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Preface

In many situations in the optimization of dynamic systems, a single utility
for the optimizer might not suffice to describe the real objectives involved
in the sequential decision making. A natural approach for handling such
cases is that of optimization of one objective with constraints on other ones.
This allows in particular to understand the tradeoff between the various
objectives.

In order to handle multi-objective dynamic decision making under uncer-
tainty, we have chosen the framework of controlled Markov chains, which
has already proven to be quite powerful in many applications studied in the
last half century. In particular, this approach allows us to solve stochastic
dynamic control problems by using some finite linear programs, in the case
where the system can be described by a finite number of states and the
decision maker disposes of a finite number of decision actions. This case is
presented in the first part of this book.

More complex systems that cannot be described using a finite number
of states or decision actions are treated in the second part of the book;
we present two main approaches that allow us to handle such systems: the
so called “negative dynamic programming” approach in which the costs
are assumed to be bounded below, and an approach based on uniform
Lyapunov function techniques.

In some cases, systems with an infinite number of states can be approx-
imated by finite systems, which allows us to obtain a good policy for the
original problem by solving a simpler control problem. This approach, as
well as many other approximation issues are presented in the third part of
this book.

Writing this book turned out to be a rich and interesting constrained
control problem in itself. The objectives were not always easy to quantify
and many evident constraints came out, such as time and page limitations.
With the help of the theory developed here as well as the warm support of
my wife, TANIA, we were finally able to meet the constraints and present
a solution, that we hope you will enjoy reading.

Eitan Altman, August 1998
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CHAPTER 1

Introduction

The aim of this monograph is to investigate a special type of situation
where one controller has several objectives. Instead of introducing a single
utility that is to be maximized (or a cost to be minimized) that would
be some function (say, some weighted sum) of the different objectives, we
consider a situation where one type of cost is to be minimized while keeping
the other types of costs below some given bounds. Posed in this way, our
control problem can be viewed as a constrained optimization problem over
a given class of policies.

By specifying control rather than optimization problems, we have in mind
models of dynamic systems, where decisions are taken sequentially. We dis-
tinguish between a control action, which is a decision taken at a given time,
and a whole policy, which is a rule for selecting actions as a function of time
and of the information available to the controller. In fact, for a given policy,
the choice of actions at different decision epochs, may depend on the whole
observed history, as well as other external ‘randomization’ mechanisms. A
choice of a policy will determine (in some probabilistic sense) the evolution
of the state of the system which we control. The trajectories of the states
together with the choices of actions (or trajectories’ distribution) determine
the different costs.

In order to clarify the type of problems that we consider, we present in the
following section a number of applications of constrained dynamic control
problems. Most of the applications below are from the field of telecommu-
nications.

1.1 Examples of constrained dynamic control problems

Telecommunications networks are designed to enable the simultaneous trans-
mission of heterogeneous types of information: file transfers, interactive
messages, computer outputs, facsimile, voice and video, etc. . . At the ac-
cess to the network, or at nodes within the network itself, the different
types of traffic typically compete for a shared resource. Typical perfor-
mance measures are the transmission delay, the throughputs, probabilities
of losses of packets (that stem from the fact that there are finite buffers at
intermediate nodes of the network), etc. . . All these performance measures
are determined by continuously monitoring and controlling the input flows
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into the network, by controlling the admission of new calls (or sessions),
by controlling the allocation of the resources to different traffic, by routing
decisions. Different types of traffic differ from each other by their statistical
properties, as well as by their performance requirements. For example, for
interactive messages it is necessary that the average end-to-end delay be
limited. Strict delay constraints are important for voice traffic; there, we
hardly distinguish between different delays as long as they are lower than
some limit of the order of 0.1 second. When the delay increases beyond this
limit, it becomes quickly intolerable. For non-interactive file transfer, we
often wish to minimize delays or to maximize throughputs.

Controllers of telecommunication systems have often been developed us-
ing heuristics and experience. However, there has been a tremendous re-
search effort to solve such problems analytically. Here are some examples:

(1) The maximization of the throughput of some traffic, subject to con-
straints on its delays. A huge amount of research in this direction was
started up by Lazar (1983) and has been pursued and developed by him-
self together with other researchers; some examples are Bovopoulos and
Lazar (1991), Hsiao and Lazar (1991), Vakil and Lazar (1987), Korilis and
Lazar (1995a, 1995b). In all these cases, limit-type optimal policies were
obtained (known as window flow control). Koole (1988) and Hordijk and
Spieksma (1989) considered the problem of Lazar (1983) as well as other
admission control problems within the framework of Markov Decision Pro-
cesses (MDPs), and discovered that for some problems, optimal policies
are not of a limit-type (the so called ‘thinning policies’ were shown to be
optimal under some conditions).

We shall study in Chapter 5 a discrete time model that extends the
framework of the above problems and also includes service control. The
latter control can model bandwidth assignment or control of quality of
service. The flow control has the form of the control of the probability
of arrivals at a time slot. The control of service is modeled by choosing
the service rate, or more precisely, by assigning the probability of service
completion within a time slot. A tradeoff exists between achieving high
throughput, on the one hand, and low expected delays on the other. We
further assume that there are costs on the service rates. The problem is
formulated as a constrained MDP, where we wish to minimize the costs
related to the delay subject to constrained on the throughputs and on the
costs for service.

(2) Dynamic control of access of different traffic types. A pioneering work
by Nain and Ross (1986) considered the problem where several different
traffic types compete for some resource; some weighted sum of average
delays of some traffic types is to be minimized, whereas for some other
traffic types, a weighted sum of average delays should be bounded by some
given limit. This research stimulated further investigations; for example,
Altman and Shwartz (1989) who considered several constraints and Ross
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and Chen (1988) who analyzed the control of a whole network. The typical
optimal policies for these types of models requires some randomization or
it is based on time-sharing between several fixed priority policies.

(3) Controls of admission and routing in networks. Feinberg and Reiman
(1994) have solved the problem of optimal admission of calls of two types
into a multi-channel system with finite capacity. They established the op-
timality of a randomized trunk reservation policy.

Other problems in telecommunications which have been solved by con-
strained MDPs are reported in Maglaris and Schwartz (1982), Beutler
and Ross (1986) and Bui (1989). A study of a constrained control prob-
lem in a queueing model with a removable server, with possible applica-
tions in telecommunications or in production, was done by Feinberg and
Kim (1996).

Constrained MDPs (CMDPs) have had an important impact in many
other areas of applications:

1. In Kolesar (1970), a problem of hospital admission scheduling is consid-
ered.

2. Golabi et al. (1982) have used CMDPs to develop a pavement manage-
ment system for the state of Arizona to produce optimal maintenance
policies for a 7400-mile network of highways. A saving of 14 million dol-
lars was reported in the first year of implementation of the system, and
a saving of 101 million dollars was forecast for the following four years.

3. Winden and Dekker (1994) developed a CMDP model for determin-
ing strategic building and maintenance policies for the Dutch Govern-
ment Agency (Rijksgebouwendienst), which maintains 3000 state-owned
buildings with a replacement value of about 20 billion guilders and an
annual budget of some 125 million guilders.

1.2 On solution approaches for CMDPs with expected costs

We focus in this section on models where all the cost objectives in the con-
strained problem are specified in terms of expectations of some functionals
of the state and action trajectories. We describe some approaches to solve
such CMDPs, briefly surveying the existing literature.

Several methods have been used in the past to solve this kind of CMDP.
The first one, based on a Linear Program (LP), was introduced by Derman
and Klein (1965), Derman (1970), and further developed by Derman and
Veinott (1972), Kallenberg (1983), and Hordijk and Kallenberg (1984). It
is based on an LP whose decision variables correspond to the occupation
measure. The value of the LP is equal to the value of the CMDP, and there
is a one to one correspondence between the optimal solutions of the LP and
the optimal policies of the CMDP. This method is quite efficient (in terms
of complexity of computations, and in the amount of decision variables, and
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hence memory requirements) for calculating the value of the CMDP (for
the finite state and action space) for both the discounted or total cost, as
well as the average cost with unichain structure. However, for the expected
average cost with general multi-chain ergodic structure, the computation
of an optimal policy is very costly and, as stated by Kallenberg (1983),
it ‘is unattractive for practical problems. The number of calculations is
prohibitive’ (p. 142). An alternative efficient way (again, in terms of com-
plexity of calculations and memory requirements) for obtaining optimal
policies from the LP for the average cost was obtained by Krass (1989). In
Chapters 8, 10 and 11 we present the extension of the LP approach to the
case of countable state space. (This is based on Altman and Shwartz, 1991a,
and Altman, 1994, 1996, 1998).

A second method was introduced by Beutler and Ross (1985, 1986) for
the case of a single constraint, and is based on a Lagrangian approach.
It allowed them to characterize the structure of optimal policies for the
constrained problem, but it does not provide explicit computational tools.
This approach was extended by Sennott (1991, 1993) to the countable state
space. The use of Lagrangian techniques for several constraints is quite
recent (see e.g., Arapostathis et al., 1993, Piunovskiy, 1993, 1994, 1995,
1996, 1997a, 1997b, and Altman and Spieksma, 1995), and has not been
much exploited.

A third method, based on an LP, was introduced in Altman and Shwartz
(1989, 1993) and further studied by Ross (1989). It is based on some
mixing (by a time-sharing mechanism) of stationary deterministic poli-
cies (these are policies that depend only on the current state and do not
require randomization). A similar LP approach was later introduced by
Feinberg (1993) for finite MDPs (finite state and action spaces), where the
mixing is done in a way that is equivalent to having an initial randomiza-
tion between stationary deterministic policies. These approaches require in
general a huge number of decision variables. However, there are special ap-
plications where this LP can have an extremely efficient solution, and has
been used even for problems with an infinite state space (see Altman and
Shwartz, 1989), in the case where one can eliminate a priori many subop-
timal stationary deterministic policies. In both the time-sharing approach
in Altman and Shwartz (1989, 1993), as well as in the randomization ap-
proach described in Feinberg (1995), only mixing of finitely many policies
was considered. (This is indeed sufficient in the case of finite MDPs, i.e.,
finite state and action spaces, since, in that case, there are only a finite
number of stationary deterministic policies.)

Strong connections exist between the three solution methods. Under-
standing these connections enables us to obtain a unified theory for CMDPs.
It also enables us to generalize the second approach to several constraints.
Finally, it allows us to obtain many asymptotic results on convergence of
the values and policies of some sequence of CMDPs to those of a limit
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CMDP, in particular, convergence in the discount factor, in the horizon,
and convergence of finite state approximations (we present these in Chap-
ters 13–16).

An LP that computes the solution of CMDPs for all discount factors
simultaneously was introduced in Altman et al. (1996). Although the deci-
sion variables are not the standard ones (they are the set of functions that
are represented as the ratio between two polynomials with real coefficients),
a solution is derived in a finite number of steps.

1.3 Other types of CMDPs

The type of cost criteria and solution approaches surveyed in the previous
section are those most frequently studied. However, many other models of
constrained MDPs have been investigated. These can be classified accord-
ing to different types of cost criteria, according to different assumptions on
the controller (one or more controllers) assumptions on the available infor-
mation (the adaptive problem). We briefly describe these in this section.

A generalization of the framework introduced in the previous section is
to allow different cost criteria to have different discount factors. The solu-
tion of such CMDPs is significantly more complex, requiring much more
computational effort. They do not possess optimal stationary policies. The
analysis and characterization of such CMDPs was presented by Feinberg
and Shwartz (1995). In particular, they show that there exists an optimal
policy which is ultimately stationary (i.e., it becomes stationary determin-
istic after some fixed time) and requires no more than K randomizations.
This extends the results by Koole (1988), Ross (1989) and Borkar (1994).
Another related result can be found in Feinberg and Shwartz (1996).

Ross and Varadarajan (1989, 1991) have considered problems where a
constraint is imposed on the actual sample-path cost. In fact, Ross and
Chen (1988) point out that the model where all costs are defined by ex-
pectations is inappropriate for some telecommunications problems, namely
for problems involving voice interactive transmission: ‘We remark that the
model studied here would not be appropriate if real-time voice packets
were also competing for the resource. This is because [the CMDP] imposes
constraints on the average delay . . . and not on the actual delay.’ This
type of constrained problem was solved by Ross and Varadarajan (1989,
1991) using again an LP approach. An interesting feature of this formu-
lation is that ε-optimal stationary policies exist (for finite MDPs) even
under the general multi-chain ergodic structure. This is in contrast to the
problem where all costs are defined through expectations. Moreover, the
computation of the value and the ε-optimal policy is much simpler than
for the problem with expected costs. Some other results on sample-path
costs (both in the constraint and in the objective function) can be found in
Altman and Shwartz (1991d). Haviv (1995) raised an important criticism
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on the formulation of MDPs through expected costs: they do not satisfy
Bellman’s principle of optimality. Haviv shows that the sample-path con-
strained formulation of the constrained MDP does not suffer from this
drawback.

There are alternative ways to make the costs more sensitive to devia-
tions from the expectation. One way to achieve this goal is to have some
additional cost related to the variance. Sobel (1985) proposed to maximize
the mean to variance ratio with constraints on the mean. Other approaches
were proposed and analyzed in Filar and Lee (1985), Kawai (1987), Bayal-
Gursoy and Ross (1992) and Filar et al. (1989). A unified approach which
extends the above ones was presented by Huang and Kallenberg (1994) and
solved using an algorithm based on parametric-linear programming. The
case of infinite state space was analyzed by Altman and Shwartz (1991a).
Other recent papers in this topic are Sobel (1994) and White (1994).

Another way to penalize deviations of the costs from the expectation is
to introduce some constraints on the rate of convergence. This approach
was investigated by Altman and Zeitouni (1994).

A problem with another type of constraint, namely on the probability
that some conditional expected cost be bounded, was solved by White
(1988).

There have been some results on extending constrained MDPs to the case
of more than one controller (stochastic games). In the case of N controllers
with different objectives, a set of coupled linear programs was shown in
Altman and Shwartz (1995) to provide a Nash equilibrium (which is used
as the concept of optimality when there is more than one controller under
the assumption that the controllers are selfish and do not cooperate). It is
shown that a Nash equilibrium exists among the stationary policies. This
work was motivated by a problem in telecommunication that was solved in
Korilis and Lazar (1995a).

The case of two controllers (‘players’) with constraints and with conflict-
ing objectives was solved by Shimkin (1994), using geometric ideas based
on extensions of Blackwell’s approachability theory. In that setting, optimal
policies turned to be non-stationary in an essential way.

An important problem in MDPs in general, and in constrained MDPs in
particular, which is often encountered in applications, is of simultaneous
learning and controlling. This occurs when some parameters of the prob-
lem are unknown to the decision maker. The standard cost criteria may be
quite unsuitable for this type of situation. For example, the total expected
discounted cost may not be well defined if we do not have any knowl-
edge of the probability distribution. This required the introduction of new
cost criteria. Schäl (1975) introduced an asymptotic discounted cost crite-
rion for non-constrained MDPs, for which adaptive optimal policies com-
bining estimation and control were investigated (Schäl, 1987, Hernandez-
Lerma, 1989, and references therein). Altman and Shwartz (1991d) adapted
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these cost criteria to CMDPs and proposed several optimal adaptive tech-
niques (1991b, 1991d). The solutions are based on ideas on sensitivity anal-
ysis of linear programs. An alternative solution approach based on stochas-
tic approximations can be used to solve the adaptive MDP. This approach
was used by Makowski and Shwartz (1992), Ma et al. (1992), Ma and
Makowski (1988, 1992).

1.4 Cost criteria and assumptions

We focus in this monograph on three main types of cost criteria. The first
one is the total expected cost until some target set of states is reached. If
the target set is empty then this criterion is merely the sum of expected
instantaneous costs accumulated over an infinite horizon. The second cost
criterion is the infinite horizon discounted cost. It can be obtained directly
from our analysis of the first cost criterion. The third cost criterion is the
limit (as the time t becomes large) of the expected total cost until time t,
averaged over the time. All cost criteria are defined precisely in Chapters 2
and 6.

Many properties and results do not carry on, in general, from finite MDPs
(those with finitely many states and actions) to infinite ones as many
counter-examples will illustrate. If we wish to obtain the optimal value
and policies for the constrained MDP using linear programming techniques
when dealing with infinite MDPs, we need to restrict to one of several pos-
sible frameworks where some assumptions are made on the probabilistic
structure and on the immediate costs.

When using the total cost criteria we consider one of three types of
MDPs:

1. The transient MDPs, for which the total expected time spent in each
state is finite under any policy. When analyzing this class of MDPs, we
shall often assume that the immediate cost are bounded below.

2. The MDPs with uniform Lyapunov function, which are absorbing (the
total expected ‘life-time’ of the system is finite under any policy). These
MDPs are a subclass of the transient ones. When analyzing this class of
MDPs, we shall not require that the immediate cost are bounded below,
and replace this by a much weaker assumption.

