memory management.

The bernstein algorithm is also based on Descartes’ rule of sign and addi-
tionally takes advantage of the good properties of the Bernstein basis polynomial
representation. The algorithm was presented by Lane and Riesenfeld (164) but
its complexity, and its connection to the topological degree computation, was
first analysed by Mourrain et al (194), see also (15; 138), (192) for a variant
that has optimal memory management, and (88) for a probabilistic variant for
polynomials with bit-stream coefficients. The complexity of all the approaches
is ÕB(d6τ2). Quite recently, it was proven (89) that the number of steps that
both descartes and bernstein perform is O(dτ + d lg d) and this made it

possible to prove that the complexity of both algorithms is ÕB(d4τ2) (89; 98).
This bound holds for non square-free polynomials and in the same time we can
also compute the multiplicities of the real roots.

3.7.2 The continued fraction algorithm

The continued fraction algorithm, cf, differs from the subdivision-based algo-
rithms in that instead of bisecting a given initial interval it computes the contin-
ued fraction expansions of the real roots of the polynomial. The first formulation
of the algorithm is due to Vincent (270), see also (4; 6) for historical references,
based on his theorem, where it was stated that repeated transformations of the

15



polynomial, of the form x 7→ c + 1
x , will eventually yield a polynomial with

zero (or one) sign variation. Thus Descartes’ rule implies that the transformed
polynomial has zero (resp. one) real root in (0,∞). If one sign variation is
attained then the inverse transformation can be applied in order to compute an
isolating interval for the real root that corresponds to the original polynomial.
Moreover the c’s that appear in the transformation correspond, hopefully, to the
partial quotients of the continued fraction expansion of the real root. However,
Vincent’s algorithm is exponential (61). He computed the partial quotients by
repeated shift operations of the form X 7→ X + 1, thus if one of the partial
quotients, or even the sum of all, is of magnitude, say, 2τ then an exponential
number of steps must be performed.

Uspensky (268) extended Vincent’s theorem by computing an upper bound
on the number of transformations so as to isolate the real roots, but failed to deal
with its exponential behaviour, see also (52; 247). Akritas (5; 3) attempted to
tackle the exponential behaviour of the CF algorithm, by computing the partial
quotients as positive lower bounds of the positive real roots, via Cauchy’s bound,
see e.g. (183; 184) and announced a complexity of ÕB(d5τ3). However, it is
not clear how this approach accounts for the increased coefficient size in the
transformed polynomial after applying X 7→ c+X. Moreover, the magnitude of
the partial quotients is unbounded in general (31; 153). Tsigaridas and Emiris
(267), using results from the metric theory of the continued fractions proved

that the numbers of steps of the cf algorithm is Õ(dτ) and that its expected

complexity is ÕB(d4τ). This bound holds for non square-free polynomials and
in the same time we can also compute the multiplicities of the real roots. Quite
recently, Sharma (254) proved that the worst case complexity of the algorithm

is in ÕB(d7τ2).
To summarize, sturm, descartes and bernstein, perform O(dτ + d lg d)

steps and they have Õ(d2τ) and ÕB(d4τ2) arithmetic and bit complexity, re-

spectively. The cf algorithm has ÕB(d4τ2), resp. ÕB(d7τ2), expected, resp.
worst case, bit complexity.

There are several open questions concerning the exact algorithms for root
isolation. What is the lower bound for the bit complexity of the problem?
What is the expected (arithmetic or bit) complexity of the algorithms? Is

the ÕB(d4τ2) bound tight for the subdivision algorithms? Does the ÕB(d4τ2)
bound hold for complex root isolation?

4 Systems of Nonlinear Equations

Given a system P = {p1(x1, . . . , xn), p2(x1, . . . , xn), . . . , pr(x1, . . . , xn)} of non-
linear polynomials with rational coefficients (each pi(x1, . . . , xn) is said to be
an element of Q[x1, . . . , xn], the ring of polynomials in x1, . . . , xn over the field
of rational numbers), the n-tuple of complex numbers (a1, . . . , an) is a solution
of the system if fi(a1, . . . , an) = 0 for each i with 1 ≤ i ≤ r. In this section,
we explore the problem of solving a well-constrained system of nonlinear equa-

16



tions. We also indicate how an initial phase of exact algebraic computation
leads to certain numerical methods that can approximate all solutions; the in-
teraction of symbolic and numeric computation is currently an active domain
of research, e.g. (97). We provide an overview and cite references to different
symbolic techniques used for solving systems of algebraic (polynomial) equa-
tions. In particular, we describe methods involving resultant and Gröbner basis
computations.

The Sylvester resultant method is the technique most frequently utilized for
determining a common root of two polynomial equations in one variable (155).
However, using the Sylvester method successively to solve a system of multi-
variate polynomials proves to be inefficient. Successive resultant techniques,
in general, lack efficiency as a result of their sensitivity to the ordering of the
variables (151). It is more efficient to eliminate all variables together from a
set of polynomials, thus, leading to the notion of the multivariate resultant.
The three most commonly used multivariate resultant formulations are the
Bézout-Dixon (78; 95), Sylvester-Macaulay (46; 48; 172), and the hybrid formu-
lations (76; 152). Concerning the Sylvester-Macaulay type, we shall emphasize
also sparse resultant formulations (47; 263).

The theory of Gröbner bases provides powerful tools for performing compu-
tations in multivariate polynomial rings. Formulating the problem of solving
systems of polynomial equations in terms of polynomial ideals, we will see that
a Gröbner basis can be computed from the input polynomial set, thus, allowing
for a form of back substitution in order to compute the common roots.

Although not discussed, it should be noted that the characteristic set al-
gorithm can be utilized for polynomial system solving. Ritt (246) introduced
the concept of a characteristic set as a tool for studying solutions of algebraic
differential equations. In 1984, Wu (279) in search of an effective method for au-
tomatic theorem proving, converted Ritt’s method to ordinary polynomial rings.
Given the aforementioned system P , the characteristic set algorithm transforms
P into a triangular form, such that the set of common roots of P is equivalent
to the set of roots of the triangular system (151).

Throughout this exposition we will also see that these techniques used to
solve nonlinear equations can be applied to other problems as well, such as
computer-aided design, robot kinematics and automatic geometric theorem prov-
ing.

4.1 The Sylvester Resultant

The question of whether two polynomials f(x), g(x) ∈ Q[x],

f(x) = fnxn + fn−1x
n−1 + . . . + f1x + f0 ,

g(x) = gmxm + gm−1x
m−1 + . . . + g1x + g0 ,

have a common root leads to a condition that has to be satisfied by the coeffi-
cients of both f and g. Using a derivation of this condition due to Euler, the
Sylvester matrix of f and g (which is of order m + n) can be formulated. The

17



vanishing of the determinant of the Sylvester matrix, known as the Sylvester
resultant, is a necessary and sufficient condition for f and g to have common
roots (155).

As a running example let us consider the following system in two variables
provided by Lazard (166):

f = x2 + xy + 2x + y − 1 = 0 ,

g = x2 + 3x − y2 + 2y − 1 = 0 .

The Sylvester resultant can be used as a tool for eliminating several variables
from a set of equations. Without loss of generality, the roots of the Sylvester
resultant of f and g treated as polynomials in y, whose coefficients are poly-
nomials in x, are the x-coordinates of the common roots of f and g. More
specifically, the Sylvester resultant of the Lazard system with respect to y is
given by the following determinant:

det







x + 1 x2 + 2x − 1 0

0 x + 1 x2 + 2x − 1

−1 2 x2 + 3x − 1





 = −x3 − 2x2 + 3x .

An alternative matrix formulation named after Bézout yields the same deter-
minant. This formulation is discussed below in the context of multivariate
polynomials, in “Resultants of Multivariate Systems.”

The roots of the Sylvester resultant of f and g are {−3, 0, 1}. For each x
value, one can substitute the x value back into the original polynomials yielding
the solutions (−3, 1), (0, 1), (1,−1).

The method just outlined can be extended recursively, using polynomial
GCD computations, to a larger set of multivariate polynomials in Q[x1, . . . , xn].
This technique, however, is impractical for eliminating many variables, due to an
explosive growth of the degrees of the polynomials generated in each elimination
step.

The Sylvester formulations has led to a subresultant theory, developed si-
multaneously by G.E. Collins, and W.S. Brown and J. Traub. The subresultant
theory produced an efficient algorithm for computing polynomial GCDs and
their resultants, while controlling intermediate expression swell (35; 60; 155).

Polynomial GCD algorithms have been developed that use some kind of im-
plicit representations for symbolic objects and thus, avoid the computationally
costly content and primitive part computations needed in those GCD algorithms
for polynomials in explicit representation (75; 139; 145).

4.2 Resultants of Multivariate Systems

The solvability of a set of nonlinear multivariate polynomials can be determined
by the vanishing of a generalization of the Sylvester resultant of two polynomi-
als in a single variable. We examine two generalizations, namely, the classical
and the sparse resultants. The classical resultant of a system of n homogeneous

18



polynomials in n variables vanishes exactly when there exists a common solu-
tion in projective space (67; 272). The sparse (or toric) resultant characterizes
solvability over a smaller space which coincides with affine space under certain
genericity conditions (119; 263). More general resultants are not analyzed here,
see (42; 43). In any case, the main algorithmic question is to construct a matrix
whose determinant is the resultant or a nontrivial multiple of it. Macaulay-type
formulas give the resultant as the exact quotient of a determinant divided by
one of its minors.

Due to the special structure of the Sylvester matrix, Bézout developed a
method for computing the resultant as a determinant of order max{m,n} during
the eighteenth century. Cayley (55) reformulated Bézout’s method leading to
Dixon’s (78) extension to the bivariate case. This method can be generalized to
a set

{p1 (x1, . . . , xn) , p2 (x1, . . . , xn) , . . . , pn+1 (x1, . . . , xn)}
of n + 1 generic polynomials in n variables (95). The vanishing of the determi-
nant of the Bézout-Dixon matrix is a necessary and sufficient condition for the
polynomials to have a nontrivial projective common root, and also a necessary
condition for the existence of an affine common root. The Bézout-Dixon formu-
lation gives the resultant up to a multiple, and hence, in the affine case it can
happen that the vanishing of the determinant does not necessarily indicate that
the equations in question have a common root. A nontrivial multiple, known as
the projection operator, can be extracted via a method discussed in (54, thm.
3.3.4). This article, along with (90), explain the correlation between residue
theory and the Bézout-Dixon matrix, which yields an alternative method for
studying and approximating all common solutions.

In 1916, Macaulay (172) constructed a matrix whose determinant is a multi-
ple of the classical resultant for n homogeneous polynomials in n variables. The
Macaulay matrix simultaneously generalizes the Sylvester matrix and the coef-
ficient matrix of a system of linear equations (67). As the Dixon formulation,
the Macaulay determinant is a multiple of the resultant. Macaulay, however,
proved that a certain minor of his matrix divides the matrix determinant so
as to yield the exact resultant in the case of generic homogeneous polynomi-
als. Canny (46) has proposed a general method that perturbs any polynomial
system and extracts a nontrivial projection operator.

