Mesh and Fluid Dynamics

Éléonore Gauci*+

Supervisors : Frédéric Alauzet⁺ and Alain Dervieux^{*} (⁺) INRIA, Team Gamma3, Saclay, France (^{*}) INRIA, Team Ecuador, Sophia-Antipolis, France

Ph.D Seminar November, 21st 2016, Sophia-Antipolis

Motivations

• Aim : Numerical Simulations for Fluid Dynamics.

1/ Introduction to Numerical Simulation

2/ Mesh : Definition

3/ Mesh : Creation

4/ Mesh : Adaptation

Numerical Simulation

Principle of the Numerical Simulation :

Principle of the Numerical Simulation :

Mesh : Definition

Simplicial Recovering and Triangulation

Let S be a finite collection of points. A **Simplicial Recovering** from S is a set T_r of elements K (triangles or tetrahedra), such that :

Definition (Simplical Recovery)

• The collection of vertices of \mathcal{T}_r is \mathcal{S} .

$$\forall K \in \mathcal{T}_r, \mathring{K} \neq \emptyset.$$

A such recovering is conform. This is a Triangulation if in addition

Definition (Triangulation)

1 + 2 + 3 +

• $\forall K_1, K_2 \in T_r, K_1 \cap K_2 = either \emptyset$ or the joint vertex, edge, face.

Let Ω be a domain we want to mesh. $\overline{\Omega}$ is a given constraint. A conform **Mesh** for Ω is a set \mathcal{M} of elements K (triangles or tetrahedra) which satisfies :

Definition (Mesh)

② $\forall K_1, K_2 \in M, K_1 \cap K_2 = either ∅$ or the joint vertex, edge, face.

Remark : In practise, \mathcal{M} is a geometric approximation of Ω .

Mesh Difficulties

Mesh of a complex surface

Mesh of the fluid around the body

Mesh : Conform/Structured

non conform

conform and structured conform and unstructured

Mesh \neq Synthetic image

Famous character

3D-Modeling

Mesh : Existence in 2D

CONVEX POLYGON

CONCAVE POLYGON

Mesh : Existence in 3D

Schönhardt Polyhedron

Éléonore Gauci*+

Mesh and Fluid Dynamics

Non-convex polyhedra combinatorially equiv. to regular polyhedra [Rambau 2005]

Top : Octahedron/Schönhardt polyhedron

Bottom : Icosahedron/Jessen polyhedron

Mesh : Creation

Mesh : Quality

the less distorted option: $\angle A + \angle C < 180^{\circ}$ Vertex A lies outside the circumcircle passing through through vertices B, C and D the more distorted option $\angle B + \angle D > 180^{\circ}$. Vertex B lies inside the circumcircle passing through vertices A, C and D

Mesh : Creation

• Advancing Front Mesh Generation Method

• Delaunay Mesh Generation Method

Definition (Delaunay triangulation)

A Delaunay triangulation for a set S of points in a plane is a triangulation T_r such that no point in S is inside the circumcircle of any triangle in T_r .

Anisotropic Mesh

Isotropic Mesh

Anisotropic Mesh

Idea of adapted mesh

Mesh

• need to capture the details of one solution \Rightarrow need to adapt the mesh to the solution .

Mesh Adaptation

Main idea : introduce the use of metrics field, and notion of unit mesh.

[George, Hecht and Vallet., Adv Eng. Software 1991]

• Riemannian metric space: $M: d \times d$ symmetric definite positive matrix

$$\langle u, v \rangle_{\mathcal{M}} =^{t} u \mathcal{M} v \Rightarrow \ell_{\mathcal{M}}(\mathbf{a}, \mathbf{b}) = \int_{0}^{1} \sqrt{^{t}\mathbf{a}\mathbf{b}} \ \mathcal{M}(\mathbf{a} + t\mathbf{a}\mathbf{b}) \ \mathbf{a}\mathbf{b}} \ \mathrm{d}t$$

 $|\mathcal{K}|_{\mathcal{M}} = \int_{\mathcal{K}} \sqrt{\det \mathcal{M}} \ \mathrm{d}|\mathcal{K}|$

continuous Metric Field \rightarrow discrete Mesh.

Metric Field

Corresponding Mesh

Feature-based Mesh Adaptation

Deriving the best mesh to compute the characteristics of a given solution w in space

[Tam et al.,CMAME 2000], [Picasso, SIAMJSC 2003], [Formaggia et al, ANM 2004], [Frey and Alauzet CMAME 2005], [Gruau and Coupez, CMAME 2005], [Huang, JCP 2005], [Compere et al., 2007]

• Discrete mesh adaptation problem :

Find $\mathcal{H}_{L^{p}}^{opt}$ having N vertices such that

$$\mathcal{H}_{L^{p}}^{opt} = \operatorname{Argmin}_{\mathcal{H}} ||u - \Pi_{h}u||_{\mathcal{H}, \mathbf{L}^{p}(\Omega)}$$

• Well-posed Continuous mesh adaptation problem :

Find
$$\mathcal{M}_{L^{p}}^{opt}$$
 of complexity N such that

$$E_{L^{p}}(\mathcal{M}_{L^{p}}^{opt}) = \min_{\mathcal{M}} \left(\int_{\Omega} \operatorname{Trace}(\mathcal{M}(\mathbf{x})^{-\frac{1}{2}} | H_{u}(\mathbf{x}) | \mathcal{M}(\mathbf{x})^{-\frac{1}{2}})^{p} \mathrm{d}\mathbf{x} \right)^{\frac{1}{p}}$$

 \Rightarrow Solved by variational calculus

- Two planes moved at Mach 0.4 inside an inert air.
- The planes are translated and rotating
- 50 sub intervals and 3 adaptation loops
- Total space time complexity: 36,000,000 vertices, average mesh size: 732,000 vertices, 80,000 timesteps

Unsteady Feature-based mesh adaptation in : Shuttle

Unsteady Feature-based mesh adaptation in : Vortex shedding

THANK YOU FOR YOUR ATTENTION