3. Contracting MDPs, which are a further subclass of MDPs with uniform
Lyapunov function.

All three types of MDPs are equivalent for finite MDPs (finite state and
action spaces), as was shown by Kallenberg (1983); this is however not the
case in the countable state space.

For the expected average cost criteria we consider very similar frame-
works:
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1. The first allows for quite general probabilistic assumptions, in particu-
lar, a tightness assumption, and yet requires the immediate costs to be
bounded from below; alternatively, even the tightness assumption may
be relaxed and replaced by some stronger growth condition on the cost.
This approach is due to Borkar (1983) and was adapted to constrained
MDPs in Altman and Shwartz (1991a).

2. In the second framework we relax the boundedness on the immediate cost
and require instead some tightness conditions as well as some uniform
integrability ones. This framework will be shown to be equivalent to
having a uniform Lyapunov function (due to Hordijk, 1977).

3. A further subclass of MDPs with uniform Lyapunov function that we
shall briefly study is that of uniformly µ-recurrent MDPs, who were
introduced and investigated by Dekker and Hordijk (1988), Spieksma
(1990), and Dekker et al. (1994). This framework can be considered as
the one corresponding to contracting MDPs.

We mention finally that Lyapunov functions are known to have an impor-
tant role in dynamic systems and in control theory (not only in stochastic
control): these are used as test functions to obtain stability properties. They
are often used in the study of (non-controlled) Markov chains as a tool to
establish ergodicity properties, see Meyn and Tweedie (1994).

The reasons for introducing the various frameworks and the necessity
of the assumptions there will be further discussed in Section 1.7, which
introduces the methodologies that we follow in this book.

1.5 The convex analytical approach and occupation measures

Our first analysis approach is based on the the properties of the set of oc-
cupation measures achievable by different classes of policies. Under some
conditions, an occupation measure achievable by a policy has the prop-
erty that for any given instantaneous costs, the cost criteria (i.e., the to-
tal expected cost or the expected average cost) can be expressed as the
expectation of that instantaneous cost with respect to the corresponding
occupation measure.

The convexity and compactness properties of these sets turn out to be
essential in the study of constrained MDPs. We derive these properties
for finite MDPs in the beginning of Chapters 3 and 4, and obtain the
corresponding properties for infinite MDPs in the beginning of Chapter 8
for the total cost, and in the beginning of Chapter 11 for the expected
average cost.

This type of analysis of occupation measure goes back to Derman (1970)
who also made use of it for studying constrained MDPs (in finite state
and action spaces). It was further developed by Kallenberg (1983) and
Hordijk and Kallenberg (1984), and Feinberg (1995) (who considered the
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semi-Markov case). The properties of occupation measures corresponding
to the infinite state space were investigated by Borkar (1988, 1990), Altman
and Shwartz (1988, 1991a), Altman (1994, 1996, 1998), Spieksma (1990),
and Feinberg and Sonin (1993, 1995). The study of occupation measures
arises also in other related areas in control. In particular, in the controlled
diffusions they have already been studied by Krylov (1985) and later by
Borkar and Ghosh (1990, 1993).

For the different cost criteria, the objectives turn out to be linear in
the occupation measures under suitable conditions, at least for some ‘good
classes of policies’ (such as stationary policies). An important corollary of
this property is that the original control problem can be reduced to a Linear
Program (LP), which we shall call the ‘primal LP’, where the decision vari-
ables are measures (corresponding to the occupation measures). Moreover,
optimal solutions of the LP determine optimal stationary policies through
induced conditional occupation measures. We present these LPs and estab-
lish their equivalence to the original control problem in Chapters 3 and 4
for finite MDPs, and obtain similar representation at the end of Chapter 8,
(the total cost), and of Chapter 11, (the expected average cost) for infinite
MDPs.

This approach goes back to Derman (1970) and was further developed by
Derman and Veinott (1972) by Kallenberg (1983) and Hordijk and Kallen-
berg (1984). Its derivation for the infinite state case is due to Altman and
Shwartz (1991a) and Borkar (1990) (the expected average cost) and Alt-
man (1994, 1996, 1998) (the discounted and total cost).

In order to obtain an equivalent LP, one has first to identify classes of
‘dominant’ policies, i.e., classes of policies which are sufficiently rich in
order to allow us to restrict ourselves to them for the search of optimal
policies. Under fairly general conditions, the problem of whether a subclass
of policies is dominant is related to whether this subclass is ‘complete’, i.e.,
whether any occupation measure that is achievable by some general policy
can also be achieved (or outperformed, in some sense) by some policy within
that subclass of policies.

This property motivates us to raise the question of whether the class of
stationary policies is complete.

For the total cost, for MDPs with a uniform Lyapunov function, we
show that both the stationary policies as well as the mixed stationary-
deterministic are complete. Surprisingly, this result turns out not to hold
for the more general transient MDPs. Indeed, counter-examples have been
presented recently by Feinberg and Sonin (1995). However, we show that
the set of stationary policies turns out to have the following property. For
any occupation measure achievable by some policy u, there is a stationary
policy that achieves an occupation measure that is smaller than or equal
to the one achieved by u. These results, obtained in Altman (1996, 1998),
are presented in Chapter 8.
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For the expected average cost criterion there are cases and counter-
examples where stationary policies do not achieve all possible occupation
measures. This may occur either due to a multi-chain ergodic structure
(see Hordijk and Kallenberg, 1984, for the case of finite state and actions),
or, in the infinite case, due to non-tightness (see Borkar, 1990, Chapter 5,
Altman and Shwartz, 1991a, and Spieksma, 1990). However, under some
conditions on the ergodic structure, we show that the set of stationary poli-
cies is ‘weakly complete’; by that we mean that for any occupation measure
that is achievable by some policy there exists some stationary policy which
achieves the same measure up to a multiplicative constant. This property,
together with some growth conditions on the costs, imply that the station-
ary policies are dominant. These results, some of which were obtained by
Borkar (1990), Altman and Shwartz (1991a), are presented in Chapter 11.

1.6 Linear Programming and Lagrangian approach for CMDPs

We begin by presenting a brief survey of the LP approach for non-cons-
trained MDPs. The use of LPs started already in the beginning of the six-
ties, with the pioneering work of D’Epenoux (1960, 1963), who considered
the discounted cost case, and of De Ghellinck (1960) and Manne (1960) who
studied the expected average cost (with the unichain condition). The analy-
sis via LPs, of the expected cost with the general multi-chain ergodic struc-
ture, has been presented by Denardo and Fox (1968) and Denardo (1970).
Hordijk and Kallenberg (1979) presented a single LP for solving the multi-
chain expected average problem. For a further survey of LP techniques
for the non-constrained MDPs, see Kushner and Kleinman (1971), Heil-
mann (1977, 1978), Arapostathis et al. (1991), Puterman (1994) and Kallen-
berg (1994). An important contribution to generalization of the LP tech-
niques to infinite state and action spaces is due to Lasserre (1995) who
applied functional analytical tools, using the theory of infinite dimensional
LPs (Anderson and Nash, 1987). Lasserre handles both the primal and
dual LPs, establishes conditions for their solvability and for the absence of
a duality gap, and presents conditions for the optimality of a stationary
policy that is obtained using the solution to the primal LP. This work was
extended in Hernández-Lerma and Lasserre (1994, 1995) and Hernández-
Lerma and Hernández-Hernández (1994) to the case of non-countably in-
finite state and action spaces, and in Hordijk and Lasserre (1994) to the
multi-chain expected average case. An alternative approach to derive the
LP was obtained by Altman and Shwartz (1991a), Altman (1994, 1996) and
Spieksma (1990) using probabilistic techniques, and these were obtained di-
rectly for the constrained MDPs. Finally, the LP approach, in particular,
and Mathematical Programming approaches, in general have been used also
in the case of more than one controller (i.e., stochastic games), see e.g., the
survey by Raghavan and Filar (1991).
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The problem of minimizing a single objective (the total expected cost, or
the expected average cost) with no constraints can be handled by solving
a system of dynamic programming equations, known as the Bellman op-
timality equations. These transform the problem of minimization over the
class of all policies into a set of coupled minimization problems over the
(much smaller) sets of actions. These dynamic programming equations may
be the starting point for obtaining the LP formulation. Under suitable con-
ditions, the value function is the largest ‘super-harmonic function’: these
are functions that satisfy some optimality inequalities (obtained directly
from the optimality equations) for all states and actions. This provides the
LP which is dual to the one obtained using the convex analytical approach
of occupation measures (which we described in the previous section). This
approach is the basis of the derivation of the LPs by Kallenberg (1983) and
Hordijk and Kallenberg (1979).

In the case of constrained MDPs, one can still derive directly the dual LP
by using a Lagrangian approach, and then applying some minmax theorem.
Indeed, the Lagrangian approach allows us to transform a constrained con-
trol problem into an equivalent minmax non-constrained control problem. If
a saddle point property is shown to hold, then the problem is transformed
into a maxmin problem, which can be solved using an LP. This direct
derivation of the dual LP was obtained by Altman and Spieksma (1995)
for the case of finite state and action spaces. In Chapters 9 and 12 we de-
scribe this approach for obtaining the dual LP (for the total cost and the
expected average cost, respectively).

The Lagrangian approach turns out to be not only a tool for obtaining
an LP formulation, but has its own merits. It turns out to be very useful for
sensitivity analysis and for obtaining asymptotical properties of constrained
MDPs; it allows us to obtain in Chapter 13 theorems for approximations
of the value and policies for CMDPs, which we apply to the study of the
convergence in the discount factor (especially, in the neighborhood of 1, see
Chapter 14), the convergence in the horizon (Chapter 15) as well as to the
study of state-truncation techniques (Chapter 16). In particular, it allows
us to obtain an estimate of the approximation error. All these results are
obtained for the contracting framework, and most of them are obtained
also for the more general setting of uniform Lyapunov functions. An al-
ternative approach for approximations is illustrated in Section 9.6, where
state truncation is used for computing the value and optimal stationary
policies of the CMDP in the case of non-negative immediate costs.

An alternative LP approach (which can also be obtained by the La-
grangian technique) is the one that corresponds to the restriction of the
constrained problem to mixed stationary-deterministic policies. The fact
that these policies are dominating is established in Chapters 8 and 11, so
that the restriction is without loss of optimality. The decision variables here
are the measures over all stationary deterministic policies. An advantage of
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such formulation is that, even when the ergodic structure is general multi-
chain, the same type of Linear Program applies for the expected average
cost as well as the discounted cost. This fact allowed Tidball and Alt-
man (1996b) to obtain convergence of the values and policies of discounted
CMDP to those of expected average MDPs, as the discount factor tends
to 1, for a general multi-chain structure. This approach extends the one
by Feinberg (1993) that was derived for the case of finite state and action
spaces. The LP has the same form as the one introduced by Altman and
Shwartz (1993) for computing optimal time-sharing policies. We present
these LPs at the end of Chapters 9 and 12.

1.7 About the methodology

We describe in this section the structure of the book, and explain the
methodologies used in the future chapters. We shall illustrate some of the
main ideas of the book by presenting basic results, without proof, for the
discounted cost problem, for the case of finite state and action spaces.
This will allow us to explain the type of assumptions needed later, and the
framework for developing the theory of countable state space and compact
sets of actions.

We consider discrete-time Markov chains whose transition probabilities
depend on some parameters, called the actions. The state at time t as well
as the action chosen at time t determine both the transition probabilities
at that time as well as the value of several instantaneous costs to be paid
at that time. Actions are chosen according to some decision rule, possibly
randomized, which we call a policy. It may depend on the current state of
the Markov chain, on the current time, but also on any other information
available to the decision maker, such as previous states and previous chosen
actions.

The basic constrained optimization problem (COP) that we study in this
monograph has the form

COP : min
u∈U

C(u) subject to Dk(u) ≤ Vk, k = 1, . . . , K,

where Vk, k = 1, . . . ,K are some given constants; C(u) and Dk(u), k =
1, . . . , K are some cost criteria related to a policy u (through the expected
instantaneous costs they generate), and we minimize over some large class U
of history-dependent policies. These costs will stand for one of the following
cost criteria: the total expected cost until the state reaches some set M
(Chapters 8 and 9), the discounted cost (Chapters 3 and 10), or the ex-
pected average cost (Chapters 4, 11 and 12). (Precise definitions of con-
trolled Markov chains and of the cost functions will appear in Chapters 2
and 6.)

As a first step in our investigation, we shall focus on a deeper understand-
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ing of policies. The space U of all history-dependent policies might be ‘too
large’; moreover, some of the policies that it contains may be hard to im-
plement, e.g., if they require much memory to remember states and actions
of the past. So some attention will be given to the question of identifying
smaller classes of policies which are dominating, i.e., their performances (in
terms of the costs they achieve) are as good as those achieved by policies
in U . We shall show in Chapters 2 and 6 that Markov policies (in which
decisions depend only on the current state and current time), and quasi-
Markov policies (in which the decisions depend only on the current state
and the number of transitions that have occurred) are dominating classes
of policies. Under further conditions, we shall show later, when analyzing
each cost criterion in detail, that stationary policies (in which the decisions
depend only on the current state) and mixed stationary-deterministic poli-
cies (in which we choose at random between some subclass of stationary
policies) are dominating.

In our analysis of policies, we shall show that one cannot improve the per-
formance by adding extra randomizations at each step, on which decision
rules may depend.

For each of the cost criteria that we study, we present three alternative
approaches.

The first approach is based on occupation measures. For each given policy
u, one can define a measure f(u) with the property that the actual cost
to be minimized can be represented as the expectation (or integral) of the
immediate cost with respect to that measure. The set of all achievable
measures is identified, and is shown to be a polytope. By identifying this
polytope, we are then able to present an LP whose value equals the value
of the control problem, and whose optimal solutions define the optimal
policies (through the occupation measures that they generate).

A second approach is based on ideas of dynamic programming. Dynamic
programming is an efficient tool for solving non-constrained optimal control
problems, as it allows us to transform a minimization over all policies to
a set of minimizations over the (much smaller) set of actions. In order
to use dynamic programming techniques for constrained MDPs, we use a
Lagrangian approach which transforms a constrained minimization problem
into an inf-sup problem of the Lagrangian (the Lagrangian is the sum of
the original cost to be minimized and all the other constraints, weighted by
some constants λk, k = 1, . . . , K called Lagrange multipliers). The sup is
then taken over all non-negative values λ of the Lagrange multipliers, and
the inf is taken over the class of all control policies. By invoking a saddle-
point theorem, we are able to change the order of the inf and the sup,
and obtain a sup-inf problem instead. The new problem is more familiar,
since it involves first minimizing with respect to the policies, and only
then maximizing with respect to λ. For each fixed λ we are faced with a
standard non-constrained problem of a controlled Markov chain, and we can
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therefore obtain the minimization (the inf) through well-known dynamic
programming (or linear programming) techniques. At this point, we show
how to solve the inf-sup problem using a single LP, which turns out to be
the dual of the one obtained by the first approach. We illustrate the use of
this approach in Chapter 5.

The third approach is based on identifying an optimal policy among
mixed stationary-deterministic policies. This is done using yet another LP,
whose decision variables are the initial randomization measure over the set
of stationary-deterministic policies. We introduce this method only in the
second part of the monograph.

We now illustrate the first two approaches through a constrained MDP
with the discounted cost criterion. We consider a finite set A of actions and
a finite set X of states, and denote by Pxay the probability to move from
state x to state y if action a is used. c and dk, k = 1, . . . , K are some given
immediate cost functions from X×A to IR. Each initial state x and policy u
define a probability measure Pu

x over the state and action trajectories. For
a given initial state x and a policy u, define the discounted costs

Cα(x, u) def= (1− α)
∞∑

t=1

αt−1Eu
x c(Xt, At),

Dk
α(x, u) def= (1− α)

∞∑
t=1

αt−1Eu
x dk(Xt, At) , k = 1, . . . , K.

Xt and At are the (random) state and action at time t.
The costs can be written as

Cα(x, u) =
∑

y∈X

∑

a∈A

fα(x, u; y, a)c(y, a) ,

Dk
α(x, u) =

∑

y∈X

∑

a∈A

fα(x, u; y, a)dk(y, a), k = 1, . . . ,K,

where

fα(x, u; y, a) def= (1− α)
∞∑

t=1

αt−1Pu
x (Xt = y,At = a).

The vector fα(x, u) is called the occupation measure corresponding to u
and to the initial state x. For any policy, it belongs to the set of measures
ρ that satisfy

∑

y∈X

∑

a∈A

ρ(y, a)(1{v = y} − αPyav) = (1− α)1{x = v}, ∀v ∈ X

∑

y∈X

∑

a∈A

ρ(y, a) = 1, ρ(y, a) ≥ 0,∀y, a.