Using recent results pertaining to sparse polynomial systems (119; 263),
a matrix formula for computing the sparse resultant of n + 1 polynomials in
n variables was given by Canny and Emiris (47) and consequently improved
in (50; 92). The determinant of the sparse resultant matrix, like the Macaulay
and Dixon matrices, only yields a projection operation, not the exact resul-
tant. D’Andrea (70) extended Macaulay’s rational formula for the resultant
to the sparse setting, thus defining the sparse resultant as the quotient of two
determinants.

Here, sparsity means that only certain monomials in each of the n + 1 poly-
nomials have nonzero coefficients. Sparsity is measured in geometric terms,
namely, by the Newton polytope of the polynomial, which is the convex hull of

19



the exponent vectors corresponding to nonzero coefficients. The mixed volume
of the Newton polytopes of n polynomials in n variables is defined as a cer-
tain integer-valued function that bounds the number of affine common roots of
these polynomials, according to a theorem of (21). This remarkable theorem is
the cornerstone of sparse elimination. The mixed volume bound is significantly
smaller than the classical Bézout bound for polynomials with small Newton
polytopes. Since these bounds also determine the degree of the sparse and clas-
sical resultants, respectively, the latter has larger degree for sparse polynomials.
Last, but not least, the classical resultant can identically vanish over sparse
systems, whereas the sparse resultant does not and, hence, yields information
about their common roots. For an example, see (68).

4.3 Polynomial System Solving by Using Resultants

Suppose we are asked to find the common roots of a set of n polynomials in n
variables {p1(x1, . . . , xn), p2(x1, . . . , xn), . . ., pn(x1, . . . , xn)}. By augmenting
the polynomial set by a generic linear polynomial (46; 49; 68), one can construct
the u-resultant of a given system of polynomials. The u-resultant is named
after the vector of indeterminates u, traditionally used to represent the generic
coefficients of the additional linear polynomial. The u-resultant factors into
linear factors over the complex numbers, providing the common roots of the
given polynomials equations. The u-resultant method relies on the properties of
the multivariate resultant, and hence, can be constructed using either Dixon’s,
Macaulay’s, or sparse formulations. An alternative approach, where we hide
a variable in the coefficient field, instead of adding a polynomial, is discussed
in (91; 95; 175).

Consider the previous example augmented by a generic linear form:

f1 = x2 + xy + 2x + y − 1 = 0 ,

f2 = x2 + 3x − y2 + 2y − 1 = 0 ,

fl = ux + vy + w = 0 .

As described in Canny, Kaltofen and Lakshman (48), the following matrix
M corresponds to the Macaulay u-resultant of the above system of polynomials,
with z being the homogenizing variable:

M =




1 0 0 1 0 0 0 0 0 0
1 1 0 0 1 0 u 0 0 0
2 0 1 3 0 1 0 u 0 0
0 1 0 −1 0 0 v 0 0 0
1 2 1 2 3 0 w v u 0
−1 0 2 −1 0 3 0 w 0 u
0 0 0 0 −1 0 0 0 0 0
0 1 0 0 2 −1 0 0 v 0
0 −1 1 0 −1 2 0 0 w v
0 0 −1 0 0 −1 0 0 0 w




.

20



It should be noted that

det(M) = (u − v + w)(−3u + v + w)(v + w)(u − v)

corresponds to the affine solutions (1,−1), (−3, 1), (0, 1), and one solution at
infinity.

Resultants can also be applied to reduce polynomial system solving to a reg-
ular or generalized eigenproblem (cf. “Matrix Eigenvalues and Singular Values
Problems”), thus, transforming the nonlinear question to a problem in linear
algebra. This is a classical technique that enables us to approximate all solu-
tions (cf. (9; 49; 54; 91; 95)). For demonstration, consider the previous system
and its resultant matrix M . The matrix rows are indexed by the following row
vector of monomials in the eliminated variables:

v =
[
x3, x2y, x2, xy2, xy, x, y3, y2, y, 1

]
.

Vector vM expresses the polynomials indexing the columns of M , which are
multiples of the three input polynomials by various monomials. Let us specialize
variables u and v to random values. Then the matrix M contains a single
variable w and is denoted M(w). Solving the linear system vM(w) = 0 in vector
v and in scalar w is a generalized eigenproblem, since M(w) can be represented
as M0 + wM1, where M0 and M1 have numeric entries. If, moreover, M1 is
invertible, we arrive at the following eigenproblem:

v (M0 + wM1) = 0 ⇐⇒ ~v
(
−M−1

1 M0 − wI
)

= 0 ⇐⇒ v
(
−M−1

1 M0

)
= wv .

For every solution (a, b) of the original system, there is a vector v among the
computed eigenvectors, which we evaluate at x = a, y = b and from which the
solution can be recovered by means of division (cf. (91)). As for the eigenvalues,
they correspond to the values of w at the solutions.

An alternative method for approximating or isolating all real roots of the
system is to use the so-called Rational Univariate Representation (RUR) of
algebraic numbers (45; 248). This allows us to express each root coordinate as
the value of a univariate polynomial, evaluated over a different algebraic number.
The latter are all solutions of a single polynomial equation, and can thus be
approximated or isolated by the algorithms presented in preceding sections.
The polynomials involved in this approach are derived from the resultant.

The resultant matrices are sparse and have quasi Toeplitz/Hankel struc-
ture (also called multilevel Toeplitz/Hankel structure), which enables their fast
multiplication by vectors. By combining the latter property with various ad-
vanced nontrivial methods of multivariate polynomial root-finding, substantial
acceleration of the construction and computation of the resultant matrices and
approximation of the system’s solutions was achieved in (32; 99; 188; 189; 190).

An empirical comparison of the detailed resultant formulations can be found
in (96; 175). The multivariate resultant formulations have been used for diverse
applications such as algebraic and geometric reasoning (54; 175), computer-aided
design (159; 252), robot kinematics (245; 175), computing molecular conforma-
tions (93; 176) and for implicitization and finding base points (58; 175).

21



4.4 Gröbner Bases

Solving systems of nonlinear equations can be formulated in terms of polynomial
ideals (16; 67; 129; 158). Let us first establish some terminology.

The ideal generated by a system of polynomial equations p1, . . . , pr over
Q[x1, . . . , xn] is the set of all linear combinations

(p1, . . . , pr) = {h1p1 + . . . + hrpr | h1, . . . , hr ∈ Q [x1, . . . , xn]} .

The algebraic variety of p1, . . . , pr ∈ Q[x1, . . . , xn] is the set of their common
roots,

V (p1, . . . , pr) = {(a1, . . . , an) ∈ Cn | f1 (a1, . . . , an) = . . . = fr (a1, . . . , an) = 0} .

A version of the Hilbert Nullstellensatz states that

V (p1, . . . , pr) = the empty set ∅ ⇐⇒ 1 ∈ (p1, . . . , pr) over Q [x1, . . . , xn] ,

which relates the solvability of polynomial systems to the ideal membership
problem.

A term t = xe1

1 xe2

2 . . . xen
n of a polynomial is a product of powers with

deg(t) = e1 + e2 + · · · + en. In order to add needed structure to the poly-
nomial ring we will require that the terms in a polynomial be ordered in an
admissible fashion (118; 67). Two of the most common admissible orderings
are the lexicographic order (≺l), where terms are ordered as in a dictionary,
and the degree order (≺d), where terms are first compared by their degrees
with equal degree terms compared lexicographically. A variation to the lexico-
graphic order is the reverse lexicographic order, where the lexicographic order
is reversed (72, p. 96).

It is this above mentioned structure that permits a type of simplification
known as polynomial reduction. Much like a polynomial remainder process, the
process of polynomial reduction involves subtracting a multiple of one polyno-
mial from another to obtain a smaller degree result (16; 67; 129; 158).

A polynomial g is said to be reducible with respect to a set P = {p1, . . . , pr}
of polynomials if it can be reduced by one or more polynomials in P . When g
is no longer reducible by the polynomials in P , we say that g is reduced or is a
normal form with respect to P .

For an arbitrary set of basis polynomials, it is possible that different reduc-
tion sequences applied to a given polynomial g could reduce to different normal
forms. A basis G ⊆ Q[x1, . . . , xn] is a Gröbner basis if and only if every poly-
nomial in Q[x1, . . . , xn] has a unique normal form with respect to G. Bruno
Buchberger (36; 37; 38; 39) showed that every basis for an ideal (p1, . . . , pr) in
Q[x1, . . . , xn] can be converted into a Gröbner basis {p∗1, . . . , p∗s} = GB(p1, . . . , pr),
concomitantly designing an algorithm that transforms an arbitrary ideal basis
into a Gröbner basis. Another characteristic of Gröbner bases is that by using
the above mentioned reduction process we have

g ∈ (p1 . . . , pr) ⇐⇒ (g mod p∗1, . . . , p
∗
s) = 0 .

22



Further, by using the Nullstellensatz it can be shown that p1 . . . , pr viewed as
a system of algebraic equations is solvable if and only if 1 6∈ GB(p1, . . . , pr).

Depending on which admissible term ordering is used in the Gröbner bases
construction, an ideal can have different Gröbner bases. However, an ideal
cannot have different (reduced) Gröbner bases for the same term ordering.

Any system of polynomial equations can be solved using a lexicographic
Gröbner basis for the ideal generated by the given polynomials. It has been
observed, however, that Gröbner bases, more specifically lexicographic Gröbner
bases, are hard to compute (16; 118; 163; 278). In the case of zero-dimensional
ideals, those whose varieties have only isolated points, Faugère et al. (103)
outlined a change of basis algorithm which can be utilized for solving zero-
dimensional systems of equations. In the zero-dimensional case, one computes a
Gröbner basis for the ideal generated by a system of polynomials under a degree
ordering. The so-called change of basis algorithm can then be applied to the
degree ordered Gröbner basis to obtain a Gröbner basis under a lexicographic or-
dering. More recently, significant progress has been achieved in the algorithmic
realm of Gröbner basis computations by the work of J-C. Faugère (101; 102).

Another way to finding all common real roots is by means of RUR; see the
previous section or (45; 248). All polynomials involved in this approach can be
derived from the Gröbner basis.

A rather recent development concerns the generalization of Gröbner bases
to border bases, which contain all information required for system solving but
can be computed faster and seem to numerically more stable (158; 193; 257).

Turning to Lazard’s example in form of a polynomial basis,

f1 = x2 +xy +2x +y −1 ,
f2 = x2 +3x −y2 +2y −1 ,

one obtains (under lexicographical ordering with x≺ly) a Gröbner basis in which
the variables are triangularized such that the finitely many solutions can be
computed via back substitution:

f1
∗ = x2 +3x +2y −2 ,

f2
∗ = xy −x −y +1 ,

f3
∗ = y2 −1 .

It should be noted that the final univariate polynomial is of minimal degree and
the polynomials used in the back substitution will have degree no larger than
the number of roots.

As an example of the process of polynomial reduction with respect to a
Gröbner basis, the following demonstrates two possible reduction sequences to
the same normal form. The polynomial x2y2 is reduced with respect to the pre-
viously computed Gröbner basis {f∗

1 , f∗
2 , f∗

3 } = GB(f1, f2) along the following
two distinct reduction paths, both yielding −3x − 2y + 2 as the normal form.

23



x2y2

−3xy2 − 2y3 + 3y2

−3xy − 2y3 − y2 + 3y −3x − 2y3 + 2y2

−3x − 2y3 − y2 + 3 −3x − 2y3 + 2y2

−3x − y2 − 2y + 3

−3x − 2y + 2

f∗
1

f∗
2

f∗
2

f∗
3

f∗
3

f∗
3

f∗
3

f∗
3

There is a strong connection between lexicographic Gröbner bases and the
previously mentioned resultant techniques. For some types of input polynomials,
the computation of a reduced system via resultants might be much faster than
the computation of a lexicographic Gröbner basis.

In a survey article, Buchberger (38) detailed how Gröbner bases can be
used as a tool for many polynomial ideal theoretic operations. Other ap-
plications of Gröbner basis computations include automatic geometric theo-
rem proving (150; 279), multivariate polynomial factorization and GCD com-
putations (121), polynomial interpolation (161; 162), coding and cryptogra-
phy (8; 104), and robotics (105).

5 Research Issues and Summary

The present day computations in sciences, engineering and signal and image pro-
cessing employ both algebraic and numerical approaches. These two approaches
rely on distinct techniques and ideas, but in many cases combining the power
of both of them enhances the efficiency of the computations. This is frequently
the case in matrix computations and root-finding for univariate polynomials and
multivariate systems of polynomial equations. We briefly reviewed these three
subjects and gave pointers to the extensive bibliography.

Among numerous interesting and important research directions of the topics
in Sections 2 and 3, we wish to cite computations with structured matrices,
including the subject of computations with semiseparable matrices currently of
growing interest, their applications to polynomial root-finding, new techniques

24



for preconditioning with many promising extensions (which include the compu-
tation of determinants), and polynomial root-finding.

Section 4 of this chapter has briefly reviewed polynomial system solving
based on resultant matrices as well as Gröbner bases. Both approaches are
currently active, including in applications dealing with small and medium-size
systems. Efficient implementations handling the nongeneric cases, including
multiple roots and nonisolated solutions, is probably the most crucial issue
today in relation to resultants. Other interesting questions include better algo-
rithms, in particular the ones exploiting matrix structure, for both resultants
and Gröbner bases.

6 Defining Terms

Characteristic polynomial: A polynomial associated with a square matrix,
the determinant of the matrix when a single variable is subtracted from
its diagonal entries. The roots of the characteristic polynomial are the
eigenvalues of the matrix.

Condition number: A scalar κ derived from a matrix that measures its rel-
ative nearness to a singular matrix. Very close to singular means a
large condition number, in which case numeric inversion becomes an ill-
conditioned problem and OUTPUT ERROR NORM ≈ κ INPUT ERROR
NORM.

Degree order: An order on the terms in a multivariate polynomial; for two
variables x and y with x ≺ y the ascending chain of terms is 1 ≺ x ≺ y ≺
x2 ≺ xy ≺ y2 · · ·.

Determinant: A polynomial in the entries of a square matrix with the property
that its value is nonzero if and only if the matrix is invertible.

Gröbner basis: A generating set of a set of polynomials, such that the (mul-
tivariate) division of a polynomial by this generating set, has a unique
remainder.

Lexicographic order: An order on the terms in a multivariate polynomial;
for two variables x and y with x ≺ y the ascending chain of terms is 1 ≺
x ≺ x2 ≺ · · · ≺ y ≺ xy ≺ x2y · · · ≺ y2 ≺ xy2 · · ·.

Matrix eigenvector: A column vector v such that, given square matrix A,
Av = λv, where λ is the matrix eigenvalue corresponding to v. A gener-
alized eigenvector v is such that, given square matrices A,B, it satisfies
Av = λBv. Both definitions extend to a row vector which premultiplies
the corresponding matrix.

Ops: Arithmetic operations, i.e., additions, subtractions, multiplications, or
divisions; as in flops, i.e., floating point operations.

25



Resultant: A polynomial in the coefficients of a system of n polynomials with
n + 1 unknowns, the vanishing of which is the necessary and sufficient
condition for the existence of a solution of the system.

Separation bound: The minimum distance between two (complex) roots of a
univariate polynomial.

Singularity: A square matrix is singular if there is a nonzero second matrix
such that the product of the two is the zero matrix. Singular matrices do
not have inverses.

Sparse matrix: A matrix where many of the entries are zero.

Structured matrix: A matrix whose every entry can be derived by a formula
depending on a smaller number of parameters, typically on the order of at
most m+n parameters for an m×n matrix, as opposed to its mn entries.
For instance, an m×n Cauchy matrix has 1

si−tj
as the entry in row i and

column j for m + n parameters si and tj , 1, . . . ,m, j = 1, . . . , n.

References

References

[1] Abbott, J. Bronstein, M. and Mulders, T., Fast deterministic computa-
tions of the determinants of dense matrices. Proc. of International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC’99), 197–204, ACM
Press, New York, 1999.

[2] Aho, A., Hopcroft, J., and Ullman, J., The Design and Analysis of Algo-
rithms. Addison-Wesley, Reading, MA, 1974.

[3] Akritas, A., An implementation of Vincent’s theorem. Numerische Math-
ematik, 36:53–62, 1980.

[4] Akritas, A., There is no ”Uspensky’s method”. Extended Abstract. In
Proc. Symposium on Symbolic and Algebraic Computation, pages 88–90,
Waterloo, Ontario, Canada, 1986.

[5] Akritas, A., Elements of Computer Algebra with Applications. J. Wiley
& Sons, New York, 1989.

[6] Alesina, A. and Galuzzi, M., A new proof of Vincent’s theorem.
L’Enseignement Mathématique, 44:219–256, 1998.

[7] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra,
J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and
Sorensen, D. LAPACK Users’ Guide. 3rd Edition, SIAM Publications,
Philadelphia, PA, 1999.

26



[8] Augot, D., Bardet, M., and Faugère, J-C. Efficient decoding of (binary)
cyclic codes above the correction capacity of the code using Gröbner bases.
In Proc. IEEE Internat. Symp. Information Theory 2003 (ISIT ’03). IEEE
Press, 2003.

[9] Auzinger, W. and Stetter, H.J., An elimination algorithm for the com-
putation of all zeros of a system of multivariate polynomial equations.
In Proc. Intern. Conf. on Numerical Math., Intern. Series of Numerical
Math., 86, 12–30. Birkhäuser, Basel, 1988.

[10] Bach, E. and Shallit, J., Algorithmic Number Theory, Volume 1: Efficient
Algorithms. The MIT Press, Cambridge, MA, 1996.

[11] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A. and van der Vorst, H., editors,
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical
Guide. SIAM, Philadelphia, 2000.

[12] Bailey, D., Borwein, P., and Plouffe, S., On the rapid
computation of various polylogarithmic constants. Math.
Comp., 66, 903–913, 1997. http://mosaic.cecm.sfu.ca/

preprints/1995pp.html, 1995.

[13] Bareiss, E.H., Sylvester’s identity and multistep integers preserving Gaus-
sian elimination. Math. Comp., 22, 565–578, 1968.

[14] Barrett, R., Berry, M.W., Chan, T.F., Demmel, J., Donato, J., Dongarra,
J., Eijkhout, V., Pozo, R., Romine, C. and Van Der Vorst, H., Templates
for the Solution of Linear Systems: Building Blocks for Iterative Methods.
SIAM, Philadelphia, 1993.

[15] Basu, S., Pollack, R., and Roy, M.-F., Algorithms in Real Algebraic Geom-
etry, volume 10 of Algorithms and Computation in Mathematics. Springer-
Verlag, 2003.

[16] Becker, T. and Weispfenning, V., Gröbner bases: A Computational Ap-
proach to Commutative Algebra. Springer-Verlag, New York, 1993.

[17] Benzi, M., Preconditioning techniques for large linear systems: a survey.
J. of Computational Physics, 182, 418–477, 2002.

[18] Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L.,
Mehlhorn, K., Reichel, J., Schmitt, S., Schömer, E., and Wolpert, N.,
EXACUS: Efficient and Exact Algorithms for Curves and Surfaces. In
ESA, volume 1669 of LNCS, pages 155–166. Springer, 2005.

[19] Berlekamp, E.R., Factoring polynomials over finite fields. Bell Systems
Tech. J., 46, 1853–1859, 1967. Republished in revised form in: E. R.
Berlekamp, Algebraic Coding Theory, Chapter 6, McGraw-Hill, New York,
1968.

27



[20] Berlekamp, E.R., Factoring polynomials over large finite fields. Math.
Comp., 24, 713–735, 1970.

[21] Bernstein, D.N., The number of roots of a system of equations. Funct.
Anal. and Appl., 9(2), 183–185, 1975.

[22] Bini, D.A., Gemignani, L. and Pan, V.Y., Inverse power and Du-
rand/Kerner iteration for univariate polynomial root-finding. Computers
and Mathematics (with Applications), 47 (2/3), 447–459, January 2004.
(Also Technical Reports TR 2002 003 and 2002 020, CUNY Ph.D. Program
in Computer Science, Graduate Center, City University of New York,
2002.)

[23] Bini, D.A. and Fiorentino, G., Design, Analysis, and Implementation of
a Multiprecision Polynomial Rootfinder. Numerical Algorithms, 23, 127–
173, 2000.

[24] Bini, D.A., Gemignani, L. and Pan, V.Y., Fast and stable QR eigenvalue
algorithms for generalized companion matrices and secular equation. Nu-
merische Math., 3, 373–408, 2005. (Also Technical Report 1470, Depart-
ment of Math., University of Pisa, Pisa, Italy, July 2003.)

[25] Bini, D.A., Gemignani, L. and Pan, V.Y., Improved initialization of the
accelerated and robust QR-like polynomial root-finding. Electronic Trans-
actions on Numerical Analysis, 17, 195–205, 2004.

[26] Bini, D. and Pan, V.Y., Parallel complexity of tridiagonal symmetric
eigenvalue problem. In Proc. 2nd Ann. ACM-SIAM Symp. on Discrete
Algorithms, 384–393, ACM Press, New York, and SIAM Publications,
Philadelphia, PA, 1991.