(1.1)

Moreover, we show in Chapters 3 and 10 that any ρ satisfying (1.1) equals
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the occupation measure corresponding to any stationary policy w that sat-
isfies the following: for any state y for which

∑
a′∈A ρ(y, a′) > 0, w chooses

action a at state y with probability

wy(a) =
ρ(y, a)∑

a′∈A
ρ(y, a′)

.

Thus, the constrained problem COP is equivalent to the LP:

min
ρ

∑

y∈X

∑

a∈A

c(y, a)ρ(y, a) (1.2)

subject to (1.1) and
∑

y∈X

∑

a∈A

dk(y, a)ρ(y, a) ≤ Vk, k = 1, . . . ,K.

Next, we describe the approach based on dynamic programming. For the
case that K = 0 (i.e., no constraints), the value Cα(x) def= infu∈U Cα(x, u),
as a function of x, is known (see Chapter 3) to be the unique solution of
the following dynamic programming equation:

φ(x) = min
a∈A

[
(1− α)c(x, a) + α

∑
y

Pxayφ(y)

]
∀x ∈ X.

Cα therefore satisfies the inequalities

φ(v) ≤ (1− α)c(v, a) + α
∑

y

Pvayφ(y) ∀v ∈ X, a ∈ A. (1.3)

The set of functions satisfying these inequalities are called super-harmonic
functions. We shall show in later chapters that Cα is the largest super-
harmonic function. For any x, Cα(x) can therefore be computed as the
solution of an LP of the form:

max φ(x) subject to (1.3) (1.4)

(the maximization is over the vectors φ(v), v ∈ X). This is the dual to (1.2)
in the case that there are no constraints. To handle the constrained case
we define the Lagrangian

Jλ
α(x, u) def= Cα(x, u) +

K∑

k=1

λk(Dk
α(x, u)− Vk),

where the λk are non-negative real numbers called Lagrange multipliers.
We then show that the value Cα(x) of the constrained problem satisfies:

Cα(x) = inf
u∈U

sup
λ

Jλ
α(x, u), (1.5)
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and that the sup and the inf are interchangeable, so that

Cα(x) = sup
λ

inf
u∈U

Jλ
α(x, u). (1.6)

Since Jλ
α(x, u) can be represented as the total expected discounted cost of

the policy u corresponding to the immediate cost (c +
∑K

k=1 λkdk), minus∑K
k=1 λkVk, we can now obtain infu∈U Jλ

α(x, u) by applying (1.4), i.e., by
maximizing φ(x)−∑K

k=1 λkVk over the vectors φ(v), v ∈ X, that satisfy

φ(v) ≤ (1− α)
(
c(v, a) +

K∑

k=1

λkdk(v, a)
)

+ α
∑

y

Pvayφ(y) ∀v ∈ X, a ∈ A.

(1.7)
Finally, we add the maximization over non-negative λ to obtain the LP:

supλ,φ(φ(x)−∑K
k=1 λkVk) subject to (1.7). This is the dual to (1.2).

In what follows we sketch the methods used for extending the ideas illus-
trated above to infinite MDPs. In particular, we come back to the necessity
of the different type of assumptions, mentioned already in Section 1.4.

The sets of policies that we shall be using will turn out to be compact
sets. A key issue is that of continuity or of lower semi-continuity of costs
with respect to the policies; this will be necessary for the existence of an
optimal policy.

In the second part of the book we shall specify two main types of frame-
works that will allow us to obtain the continuity or the lower semi-continuity.

A central framework is that of ‘uniform Lyapunov functions’. In con-
trolled Markov chains, the uniform Lyapunov function condition is typi-
cally stated as follows (see Hordijk, 1977). There should exist some function
µ : X → [1,∞) that is required, among others, to decrease in expectation
as long as the initial state is outside some finite set M:

1 +
∑

y/∈M
Pxayµ(y) ≤ µ(x).

This condition (as well as some other alternative conditions) introduced
formally in Chapter 6, will be, roughly speaking, necessary and sufficient
for the continuity of the costs in the policies (see e.g., Theorem 7.3 and, in
particular, the equivalence between properties M1 and M5 there). In many
aspects, this condition renders the problem almost equivalent to one with
a finite state space.

We shall present another type of framework obtained by assuming some
structure of the immediate costs (e.g., boundedness from below or growth
conditions). This will be shown to yield lower semi-continuity of the costs
in the policies. The importance of this lower semi-continuity can be seen
from the Lagrangian approach and from the way we obtain the LP through
the Lagrangian approach. An important step there is to change the order
of the inf and sup in the Lagrange problem (1.5)–(1.6). To do that, we have
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to make use of some saddle-point theorems, in which lower semi-continuity
is necessary.

We end this section with a brief discussion on the last part of the book:
the sensitivity analysis and approximations. We introduce in Chapter 13
some key theorems on stability of constrained optimization problems. We
consider there a sequence of cost functions, corresponding to a sequence of
constrained problems, as well as some cost functions of a limit problem. We
consider both the problems of approximating a limit problem (i.e., approx-
imating the optimal value and policy) by the sequence of approximating
problems, as well as the problem of using a limit problem as an approxima-
tion for the other sequence of problems. We assume that the cost criteria
for any given policy within some subset of all policies, converge to the cost
of the limit problem uniformly in the subset of policies. We further assume
that some saddle-point property holds for the Lagrangian corresponding
to the limit problem and that a Slater condition holds. We then obtain
several statements on the convergence of the values of the optimal prob-
lems. Under further lower semi-continuity and convexity-type assumptions,
we further obtain statements on the convergence of optimal policies. The
key theorems obtained in Chapter 13 are applied in the remaining three
chapters to several convergence and approximation issues in constrained
MDPs.

1.8 The structure of the book

The structure of the book is as follows. The first part, devoted to the fi-
nite MDPs (finite state and action spaces), contains Chapter 2 describing
the model and then Chapters 3 and 4 that deal with the discounted and
expected average costs, respectively. The theory established there is illus-
trated in an application to the control of flow and service in a single queue
in Chapter 5.

Part II then begins with a more extensive definition and presentation
of MDPs with countable state space (Chapters 6–7). We then study the
total expected cost, the discounted cost and the expected average cost in
Chapters 8–12.

Part III of the book, which contains Chapters 13–16, is devoted to asymp-
totic analysis and to approximation techniques. We first establish in Chap-
ter 13 some key theorems for approximating the optimal value and optimal
policies of COP by some sequence of constrained problems. We then apply
these theorems in the subsequent chapters to study several applications.
We first consider in Chapter 14 the convergence of discounted constrained
MDPs in the discount factor and, in particular, the convergence as the dis-
count factor approaches one. In Chapter 15 we study the convergence of
finite horizon problems to those of infinite horizon. We finally consider in
Chapter 16 several state-truncation techniques, which allow, in particular,
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to approximate COP with an infinite state space by problems with finite
state spaces.

Some of the sections in the monograph are marked with an asterisk.
These are more technical and can be skipped at a first reading. Material
from these sections is, however, used occasionally in proofs of some theo-
rems in other sections.



PART I

Part One: Finite MDPs





CHAPTER 2

Markov decision processes

2.1 The model

Markov decision processes (MDPs), also known as controlled Markov chains,
constitute a basic framework for dynamically controlling systems that e-
volve in a stochastic way. We focus on discrete time models: we observe the
system at times t = 1, 2, . . . , n. n is called the horizon, and may be either
finite or infinite. A controller has an influence on both the costs and the
evolution of the system, by choosing at each time unit some parameters,
called actions. As is often the case in control theory, we assume that the
behavior of the system at each time is determined by what is called the
‘state’ of the system, as well as the control action. The system moves se-
quentially between different states in a random way; the current state and
control action fully determine the probability to move to any given state
in the next time unit.

MDPs are thus a generalization of (non-controlled) Markov chains, and
many useful properties of Markov chains carry over to controlled Markov
chains. A key Markovian property is that conditioned on the state and
action at some time t, the past states and the next one are independent.

The models that we study in this monograph are special in that more
than one objective cost exists; the controller minimizes one of the objec-
tives subject to constraints on the others. We shall call this class of MDPs
Constrained MDPs, or simply CMDPs.

To make the above precise, we define a tuple {X, A,P, c, d} where

• X is a state space that contains a finite number of states. Generic nota-
tion for states will be x, y, z.

• A is a finite set of actions. We denote by A(x) ⊂ A those actions that
are available at state x. set K = {(x, a) : x ∈ X, a ∈ A(x)} to be the set
of state-action pairs. A generic notation for an action will be a.

• P are the transition probabilities; thus, Pxay is the probability of moving
from state x to y if action a is chosen.

• c : K → IR is an immediate cost. This cost will be related to a cost
function which we shall minimize.

• d : K → IRK is a K-dimensional vector of immediate costs, related to K
constraints (which will be defined later).



22 MARKOV DECISION PROCESSES

A basic part of the description of a control model is to specify the mecha-
nism by which the controller chooses actions at different time epochs. Such
a mechanism is often called policy, strategy, profile, or decision rule. A first
step is to specify what information is available to the decision maker.

In deterministic models, where the transition probabilities are only zero
or one, the controller can fully predict the evolution of the state of the
system as a result of applying a sequence of actions, if it knows the initial
state. Therefore in several control models in the literature we may restrict
ourselves to policies known as ‘open loop’, i.e., policies that do not require
information on the state of the system (except for the initial state).

There are several situations, however, when the state evolution is not
fully predictable by the controller, and then it becomes desirable to use
policies that use more information on the system:
(i) Whenever the transition probabilities are not only zero or one,
(ii) It will turn out that in CMDPs the performance can often be improved
by choosing actions using some randomization mechanisms. Knowing the
outcome of the randomizations may be useful for the controller.
(iii) There are control models where some of the parameters of the system
(such as transition probabilities) are unknown. The controller can estimate
these and improve the control if it has information on the evolution of the
system.
(iv) There are models where more than one decision maker controls the
system. If there is no coordination between the controllers, then information
on the evolution of the system may become crucial for controlling it (even
in the case of deterministic transitions).

The above motivates us to consider different classes of ‘feedback’ (or
‘closed loop’) policies that may use information on the current state, and
of previous actions and states. In order to present a general definition of
policies, we define a history at time t to be a sequence of previous states
and actions, as well as the current state: ht = (x1, a1, . . . , xt−1, at−1, xt).
Let Ht be the set of all possible histories of length t.

A policy u is a sequence u = (u1, u2, . . .) (containing n elements); if
the history ht is observed at time t, then the controller chooses an action
within a with probability ut(a|ht). The class of all policies defined above is
denoted by U , and is called the class of behavioral policies.

A case when it is desirable to actually design policies that depend on a
long history is (iii) and (iv) above, which involve a learning mechanism.
Quite often, it will suffice to restrict to simpler policies. We introduce the
following classes of policies:

• UM := Markov policies; u ∈ UM if for any t, ut is only a function of xt

(and not of the whole history).

• US := stationary policies, which are a subset of UM ; w is stationary if wt

does not depend on t. We shall identify (with some abuse of notation)
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a stationary policy with the the probability that it assigns to differ-
ent actions in different states. Under any stationary policy w, the state
process becomes a stationary Markov chain with transition probabilities
Pxy(w) =

∑
aA(x) Pxaywx(a) (in case of compact actions this will be re-

placed by Pxy(w) =
∫ Pxaywx(da)). If a stationary probability for the

Markov chain exists and is unique, it is denoted by π(w).

• UD:= stationary deterministic policies, which are a subset of US ; a pol-
icy g is stationary deterministic if the action it chooses at state x is a
function of x. g is thus identified with a map g : X → A.

We shall fix an initial distribution β over the initial state; in other words,
the probability that we are at state x at time 1 is given by β(1). In partic-
ular, if β is concentrated on a single state z, then β can be written as the
Dirac function β(x) = δz(x).

The initial distribution β and any given policy u determine a unique
probability measure Pu

β over the space of trajectories of the states and
actions. This defines the stochastic processes Xt and At of the states and
actions. The construction of the probability space for u ∈ U is standard,
see e.g., Hinderer (1970). We denote by Eu

β the corresponding expectation
operator. For the special case where β = δz is concentrated on a single
state z, we shall use (with some abuse of notation) Pu

z and Wu
z instead of

Pu
β and Eu

z , respectively.

2.2 Cost criteria and the constrained problem

We now define the cost criteria which are most frequently used in appli-
cations of control of CMDPs. Other cost criteria will be handled in the
second part of the book. For any policy u and initial distribution β, the
finite horizon cost for a horizon n is defined as

Cn(β, u) =
n∑

t=1

Eu
βc(Xt, At). (2.1)

An alternative cost that gives less importance to the far future is the
discounted cost. For a fixed discount factor α, 0 < α < 1, define

Cn
α(β, u) = (1− α)

n∑
t=1

αt−1Eu
βc(Xt, At), (2.2)

Cα(β, u) = lim
n→∞

Cn
α(β, u). (2.3)

Since there are finitely many states and actions, the lim indeed exists and

Cα(β, u) = (1− α)
∞∑

t=1

αt−1Eu
βc(Xt, At). (2.4)
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(This need not be true for more general settings as in the second part of
the book.)

Remark 2.1 (The normalization constant)
Quite frequently, the discounted cost is defined without the normalizing
constant (1 − α). The techniques are the same for both cases, and one
could retrieve one from the other by multiplying or dividing the immediate
cost by this factor. There are several advantages of using this normalization.
First, we avoid the situation where, for fixed immediate cost c and d, the
total discounted cost becomes very large if α is close to one. Second, with
this normalization, the discounted cost will be seen to converge to the
expected average cost when stationary policies are used. Finally, we shall
see that the LP used to solve the discounted and the expected average costs
has the same form when the normalization constant is used.

The expected average cost (with finite and infinite horizons, respectively)
is defined as

Cn
ea(β, u) =

∑n
t=1 Eu

βc(Xt, At)
n

, Cea(β, u) = lim
n→∞

Cn
ea(β, u). (2.5)

Let C(β, u) stand for any of the above costs. Then C(u) : X → IR will
denote the function (or vector) whose x entry is C(x, u). The cost functions
related to the immediate costs d are defined similarly; e.g., the finite horizon
cost related to dk, k = 1, . . . ,K, is Dn,k(β, u) =

∑n
t=1 Eu

βdk(Xt, At).
For a fixed vector V = (V1, . . . , VK) of real numbers, we define the con-

strained control problem COP as:

Find a policy that minimizes C(β, u) subject to D(β, u) ≤ V.

C(β, u) and D(β, u) stand for one of the expected costs defined above, i.e.,
(2.1)–(2.5).

2.3 Some notation

Here, and throughout, we use the notation q1 ≤ q2 between two vectors
q1, q2 ∈ IRK to mean componentwise ordering, i.e., q1(j) ≤ q2(j), j =
1, . . . , K. Similarly, for any two measures q1, q2 defined on the same mea-
surable space (Ω,F), q1 ≤ q2 means q1(B) ≤ q2(B) for any B ∈ F . We use
the notation 〈q1, q2〉 between two vectors to denote their scalar product.

The set of policies satisfying the constraints is called feasible. If this set
is non-empty, then the constrained problem is said to be feasible (we shall
use a similar terminology for linear programs). Let C(β) be the value of
the above problem, with the obvious notation related to the different costs
(2.1)–(2.5) (e.g., Cea(β) is the value of COP when the expected average
costs are used). (If the feasible set of policies is empty, then we set C(β) =
∞.) If a feasible policy u∗ achieves the minimum, i.e., C(β) = C(β, u∗),
then it is called optimal.
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Definition 2.1 (Uniformly optimal policy)
A policy u is said to be uniformly optimal if it is optimal for all initial

states.

Remark 2.2 (Uniform optimal policies)
Optimal policies are defined with respect to a given initial state. A policy
that is optimal for one initial state might not even be feasible for another,
so it is in general not uniformly optimal. In fact, there may be some initial
states at which no policy is feasible. This is in contrast to non-constrained
MDPs, in which there typically exist policies that are optimal for all initial
states (or initial distributions). In the literature on non-constrained MDPs,
one thus often defines optimal policies to be policies that are optimal for
all initial states.

2.4 The dominance of Markov policies

An important step in solving control problems is to identify subclasses of
policies which are simple to handle and to implement, and yet are good
candidates to be optimal.

The class of Markov policies turns out to be rich in the following sense.
For any policy in U , there exists an equivalent policy in UM that induces the
same marginal probability measure, i.e., the same probability distribution
of the pairs (Xt, At), t = 1, 2, . . .

All cost criteria that we defined in the previous section have the property
that they are functions of the distribution of these pairs. We conclude that
the Markov policies are sufficiently rich so that a cost that can be achieved
by an arbitrary policy can also be achieved by a Markov policy. We prove
this and other more general properties of Markov policies in Theorem 6.1
in the second part of the book.