[27] Bini, D. and Pan, V.Y., Polynomial and Matrix Computations, Volume 1,
Fundamental Algorithms. Birkhäuser, Boston, 1994.

[28] Bini, D. and Pan, V.Y., Computing matrix eigenvalues and polynomial
zeros where the output is real. SIAM J. on Computing, 27 (4), 1099–1115,
1998.

[29] Bini, D. and Pan, V.Y., Polynomial and Matrix Computations, Volume 2.
Birkhäuser, Boston, to appear.

[30] Björck, Å., Numerical Methods for Least Squares Problems. SIAM,
Philadelphia, 1996.

[31] Bombieri, E. and van der Poorten, A., Continued fractions of algebraic
numbers. In Computational algebra and number theory (Sydney, 1992),
pages 137–152. Kluwer Acad. Publ., Dordrecht, 1995.

28



[32] Bondyfalat, D., Mourrain, B. and Pan, V.Y., Computation of a specified
root of a polynomial system of equations using eigenvectors. Linear Alge-
bra and Its Applications, 319, 193-209, 2000. Proc. version in Proc. ACM
Annual Intern. Symp. on Symbolic and Algebraic Comp. (ISSAC98), 252-
259, ACM Press, New York, 1998.

[33] Borodin, A. and Munro, I., Computational Complexity of Algebraic and
Numeric Problems. American Elsevier, New York, 1975.

[34] Brönnimann, H., Emiris, I.Z., Pan, V.Y., Pion, S., Sign determination in
residue number systems. Theoretical Computer Science, 210 (1), 173–197,
1999. Proceedings Version in Proc. 13th Ann. ACM Symp. on Computa-
tional Geometry, 174–182, ACM Press, New York, 1997.

[35] Brown, W.S. and Traub, J.F., On Euclid’s algorithm and the theory of
subresultants. J. ACM, 18, 505–514, 1971.

[36] Buchberger, B., A theoretical basis for the reduction of polynomials to
canonical form. ACM SIGSAM Bulletin, 10(3), 19–29, 1976.

[37] Buchberger, B., A note on the complexity of constructing Gröbner-bases.
In Proc. EUROCAL ’83, van Hulzen, J.A., Ed., Springer Lec. Notes
Comp. Sci., 137–145, 1983.

[38] Buchberger, B., Gröbner bases: An algorithmic method in polynomial
ideal theory. In Recent Trends in Multidimensional Systems Theory, Bose,
N.K., Ed., 184–232. D. Reidel, Dordrecht (Holland), 1985.

[39] Buchberger, B., Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. Disserta-
tion, University Innsbruck, Austria, 1965.

[40] Buchberger, B., Collins, G.E., Loos, R., and Albrecht, R., editors. Com-
puter Algebra: Symbolic and Algebraic Computation. Springer-Verlag, 2nd
edition, 1983.

[41] Bürgisser, P., Clausen, M., and Shokrollahi, M.A., Algebraic Complexity
Theory. Springer, Berlin, 1997.

[42] Busé, L., Elkadi, M., and Mourrain, B. Generalized resultants over unira-
tional algebraic varieties. J. Symbolic Comp., 29, 515–526, 2000.

[43] Busé, L., Elkadi, M., and Mourrain, B. Residual resultant of complete
intersection. J. Pure & Applied Algebra, 164, 35–57, 2001.

[44] Busé, L., Elkadi, M., and Mourrain, B., editors. Special Issue on
Algebraic–Geometric Computations, Theor. Comp. Science (in press).

[45] Canny, J., Some Algebraic and Geometric Computations in PSPACE. In
Proc. ACM Symp. Theory of Computing, 460–467, 1988.

29



[46] Canny, J., Generalized characteristic polynomials. J. Symbolic Comput.,
9(3), 241–250, 1990.

[47] Canny, J. and Emiris, I., An efficient algorithm for the sparse mixed re-
sultant. In Proc. AAECC-10, Cohen, G., Mora, T., and Moreno, O., Eds.,
volume 673 of Springer Lect. Notes Comput. Sci., 89–104, 1993.

[48] Canny, J., Kaltofen, E., and Lakshman, Y., Solving systems of non-
linear polynomial equations faster. In Proc. ACM-SIGSAM 1989 Internat.
Symp. Symbolic Algebraic Comput. ISSAC ’89, 121–128. ACM, 1989.

[49] Canny, J. and Manocha, D., Efficient techniques for multipolynomial re-
sultant algorithms. In Proc. Internat. Symp. Symbolic Algebraic Comput.
ISSAC ’91, Watt, S.M., Ed., 85–95, ACM Press, New York, 1991.

[50] Canny, J. and Pedersen, P., An algorithm for the Newton resultant. Tech-
nical Report 1394, Computer Science Department, Cornell University,
1993.

[51] Cantor, D.G., On arithmetical algorithms over finite fields. J. Combina-
torial Theory, Series A, 50, 285–300, 1989.

[52] Cantor, D., Galyean, P., and Zimmer, H., A continued fraction algorithm
for real algebraic numbers. Mathematics of Computation, 26(119):785–
791, July 1972.

[53] Cantor, D.G. and Zassenhaus, H., A new algorithm for factoring polyno-
mials over finite fields. Math. Comp., 36, 587–592, 1981.

[54] Cardinal, J.-P. and Mourrain, B., Algebraic approach of residues and ap-
plications. In The Mathematics of Numerical Analysis, Renegar, J., Shub,
M., and Smale, S., Eds., volume 32 of Lectures in Applied Math., 189–210.
AMS, Providence, RI, 1996.

[55] Cayley, A., On the theory of eliminaton. Cambridge and Dublin Mathe-
matical Journal, 3, 210–270, 1865.

[56] Chen, K., Matrix Preconditioning Techniques and Applications. Cam-
bridge University Press, Cambridge, England, 2005.

[57] Chen, Z., and Storjohann, A., A BLAS based C library for exact linear
algebra on integer matrices. Proc. 2005 Internat. Symp. Symbolic Alge-
braic Comput. ( ISSAC’05), (M. Kauers, editor), 92–99, ACM Press, New
York, 2005.

[58] Chionh, E., Base Points, Resultants and Implicit Representation of Ra-
tional Surfaces. Ph.D. Thesis, Department Computer Science, University
Waterloo, 1990.

30



[59] Clarkson, K.L., Safe and effective determinant evaluation. Proc. 33rd Ann.
IEEE Symp. on Foundations of Computer Science, 387–395, IEEE Com-
puter Society Press, Los Alamitos, California, 1992.

[60] Collins, G.E., Subresultants and reduced polynomial remainder sequences.
J. ACM, 14, 128–142, 1967.

[61] Collins, G.E. and Akritas, A., Polynomial real root isolation using
Descartes’ rule of signs. In SYMSAC ’76, pages 272–275, New York,
USA, 1976. ACM Press.

[62] Collins, G.E., and Johnson, J., Quantifier elimination and the sign varia-
tion method for real root isolation. In ISSAC, pages 264–271, 1989.

[63] Collins, G.E., and Loos, R., Real zeros of polynomials. In B. Buchberger,
G.E. Collins, and R. Loos, editors, Computer Algebra: Symbolic and Al-
gebraic Computation, pages 83–94. Springer-Verlag, Wien, 2nd edition,
1982.

[64] Coppersmith, D., Solving homogeneous linear equations over GF(2) via
block Wiedemann algorithm. Math. of Computation, 62(205), 333–350,
1994.

[65] Coppersmith, D. and Winograd, S., Matrix multiplication via arithmetic
progressions. J. Symbolic Comput., 9(3), 251–280, 1990.

[66] Corless, R.M., Gianni, P.M., Trager, B.M., and Watt, S.M., The singular
value decomposition for polynomial systems. In Levelt (168), 96–103.

[67] Cox, D., Little, J., and O’Shea, D. Ideals, Varieties, and Algorithms, 2nd
edition. Undergraduate Texts in Mathematics. Springer, New York, 1997.

[68] Cox, D., Little, J., and O’Shea, D. Using Algebraic Geometry, 2nd edition.
Graduate Texts in Mathematics, 185. Springer, New York, 2005.

[69] Cuppen, J.J.M., A divide and conquer method for the symmetric tridiag-
onal eigenproblem. Numer. Math., 36, 177–195, 1981.

[70] D’Andrea, C. Macaulay-style formulas for the sparse resultant. Trans. of
the AMS, 354, 2595–2629, 2002.

[71] Davenport, J.H., Cylindrical algebraic decomposition. Technical Report
88–10, School of Mathematical Sciences, University of Bath, England,
available at: http://www.bath.ac.uk/masjhd/, 1988.

[72] Davenport, J.H., Tournier, E., and Siret, Y., Computer Algebra Sys-
tems and Algorithms for Algebraic Computation. Academic Press, Lon-
don, 1988.

[73] Demmel, J.J.W., Applied Numerical Linear Algebra. SIAM Publications,
Philadelphia, PA, 1997.

31



[74] Dı́az, A., Emiris, I.Z., Kaltofen, E., and Pan, V.Y., Algebraic Algorithms.
Chapter 16 in Handbook of Algorithms and Theory of Computation,
M.J. Atallah, editor. CRC Press, Boca Raton, Florida, 1999.

[75] Dı́az, A. and Kaltofen, E., On computing greatest common divisors with
polynomials given by black boxes for their evaluation. In Proc. 1995 Inter-
nat. Symp. Symbolic Algebraic Comput. ISSAC ’95, Levelt, A.H.M., Ed.,
232–239, ACM Press, New York, l995.

[76] Dickenstein, A., and Emiris, I.Z., Multihomogeneous resultant formulae
by means of complexes. J. Symbolic Comp., 36, 317–342, 2003.

[77] Dickenstein, A., and Emiris, I.Z., editors. Solving Polynomial Equations:
Foundations, Algorithms and Applications. Volume 14 in ”Algorithms and
Computation in Mathematics”. Springer-Verlag, Berlin, 2005.

[78] Dixon, A.L., The elimination of three quantics in two independent vari-
ables. In Proc. London Mathematical Society, 6, 468–478, 1908.

[79] Dongarra, J.J., Duff, I.S., Sorensen, D.C. and Van Der Vorst, H.A., Nu-
merical Linear Algebra for High-Performance Computers, SIAM, Philadel-
phia, 1998.

[80] Dongarra, J., Bunch, J., Moler, C., and Stewart, P. LINPACK Users’
Guide. SIAM Publications, Philadelphia, PA, 1978.

[81] Du, Z., Sharma, V., and Yap, C.K., Amortized bound for root isolation
via Sturm sequences. In D. Wang and L. Zhi, editors, Int. Workshop on
Symbolic Numeric Computing, pages 113–129, School of Science, Beihang
University, Beijing, China, 2005. Birkhauser.

[82] Duff, I.S., Erisman, A.M. and Reid, J.K., Direct Methods for Sparse Ma-
trices. Clarendon Press, Oxford, England, 1986.

[83] Dumas, J.-G., Gautier, T., Giesbrecht, M., Giorgi, P., Hovinen, B.,
Kaltofen, E., Saunders, B.D., Turner, W.J., and Villard, G. LinBox:
A generic library for exact linear algebra. In Cohen, A.M., Gao, X.-S.,
and Takayama, N., editors, Proc. First Internat. Congress Math. Software
ICMS 200, pages 40-50, Beijing, China, Singapore, 2002.

[84] Dumas, J-G., Gautier, T. and Pernet, C., Finite field linear algebra sub-
routines. Proc. Internat. Symp. Symbolic Algebraic Comput. ( ISSAC’02),
63–74. ACM Press, New York, 2002.

[85] Dumas, J-G., Giorgi, P. and Pernet, C., Finite field linear algebra package.
Proc. Internat. Symp. Symbolic Algebraic Comput. ( ISSAC’04), 118–126.
ACM Press, New York, 2004.

32



[86] Eberly, W., Giesbrecht, M. and Villard, G., On computing the determi-
nant and Smith form of an integer matrix. Proc. 41st Annual Symposium
on Foundations of Computer Science (FOCS’2000), 675–685, IEEE Com-
puter Society Press, Los Alamitos, California, 2000.

[87] Eberly, W. and Kaltofen, E., On randomized Lanczos algorithms. In
Küchlin, W., Ed., Proc. 1997 Internat. Symp. Symbolic Algebraic Comput.
( ISSAC’97), 176–183, ACM Press, New York, 1997.

[88] Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S.,
and Wolpert, N., A Descartes Algorithm for Polynomials with Bit-Stream
Coefficients. In V. Ganzha, E. Mayr, and E. Vorozhtsov, editors, CASC,
volume 3718 of LNCS, pages 138–149. Springer, 2005.

[89] Eigenwillig, A., Sharma, V., and Yap, C.K., Almost tight recursion tree
bounds for the Descartes method. In ISSAC ’06: Proceedings of the 2006
International Symposium on Symbolic and Algebraic Computation, pages
71–78, New York, NY, USA, 2006. ACM Press.

[90] Elkadi, M. and Mourrain, B., Algorithms for residues and Lojasiewicz
exponents. J. Pure & Appl. Algebra, 153, 27–44, 2000.

[91] Emiris, I.Z., On the complexity of sparse elimination. J. Complexity, 12,
134–166, 1996.

[92] Emiris, I.Z. and Canny, J.F., Efficient incremental algorithms for the
sparse resultant and the mixed volume. J. Symbolic Computation, 20(2),
117–149, 1995.

[93] Emiris, I.Z., Fritzilas, E., and Manocha, D. Algebraic algorithms for con-
formational analysis and docking. Intern. J. Quantum Chemistry, 106,
190–210, 2005.

[94] Emiris, I.Z., Galligo, A., and Lombardi, H., Certified approximate uni-
variate GCDs. J. Pure Applied Algebra, Special Issue on Algorithms for
Algebra, 117 & 118, 229–251, 1997.

[95] Emiris, I.Z. and Mourrain, B. Matrices in elimination theory. J. Symbolic
Comp., 28, 3–44, 1999.

[96] Emiris, I.Z. and Mourrain, B. Computer Algebra Methods for Study-
ing and Computing Molecular Conformations. Algorithmica, 25, 372–402,
1999.

[97] Emiris, I.Z., Mourrain, B., and Pan, V.Y., editors. Special Issue on Al-
gebraic and Numerical Algorithms, Theor. Comp. Science, 315, 307–672,
2004.

33



[98] Emiris, I.Z., Mourrain, B., and Tsigaridas, E.P., Real Algebraic Numbers:
Complexity Analysis and Experimentation. In P. Hertling, C. Hoffmann,
W. Luther, and N. Revol, editors, Reliable Implementations of Real Num-
ber Algorithms: Theory and Practice, LNCS (to appear). Springer Verlag,
2007. also available in www.inria.fr/rrrt/rr-5897.html.

[99] Emiris, I.Z. and Pan, V.Y., Symbolic and numeric methods for exploiting
structure in constructing resultant matrices. J. Symbolic Comp., 33, 393–
413, 2002.

[100] Emiris I.Z. and Pan, V.Y., Improved algorithms for computing determi-
nants and resultants. J. of Complexity, 21 (1), 43–71, 2005. Proceedings
version in Proc. of the 6th International Workshop on Computer Algebra
in Scientific Computing (CASC ’03), edited by E. W. Mayr, V. G. Ganzha,
and E. V. Vorozhtzov, 81–94, Technische Univ. München, Germany, 2003.

[101] Faugère, J.-C., A new efficient algorithm for computing Gröbner bases
(F4). J. Pure & Applied Algebra, 139, 61–88, 1999.

[102] Faugère, J.-C., A new efficient algorithm for computing Gröbner bases
without Reduction to Zero (F5). In Proc. 2002 Internat. Symp. Symbolic
Algebraic Comput. (ISSAC ’02), pages 75–83, ACM Press, 2002.

[103] Faugère, J.-C., Gianni, P., Lazard, D., and Mora, T., Efficient computa-
tion of zero-dimensional Gröbner bases by change of ordering. J. Symbolic
Comput., 16(4), 329–344, 1993.

[104] Faugère, J.-C., and Joux, A., Algebraic cryptanalysis of hidden field equa-
tion (HFE): cryptosystems using Gröbner bases. In Proc. CRYPTO 2003,
pages 44–60, 2003.

[105] Faugère, J-C., and Lazard, D., The Combinatorial Classes of Parallel Ma-
nipulators. Mechanism and Machine Theory, 30, 765–776, 1995.

[106] Ferguson, H.R.P. and Bailey, D.H., Analysis of PSLQ, an integer relation
finding algorithm. Technical Report NAS-96-005, NASA Ames Research
Center, 1996.

[107] Ferguson, H.R.P. and Forcade, R.W., Multidimensional Euclidean algo-
rithms. J. Reine Angew. Math., 334, 171–181, 1982.

[108] Fiorentino, G. and Serra, S., Multigrid methods for symmetric positive
definite block Toeplitz matrices with nonnegative generating functions.
SIAM J. Sci. Comput., 17, 1068–1081, 1996.

[109] Fortune, S., An Iterated Eigenvalue Algorithm for Approximating Roots
of Univariate Polynomials. J. of Symbolic Computation, 33 (5), 627–646,
2002. Proc. version in Proc. Intern. Symp. on Symbolic and Algebraic
Computation (ISSAC’01), 121–128, ACM Press, New York, 2001.

34



[110] Foster, L.V., Generalizations of Laguerre’s method: higher order methods.
SIAM J. Numer. Anal., 18, 1004–1018, 1981.

[111] Gao, S., Kaltofen, E., May, J., Yang, Z. and Zhi, L., Approximate factor-
ization of multivariate polynomial via differential equations. Proc. Inter-
national Symposium on Symbolic and Algebraic Computaion (ISSAC’04),
167-174, ACM Press, New York, 2004.

[112] Garbow, B.S. et al., Matrix Eigensystem Routines: EISPACK Guide Ex-
tension. Springer, New York, 1972.

[113] von zur Gathen, J. and Gerhard, J., Arithmetic and factorization over
F2. In ISSAC 96 Proc. 1996 Internat. Symp. Symbolic Algebraic Comput.,
Lakshman, Y.N., Ed., 1–9, ACM Press, New York, 1996.

[114] von zur Gathen, J., and Gerhard, J., Fast Algorithms for Taylor Shifts
and Certain Difference Equations. In ISSAC, pages 40–47, 1997.

[115] von zur Gathen, J. and Gerhard, J., Modern Computer Algebra. Cam-
bridge University Press, Cambridge, UK, 2003 (2nd edition).

[116] von zur Gathen, J., and Lücking, T., Subresultants revisited. Theor.
Comput. Sci., 1-3(297):199–239, 2003.

[117] von zur Gathen, J. and Shoup, V., Computing Frobenius maps and fac-
toring polynomials. Comput. Complexity, 2, 187–224, 1992.

[118] Geddes, K.O., Czapor, S.R., and Labahn, G., Algorithms for Computer
Algebra. Kluwer Academic, 1992.

[119] Gelfand, I.M., Kapranov, M.M., and Zelevinsky, A.V., Discriminants, Re-
sultants and Multidimensional Determinants. Birkhäuser Verlag, Boston,
1994.

[120] George, A. and Liu, J.W.-H., Computer Solution of Large Sparse Positive
Definite Linear Systems. Prentice Hall, Englewood Cliffs, NJ, 1981.

[121] Gianni, P. and Trager, B., GCD’s and factoring polynomials using
Gröbner bases. Proc. EUROCAL ’85, Vol. 2, Springer Lec. Notes Comp.
Sci., 204, 409–410, 1985.

[122] Giesbrecht, M., Nearly optimal algorithms for canonical matrix forms.
SIAM J. Comput., 24(5), 948–969, 1995.

[123] Gilbert, J.R. and Hafsteinsson, H., Parallel Symbolic Factorization of
Sparse Linear Systems Parallel Computing, 14, 151–162, 1990.

[124] Gilbert, J.R. and Schreiber, R., Highly parallel sparse Cholesky factoriza-
tion. SIAM J. on Scientific Computing, 13, 1151–1172, 1992.

35



[125] Gilbert, J.R. and Tarjan, R.E., The analysis of a nested dissection algo-
rithm. Numer. Math., 50, 377–404, 1987.

[126] Golub, G.H. and Van Loan, C.F., Matrix Computations, 3rd ed., Johns
Hopkins University Press, Baltimore, MD, 1996.

[127] Gondran, M. and Minoux, M., Graphs and Algorithms. Wiley–
Interscience, New York, 1984.

[128] Greenbaum, A., Iterative Methods for Solving Linear Systems. SIAM Pub-
lications, Philadelphia, PA, 1997.

[129] Greuel, G.-M., and Pfister, G. A Singular Introduction to Commuta-
tive Algebra (with contributions by O. Bachmann, C. Lossen, and H.
Schönemann). Springer-Verlag 2002.

[130] Grigoriev, D.Yu. and Lakshman, Y.N., Algorithms for computing sparse
shifts for multivariate polynomials. In Proc. 1995 Internat. Symp. Sym-
bolic Algebraic Comput. (ISSAC ’95), Levelt, A.H.M., Ed., 96–103, ACM
Press, New York, 1995.

[131] Habicht, W., Eine verallgemeinerung des sturmschen wurzelzählverfarens.
Comm. Math. Helvetici, 21:99–116, 1948.

[132] Hansen, E., Patrick, M., and Rusnak, J., Some modifications of Laguerre’s
method. BIT, 17, 409–417, 1977.