Definition 2.2 (Dominating policies)
A class of policies U is said to be a dominating class of policies for COP
for one of the cost criteria introduced in Section 2.1, and for a given initial
distribution β, if for any policy u ∈ U there exists a policy u ∈ U such that

C(β, u) ≤ C(β, u) and D(β, u) ≤ D(β, u). (2.6)

In the above definition, C, D, and COP stand for any one of the cost
criteria previously defined. When (2.6) holds, we say that u dominates u.

We conclude
Theorem 2.1 (Dominance of Markov policies)
The Markov policies are dominating for any cost criterion which is a func-
tion of the marginal distribution of states and actions.





CHAPTER 3

The discounted cost

3.1 Occupation measure and the primal LP

We begin by defining the occupation measure corresponding to a policy.
An occupation measure corresponding to a policy u is the total expected
discounted time spent in different state–action pairs. It is thus a probability
measure over the set of state–action pairs and it has the property that
the discounted cost corresponding to that policy can be expressed as the
expectation of the immediate cost with respect to this measure.

More precisely, define for any initial distribution β, any policy u and any
pair x, a:

fα(β, u; x, a) def= (1− α)
∞∑

t=1

αt−1Pu
β (Xt = x, Ax = a), x ∈ X, a ∈ A(x).

fα(β, u) is then the defined to be the set {fα(β, u; x, a)}x,a. It can be con-
sidered as a probability measure, which we call the occupation measure,
that assigns probability f t

α(β, u; x, a) to the pair (x, a).
It is easy to check that the discounted costs can be expressed as

Cα(β, u) =
∑

x∈X

∑

a∈A

fα(β, u; x, a)c(x, a), (3.1)

for any immediate cost c. (Thus the same representation also holds for the
costs Dk

α(β, u).)
Define for any class of policies U

Lα
U

(β) =
⋃

u∈U

fα(β, u), (3.2)

and define Lα(β) := Lα
U (β).

Definition 3.1 (Completeness for the discounted cost)
A class of policies U is said to be complete with respect to the discounted
cost problem if Lα(β) = Lα

U
(β).

Theorem 3.1 (Completeness of stationary policies)
The set of stationary policies is complete.

Proof. Choose a policy u ∈ U and let w be a stationary policy satisfying
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for all y and a:

wy(a) =
fα(β, u; y, a)
fα(β, u; y)

, y ∈ X, a ∈ A(y) (3.3)

whenever the denominator is non-zero. (When it is zero, wy(·) is chosen
arbitrarily). We show that fα(β, w) = fα(β, u). For any x ∈ X,

fα(β, u; x) = β(x) +
∞∑

t=2

pu
β(t, x)

= β(x)(1− α) + α

∞∑
t=2

∑

y∈X

∑

a∈A(y)

pu
β(t− 1; y, a)Pyax

= β(x)(1− α) + α
∑

y∈X

∑

a∈A(y)

fα(β, u; y, a)Pyax

= β(x)(1− α) + α
∑

y∈X

fα(β, u; y)
∑

a∈A(y)

Pyaxwy(a)

= β(x)(1− α) + α
∑

y∈X

fα(β, u; y)Pyx(w). (3.4)

This can be written in matrix notation as

fα(β, u) = (1− α)β + αfα(β, u)P (w).

The solution of this equation is

fα(β, u) = (1− α)β(I − αP (w))−1,

where I is the identity matrix. Note that all the eigenvalues of (I−αP (w))
are non-zero, and it is therefore invertible. (This follows, for example, from
Gersgorin’s Theorem, see e.g., Horn and Johnson, 1985, p. 344).

Since the above holds in particular for u = w, we conclude that for all
x ∈ X, fα(β, w; x) = fα(β, u; x). This implies by the definition of w that
fα(β,w) = fα(β, u), so that the set of stationary policies is complete.

Define Qα(β) to be the set of vectors ρ ∈ IR|K| satisfying




∑

y∈X

∑

a∈A(y)

ρ(y, a)(δx(y)− αPyax) = (1− α)β(x), ∀x ∈ X

ρ(y, a) ≥ 0, ∀y, a

(3.5)

By summing the first constraint over x we note that
∑

y,a ρ(y, a) = 1, so
that ρ satisfying the above constraints are probability measures.
Theorem 3.2 (Properties of occupation measures)
The set of stationary policies is complete. Moreover, Lα

US
(β) is closed poly-

tope, and satisfies

Lα(β) = Lα
US

(β) = coLα
UD

(β) = Qα(β).
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Proof. The first equality follows from Theorem 3.1. That Lα(β) ⊂ Qα(x)
follows from (3.4). The converse relation follows from an argument similar
to the one used in the proof of Theorem 3.1; for any ρ ∈ Qα(β), let w be
the stationary policy that satisfies for all y, a:

wy(a) =
ρ(y, a)∑

a∈A(y) ρ(y, a)
, y ∈ X, a ∈ A(y) (3.6)

whenever the denominator is non-zero. Define (with some abuse of nota-
tion) ρ(y) :=

∑
a∈A(y) ρ(y, a). Then

ρ(x) = β(x)(1− α) + α
∑

y∈X

∑

a∈A(y)

ρ(y, a)Pyax

= β(x)(1− α) + α
∑

y∈X

ρ(y)
∑

a∈A(y)

ρ(y, a)
ρ(y)

Pyax

= β(x)(1− α) + α
∑

y∈X

ρ(y)
∑

a∈A(y)

wy(a)Pyax

= β(x)(1− α) + α
∑

y∈X

ρ(y)Pyx(w).

We conclude that ρ equals (1− α)β(I −αP (w))−1, and hence to fα(β,w).
This now implies, through the definition of w, that ρ = fα(β, w). We con-
clude that Lα(β) = Qα(β).

Qα(β), and hence Lα
US

is a closed convex polytope; since Lα
UD

(β) ⊂
Lα

US
(β), this implies that coLα

UD
(β) ⊂ Lα

US
(β). The converse is established

by showing that if f is an extreme point of Lα
UD

, then there exists a deter-
ministic policy w such that fα(β, w) = f . The proof is quite technical, and
we thus omit it; the interested reader may find the proof of a more general
statement in the second part of the book (Corollary 10.1).

It now follows from the definition of Qα(β), from Theorem 3.2 and from
the representation of the cost in (3.1) that the value of COP can be ob-
tained using the following linear programming, which we call the primal
program:

LPα
1(β) : Find the infimum C∗ of C(ρ) := 〈ρ, c〉 subject to:

Dk(ρ) := 〈ρ, dk〉 ≤ Vk, k = 1, . . . , K, ρ ∈ Qα(β). (3.7)

We thus obtain the following theorem.

Theorem 3.3 (Equivalence between COP and the LP)
(i) C∗ = Cα(β).
(ii) For any u ∈ U , ρ(u) := fα(β, u) ∈ Qα(β), Cα(β, u) = C(ρ(u))
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and Dα(β, u) = D(ρ(u)); conversely, for any ρ ∈ Qα(β), the station-
ary policy w = w(ρ), defined in (3.6), satisfies Cα(β,w(ρ)) ≤ C(ρ) and
Dα(β,w(ρ)) ≤ D(ρ).
(iii) LPα

1(β) is feasible if and only if COP is. Assume that COP is feasi-
ble. Then there exists an optimal solution ρ∗ for LPα

1 (β), and the stationary
policy w(ρ∗) is optimal for COP.

3.2 Dynamic programming and dual LP: the unconstrained case

We describe in this section the dynamic programming method for solv-
ing non-constrained problems, i.e., K = 0. The following holds (see e.g.,
Puterman, 1994, and references therein):

Theorem 3.4 (Dynamic programming)
(i) The value Cα(x) def= infu∈U Cα(x, u), as a function of x, is the unique
solution of the following dynamic programming equation:

φ(x) = min
a∈A

(
(1− α)c(x, a) + α

∑

y∈X

Pxayφ(y)
)

∀x ∈ X. (3.8)

(ii) For any state x, let A(x) be the set of actions that achieve the minimum
of [(1−α)c(x, a) + α

∑
y∈X PxayCα(y)]. A stationary policy g is uniformly

optimal if and only if it chooses actions within A(x), x ∈ X w.p.1 (i.e., for
which g(A(x)) = 1 for all x ∈ X).

Proof. (i) We first show that Cα satisfies (3.8).

Cα(x) = inf
u∈UM

Cα(x, u)

= inf
u∈UM

(
(1− α)c(x, u1) + α

∞∑
t=2

Eu
xαt−1c(Xt, At)

)

= inf
u∈UM

(
(1− α)c(x, u1) + α

∑

y∈X

Pxu1yCα(y)
)

= inf
a∈A(x)

(
(1− α)c(x, a) + α

∑

y∈X

PxayCα(y)
)
.

Thus Cα satisfies (3.8).
Consider any solution φ of (3.8) and let w be a stationary policy that

chooses at state x an action that achieves the minimum of

(1− α)c(x, a) + α
∑

y∈X

Pxayφ(y).

We iterate (3.8) and obtain:

φ(x) = (1− α)c(x, w) + α
∑

y∈X

Pxwyφ(y) = (1− α)c(x, w) + αEw
x φ(X2)
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= (1− α) [c(x,w) + αEw
x c(X2, A2)] + α2Eu

x (Ew
X2

φ(X3))

= (1− α) [c(x,w) + αEw
x c(X2, A2)] + α2Ew

x φ(X3)

= . . . = (1− α)
n∑

t=1

Ew
x αt−1c(Xt, At) + αnEw

x φ(Xn+1)

= Cn
α(x,w) + αnEw

x φ(Xn+1). (3.9)

Taking the limit as n →∞, we see that φ(x) = Cα(x,w) for every x.
Let g be a policy as in (ii). By repeating the computation in (3.9) with

φ = Cα and with w = g, we see that Cα(x) = Cα(x, g) for all x ∈ X, so g
is uniformly optimal. To obtain the converse, assume that u ∈ US does not
satisfy the condition in the theorem, i.e., for some x ∈ X and some δ > 0,

(1− α)c(x, u) + α
∑

y∈X

PxuyCα(y)

= min
a∈A(x)

(
(1− α)c(x, a) + α

∑

x∈X

PxayCα(y)
)

+ δ .

Together with (3.8), this implies

Cα(x) + δ = (1− α)c(x, u) + α
∑

y∈X

PxuyCα(y)

= (1− α)c(x, u) + αEu
xCα(X2)

≤ (1− α)
(
c(x, u) + αEu

xc(X2, A2)
)

+ α2Eu
xCα(X3)

≤ · · · ≤ Cn
α(x, u) + αnEu

xCα(Xn+1).

Taking the limit as n →∞, we conclude that Cα(x, u) ≥ Cα(x)+ δ. Hence
u is not uniformly optimal.

We conclude from Theorem 3.4 that Cα satisfies the inequalities

φ(x) ≤ (1− α)c(x, a) + α
∑

y

Pxayφ(y) ∀x ∈ X , a ∈ A. (3.10)

Definition 3.2 (Superharmonic functions)
The set of functions satisfying (3.10) are called super-harmonic functions.

Theorem 3.5 (The value and super-harmonic functions)
The value Cα is the largest super-harmonic function.

Proof. (i) From Theorem 3.4 it follows that Cα is a super-harmonic func-
tion. Choose a super-harmonic function φ and let g be an optimal stationary
policy. Then

φ(x) ≤ (1− α)c(x, g) + α
∑

y∈X

Pxgyφ(y) = (1− α)c(x, g) + αEg
xφ(X2)
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≤ (1− α)c(x, g) + αEg
x

(
(1− α)c(X2, A2) + αEg

X2
φ(X3)

)

= (1− α) (c(x, g) + αEg
xc(X2, A2)) + α2Eg

xφ(X3)

≤ . . . ≤ (1− α)
n∑

t=1

αt−1Eg
xc(Xt, At) + αnEg

xφ(Xn+1).

The proof is established by taking the limit as n →∞. (A proof of a more
general statement can be found in Lemma 3.6 in Feinberg and Sonin, 1983.)

The above theorem implies that for any x, Cα(x) can be computed as
the solution of the following LP with the decision variables φ(x), x ∈ X.

DPα(β) : Find Θ∗ := supφ 〈β, φ〉 subject to (3.11)

φ(x) ≤ (1− α)c(x, a) + α
∑

y∈X

Pxayφ(y), x ∈ X, a ∈ A(x).

This LP is dual to LPα
1 (β) in the case of no constraints.

3.3 Constrained control: Lagrangian approach

We now go back to our constrained control problem. We use a standard
Lagrangian approach for convex programming to show that
(i) COP is equivalent to solving a non-constrained sup-inf problem;
(ii) the sup and inf can be interchanged under suitable conditions; the inf
in the inf-sup problem is in fact achieved by some policy which is optimal
for COP.
(iii) Under the Slater conditions, the sup is also obtained as max, that is,
‘optimal’ policies and Lagrange multipliers exist for the sup-inf problem,
and they satisfy the Kuhn-Tucker conditions.

The main result is presented in the following theorem.

Theorem 3.6 (The Lagrangian)
(i) The value function satisfies

Cα(β) = inf
u∈U

sup
λ≥0

Jλ
α(β, u) = inf

u∈UM

sup
λ≥0

Jλ
α(β, u) (3.12)

where

Jλ
α(β, u) := Cα(β, u) + 〈λ,Dα(β, u)− V 〉

=
∞∑

t=1

αt−1Eu
β jλ(Xt, At)− 〈λ, V 〉

jλ(x, a) := c(x, a) + 〈λ, d(x, a)〉. (3.13)

(ii) A policy u∗ is optimal for COP if and only if Cα(β) = supλ≥0 Jλ
α(β, u∗).
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(iii) The value satisfies

Cα(β) = sup
λ≥0

min
u∈U

Jλ
α(β, u) = sup

λ≥0
min

u∈UD

Jλ
α(β, u). (3.14)

Moreover, there exists some u∗ ∈ US such that

Cα(β) = inf
u∈U

sup
λ≥0

Jλ
α(β, u) = inf

u∈US

sup
λ≥0

Jλ
α(β, u) = sup

λ≥0
Jλ

α(β, u∗), (3.15)

and u∗ is optimal for COP.

Proof. (i) If for some u COP is not feasible, then supλ≥0 Jλ
α(β, u) = ∞.

Indeed, if the jth constraint is violated, i.e., Dj
α(β, u) > V , then the above

supremum is obtained by choosing λj very large: choosing it to tend to
infinity (the other ones can be chosen to be 0, for example). If COP is
feasible for that u, then the sup is obtained by choosing λ = 0, and then
Jα(β, u) = Cα(β, u). Hence,

inf
u∈U

sup
λ≥0

Jλ
α(β, u) = inf

u:Dα(β,u)≤V
Cλ

α(β, u)

from which the first equality in (3.12) follows. The fact that we may restrict
to Markov policies follows from Theorem 2.1. The above argument also
implies (ii).

To prove (iii), we make use of the results of Section 3.1, although (iii)
can be obtained independently (which is done in Section 9.4).

It follows from (3.1) that

Cα(β, u) +
K∑

k=1

λkDk
α(β, u) =

∑
y,a

fα(β, u; y, a)jλ(y, a).

Thus,

min
u

sup
λ≥0

Jα(β, u) = min
f∈Lα(β)

sup
λ≥0

∑
y,a

f(y, a)jλ(y, a)−
K∑

k=1

λkVk.

Since by Theorem 3.2, Lα(β) is convex and compact and since the set λ ≥ 0
is convex, it follows from a standard minmax theorem (Aubin, 1993, p. 126)
that the min and the sup can be interchanged (this minmax theorem is
stated precisely in Lemma 9.2). The restriction to UD in (iii) follows from
the fact that for any fixed λ, the minimization of Jλ

α(β, u) is an MDP with
no constraints; hence Theorem 3.4 can be applied to show that there exists
an optimal stationary deterministic policy.

3.4 The dual LP

We now introduce the LP which is the dual to LPα
1(β). Its decision variables

are φ(x), x ∈ X as well as the K-dimensional non-negative vector λ ∈ IRK
+ .
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We have:

DPα
1(β) : Find Θ∗ := maxφ,λ 〈β, φ〉 −∑K

k=1 λkVk subject to

φ(x) ≤ (1− α)(c(x, a) + 〈λ, d(x, a)〉) + α
∑

y∈Xα

Pxayφ(y),

x ∈ Xα, a ∈ A(x).

Theorem 3.7 (COP and the dual LP)
The value of COP is given by the solution of DPα

1 (β).

Proof. For any fixed λ, we can use the LP (3.11) to compute infu∈U Jλ
α(β, u),

where c(x, a) is replaced by jλ(x, a). Due to (3.12) in Theorem 3.6, Cα(β) is
obtained by adding to this LP a further maximization over λ, which yields
DPα

1 (β).