[133] Heath, M.T., Ng, E., and Peyton, B.W., Parallel algorithms for sparse
linear systems. SIAM Review, 33, 420–460, 1991.

[134] Heindel, L.E., Integer arithmetic algorithms for polynomial real zero
determination. Journal of the Association for Computing Machinery,
18(4):533–548, October 1971.

[135] Higham, N.J., Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, 2002 (second edition).

[136] Jenkins, M.A. and Traub, J.F., A three-stage variable-shift iteration for
polynomial zeros and its relation to generalized Rayleigh iteration. Numer.
Math., 14, 252–263, 1970.

[137] Johnson, J. Algorithms for polynomial real root isolation. In B. Cavinsess
and J. Johnson, editors, Quantifier elimination and cylindrical algebraic
decomposition, pages 269–299. Springer, 1998.

[138] Johnson, J., Krandick, W., Lynch, K., Richardson, D., and Ruslanov, A.,
High-performance implementations of the Descartes method. In ISSAC
’06: Proceedings of the 2006 international symposium on Symbolic and
algebraic computation, pages 154–161, New York, NY, USA, 2006. ACM
Press.

36



[139] Kaltofen, E., Greatest common divisors of polynomials given by straight-
line programs. J. ACM, 35(1), 231–264, 1988.

[140] Kaltofen, E., Polynomial factorization 1982-1986. In Computers in Math-
ematics, Chudnovsky, D.V. and Jenks, R.D., Eds., volume 125 of Lecture
Notes in Pure and Applied Mathematics, 285–309. Marcel Dekker, New
York, 1990.

[141] Kaltofen, E., Polynomial factorization 1987-1991. In Proc. LATIN ’92,
Simon, I., Ed., volume 583 of Springer Lect. Notes Comput. Sci., 294–
313, 1992.

[142] Kaltofen, E., Krishnamoorthy, M.S., and Saunders, B.D., Parallel algo-
rithms for matrix normal forms. Linear Algebra and Applications, 136,
189–208, 1990.

[143] Kaltofen, E. and Pan, V.Y., Processor efficient parallel solution of linear
systems over an abstract field. In Proc. 3rd Ann. ACM Symp. Parallel
Algor. Architecture, 180–191, ACM Press, New York, 1991.

[144] Kaltofen, E. and Pan, V.Y., Processor-efficient parallel solution of linear
systems II: the positive characteristic and singular cases. In Proc. 33rd
Annual Symp. Foundations of Comp. Sci., 714–723, Los Alamitos, CA,
1992. IEEE Computer Society Press.

[145] Kaltofen, E. and Trager, B., Computing with polynomials given by black
boxes for their evaluations: Greatest common divisors, factorization, sep-
aration of numerators and denominators. J. Symbolic Computation, 9(3),
301–320, 1990.

[146] Kaltofen, E. and Villard, G., On the complexity of computing determi-
nants. Proc. Fifth Asian Symposium on Computer Mathematics (ASCM
2001), (Shirayanagi, Kiyoshi and Yokoyama, Kazuhiro, editors), Lecture
Notes Series on Computing, 9, 13–27, World Scientific, Singapore, 2001.

[147] Kaltofen, E. and Villard, G., Computing the sign or the value of the
determinant of an integer matrix, a complexity survey. J. Computational
Applied Math., 162(1), 133–146, 2004.

[148] Kaltofen, E. and Villard, G., Complexity of computing determinants. J.
Computational Complexlty, 13(3–4), 91–130, 2004.

[149] Kaporin, I., The aggregation and cancellation techniques as a practical
tool for faster matrix multiplication. Theoretical Computer Science, 315
(2–3), 469–510, 2004.

[150] Kapur, D., Geometry theorem proving using Hilbert’s Nullstellensatz. J.
Symbolic Comp., 2, 399–408, 1986.

37



[151] Kapur, D. and Lakshman, Y.N., Elimination methods an introduction. In
Symbolic and Numerical Computation for Artificial Intelligence. Donald,
B., Kapur, D., and Mundy, J., Eds., Academic Press, 1992.

[152] Khetan, A., The resultant of an unmixed bivariate system. J. Symbolic
Comput. 36, 425–442, 2003.

[153] Khintchine, A., Continued Fractions. University of Chicago Press,
Chicago, 1964.

[154] Kirrinnis, P., Polynomial factorization and partial fraction decomposition
by simultaneous Newton’s iteration. J. of Complexity, 14, 378–444, 1998.

[155] Knuth, D.E., The Art of Computer Programming, Vol. 2, Seminumerical
Algorithms, 2nd ed., Addison-Wesley, Reading, MA, 1981. 3rd ed., 1997.

[156] Krandick, W., Isolierung reeller nullstellen von polynomen. In
J. Herzberger, editor, Wissenschaftliches Rechnen, pages 105–154.
Akademie-Verlag, Berlin, 1995.

[157] Krandick, W., and Mehlhorn, K., New bounds for the Descartes method.
JSC, 41(1):49–66, Jan 2006.

[158] Kreuzer, M., and Robbiano, L., Computational Commutative Algebra 1.
Springer Verlag, Heidelberg, 2000.

[159] Krishnan, S. and Manocha, D., Numeric-symbolic algorithms for eval-
uating one-dimensional algebraic sets. In Proc. ACM Intern. Symp. on
Symbolic and Algebraic Computation, 59–67, 1995.

[160] Laderman, J., Pan, V.Y. and Sha, H.X., On practical algorithms for ac-
celerated matrix multiplication. Linear Algebra and Its Applications, 162–
164, 557–588, 1992.

[161] Lakshman, Y.N. and Saunders, B.D., On computing sparse shifts for uni-
variate polynomials. In Proc. Internat. Symp. Symbolic Algebraic Comput.
ISSAC ’94, von zur Gathen, J. and Giesbrecht, M., Eds., 108–113, ACM
Press, New York, 1994.

[162] Lakshman, Y.N. and Saunders, B.D., Sparse polynomial interpolation in
non-standard bases. SIAM J. Comput., 24(2), 387–397, 1995.

[163] Lakshman, Y.N., On the complexity of computing Gröbner bases for zero-
dimensional polynomial ideals. Ph.D. Thesis, Computer Science Depart-
ment, Rensselaer Polytechnic Institute, Troy, New York, 1990.

[164] Lane, J.M., and Riesenfeld, R.F., Bounds on a polynomial. BIT, 21:112–
117, 1981.

38



[165] Lawson, C.L. and Hanson, R.J., Solving Least Squares Problems. Prentice-
Hall, Englewood Cliffs, New Jersey, 1974. Reissued with a survey of recent
debvelopments by SIAM, Philadelphia, 1995.

[166] Lazard, D., Resolution des systemes d’equation algebriques. Theoretical
Comput. Sci., 15, 77–110, 1981. In French.

[167] Lenstra, A.K., Lenstra, H.W., and Lovász, L., Factoring polynomials with
rational coefficients. Math. Ann., 261, 515–534, 1982.

[168] Levelt, A.H.M., Ed., Proc. 1995 Internat. Symp. Symbolic Algebraic Com-
put. ISSAC’95, ACM Press, New York, 1995.

[169] Leyland, P., Cunningham project data. Internet document, Oxford Uni-
versity,
ftp://sable.ox.ac.uk/pub/math/cunningham/, Nov. 1995.

[170] Lickteig, T., and Roy, M.-F., Sylvester-Habicht Sequences and Fast
Cauchy Index Computation. J. Symb. Comput., 31(3):315–341, 2001.

[171] Lipton, R.J., Rose, D., and Tarjan, R.E., Generalized nested dissection.
SIAM J. on Numer. Analysis, 16(2), 346–358, 1979.

[172] Macaulay, F.S., Algebraic theory of modular systems. Cambridge Tracts
19, Cambridge, 1916.

[173] MacWilliams, F.J. and Sloan, N.J.A., The Theory of Error-Correcting
Codes, North-Holland, New York, 1977.

[174] Madsen, K., A root-finding algorithm based on Newton’s method. BIT,
13, 71–75, 1973.

[175] Manocha, D., Algebraic and Numeric Techniques for Modeling and
Robotics. Ph.D. Thesis, Comp. Science Div., Dept. of Electrical Engineer-
ing and Computer Science, University of California, Berkeley, 1992.

[176] Manocha, D., Zhu, Y., and Wright, W., Conformational analysis of molec-
ular chains using nano-kinematics. Computer Applications of Biological
Sciences, 11(1), 71–86, 1995.

[177] McCormick, S., Ed., Multigrid Methods. SIAM Publications, Philadelphia,
1987.

[178] McNamee, J.M., A bibliography on roots of polynomials. J. Comput. Ap-
plied Math., 47(3), 391–394, 1993.

[179] McNamee, J.M., A Supplementary Bibliography on Roots of Polynomials.
J. Computational and Applied Mathematics, 78, 1, 1997.

[180] McNamee, J.M., An Updated Supplementary Bibliography on Roots of
Polynomials. J. Computational and Applied Mathematics, 110, 305–306,
1999.

39



[181] McNamee, J.M., A 2000 Updated Supplementary Bibliography on Roots
of Polynomials. J. Computational and Applied Mathematics, 142, 433–434,
2002.

[182] Mignotte, M., Some useful bounds. In B. Buchberger, G.E. Collins, and
R. Loos, editors, Computer Algebra: Symbolic and Algebraic Computation,
pages 259–263. Springer-Verlag, Wien, 2nd edition, 1982.

[183] M. Mignotte. Mathematics for Computer Algebra. Springer-Verlag, 1992.

[184] Mignotte, M., and Stefanescu, D., Polynomials: An algorithmic approach.
Springer, 1999.

[185] Miller, V., Factoring polynomials via relation-finding. In Proc. ISTCS ’92,
Dolev, D., Galil, Z., and Rodeh, M., Eds., volume 601 of Springer Lect.
Notes Comput. Sci., 115–121, 1992.

[186] Miranker, W.L. and Pan, V.Y., Methods of Aggregations. Linear Algebra
and Its Applications, 29, 231–257, 1980.

[187] Monagan, M.B., A heuristic irreducibility test for univariate polynomials.
J. Symbolic Comput., 13(1), 47–57, 1992.

[188] Mourrain, B. and Pan, V.Y., Asymptotic acceleration of solving polyno-
mial systems. Proc. 30th Annual ACM Symp. on Theory of Computing,
488-496, ACM Press, New York, 1998.

[189] Mourrain, B. and Pan, V.Y., Multivariate polynomials, duality and struc-
tured matrices, J. of Complexity, 16 (1), 110–180, 2000.

[190] Mourrain, B., Pan, V.Y. and Ruatta, O., Accelerated solution of mul-
tivariate polynomial systems of equations. SIAM J. on Computing, 32,
2, 435-454, 2003. Proc. version in Proceedings of the Smalefest 2000, F.
Cucker and M. Rojas (Eds.), Foundations of Computational Math. Series,
267-294, World Scientific, New Jersey, 2002.

[191] Mourrain, B., Pavone, J.-P., Trébuchet, P., and Tsigaridas, E.P., synaps:
a library for symbolic-numeric computing. In Proc. 8th Int. Symp. on Ef-
fective Methods in Algebraic Geometry (MEGA), Italy, May 2005. (soft-
ware presentation).

[192] Mourrain, B., Rouillier, F., and Roy, M.-F., Bernstein’s basis and real
root isolation, pages 459–478. Mathematical Sciences Research Institute
Publications. Cambridge University Press, 2005.

[193] Mourrain, B., and Trébuchet, P., Solving projective complete intersection
faster. J. Symbolic Comput., 33(5), 679–699, 2002.

[194] Mourrain, B., Vrahatis, M., and Yakoubsohn, J.C., On the complexity of
isolating real roots and computing with certainty the topological degree.
J. Complexity, 18(2), 2002.

40



[195] Musser, D.R., Multivariate polynomial factorization. J. ACM, 22, 291–
308, 1975.

[196] Neff, C.A., Reif, J.H., An O(nl+ǫ) algorithm for the complex root prob-
lem. Proceedings of the 34th Annual IEEE Symposium on Foundations of
Computer Scinece (FOCS’94), 540–547, IEEE Computer Society Press,
Los Alamitos, California, 1994.

[197] Niederreiter, H., New deterministic factorization algorithms for polyno-
mials over finite fields. In Finite Fields: Theory, Applications and Algo-
rithms, Mullen, L. and Shiue, P.J.-S., Eds., volume 168 of Contemporary
Mathematics, 251–268. American Math. Society, Providence, RI, 1994.

[198] Ortega, J.M. and Voight, R.G., Solution of partial differential equations
on vector and parallel computers. SIAM Review, 27(2), 149–240, 1985.

[199] Pan, V.Y., How can we speed up matrix multiplication? SIAM Rev.,
26(3), 393–415, 1984.

[200] Pan, V.Y., How to Multiply Matrices Faster, volume 179 of Lecture Notes
in Computer Science. Springer Verlag, Berlin, 1984.

[201] Pan, V.Y., Complexity of parallel matrix computations. Theoretical Com-
puter Science, 54, 65–85, 1987.

[202] Pan, V.Y., Computing the determinant and the characteristic polynomials
of a matrix via solving linear systems of equations. Information Processing
Letters, 28, 71–75, 1988.

[203] Pan, V.Y., Complexity of algorithms for linear systems of equations. In
Computer Algorithms for Solving Linear Algebraic Equations (State of the
Art), Spedicato, E., Ed., volume 77 of NATO ASI Series, Series F: Com-
puter and Systems Sciences, 27–56, Springer, Berlin, 1991, and Academic
Press, Dordrecht, the Netherlands (1992).

[204] Pan, V.Y., Complexity of computations with matrices and polynomials.
SIAM Review, 34(2), 225–262, 1992.

[205] Pan, V.Y., Parallel solution of sparse linear and path systems. In Synthe-
sis of Parallel Algorithms, Reif, J.H., Ed., chapter 14, 621–678. Morgan
Kaufmann, San Mateo, CA, 1993.

[206] Pan, V.Y., Parallel computation of a Krylov matrix for a sparse and struc-
tured input. Mathematical and Computer Modelling, 21(11), 97–99, 1995.

[207] Pan, V.Y., Optimal and nearly optimal algorithms for approximating
polynomial zeros. Computers in Mathematics (with Applications), 31(12),
97–138, 1996. Proceedings version: 27th Ann. ACM STOC, 741–750,
ACM Press, New York, 1995.

41



[208] Pan, V.Y., Parallel computation of polynomial GCD and some related
parallel computations over abstract fields. Theor. Comp. Science, 162(2),
173–223, 1996.

[209] Pan, V.Y., Solving a polynomial equation: Some history and recent
progress. SIAM Review, 39(2), 187–220, 1997.

[210] Pan, V.Y., Some recent algebraic/numerical algorithms.
Electronic Proceedings of IMACS/ACA98, 1998. http:www-
troja.fjfi.cvut.cz/aca98/sessions/approximate

[211] Pan, V.Y., Numerical Computation of a Polynomial GCD and Extensions.
Information and Computation, 167(2), 71-85, 2001. Proc. Version in Proc.
9th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA 98), 68-77,
ACM Press, New York, and SIAM Publications, Philadelphia, 1998.

[212] Pan, V.Y., On approximating complex polynomial zeros: Modified
quadtree (Weyl’s) construction and improved Newton’s iteration. J. of
Complexity, 16 (1), 213–264, 2000.

[213] Pan, V.Y., Structured Matrices and Polynomials: Unified Superfast Algo-
rithms, Birkhäuser/Springer, Boston/New York, 2001.

[214] Pan, V.Y., Univariate Polynomials: Nearly Optimal Algorithms for Fac-
torization and Rootfinding. Journal of Symbolic Computations, 33 (5),
701–733, 2002. Proc. version in Proc. International Symp. on Symbolic
and Algebraic Computation (ISSAC 01), 253–267, ACM Press, New York,
2001.

[215] Pan, V.Y., Randomized acceleration of fundamental matrix computations.
Proc. Symp. on Theoretical Aspects of Computer Science (STACS), Lect.
Notes in Comput. Sci., 2285, 215–226, Springer, Heidelberg, Germany,
2002.

[216] Pan, V.Y., Can we optimize Toeplitz/Hankel computations? Proc. of the
5th International Workshop on Computer Algebra in Scientific Computing
(CASC 02), (E. W. Mayr, V. G. Ganzha, E. V. Vorozhtzov, Editors), 253–
264, Technische Univ. München, Germany, 2002.

[217] Pan, V.Y., Nearly optimal Toeplitz/Hankel computations. Technical Re-
ports 2002 001 and 2002 017, Ph.D. Program in Computer Science, the
Graduate Center, CUNY, New York, 2002.

[218] Pan, V.Y., On theoretical and practical acceleration of randomized com-
putation of the determinant of an integer matrix. Zapiski Nauchnykh Sem-
inarov POMI (in English), 316, 163–187, St. Petersburg, Russia, 2004.
Also available at http://comet.lehman.cuny.edu/vpan/

42



[219] Pan, V.Y., Amended DSeSC power method for polynomial root-finding.
Computers and Mathematics (with Applications), 49 (9–10), 1515–1524,
2005.

[220] Pan, V.Y., Eigen-solving via reduction to DPR1 matrices. Computers and
Mathematics (with Applications), in press.

[221] Pan, V.Y., Branham, S., Rosholt, R. and Zheng, A., Newton’s iteration
for structured matrices and linear systems of equations. SIAM volume on
Fast Reliable Algorithms for Matrices with Structure (T. Kailath and A.
Sayed editors), Chapter 7, pp.189–210, SIAM Publications, Philadelphia,
1999.

[222] Pan, V.Y., Ivolgin, D., Murphy, B., Rosholt, R.E., Taj-Eddin, I., Tang,
Y. and Yan, X., Additive preconditioning and aggregation in matrix com-
putations. Computers and Math. with Applications, in press.

[223] Pan, V.Y., Ivolgin, D., Murphy, B., Rosholt, R.E., Tang, Y., and Wang,
X., Root-finding with Eigen-solving. In Symbolic-Numeric Computation,
(Dongming Wang and Lihong Zhi editors), Birkhäuser, Basel/Boston,
2007.

[224] Pan, V.Y., Kunin, M., Rosholt, R.E. and Kodal, H., Homotopic residual
correction processes. Math. of Computation, 75, 345–368, 2006.

[225] Pan, V.Y., Landowne, E., and Sadikou, A., Univariate polynomial division
with a remainder by means of evaluation and interpolation. Information
Processing Letters, 44, 149–153, 1992.

[226] Pan, V.Y., Murphy, B., Rosholt, R.E. and Wang, X., Toeplitz and Hankel
meet Hensel and Newton: nearly optimal algorithms and their practi-
cal acceleration with saturated initialization. Technical Report 2004 013,
Ph.D. Program in Computer Science, The Graduate Center, City Univer-
sity of New York, 2004.

[227] Pan, V.Y. and Preparata, F.P., Work-preserving speed-up of parallel ma-
trix computations. SIAM J. Comput., 24(4), 811–821, 1995.

[228] Pan, V.Y., Rami, Y. and Wang, X., Structured matrices and Newtons
iteration: unified approach. Linear Algebra and Its Applications, 343/344,
233–265, 2002.

[229] Pan, V.Y. and Reif, J.H., Compact multigrid. SIAM J. on Scientific and
Statistical Computing, 13(1), 119–127, 1992.

[230] Pan, V.Y. and Reif, J.H., Fast and efficient parallel solution of sparse
linear systems. SIAM J. Comp., 22(6), 1227–1250, 1993.

[231] Pan, V.Y., Sadikou, A., Landowne, E., and Tiga, O., A new approach to
fast polynomial interpolation and multipoint evaluation.

43



[232] Pan, V.Y. and Schreiber, R., An improved Newton iteration for the gener-
alized inverse of a matrix, with applications. SIAM Journal on Scientific
and Statistical Computing, 12(5), 1109–1131, 1991.

[233] Pan, V.Y., Sobze, I., and Atinkpahoun, A., On parallel computations with
band matrices. Information and Computation, 120(2), 227–250, 1995.

[234] Pan, V.Y., Van Barel, M., Wang, X. and Codevico, G., Iterative inversion
of structured matrices. Theoretical Computer Science, 315 (2–3), (Special
Issue on Algebraic and Numerical Algorithms, I.Z. Emiris, B. Mourrain
and V.Y. Pan, editors), 581–592, 2004.

[235] Pan, V.Y. and Wang, X., Inversion of displacement operators. SIAM J.
on Matrix Analysis and Applications, 24(3), 660–677, 2003.

[236] Pan, V.Y. and Wang, X., On rational number reconstruction and approx-
imation. SIAM J. on Computing, 33(2), 502–503, 2004.

[237] Pan, V.Y. and Yu, Y., Certification of numerical computation of the sign
of the determinant of a matrix. Algorithmica, 30, 708–724, 2001. Proc. ver-
sion in Proc. 10th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 99), 715–724, ACM Press, New York, and SIAM Publications,
Philadelphia, 1999.

[238] Pan, V.Y., Zheng, A.L., Huang, X.H. and Yu, Y.Q., Fast multipoint poly-
nomial evaluation and interpolation via computations with structured ma-
trices. Annals of Numerical Mathematics, 4, 483–510, 1997.

[239] Parlett, B., Symmetric Eigenvalue Problem. Prentice Hall, Englewood
Cliffs, NJ, 1980.