Although we could have derived the dual program directly from the pri-
mal program, the above proof, using Lagrange arguments and dynamic
programming, allows us to obtain further insight into this dual program.

3.5 Number of randomizations

We show in this section that when COP is feasible then there exists an
optimal stationary policy w that requires at most K randomizations. A
similar proof (for the expected average cost) was given by Koole (1988)
and by Ross (1989).

Definition 3.3 (Number of randomizations)
We say that under a stationary policy w there are m(y, w) randomizations
in state y if there are exactly m + 1 actions in A(y) for which wy(a) > 0.
We say that the total number of randomizations under w is n(w) if

∑

y∈X

m(y, w) = n(w).

In particular, if the total number of randomizations under w ∈ US is
n(w), then there are no more than n(w) states in which randomization is
used.

Theorem 3.8 (Bound on the number of randomizations)
If COP is feasible then there exists an optimal stationary policy w such
that the total number n(w) of randomizations that it uses is at most K
(where K is the number of constraints).

Proof. Consider any fixed initial distribution β for COP. Since LPα
1(β)

has |X| + K constraints, it follows that there exists an optimal solution
ρ∗ for this LP that has at most |X| + K non-zero elements. Define the
stationary policy w(ρ∗) as in (3.6).
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Assume first that

for each state y there exists some a such that ρ∗(y, a) > 0. (3.16)

Define
• X′ def= {y : the number of actions a ∈ A(y) such that ρ∗(y, a) > 0 is

greater than 1},
• K′ def= {(y, a), y ∈ X′ such that ρ∗(y, a) > 0}.

Randomizations clearly occur only in states in X′, and the number of
randomizations in a state y ∈ X′ is m(y, w) if and only if the number of
actions for which ρ∗(y, a) > 0 is m(y, w) + 1.

By (3.16), number of state–action pairs (y, a) that are not in K′ and for
which ρ∗(y, a) > 0 is |X| − |X′|. This implies that the number of elements
in K′ is upper-bounded by |X′|+ K. Hence, by Definition 3.3 the number
of randomizations is indeed upper-bounded by K.

It remains to consider the case where (3.16) does not hold. Let X be
the set of states for which

∑
a∈A(y) ρ∗(y, a) = 0. Define the following new

MDP, which is obtained from the initial MDP by eliminating some states
and some actions:
• State space: X := X \ X ;
• Action space: A(y) := {a : Pyax = 0, ∀x ∈ X};
The transition probabilities and costs are unchanged, i.e.,

Pxay = Pxay, c(x, a) = c(x, a), d(x, a) = d(x, a)

∀x, y ∈ X, a ∈ A(x). Clearly, in any state y ∈ X, the original policy w did
not use any action which is not in A(y), otherwise fα(β,w;x) > 0 for some
x ∈ X , which would imply that

∑
a ρ∗(x, a′) > 0, and this contradicts the

definition of X . Hence we may use again the same policy w in the new
MDP, as for each state y ∈ X, the support of wy(a) are within A. It also
follows that the total expected discounted costs achieved under w in the
new MDP is the same as in the previous one.

The new MDP can be seen as being obtained from the original one by
adding the constraints of not using some actions. Therefore, if any other
policy in the new MDP performed better than w, then it would also perform
better than w in the original MDP, which contradicts the fact that w is
optimal for the original MDP. We conclude that w is optimal in the new
MDP. By Theorem 3.3, the corresponding ρ is optimal for the equivalent
LP.

Finally, assumption (3.16) holds for the new LP, and therefore w does
not use more than K randomizations in the new MDP. This clearly holds
also for the original MDP, which concludes the proof.





CHAPTER 4

The expected average cost

The next cost criterion that we study is the expected average cost. We
assume throughout this chapter that the MDP is unichain, which is defined
in the following.
Definition 4.1 (Unichain MDP)
An MDP is said to be unichain if under any w ∈ UD, the corresponding
Markov chain contains a single (aperiodic) ergodic class.

4.1 Occupation measure and the primal LP

As we did in the discounted case, we define occupation measures. Here too,
they will allow us to obtain an LP for solving COP.

For any given initial distribution β and policy u, and any state–action
pair x, a, define

f t
ea(β, u; x, a) =

1
t

t∑
s=1

Pu
β (Xs = x, Ss = a), a ∈ A(x). (4.1)

The finite-horizon state–action frequencies (or occupation measure) f t
ea(β, u)

are the sets {f t
ea(β, u; x, a)}x,a. f t

ea(β, u) can be considered as a probability
measure that assigns probability f t

ea(β, u;x, a) to the pair (x, a).
With some abuse of notation, we define f t

ea(β, u;x) = f t
ea(β, u; x, A(x)).

The subscript ea stands for expected average.
We denote by Fea(β, u) the non-empty compact set obtained as all the

accumulation points of {f t
ea(β, u)}t. Fea(β, u) are called the sets of occu-

pation measures for the expected average cost. Thus, unlike the case in
the discounted framework, to a given initial distribution and a given policy
there may correspond an infinite set of occupation measures.

The motivation for introducing these sets is that, again, the cost is related
to the occupation measure. Indeed, we have the following:
Observation 4.1 (Representation of the cost)
For any β, u ∈ U and f ∈ Fea(β, u),

Cea(β, u) ≥ 〈f, c〉 :=
∑

y∈X

∑

a∈A(x)

f(y, a) (4.2)

with equality holding for some f ∈ Fea(β, u). If u ∈ US then (4.2) holds
with equality.



38 THE EXPECTED AVERAGE COST

Below, we shall show that one may restrict to stationary policies without
loss of optimality. For u ∈ US , it turns out that Fea(β, u) are all singletons.
Thus, the cost has again the same linear representation as we had in the
discounted case, as long as we use US , or other ‘nice’ classes of policies. We
shall make this precise below.

Define,

LU (β) =
⋃

u∈U

{Fea(β, u)} for any set of policies U,

Qea(β) =





ρ(y, a), y ∈ X, a ∈ A(y) :

∑

y∈X

∑

a∈A(x)

ρ(y, da)(δx(y)− Pyax) = 0, x ∈ X

∑

y∈X

∑

a∈A(y)

ρ(y, a) = 1, ρ(y, a) ≥ 0 ∀y, a




(4.3)

where δx is the Dirac probability measure concentrated on x. We set L(β) =
LU (β). LU (β) is called the set of expected occupation measures achievable
by U .

Definition 4.2 (Completeness for the expected average cost)
A class of policies U is called complete for the expected average cost crite-
rion (for a given initial distribution β) if

L(β) = LU (β) and ∀u ∈ U, Fea(β, u) is a singleton .

Thus a complete class of policies U has the property that the achievable
expected occupation measures under U are the same as under all policies.

The following lemma, which follows immediately from (4.2), motivates
the definition of complete classes of policies.
Lemma 4.1 (Sufficiency of complete classes of policies)
Any complete class of policies is dominant.

Theorem 4.1 (Completeness of stationary policies)
The stationary policies are complete and hence dominant.

Proof. Choose a policy u ∈ U . Let tn be some increasing sequence of times
along which f t

ea(β, u) converges to some limit f ∈ Fea(β, u). Define the
stationary policy w as follows:

wy(a) =
f(y, a)∑

a′∈A(y)
f(y, a′)

, a ∈ A(y)

whenever the denominator is non-zero. When it is zero, wy(·) is chosen to
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be an arbitrary probability measure over A(y). It follows from the unichain
assumption that the Markov chain with transition probabilities P (w) has
a unique invariant probability measure π(w), independent of the initial
distribution β, that satisfies

πy(w) = lim
t→∞

f t
ea(β,w; y),

and hence, Fea(β, w) = {fw} is a singleton and it satisfies

fw(y, a) = wy(a)πw(y), ∀y ∈ X, a ∈ A(y). (4.4)

We show that fw = f . Since clearly for any x ∈ X,

Pu
β (Xt+1 = x) =

∑

y∈X

∑

a∈A(y)

Pu
β (Xt = y, At = a)Pyax,

we have

f t
ea(β, u; x)− β(x)

t
=

∑

y∈X

∑

a∈A(x)

f t
ea(β, u; y, a)Pyax (4.5)

−
∑

y∈X

∑
a∈A(x) Pu

β (Xt = y, At = a)Pyax

t

Hence

f(x) = lim
n→∞

f tn
ea (β, u; x) = lim

n→∞

∑

y∈X

∑

a∈A(x)

f tn
ea (β, u; y, a)Pyax

=
∑

y∈X

∑

a∈A(x)

f(y, a)Pyax. (4.6)

By definition of w and of Pxy(w),
∑

y∈X

∑

a∈A(x)

f(y, a)Pyax =
∑

y

f(y)
∑

a∈A(y)

wy(a)Pyax

=
∑

y

f(y)Pyx(w). (4.7)

This, together with (4.6), leads to

f(x) =
∑

y

f(y)Pyx(w), (4.8)

where f(y) :=
∑

a∈A(t) f(y, a). The steady-state probability of the Markov
chain obtained when the stationary policy w is applied, π(w), is known to
be the unique probability measure over X satisfying (4.8). This, together
with the definition of w, implies that {f} = {fw}, which establishes the
proof.
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Theorem 4.2 (Characterizing the achievable occupation measures)
LUS

(β) is a closed convex polytope and

L(β) = LUS
(β) = coLUD

(β) = Qea(β).

Proof. The completeness of US was established in Theorem 4.1, and thus
L(β) = LUS

(β). (4.6) shows that L(β) ⊂ Qea(β). We next show the con-
verse. For any ρ ∈ Qea(β), define again the stationary policy w by

wy(a) =
ρ(y, a)
ρ(y)

, a ∈ A(y)

where ρ(y) :=
∑

a′∈A(y) ρ(y, a′) whenever the denominator is non-zero.
When it is zero, wy(·) is chosen to be an arbitrary probability measure
over A(y). It follows from the definition of Qea(β) and of w that for all
x ∈ X,

ρ(x) =
∑

y∈X

ρ(y)
∑

a∈A(y)

wy(a)Pyax =
∑

y∈X

ρ(y)Pyx(w).

Since πy(w) = fea(β, w; y), y ∈ X is the unique solution to π = πP (w) that
satisfies π(X) = 1, π ≥ 0; it follows that ρ(x) = fea(β, u;x) for all x ∈ X,
and by the definition of w, ρ = fea(β, u). This establishes LUS (β) = Qea(β).

Since LUD
(β) ⊂ LUS

(β) and since LUS
(β) is a closed polytope, clearly

coLUD
(β) ⊂ LUS

(β). To establish the converse, assume that f is an extreme
point of LUS

(β). Let w be a stationary policy such that

wy(a) =
f(y, a)∑

a′∈A(y)
f(y, a′)

, a ∈ A(y)

whenever the denominator is non-zero; when it is zero we set wy = δa(·)
where a is some arbitrary action in A(y). We shall show that w ∈ UD.

To establish the last point, we first recall a key property of Markov chains.
Consider a Markov chain over with finite state space X containing a single
recurrent class, and let y be a recurrent state. Let N(x) be the number of
visits to a state x between two consecutive visits to state y, and let T be
the time between two consecutive visits of state y. Then

f(x) := lim
t→∞

1
t

t∑
s=1

P (Xs = x) =
EN(x)

ET
.

In particular, f(y) = (E[T ])−1. For our controlled Markov chains, this
implies that for any stationary policy u, state x and action a,

fu(x, a) =
EN(x, a)

ET
, (4.9)

where N(x, a) is the number of times that the state action pair (x, a) are
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visited between two consecutive visits to state y, and fu is the single limit
of f t

ea as t →∞.
Going back to our problem, assume that w /∈ UD. We have by the proof

of Theorem 4.1 that fea(β, w) = f . Now, there exists some state y such
that f(y) > 0, and in which w uses two actions, a and b, with positive
probabilities: wy(a) > 0, wy(b) > 0. Define the following policies in US :

v1
x(a′) =





wx(a) + wx(b) if x = y, a′ = a,
0 if x = y, a′ = b,
wy(a′) otherwise ,

v2
x(a′) =





0 if x = y, a′ = a,
wx(a) + wx(b) if x = y, a′ = b,
wy(a′) otherwise ,

Define

q1 =
wy(a)

wy(a) + wy(b)
q2 =

wy(b)
wy(a) + wy(b)

.

The policy w behaves in the same way as if at each time we return to state
y we toss a coin, and with probability qi it will use the fixed stationary
policy vi, i = 1, 2, until the next visit to state y.

We have
EwT = q1E

v1
[T ] + q2E

v2
[T ],

and
EwN(x, a) = q1E

v1
[N(x, a)] + q2E

v2
[N(x, a)].

This, together with (4.9), implies that for any x ∈ X,

fw(x, a) =
q1E

v1
[N(x, a)] + q2E

v2
[N(x, a)]

q1Ev1 [T ] + q2Ev2 [T ]

=
q1f

v1
(x, a)Ev1

[T ] + q2f
v2

(x, a)Ev2
[T ]

q1Ev1 [T ] + q2Ev2 [T ]

= p1f
v1

(x, a) + p2f
v1

(x, a),

where

p1 =
q1/Ev2

[T ]
q1/Ev2 [T ] + q2/Ev1 [T ]

, p2 =
q2/Ev1

[T ]
q1/Ev2 [T ] + q2/Ev1 [T ]

.

We conclude that fw is not an extreme point of LUS
, which concludes the

proof.

4.2 Equivalent Linear Program

We now obtain an LP formulation similar to the one we obtained for the
discounted cost; we show again that the COP is equivalent to an LP with
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a countable set of decision variables and a countable set of constraints.
Consider the following LP:
LP3(β): Find the infimum C∗ of C(ρ) := 〈ρ, c〉 subject to:

Dk(ρ) := 〈ρ, dk〉 ≤ Vk, k = 1, . . . , K, ρ ∈ Qea(β),

where Qea(β) was defined in (4.3).
Define w(ρ) to be any stationary policy such that

wy(a) = ρ(y, a)
( ∑

a∈A(y)

ρ(y, a)
)−1

whenever the denominator is non-zero. We show that there is a one to one
correspondence between feasible (and optimal) solutions of the LP, and the
feasible (and optimal) solutions of COP.

Theorem 4.3 (Equivalence between COP and LP3(β))
(i) C∗ = Cea(β).
(ii) For any u′ ∈ U , there exists a dominating stationary policy u ∈ US

such that ρ(u) := fea(β, u) ∈ Qea(β), Cea(β, u) = C(ρ(u)) and Dea(β, u) =
D(ρ(u)); conversely, for any ρ ∈ Qea(β), the stationary policy w(ρ) satisfies
Cea(β, w(ρ)) = C(ρ) and Dea(β,w(ρ)) = D(ρ).
(iii) LP3(β) is feasible if and only if COP is feasible. Assume that COP
is feasible. Then there exists an optimal solution ρ∗ for LP3(β), and the
stationary policy w(ρ∗) is optimal for COP.

Proof. We start from (ii). The dominance of stationary policies was proved
in Theorem 4.1. The other claims follow by combining the linear representa-
tion of the cost (4.2) with the proofs of Theorems 4.1, 4.2. This establishes
(ii). This then implies (i) and (iii).

4.3 The Dual Program

Next, we present the formal Dual Program DP for the LP above. The
decision variables are ψ ∈ IR, φ : X → IR and the K-dimensional non-
negative vectors λ ∈ IRK

+ .

DP3(β): Find Θ∗(β) := supψ,φ,λ ψ − 〈λ, V 〉 subject to

φ(x) + ψ ≤ c(x, a) + 〈λ, d(x, a)〉+
∑

y∈X

Pxayφ(y), x ∈ X, a ∈ A(x).

A probabilistic interpretation for this LP can be obtained in the same way
as we obtained the dual LP for the discounted cost criterion, see Chapter 3.
In particular, we can obtain the corresponding results for the Lagrangian.
This is done in detail for the infinite MDPs in Chapter 12.
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4.4 Number of randomizations

As we did for the discounted cost, we show that when COP is feasible,
then there exists an optimal stationary policy w that requires at most K
randomizations (where we use the same Definition 3.3 for the number of
constraints). The result below is due to Koole (1988) and Ross (1989).

Theorem 4.4 (Bound on the number of randomizations)
Consider the expected average cost with the unichain assumption.
If COP is feasible, then there exists an optimal stationary policy w such
that the total number n(w) of randomizations that it uses is at most K
(where K is the number of constraints).

Proof. The proof is very similar to the discounted cost. We indicate below
the changes in the proof compared to that of the discounted case (Theorem
3.8).

In the discounted case, LPα
1(β) had |X|+ K constraints, whereas in the

expected average cost LP3(β)has |X|+ K + 1 constraints. The additional
constraint which appears here explicitly is

∑
y,a ρ(y, a) = 1. (This is in fact

an implicit constraint in the discounted cost as well, which can be seen by
summing all the equality constraints in the definition of Qα.)

However, unlike the discounted case, if we sum the first |X| equality
constraints in the definition of Qea(β), we get “0=0”; in other words, we
see that these are dependent constraints. The number of independent con-
straints in LP3(β) is thus upper-bounded by |X|+K, as is the case for the
discounted cost.

From this point, the rest of the proof is exactly the same as that of
Theorem 3.8 (the discounted cost).





CHAPTER 5

Flow and service control in a
single-server queue

We consider below a problem of flow and service control in a single queue.
Although there are two controllers, they can be viewed as one control entity
since they have a common cost to minimize. Formulating this problem as a
constrained MDP and using an equivalent Lagrangian approach, we show
that there exist optimal stationary policies with a special monotone struc-
ture. In particular, when any one of the controllers has only two available
actions, then it has an optimal randomized threshold policy. We show that
if the thresholds are different, then the randomizations can be performed
independently.

We then pose the question of whether in CMDP with several controllers,
one can always restrict to decentralized policies, i.e., policies for which the
controllers perform their randomizations independently. We illustrate via
a simple example that the answer is negative.

5.1 The model

We consider a discrete-time single-server queue with a buffer of finite size
L. We assume that at most one customer may join the system in a time
slot. This possible arrival is assumed to occur at the beginning of the time
slot. The state corresponds to the number of customers in the queue at the
beginning of a time slot.

Let amin and amax be two real numbers satisfying 0 < amin ≤ amax <
1. At the end of the slot, if the queue is non-empty and if the action
of the server is a, then a service of a customer is successfully completed
with probability a ∈ A where A is a finite subset of [amin, amax]. If the
service fails, the customer remains in the queue; and if it succeeds, then
the customer leaves the system.

Let bmin, bmax be two real numbers satisfying 0 ≤ bmin ≤ bmax < 1. At
the beginning of each time slot, if the state is x, then the flow controller
chooses an action b from a finite set B(x) ⊂ [bmin, bmax]. In this case,
the probability of having one arrival during this time slot is equal to b. We
assume that 0 ∈ B(x) for all x; moreover, when the buffer is full, no arrivals
are possible (B(L) = {0}). In all states other than L, we assume that the
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available actions for the flow controller are the same, and we denote them
by B(x) = B.

Our control thus consists of two components, and the set of actions is
A × B. If the service control a is fixed, then the service time distribution
is Bernoulli with parameter a, and the expected service time is 1/a. a can
thus be interpreted as the allocated bandwidth, or quality of service.

We assume that a customer who enters an empty system may leave the
system (with probability a, when action a is used) at the end of this same
time slot.

The transition law P is:

Pxaby :=





b̄a, if L ≥ x ≥ 1, y = x− 1;
ba + b̄ā, if L ≥ x ≥ 1, y = x;
bā, if L > x ≥ 0, y = x + 1;
1− bā, if y = x = 0;

(for any number χ ∈ [0, 1], χ̄ := 1− χ).
We assume that there are three components for the cost: a holding cost

c, a cost d1 corresponding to the actions of the service controller, and a
cost d2 related to the actions of the flow controller.

The immediate cost c is related to the component that we wish to mini-
mize (i.e., to the delays) and is assumed to be a function only of the state.
We assume that c(x) is a real-valued increasing convex function on X. c
can be interpreted as a holding cost. We know from Little’s law that the
expected queue length is proportional to the expected waiting time, and
therefore if c is linear, it is directly related to the delay.

The immediate cost d1 corresponding to the service rate is assumed to
be a function only of a. It can be interpreted as a cost function per quality
of service or per bandwidth allocation. The cost d2 corresponding to the
throughput is assumed to be a function only of b. It is natural to assume
that d1 is increasing in a and d1 ≥ 0, whereas d2 is decreasing in b.

We consider the discounted costs Cα(β, u) and Dk
α(β, u) ≤ Vk, k = 1, 2,

all defined as in (2.4), for some given discount factor α. We wish to minimize
Cα(β, u) under the constraints Dk

α(β, u) ≤ Vk, k = 1, 2; Vk are some given
constants.

By using Theorem 3.6 (iii), we know that the expected discounted cost
satisfies

C(β) = min
u∈US

sup
λ≥0

Jλ(β, u); (5.1)

Jλ(β) is the difference between the discounted cost corresponding to the
immediate cost

jλ(x, a, b) = c(x) + λ1d
1(a) + λ2d

2(b), (5.2)

and
∑2

k=1 λkVk, see (9.24).
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Remark 5.1 (Other cost criteria)
The above also holds for the expected average cost or for the so-called
total expected cost criteria, as will be shown in Corollaries 9.2 and 12.2.
Note that for the expected average cost, the Lagrangian is defined directly
through (12.29), but since one may restrict to stationary policies (without
loss of optimality), (5.1) can be used with the definition using (5.2).

We shall restrict our analysis to the discounted cost. Standard methods
can be used to show that the structure of optimal policies carries over
also to the expected average cost. In particular, one may use the results of
Section 14.2 to establish this. We thus consider the problem of

min
u∈U

Cα(β, u) subject to Dk
α(β, u) ≤ Vk, k = 1, 2, (5.3)

where β is the fixed initial distribution, Vk are some given constants, and
C and D are defined with respect to the immediate costs defined above.

5.2 The Lagrangian

We consider in this section the equivalent non-constrained problem of min-
imizing the Lagrangian

Jλ
α(β, u) =

∞∑
t=1

αt−1Eu
β jλ(Xt, At).

(We ignore the term
∑

k λkVk which has to be further subtracted, as it does
not depend on the policy; in particular, it has no influence on the policy
that minimizes the Lagrangian.) Below, we shall omit λ from the notation.

It follows from Theorem 3.6 that there exists an optimal stationary policy
for the Lagrangian which is optimal for the original constrained problem.

We shall therefore restrict, without loss of optimality, to stationary poli-
cies.

Definition 5.1 For a stationary policy v, define the projection va
x(a) def=

vx(a,B). Define similarly vb
x(b) def= vx(A, b).

Remark 5.2 Note that for deterministic policies, the projections fully de-
termine the original policy.

We now describe the type of monotonicity of optimal policies that will
occur in our problem. Let u : X → M1(A). Denote asup

x (u) := the greatest
a in the support of ux, i.e., the greatest a ∈ A such that ux(a) > 0. Denote
ainf

x (u) := the smallest a in the support of ux.
We say that u is strongly monotone decreasing in its a-component

if for any x ∈ X and y with y < x, ainf
y (u) ≥ asup

x (u).
We say that u is strongly monotone increasing in its a-component if

for any x ∈ X and y with y < x, asup
y (ut) ≤ ainf

x (ut).



48 FLOW AND SERVICE CONTROL IN A SINGLE-SERVER QUEUE

The analogous definitions hold naturally for actions b. As a direct con-
sequence of the definition of strongly monotone policies, we have

Lemma 5.1 If u is strongly monotone in its a-component, then u chooses
a singleton among A in at least m states, where m = |X|−|A|+1. A similar
statement holds for the b-component.

Proof. Assume that u is strongly monotone increasing. Let x be a state at
which ux randomizes between more than one action. Then for all y > x,
an action a with a > ainf

x (u) is not used, i.e., uy(a) = 0. The set of actions

A(x, u) def= {a : ∃y > x such that uy(a) > 0} is monotone decreasing,
and in particular, it decreases by at least one action at each x as above:
|A(x− 1, u)| − 1 ≥ |A(x)|. This implies the proof.

Theorem 5.1 (Structure of optimal policies)
Fix some initial distribution β. Assume that the holding cost c is convex
non-decreasing, and either c(1) > c(0) or c(2)−c(1) > c(1)−c(0). Then any
optimal stationary policy is strongly monotone in both a- and b-components.
If A = {a1, a2} with a1 < a2, then the a-projection of any optimal policy is
of a randomized threshold type, i.e.,

ua
x(a2) =





1 if x > ma

qa if x = ma

0 if x < ma

(5.4)

where ma is an integer, and qa ∈ [0, 1] some real number.
If B = {b1, b2} with b1 < b2, then the b-projection of any optimal policy is
of a randomized threshold type, i.e.,

ub
x(b2) =





0 if x > mb

qb if x = mb

1 if x < mb

(5.5)

where mb is an integer, and qb ∈ [0, 1] some real number.

Before proving the theorem, we need some definitions and some auxiliary
results, which we establish in three lemmas.

Let N be the set of real-valued functions on X. Define the operator
R : X× A× B×N → IR as

R(x, a, b, f) := E [f(Xt+1)|Xt = x,At = a,Bt = b] .

We get:

R(x, a, b, f) =
{

(1− bā) f(x) + bāf(x + 1) x = 0
b̄af(x− 1) + (ba + b̄ā)f(x) + bāf(x + 1) 1 ≤ x ≤ L

(5.6)
(in the above equation we shall understand 0 · f(L + 1) := 0.) Let R(x, f)
denote the vector whose entries are R(x, a, b, f) (it has one entry for each
pair (a, b)).
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Define the operator S : X× A× B×N → IR as

S(x, a, b, f) := j(x, a, b) + αR(x, a, b, f),

and let S(x, f) denote the vector whose entries are {S(x, a, b, f)} (it has
one entry for each pair (a, b)).

In order to simplify the analysis of the boundary (at x = 0), we shall
extend functions of the form f : X → IR to X ∪ {−1} → IR, and set
f(−1) = f(0). With this definition we have for all 0 ≤ x ≤ L, a and b:

R(x, a, b, f) = b̄af(x− 1) + (ba + b̄ā)f(x) + bāf(x + 1).

Let Tα : N → N be the dynamic programming operator associated with
our minimization problem:

Tαf(x) def= min
a,b

S(x, a, b, f), x ∈ X.

We shall extend the image of Tα to functions over X ∪ {−1} and define
Tαf(−1) def= Tαf(0). We similarly define Jα(−1) = Jα(0).

We shall use the following:

Lemma 5.2 (i) Jα satisfies

Jα(x) = TαJα(x).

(ii) A policy u is uniformly optimal if and only if it achieves the argmin in
TαJα(x).
(iii) For any f ∈ N , limn→∞ Tn

α f = Jα.

Proof. (i) and (ii) follow from Theorem 3.4. (iii) follows from a well-known
value iteration theorem, see e.g., Wessels (1977) (for more details, see Chap-
ter 15).

Remark 5.3 (The finite horizon problem)
Tn

α f is in fact the optimal value of an n-step horizon discounted problem
with immediate cost jλ and final cost f . Lemma 5.2 (iii) shows that the
optimal finite horizon cost converges to the infinite cost. In Chapter 15
we prove this convergence in a more general setting: that of constrained
MDPs.

Lemma 5.3 Let h : X ∪ {−1} → IR be a non-decreasing function with
h(−1) = h(0). Let ζ1, ζ2 ∈ [0, 1]. Then, for all 0 ≤ x < L,

F (x) := ζ2h(x + 1) + ζ̄2h(x)− ζ1h(x)− ζ̄1h(x− 1) ≥ 0 (5.7)

Moreover, if (i) h(x + 1) > h(x) and ζ2 6= 0, or (ii) if h(x) > h(x− 1) and
ζ1 6= 1, then F (x) > 0.
Proof.

F (x) ≥ h(x)− ζ1h(x)− ζ̄1h(x− 1) = ζ̄1[h(x)− h(x− 1)] ≥ 0,

and the second claim follows similarly.
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We shall say that f ∈ N satisfies assumption:

• WC (weakly convex) if for all 0 ≤ x < L− 1,

f(x + 2)− f(x + 1) ≥ f(x + 1)− f(x). (5.8)

• SC(x) (strongly convex) if for x given,

f(x + 2)− f(x + 1) > f(x + 1)− f(x). (5.9)

• MI if f(x) is monotone increasing in x, i.e., for any 0 ≤ x < L,

f(x + 1) ≥ f(x). (5.10)

Lemma 5.4 Assume that the holding cost c satisfies WC and MI.
(i) Assume that f satisfies WC and MI. Then Tαf satisfies WC and MI.
(ii) The value function Jα satisfies WC and MI.
(iii) If Jα satisfies SC(x) in one state x < L− 1, then it satisfies SC(y)
for all y ≥ x. If Jα(1) − Jα(0) > 0, then Jα satisfies SC(y) for all states
y, 0 ≤ y < L− 1.
Finally, assume that the holding cost c satisfies WC, MI and either c(1) >
c(0) or SC(0). Then,
(iv) Jα satisfies SC(y) for all states y, 0 ≤ y < L− 1.

Proof. Let U(f) be the set of stationary policies that achieve the argmin
of Tαf . Choose any 0 ≤ z ≤ L − 1. Choose some u ∈ U(f), and for all
x, select some (ax, bx) in the support of ux (i.e., ux(ax, bx) > 0). Hence,
(ax, bx) ∈ Tαf(x).

We begin by establishing MI. Defining a = ax+1, b = bx+1, we have

Tαf(x + 1)− Tα(x) = S(x + 1, ax+1, bx+1, f)− S(x, ax, bx, f)
≥ S(x + 1, ax+1, bx+1, f)− S(x, ax+1, bx+1, f)
= c(x + 1)− c(x) (5.11)

+α



ab̄[f(x)− f(x− 1)] + (ab + āb̄)[f(x + 1)− f(x)]

+āb[f(x + 2)− f(x + 1)]





≥ c(1)− c(0) ≥ 0. (5.12)

(The equation above holds indeed for x = L − 1, too, since we then have
b = 0; in that case, we shall understand bf(x + 2) := 0).

Next we check WC. Choose any 0 ≤ x ≤ L− 2; denote

F (x) def= min
u

S(x + 2, f)−min
u

S(x + 1, f)− [min
u

S(x + 1, f)−min
u

S(x, f)].
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Define a2
def= ax+2, b2

def= bx+2, a1
def= ax, b1

def= bx. We have

F (x) ≥ S(x + 2, ax+2, bx+2, f)− S(x + 1, ax+2, bx+2, f) (5.13)
−[S(x + 1, ax, bx, f)− S(x, ax, bx, f)]

= c(x + 2)− c(x + 1)− c(x + 1) + c(x) +

α



a2

[
b2(f(x + 2)− f(x + 1)) + b2(f(x + 1)− f(x))

]

+ā2

[
b2(f(x + 3)− f(x + 2)) + b̄2(f(x + 1)− f(x))

]

−a1

[
b1(f(x + 1)− f(x)) + b̄1(f(x)− f(x− 1))

]

−ā1

[
b1(f(x + 2)− f(x + 1)) + b̄1(f(x + 1)− f(x))

]




≥ 0 (5.14)

which follows by applying Lemma 5.3 with

ζ2 = ā2, ζ1 = ā1, h(x) = b1(f(x + 2)− f(x + 1)) + b̄1(f(x + 1)− f(x)).

Since f satisfies WC, h is indeed increasing. The equation above holds
for x = L − 2, too, since in that case g2 = 0; we shall then understand
g2f(x + 3) := 0.

(ii) Choose f(x) = 0,∀x ∈ X. By repeated application of Lemma 5.4
(i), it follows that Tn

α f satisfies MI and WC for n = 1, 2, . . .; moreover,
limn→∞ Tn

α f satisfies MI and WC. Hence by Proposition 5.2 (iii), Jα sat-
isfies MI and WC.

(iii) Suppose that Jα satisfies SC(x-1) for some fixed 0 < x < L − 1.
By substituting Jα instead of f in (5.13) and again applying Lemma 5.3
(this time we apply the second part of the Lemma; indeed condition (ii)
there holds since b1 cannot be equal to one, and h(x) = Jα(x + 1)− Jα(x)
satisfies h(x) > h(x− 1) by the assumption), we thus get strict inequality
in (5.14). Hence Jα satisfies SC(x) as well, and we conclude similarly that
it satisfies SC(y) for any y ≥ x.

To prove the second claim, we again substitute Jα instead of f in (5.13)
and consider x = 0. Again we have the case of the strict inequality in
Lemma 5.3 since h(x) := Jα(x+1)−Jα(x) satisfies indeed h(x)−h(x−1) =
Jα(1) − Jα(0) > 0 (recall that h(0) := 0 since Jα(−1) := Jα(0)). We thus
get again strict inequality in (5.14). It follows that Jα(0) satisfies SC(0),
and hence by the first claim, it satisfies SC(y) for all 0 ≤ y < L− 1.

(iv) Fix x = 0. Assume c(1) > c(0). It follows that (5.12) holds with strict
inequality for any f satisfying MI and in particular for f = Jα. Hence Jα,
which by Proposition 5.2 (i) is equal to minu S(x, Jα), satisfies

Jα(1)− Jα(0) ≥ c(1)− c(0) > 0.
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The proof is then established by applying the second part of (iii).
Next assume that c satisfies SC(0). Substituting Jα into (5.13) and

considering x = 0 we get F (x) > 0 since we have a strict inequality in
(5.14). Hence Jα satisfies SC(0). The proof is then established by applying
the first part of (iii).