[240] Press, W., Flannery, B., Teukolsky, S., and Vetterling, W., Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University
Press, Cambridge, 1988, and 2nd ed. 1992.

[241] Quinn, M.J., Parallel Computing: Theory and Practice. McGraw-Hill,
New York, 1994.

[242] Rabin, M.O., Probabilistic algorithms in finite fields. SIAM J. Comp., 9,
273–280, 1980.

[243] Reischert, D., Asymptotically fast computation of subresultants. In IS-
SAC, pages 233–240, 1997.

[244] Renegar, J., On the worst case arithmetic complexity of approximating
zeros of polynomials. J. Complexity, 3(2), 90–113, 1987.

[245] Raghavan M. and Roth., B., Solving polynomial systems for the kinemat-
ics analysis and synthesis of mechanisms and robot manipulators. Trans.
ASME, Special Issue, 117, 71–79, 1995.

44



[246] Ritt, J.F., Differential Algebra. AMS, New York, 1950.

[247] Rosen, D., and Shallit, J., A continued fraction algorithm for approxi-
mating all real polynomial roots. Math. Mag, 51:112–116, 1978.

[248] Rouillier, F., Solving Zero-Dimensional Systems through the Rational Uni-
variate Representation, AAECC Journal, 9, 433–461, 1999.

[249] Rouillier, F., and Zimmermann, P., Efficient isolation of polynomial’s real
roots. J. of Computational and Applied Mathematics, 162(1):33–50, 2004.

[250] Saad, Y., Iterative Methods for Sparse Linear Systems. PWS Publishing
Co., Boston, 1996 (first edition) and SIAM Publications, Philadelphia,
2003 (second edition).

[251] Schönhage, A., The fundamental theorem of algebra in terms of com-
putational complexity. Mathematics Department, University of Tübingen,
Germany, 1982.

[252] Sederberg, T. and Goldman, R., Algebraic geometry for computer-aided
design. IEEE Computer Graphics and Applications, 6(6), 52–59, 1986.

[253] Sendra, J.R. and Winkler, F., Symbolic parameterization of curves. J.
Symbolic Comput., 12(6), 607–631, 1991.

[254] Sharma, V., Complexity of real root isolation using Continued Fractions.
In C. W. Brown, editor, Proc. Annual ACM ISSAC, Waterloo, Canada,
2007.

[255] Shoup, V., A new polynomial factorization algorithm and its implemen-
tation. J. Symbolic Comput., 20(4), 363–397, 1995.

[256] Smith, B.T. et al., Matrix Eigensystem Routines: EISPACK Guide, 2nd
ed. Springer, New York, 1970.

[257] Stetter, H., Numerical polynomial algebra. SIAM, 2004.

[258] Stewart, G.W., Matrix Algorithms, Vol I: Basic Decompositions. SIAM,
Philadelphia, 1998.

[259] Stewart, G.W., Matrix Algorithms, Vol II: Eigensystems. SIAM, Philadel-
phia, 1998.

[260] Storjohann, A., High order lifting and integrality certificaiton. J. of Sym-
bolic Computation, 36(3–4), 613–648, 2003.

[261] Storjohann, A., The shifted number system for fast linear algebra on in-
teger matrices. Journal of Complexity, 21(4), 609–650, 2005.

[262] Sturm, C., Mémoire sur la résolution des equations numériques. Mém.
Savants Étranger, 6:271–318, 1835.

45



[263] Sturmfels, B., Sparse elimination theory. In Proc. Computat. Algebraic
Geom. and Commut. Algebra, Eisenbud, D. and Robbiano, L., Eds., Cor-
tona, Italy, 1991.

[264] Tarjan, R.E., A unified approach to path problems. J. of ACM, 28(3),
577–593, 1981.

[265] Tarjan, R.E., Fast algorithms for solving path problems. J. of ACM, 28(3),
594–614, 1981.

[266] Trefethen, L.N. and Bau III, D., Numerical Linear Algebra. SIAM Publi-
cations, Philadelphia, 1997.

[267] Tsigaridas, E.P., and Emiris, I.Z., Univariate polynomial real root isola-
tion: Continued fractions revisited. In Y. Azar and T. Erlebach, editors,
Proc. 14th European Symposium of Algorithms (ESA), volume 4168 of
LNCS, pages 817–828, Zurich, Switzerland, 2006. Springer Verlag.

[268] Uspensky, J.V., Theory of Equations. McGraw-Hill, 1948.

[269] Vandebril, R., Van Barel, M., Golub, G. and Mastronardi, N., A bibliog-
raphy on Semiseparable Matrices. Calcolo, 42 (3–4), 249–270, 2005.

[270] Vincent, A.J.H., Sur la résolution des équations numériques. J. Math.
Pures Appl., 1:341–372, 1836.

[271] van der Vorst, H.A., Iterative Krylov Methods for Large Linear Systems.
Cambridge University Press, Cambridge, England, 2003.

[272] van der Waerden, B.L., Modern Algebra, 3rd ed., F. Ungar, New York,
1950.

[273] Walsh, P.G., The computation of Puiseux expansions and a quantitative
version of Runge’s theorem on diophantine equations. Ph.D. Thesis, Uni-
versity Waterloo, Waterloo, Canada, 1993.

[274] Symbolic-Numeric Computation (Wang, D., and Zhi, L. editors).
Birkhäuser, Basel/Boston, 2007.

[275] Wang, X. and Pan, V.Y., Acceleration of Euclidean Algorithm and Ra-
tional Number Reconstruction. SIAM J. of Computing, 32(2), 548–556,
2003.

[276] Wiedemann, D., Solving sparse linear equations over finite fields. IEEE
Trans. Inf. Theory IT–32, 54–62, 1986.

[277] Wilkinson, J.H., The Algebraic Eigenvalue Problem. Clarendon Press, Ox-
ford, England, 1965.

[278] Winkler, F., Polynomial Algorithms in Computer Algebra. Springer, Wien,
1996.

46



[279] Wu, W., Basis principles of mechanical theorem proving in elementary
geometries. J. Syst. Sci. and Math Sci., 4(3), 207–235, 1984.

[280] Yap, C.K., Fundamental Problems of Algorithmic Algebra. Oxford Uni-
versity Press, New York, 2000.

[281] Zassenhaus, H., On Hensel factorization I. J. Number Theory, 1, 291–311,
1969.

[282] Zippel, R., Effective Polynomial Computations, 384. Kluwer Academic,
Boston, MA, 1993.

Further Information

The books and journal special issues (2; 10; 27; 29; 33; 41; 72; 97; 115; 118; 155;
213; 274; 282; 257) provide a much broader introduction to the general subject
and further bibliography.

There are well-known libraries and packages of subroutines for the most
popular numerical matrix computations, in particular, (80) for solving linear
systems of equations, (256), (112), ARPACK, and PARPACK for approximat-
ing matrix eigenvalues, and (7) for both of the two latter computational prob-
lems. Comprehensive treatment of numerical matrix computations can be found
in (126; 258; 259), with extensive bibliography, and there are several more spe-
cialized books on them (14; 11; 73; 79; 120; 128; 135; 239; 258; 259; 266; 277) as
well as many survey articles (133; 198; 204) and thousands of research articles.
Further applications to the graph and combinatorial computations related to
linear algebra are cited in “Some Computations Related to Matrix Multiplica-
tion” and (205).

Special (more efficient) parallel algorithms have been devised for special
classes of matrices, such as sparse (123; 124; 205; 230), banded (79), and dense
structured (27; 269). We also refer the reader to (227) on simple but effective
extension of Brent’s principle for improving the processor and work efficiency of
parallel matrix algorithms (with applications to path computations in graphs)
and to (124; 126; 133) on practical parallel algorithms for matrix computations.

On Symbolic-Numeric Algorithms, see the books (27; 213; 274), surveys
(203; 204; 209; 210), a special issue (97), and the bibliography therein.

For the general area of exact computation and the theory behind algebraic
algorithms and computer algebra, we refer the reader to (15; 67; 68; 72; 77; 115;
118; 40; 184; 278; 280; 183; 282).

There are a lot of generic software packages for exact computation. We sim-
ply mention synaps1 (191) a C++ open source library devoted to symbolic and
numeric computations with polynomials, algebraic numbers and polynomial sys-
tems, ntl2 a high-performance, portable C++ library providing data structures

1http://www-sop.inria.fr/galaad/software/synaps/
2http://www.shoup.net/ntl/

47



and algorithms for manipulating vectors, matrices, and polynomials over the
integers and over finite fields, core3, another C++ library that provides an API
for computations with different levels of accuracy in order to support the Exact
Geometric Computation (EGC) approach for numerically robust algorithms,
and exacus4 (18), also a C++ library with algorithm for curves and surfaces
that provides exact methods for solving polynomial equations. A highly effi-
cient software tool is FGb/RS5, which contains algorithms for Gröbner basis
computations, the rational univariate representation, and computing certified
real solutions of systems of polynomial equalities and inequalities. Finaly, let
us also mention LinBox6 (83), which is a C++ library that provides exact and
high-performance implementations of linear algebra algorithms.

This chapter does not cover the area of polynomial factorization. We refer
the interested reader to (74, Chap. 16), or (115), and the bibliography therein.

The SIAM Journal on Matrix Analysis and Applications and Linear Algebra
and Its Applications are specialized on Matrix Computations, Math. of Compu-
tations and Numerische Math. are leading among numerous other good journals
on numerical computing.

The Journal of Symbolic Computation and Journal of Computational Com-
plexity specialize on topics in Computer Algebra, which are also covered in the
Journal of Pure and Applied Algebra and less regularly in the J. of Complexity.
Theoretical Computer Science became more open to algebraic–numerical and
algebraic–geometric subjects (see particularly (97) and (44)).

The annual International Symposium on Symbolic and Algebraic Computa-
tion (ISSAC) is devoted to computer algebra, whose topics are also presented at
the annual Conference MEGA and the annual ACM Conference on Computa-
tional Geometry, and also frequently at various Computer Science conferences,
including STOC, FOCS, and SODA.

Among many conferences on numerical computing, most comprehensive ones
are organized under the auspieces of SIAM and ICIAM. International Confer-
ences on Symbolic-Numeric Algorithms can be traced back to 1997 (SNAP in
INRIA, Sophia Antipolis), and resumed in Xi’an, China, in 2005, Timishiora,
Romania, in 2006 (supported by IEEE), and London, Ontario, Canada, in 2007
(supported by ACM).

The topics of Symbolic Numerical Computation are also represented at the
conferences on the Foundations of Computational Mathematics (FoCM) (met
every 3 years) and occasionally at the ISSAC.

3http://cs.nyu.edu/exact/
4http://www.mpi-inf.mpg.de/projects/EXACUS/
5http://fgbrs.lip6.fr/salsa/Software/
6http://www.linalg.org

48