Proof of Theorem 5.1: (i) Let U be the set of stationary policies with the
property that each u ∈ U achieves the argmin of TαJα. It follows from
Theorem 3.4 that a stationary policy is optimal if and only if it is in U .
(The theorem is stated for the total expected cost of which the discounted
cost problem can be viewed as a special case, as discussed at the end of
Section 10.4. Note that for any stationary policy u and state x, fα(β, u; x) >
0 since under any u, every state can be reached from any other state. Hence
the condition in Theorem 9.2 holds.)

Fix some x < L. Assume that for any a1 and a2, and for any b2 and b1

satisfying b2 > b1,

∆b(x) def= S(x + 1, a1, b2, Jα)− S(x + 1, a1, b1, Jα) (5.15)
−[S(x, a2, b2, Jα)− S(x, a2, b1, Jα)] > 0.

Assume the ub
x(b1) > 0. This implies, by definition, that there exists some

a′ such that (a′, b1) ∈ argminTαJα(x). This implies that [S(x, a′, b2, Jα) ≥
S(x, a′, b1, Jα)]. (5.15) then implies that for all y > x and all a,

S(y, a, b2, Jα) > S(y, a, b1, Jα),

so that (a, b2) /∈ argminTαJα(y). Hence ub
y(b2) = 0, which shows that ub

is strongly monotone decreasing.
We similarly obtain the monotonicity for ua. Fix some x < L. Assume

that for any b1 and b2, and for any a2 and a1 satisfying a2 > a1,

∆a(x) def= S(x + 1, a2, b1, Jα)− S(x + 1, a1, b1, Jα) (5.16)
−[S(x, a2, b2, Jα)− S(x, a1, b1, Jα)] < 0.

Assume the ua
x(a2) > 0. This implies, by definition, that there exists some

b′ such that (a2, b
′) ∈ argminTαJα(x). This implies that [S(x, a2, b

′, Jα) ≤
S(x, a1, b

′, Jα)]. (5.16) then implies that for all y > x and all b,

S(y, a2, b, Jα) < S(y, a1, b1, Jα),

so that (a1, b) /∈ argminTαJα(y). Hence ub
y(a1) = 0, which shows that ub

is strongly monotone increasing.
It remains to show that (5.15) and (5.16) indeed hold.

∆a(x) = α(b2 − b1)×(
a1[Jα(x + 1)− Jα(x)] + ā1[Jα(x + 2)− Jα(x + 1)]
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− (a2[Jα(x)− Jα(x− 1)] + ā2[Jα(x + 1)− Jα(x)])
)

> 0 (5.17)

where the last inequality follows from Lemma 5.3 with ζ2 = ā1, ζ1 = ā2

and h(x) = Jα(x) − Jα(x − 1), and since, by Lemma 5.4 (iv), Jα satisfies
SC(x) for all x. This establishes the monotonicity of ua. The monotonicity
of ub follows from similar arguments.

5.3 The original constrained problem

We now go back to the original constrained MDP.

Theorem 5.2 (Optimality of strongly monotone policies)
Choose some β, and consider the discounted constrained problem (5.3).
Assume that the CMDP is feasible. Then,
(i) There exists an optimal stationary policy.
(ii) If the holding cost c is convex non-decreasing, and either c(1) > c(0)
or c(2)− c(1) > c(1)− c(0), then any optimal stationary policy is strongly
monotone increasing in the a-component and strongly monotone decreasing
in the b-component.
(iii) In particular, if A has only two actions, then the a-projection of any
optimal policy is of a randomized threshold type given in Theorem 5.1. The
same statement holds for the b-projection.

Proof. Fix some initial distribution β. According to Theorem 5.1, for any
value of the Lagrange multipliers, all stationary policies that are optimal
for the Lagrange problem are strongly monotone in both components. Ac-
cording to Theorem 3.6 among all the stationary optimal policies that are
optimal for the Lagrangian problem, there exists one that is optimal for
the constrained one. Hence this one is indeed strongly monotone in both
components, which establishes the proof.

5.4 Structure of randomization and implementation issues

We assume in this section that there are only two actions in A and two
actions in B. Using the results of the previous section, we conclude that if
an optimal stationary policy satisfies ma 6= mb (defined in Theorem 5.1),
then the randomizations occur at different states for each component; for
all x other than these two thresholds, deterministic actions are taken and
there is no randomization. At ma only one component uses randomization,
the one corresponding to the service control; at mb only the flow controller
randomizes.

At no state is there a need to jointly randomize over all components of
A× B. The optimal policy is fully described by its projections and can be
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implemented and performed in a decentralized way, without coordinating
between the flow and service controller to do a joint randomization.

This is not the case if ma = mb; in this case, the optimal stationary
policy does not use randomization at any other state; but at the particular
state ma, it might randomize between 3 pairs of actions of the form (ai, bj).
In general, this cannot be performed in a decentralized way. For example, a
policy that randomizes between (a1, b1) and (a2, b2) cannot be implemented
by performing randomization independently on the A and B components,
since independent randomizations will give rise also to pairs of the form
(a1, b2) and (a2, b1).

Our structural results are compatible with the fact that we know that
there exist optimal stationary policies for CMDPs that use at most K
randomizations, where K are the number of constraints (this was proved
in Sections 3.5 and 4.4). Now suppose that instead of having one holding
cost c(x), we had two holding costs, c(x) and d3(x), (in addition to the
costs d1 and d2 related to the actions). c(x) may be the cost related to
the delay, and d3(x) may be an actual holding cost. Consider now the
discounted cost with an additional constraint of the form D3(β, u) ≤ V3.
Assuming that d3 has the same convexity and monotonicity properties as
assumed in Theorem 5.2 (ii), we may repeat the arguments based on the
Lagrangian, and show that here again, any optimal stationary policy has a
strongly monotone structure for each component. This implies, in the case
that ma 6= mb, that only two randomization are required. This is less than
three randomizations that might be needed in a general CMDP.

5.5 On coordination between controllers

The following example illustrates the need for coordination in order to
perform a joint randomization when there is more than one controller. We
consider a control of an i.i.d. process, i.e., a CMDP with a single state in
which the system always remains.

Example 5.1 (The need for coordination)
Consider X = {x} in which the system always remains (under any action).
Since X is a singleton, we shall omit it from the notations of the costs.
There are two controllers, whose actions are A = {a1, a2} and B = {b1, b2},
respectively. Consider the costs:

c(a1, b1) = 0 d(a1, b1) = 4
c(a1, b2) = N d(a1, b2) = N

c(a2, b1) = N d(a2, b1) = N

c(a2, b2) = 4 d(a2, b2) = 2.

N is some large number, say N ≥ 100.
For any stationary policy u, which chooses an action pair (ai, bj) with



OPEN QUESTIONS 55

probability u(ai, bj), the expected average cost as well as the discounted
cost for any discount factor α ∈ [0, 1) have the same value, given by

C(u) = Nu(a1, b2) + Nu(a2, b1) + 4u(a2, b2)
D(u) = 4u(a1, b1) + Nu(a1, b2) + Nu(a2, b1) + 2u(a2, b2).

With V := 3, COP is

minimize C(u) subject to D(u) ≤ V.

For all N large enough, there is a unique optimal stationary policy u∗ given
by: u∗(a1, b1) = u∗(a2, b2) = 1/2, u∗(a1, b2) = u∗(a2, b1) = 0, whose value
is C = C(u∗) = 2. It achieves D(u∗) = 3.

Consider now decentralized policies, i.e., policies in which randomizations
are performed independently between the players. Let u be such a policy,
and denote by p := ua(a1) and q := ub(b1) the probabilities that controller
1 chooses a1 and that controller 2 chooses b1. Then u(a1, b1) = pq, etc. The
constraint D(u) ≤ V becomes:

D(u) = 4pq + Np(1− q) + N(1− p)q + 2(1− p)(1− q) ≤ V.

We make the following observations:
• A necessary condition for this to hold is that p(1 − q) ≤ V/N , so that

either p is very small, or q is very close to 1 (for N large).
• A second necessary condition is that (1− p)q ≤ V/N , so that either p is

very close to 1, or q very close to 0.
In order for both conditions to hold simultaneously, which is necessary for
having D(u) ≤ V , we need either p and q to be both close to 1, or both
close to 0. The first possibility is however unfeasible, since it gives D(u) ∼ 4.
We thus conclude that any feasible stationary policy u has the property of
choosing p and q close to 0. It then follows that any feasible policy has a
value C(u) around 4. This is twice the value we obtained by coordinating
the randomization.

We conclude that stationary decentralized policies are not as good as
those stationary policies that allow coordination, and restricting ourselves
to them would result in non-optimal performance.

5.6 Open questions

The following questions are naturally posed for general CMDPs with a
finite number of controllers:

(i) Having seen that optimal stationary decentralized policies do not exist
in general, is there an optimal non-stationary decentralized policy, (in the
sense that randomizations are always performed independently)?
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(ii) If we restrict a priori COP to decentralized policies (in the sense
that randomizations are always performed independently), does there exist
an optimal policy?

(iii) If we restrict a priori COP to stationary decentralized policies, is
there an optimal stationary policy among these?

(iv) How do we compute optimal or ε-optimal policies in (i) and (iii)?
The answer to (i) is positive in some cases. For the case of expected

average cost with a unichain ergodic structure, randomization (in partic-
ular, one with coordination) can be replaced by deterministic decisions
under fairly general conditions. Example of such policies are the ATS
(Action Time Sharing) policies introduced in Section 3 in Altman and
Shwartz (1991), and the PTS (Policy Time Sharing) introduced in Altman
and Shwartz (1989, 1993). These are by definition decentralized, since they
do not randomize. In cases other than the expected average cost, the an-
swer to (i) can be negative. For example, if we consider the discounted costs
with a discount factor of 0, then only the decisions at time 1 count, so that
non-optimality among stationary policies means non-optimality among any
class of policies.

Whenever one can replace randomized policies by equivalent non-ran-
domized ones, then there exist optimal decentralized policies. Thus, if we
restrict a priori to decentralized policies, we can still find one that is not
only optimal for the decentralized problem but also for the original one.
This, together with the answers to the previous point, is a partial answer
to point (ii).

We now provide a partial answer to point (iii). Assume that we now
restrict ourselves to decentralized stationary policies. Consider a COP with
a finite set of actions and of states, two controllers (users), and either (i)
the discounted cost is considered, or (ii) the expected average cost is used
and the unichain assumption holds. Assume that for any stationary policy
u of user 1, there is a stationary policy v for user 2, and vice versa, such
that all the constraints are satisfied with strict inequalities:

Dk(β, (u, v)) < Vk, k = 1, . . . ,K.

Then if we restrict COP to stationary decentralized policies, there is an
optimal one within this class. This result follows from a more general one in
Altman and Shwartz (1995) on constrained games (these are CMDPs where
each user has a different objective to minimize, and different constraints).

As for question (iv), computing optimal decentralized ATS or PTS poli-
cies from the given corresponding stationary policies is described by Alt-
man and Shwartz (1993). The question of computing optimal policies when
restricting to the class of decentralized stationary policies remains open.
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CHAPTER 6

MDPs with infinite state and action
spaces

We now generalize the model of the first part of the book in the following
directions:

• We include more general spaces of states and of actions.

• We consider new classes of policies.

• We allow for initial distributions over the state rather than fixed states.

• We consider new cost criteria.

The fact that infinite state and action spaces are involved requires more
care on topological and measurability aspects, which makes this part more
technical than the first part of the book.

6.1 The model

In this part, we shall deal with MDPs {X, A,P, c, d} where

• X is a countable state space.

• A is a metric set of actions. A(x) ⊂ A is the compact set of actions
available at state x, equipped with its Borel sets A(x); set K = {(x, a) :
x ∈ X, a ∈ A(x)}, equipped with its Borel σ-algebra IK generated by the
rectangles (x,A), (A ⊂ A(x)).

• P are the transition probabilities; thus, Pxay is the probability of moving
from state x to y if action a is chosen.

• c : K → IR is an immediate cost. This cost will be related to a cost
function which we shall minimize.

• d : K → IRK is a K-dimensional vector of immediate costs, related
to K constraints. With some abuse of notation, we denote c(x, γ) =∫

c(x, a)γ(da) for any probability measure γ over A(x), with a similar
definition for d(x, γ).

We make throughout the second part of the book the assumption that, for
every state x,

c(x, ·) and dk(x, ·), k = 1, . . . , K, are continuous on A(x). (6.1)
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The transition probabilities are continuous on A(x), i.e., if
a(n) → a,where a, a(n) ∈ A(x), then

limn→∞ Pxa(n)y = Pxay, ∀y ∈ X.
(6.2)

Assumption (6.1) can also be rephrased as: c and d are continuous over K.
Define a history at time t to be a sequence of previous states and actions,

as well as the current state: ht = (x1, a1, . . . , xt−1, at−1, xt). Let Ht be the
set of all possible histories of length t equipped with its Borel σ-algebra.
A policy u is a sequence u = (u1, u2, . . .) (containing n elements) where
ut : Ht → M1(A) is a measurable function that assigns to any history of
length t ≤ n, a probability measure over the set of actions, where M1(G)
stands for the set of probability measures over a set G endowed with the
topology of weak convergence of measures. If the history ht is observed
at time t, then the controller chooses an action within A with probability
ut(A | ht), where A is any Borel subset of A(xt). The class of all policies
defined as above is denoted by U , and is called the behavioral policies.

We shall again use the policies UM , US and UD defined in Chapter 2.
It will often be useful to extend the definition of a policy u = (u1, u2, . . .)

so as to allow ut to depend not only on ht, but also on some initial random-
izing mechanism. More precisely, for any class of policies G ⊂ U , we define
M(G) to be the class of mixed policies generated by G, and we call these
mixed-G policies. A mixed-G policy is identified with a distribution q over
G; the controller first uses q to choose some policy u ∈ G, and then pro-
ceeds with that policy from time 1 onwards. A policy as above that uses a
distribution q is denoted by q̂. Define U := M(UD). In the above definition
we implicitly assume some measurable structure, i.e., that together with G
there is given some σ-algebra G of sets in G, that include singletons (sets
that contain a single policy), so that a probability on G is well defined.
We shall sometimes include G in the notation, i.e., denote by M(G,G),
the class of mixed-G strategies with respect to G, and identify them by all
probability measures on (G,G). We delay the discussion on constructing
such σ-algebras to Section 6.3.

Any given distribution β for the initial state (at time 1) and a policy u
define a unique probability measure, Pu

β , over the space of trajectories of
the states and actions. This defines the stochastic processes Xt and At of
the states and actions. The construction of the probability space for u ∈ U
is standard, see e.g., Hinderer (1970). We denote by Eu

β the corresponding
expectation operator. Pu

β is then a measurable function on the space of
policies, see Feinberg (1986).

For mixed policies, the construction is done similarly. Moreover, for any
mixed policy, the probability distribution for the state and action processes
is the same as the one obtained by some equivalent policy in U . This was
established for the more general setting of MDPs with several controllers
(stochastic games) by Kuhn (1953), Aumann (1964) and Bernhard (1992).
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When β is concentrated on some state x, we shall use the notation Pu
x

(and Eu
x ) instead of Pu

β (and Eu
β , respectively), which we had used in the

first part of the book. β is then the Dirac measure β(X ) = δx(X ) := 1{x ∈
X}, for any X ⊂ X.

6.2 Cost criteria

In addition to the finite horizon, the discounted and the average costs
defined in Chapter 2, we shall consider in this part the total cost criterion.

For a given set M⊂ X, define the hitting time of the set M as

TM
def= min{n > 1 : Xn ∈M}. (6.3)

We shall often omit M from the notation. We shall understand TM = ∞
for M = ∅. Define Mu(β) def= Eu

βTM.
Define pu

β(t;X ) := Pu
β (Xt ∈ X , T > t) and, with some abuse of notation,

pu
β(t;K) := Pu

β ((Xt, At) ∈ K, T > t), for X ⊂ X,K ⊂ K. We have for all
β ∈ M1(X) and policies u,

pu
β(t; x) = pu

β(t; x, A(x)),

and for t > 1,

pu
β(t; x) =

∑

y∈X

∫

A(y)

pu
β(t− 1; y, da)Pyax1{x /∈M}. (6.4)

The total expected cost until set M is reached, is defined as

Cn
tc(β, u) =

n∑
t=1

Eu
βc(Xt, At)1{T > t}, Ctc(β, u) = lim

n→∞
Cn

tc(β, u).

(6.5)
(The finite horizon cost (2.1) is obtained as a special case of (6.5) by setting
M = ∅.)

We use the other costs defined in Chapter 2 but with a general initial
distribution β. We thus denote by Cα(β, u), the total discounted cost, etc.
We define similarly the costs related to the constraints.

Let C(β, u) stand for any of the costs previously defined. For a fixed
vector V = (V1, . . . , VK) of real numbers, we define the constrained control
problem COP as:

Find a policy that minimizes C(β, u) subject to D(β, u) ≤ V.

We shall often use below the following notation. For a given set M⊂ X
and a matrix P : X ×X → IR, we define the Taboo matrix MP obtained
by replacing columns j ∈M by columns with zero entries.
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6.3 Mixed policies and topologic structure∗

We would like to have some framework in which one can make precise ob-
jects such as ‘mixed strategies’ (as defined in Section 6.1) and ‘convergence
of policies’, as will be discussed in Chapter 13.

In order to well define mixed strategies, i.e., strategies of the form M(U)
for some U ⊂ U , we need to construct some σ-algebra of subsets of U ,
that includes in particular all singletons (i.e., sets that contain a single
policy). In order to define convergence of policies within some class U , we
need to define some topology on U . In the sequel, we introduce a metric
on some sets of policies, and then define a topology and a σ-algebra which
are generated by the Borel sets.

For each x, let B(A(x)) denote the set of Borel subsets of A(x). M1(A(x))
is the space of probability measures over B(A(x)) endowed with the topol-
ogy of weak convergence, and it is a linear Hausdorff compact metric space.
(Since A(x) is compact metric, it is also separable, and hence the set of
probability measures over B(A(x)) is tight. By Prohorov’s Theorem, this
implies the compactness of M1(A(x)).)

Assume first that the sets A(x) are finite for all x. Then, for any time
t, the set of histories Ht is countable, so that the set H = ∪tHt is count-
able. Let x : H → X be the projection that assigns x(ht) = y if ht =
(x1, a1, . . . , xt−1, at−1, xt), and xt = y. U can be identified with all func-
tions which have the countable set H as range, and a countable product
of compact sets

∏
h∈H M1(A(x(h))) as image. Tychonov’s Theorem there-

fore implies that
∏

h∈H M1(A(x(h))) is also a convex, compact set in the
topology of weak convergence and it is metrizable by virtue of Theorem
4.14 in Royden (1988). Moreover, it is easily seen that the extreme points
of U are the pure policies, i.e., those which do not use any randomization
at any time (in response to any history).

We thus obtained a metric topology for U . Moreover, we can now define
the Borel sets BU of U , and the σ-algebra GU generated by them. They
include in particular all singletons. The set of mixed strategies M(U,GU )
is now identified with the set of probability measures on the space (U,GU ).
This class of policies is non-behavioral and is called the class of mixed
policies.

The above topology and σ-field GU do not extend to the case when A(x)
are not finite, since the sets Ht are then not countable. However, we may
still obtain similar results for UM , US and UD.

Both US and UM can be represented as the set of functions that have
some countable set I as range, and a countable product of compact sets
(of measures)

∏
i∈I M1(Ai) as image. The same considerations as above

show that US and UM are also convex, compact in the topology of weak
convergence, are metrizable, and they have as extreme points the sets UD,
and the set of pure Markov policies, respectively. We thus have a metric
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topology for UD, US and UM . We now define the Borel sets BM of UM ,
and the σ-algebra GM generated by them. The set of mixed Markov strate-
gies M(UM ,GM ) is identified with the compact set of probability measures
(compact in the topology of weak convergence) on the space (UM ,GM ).
We define similarly M(US) and M(UD) = U . (It follows that UD is in-
deed a measurable set, so that U is well defined. The measurability can be
established using the argument in Borkar, 1994, p. 178.)

Finally, for the class of policies U , one can consider the discrete σ-algebra
GD

U (which is generated by singletons), and define M(U,GD
U ) with respect

to that σ-algebra.

6.4 The dominance of Markov policies

The class of Markov policies turns out to be rich, in the following sense. For
any policy in U , or in M(UM ), there exists an equivalent policy in UM that
induces the same marginal probability measure. This result was obtained
by Derman and Strauch (1966) and extended by Hordijk (1977) (see also
Derman, 1970, p. 21, Dynkin and Yushkevich, 1979, p. 17). We prove below
a related result for the measures pu

β(t).
If u ∈ UM , then pu

β(t; ·) can be written in the following vector notation:

pu
β(t) = βMP (u1)MP (u2) · · ·MP (ut−1), (6.6)

where pu
β(t) and β are considered to be row vectors, and MP (ui) are matri-

ces whose (x, y) entry is given by MPxy(ui) =
∫ Pxay1{y /∈M}ut(da | x).

Theorem 6.1 (Sufficiency of Markov policies)
(i) Choose any initial distribution β, and any γ ∈ M1(UM ). Let γ̂ be the
corresponding policy in M(UM ). Then there exists some v ∈ UM such that
for all t,

pγ̂
β(t; ·, ·) = pv

β(t; ·, ·) (6.7)

(ii) Choose any initial distribution β, and a distribution γ over U with a
discrete support, i.e., γ ∈ M1(U,GD

U ). Let γ̂ be the corresponding policy in
M(U,GD

U ). Then there exists some v ∈ UM such that for all t, (6.7) holds.

Proof. The proof of (i) is based on Dynkin and Yushkevich (1979), Section
3.5. We write pγ̂

β in an integral form:

pγ̂
β(t; ·, ·) =

∫

UM

γ(du)Pu
β (Xt = ·, At ∈ ·, T > t).

Define v to be the Markov policy given by

vt(A | x) :=

∫
γ(du)Pu

β (Xt = x,At ∈ A, T > t)∫
γ(du)Pu

β (Xt = x, T > t)
(6.8)

for all integers t, states x and A ⊂ A(x), for which the denominator is
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non-zero. When it is zero, define vt(· | x) to be an arbitrary probability
measure over A(x). The proof follows by induction. (6.7) clearly holds for
t = 1, since for any policy u ∈ UM ,

Pu
β (X1 = x,A1 ∈ A, T > 1) = β(x)u1(A | x),

and
∫

γ(du)Pu
β (X1 = x, T > 1) = β(x); this implies

P v
β (X1 = x,A1 ∈ A, T > t) = β(x)v1(A | x)

=
∫

γ(du)Pu
β (X1 = x,A1 ∈ A, T > 1).

Assume that (6.7) holds for some t, i.e.,
∫

γ(du)Pu
β (Xt = x,At ∈ A, T > t) = P v

β (Xt = x,At ∈ A, T > t)

= [βMP (v1)MP (v2) · · ·MP (vt−1)]xvt(A | x). (6.9)

We show first that∫
γ(du)Pu

β (Xt+1 = x, T > t+1) = [βMP (v1)MP (v2) · · ·MP (vt)]x. (6.10)

Since

Pu
β (Xt+1 = x, T > t + 1 | Xt = y, At = a, T > t) = Pyax1{x /∈M},

Pu
β almost sure (a.s.) for all u ∈ UM , we obtain by conditioning on Xt, At

and by (6.9), that the left-hand side of (6.10) equals
∑

y∈X

[βMP (v1)MP (v2) · · ·MP (vt−1)]y
∫

A(y)

Pyax1{x /∈M}vt(da | x).

This implies (6.10). Combining now (6.10) with (6.8), we get
∫

γ(du)Pu
β (Xt+1 = x,At+1 ∈ A, T > t + 1)

= vt(A | x)
∫

γ(du)Pu
β (Xt+1 = x, T > t + 1)

= [βMP (v1)MP (v2) · · ·MP (vt)]xvt(A | x)
= P v

β (Xt+1 = x,At+1 ∈ A, T > t + 1).

This concludes the proof of (i). (ii) is obtained by the same arguments (see
also Derman and Strauch, 1966, and Hordijk, 1977).

Remark 6.1 (The converse)
An interesting question is whether some converse exists, i.e., whether we
can describe any Markov policy (which uses randomizations) as a mixture
of policies within some class of simpler policies. The answer is positive,
and that class can be taken as the class of pure Markov policies (which
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do not use randomizations). This was established (for M = ∅) by Fein-
berg (1982, Theorem 1) and Kadelka (1983). The same question can be
posed for an arbitrary class of policies (not necessarily Markov); this more
general problem has been studied by Feinberg (1986, 1991).

We saw that for any policy u ∈ U or u ∈ M(UM ), there exists some
v(u) ∈ UM such that for all t,

p
v(u)
β (t; ·, ·) = pu

β(t; ·, ·). (6.11)

We call v(u) the Markov policy corresponding to u.
Extending the definition of the first part of the book, we have the fol-

lowing for an arbitrary initial distribution β.
Definition 6.1 (Dominating policies)
A class of policies U is said to be a dominating class of policies for COP
for one of the cost criteria introduced in Section 2.1 or 6.1, and for a given
initial distribution β, if for any policy u ∈ U there exists a policy u ∈ U
such that

C(β, u) ≤ C(β, u), and D(β, u) ≤ D(β, u). (6.12)

In the above definition, C, D, and COP stand for any one of the cost
criteria previously defined.

We conclude the following:
Theorem 6.2 (Dominance of Markov policies)
The Markov policies are dominating for any cost criterion which is a func-
tion of the marginal distribution of states and actions or of the measures
pu

β(t; ·, ·).

6.5 Aggregation of states∗

We consider in this section MDPs that can be decomposed into classes
of states, such that the transition probabilities between classes, as well as
the immediate costs depend on the states only through the class to which
the states belong (this will be made precise below). We show that Markov
policies that depend only on the current class (rather than on the current
state) are dominant.

This property will have several applications. In Section 6.6, we show that
it implies that adding a further independent randomization mechanism at
each time slot, in the definition of policies, does not allow us to obtain
better performances. Another application of the results here will be given
in Section 7.3 where an MDP with unbounded cost is shown to be equivalent
to one with bounded cost (and in some cases, to a problem of minimizing
the total expected time to reach some set, rather than the total expected
cost).
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The model
Consider a countable state space X and assume that each state x ∈ X
has two components: x = (x, i), where x belongs to a countable set X,
and each i belongs to a countable set I(x) (that may depend on x). We
say that state x belongs to an equivalence class g(x) = x. We shall denote
by (Xt, It) the stochastic process describing the state. The partition into
equivalent classes is of interest when the MDP is decomposable, as defined
in the following.

Definition 6.2 (Decomposable MDPs)
The MDP (X, A,P, c, d) is said to be decomposable if the following holds.
For any two states in the same class, i.e., for any x1, x2 that satisfy g(x1) =
g(x2), we have
• A(x1) = A(x2) =: A(g(x1),
• Px1,a,(y,I(y)) = Px2,a,(y,I(y)), ∀y ∈ X, a ∈ A(x1),

• c(x1, a) = c(x2, a), d(x1, a) = d(x2, a), ∀a ∈ A(x1).
• If the total cost is used, then the set M is of the form: M = {x =

(x, i), x ∈M, i ∈ I(x)}.
We then say that the MDP can be aggregated to the MDP (X,A,P, c, d)
where

A(x) = A(x), Pxay = Px,a,(y,I(y)), c(x, a) = c(x, a), d(x, a) = d(x, a);

note that all these quantities depend on x only through g(x).

Definition 6.3 (Simple policies)
Consider the decomposable MDP (X, A,P, c, d). A policy u is said to be
simple if for all t ∈ IN, ut(· | (x1, i1), a1, . . . , xt, it)) do not depend on
i1, . . . , it.

The dominance of simple Markov policies

Theorem 6.3 (Sufficiency of simple Markov policies)
Consider the decomposable MDP (X, A,P, c, d). Choose any initial distri-
bution β, and any u ∈ UM . Then there exists some simple Markov policy
v such that for all t,
(i) the following holds:

P v
β (Xt = x,At ∈ A) = Pu

β (Xt = x,At ∈ A), (6.13)

∀x = (x, i) ∈ X,A ⊂ A(x), where Xt = g(Xt) is the first component of the
state Xt at time t;
(ii) For any set M⊂ X and for T = min{t : g(Xt) ∈M},

P v
β (Xt = x,At ∈ A, T > t) = Pu

β (Xt = x,At ∈ A, T > t), (6.14)

∀x = (x, i) ∈ X,A ⊂ A(x).
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Proof. (i) Choose an arbitrary Markov policy u and define v as follows. For
any x = (x, i) ∈ X and any A ⊂ A(x), we set

vt(A | x) def= Pu
β (Xt = x,At ∈ A | Xt = x)

i.e.,

vt(A | x) =
Pu

β (Xt = x,At ∈ A)
Pu

β (Xt = x)

for x for which Pu
β (Xt = x) > 0, and otherwise vt is an arbitrary probability

distribution over A(x). The proof is similar to the proof of Theorem 6.1,
and proceeds by induction on t. For t = 1 we have for any x ∈ X and any
Borel set A ⊂ A(x),

Pu
β (Xt = x,At ∈ A) =

∑

i∈I(x)

β(x, i)
Pu

β (X1 = x,A1 ∈ A)∑
i∈I(x) β(x, i)

=
∑

i∈I(x)

β(x, i)v1(A | (x, i))

= P v
β (Xt = x,At ∈ A).

Next, we assume that (6.13) holds for some t, and show that it holds for
t + 1. We first show that

P v
β (Xt+1 = x) = Pu

β (Xt+1 = x), ∀x ∈ X. (6.15)

Indeed,

P v
β (Xt+1 = x) =

∑

y∈X

∫

A(y)

P v
β (Xt = y, At = a)Py,da,(x,I(x))

=
∑

y∈X

∫

A(y)

P v
β (Xt = y,At = a)Py,da,x

=
∑

y∈X

∫

A(y)

Pu
β (Xt = y, At = a)Py,da,x

=
∑

y∈X

∫

A(y)

Pu
β (Xt = y, At = a)Py,da,(x,I(x))

= Pu
β (Xt+1 = x).

Finally,

P v
β (Xt+1 = x,At+1 ∈ A)
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=
∑

x∈I(x)

P v
β (At+1 ∈ A | Xt+1 = x)P v

β (Xt+1 = x)

=
∑

x∈I(x)

vt+1(A | x)P v
β (Xt+1 = x)

=
∑

x∈I(x)

Pu
β (At+1 ∈ A | Xt+1 = x)P v

β (Xt+1 = x)

= Pu
β (At+1 ∈ A | Xt+1 = x)

∑

x∈I(x)

P v
β (Xt+1 = x)

= Pu
β (Xt+1 = x, At+1 ∈ A)

This establishes (i). (ii) is obtained similarly.

From Theorem 6.3 we conclude that:

Corollary 6.1 (Dominance of simple policies)
When an MDP is decomposable, then simple Markov policies are dominant
for any one of the cost criterion introduced in Sections 2.1 and 6.1.

Remark 6.2 (Equivalence between the MDPs)
The decomposable MDP (X, A,P, c, d) is equivalent to the aggregated
one (X, A,P, c, d). Indeed, there is an obvious one to one correspondence
between simple Markov policies in the decomposable MDP, and general
Markov policies in the aggregated MDP. It follows from Theorem 6.3 that
they both generate the same distribution of (Xt, At) for each t for the two
MDPs, and hence, the same distribution over the costs. In fact, the natural
correspondence exists between arbitrary simple policies in the decompos-
able MDP, and arbitrary policies in the aggregated MDP. They generate
the same distributions of the whole stochastic processes {Xt, At}t.

6.6 Extra randomization in the policies∗

As an application of the aggregation of MDPs, we analyze a new class
of policies which we denote by UR, that extend the behavioral ones (in
Section 6.1) for the (original) MDP {X, A,P, c, d} defined in Section 6.1.

We consider policies u = (u1, u2, . . .), where at each time unit t we allow
the use of an extra randomization mechanism: we enhance the history ht

to include for each t not only all the past states and actions as well as
the present state and action, but also the outcome of some independent
random trials {It} taking values in a countable space I. The distribution
of It may depend on the current state Xt as well as the current action At;
we denote the distribution of It at state x under action a by qxa(·).

When using policies within UR in the original MDP, this will be shown
to be equivalent to an alternative MDP {X, A,P, c, d} with a larger state
space, but with policies restricted to the behavioral ones (as defined in
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Section 6.1), i.e., to ones that depend only on the past state and action
trajectories as well as the current state. In the new mechanism, the extra
randomization mechanism will appear in the states, instead of appearing
in the policies.

We now introduce the new MDP with extra randomization appearing in
the state:
• The state space: X = X× I;
• The action space: A(x, i) = A(x);
• The transition probabilities:

P(x,i),a,(y,J) = Pxayqxa(J), x, j ∈ X, i ∈ I, J ⊂ I;

• The costs:

c((x, i), a) = c(x, a), d((x, i), a) = d(x, a).

• The policies for the new model are defined as in Section 6.1.
A one to one correspondence between policies in the two MDPs would

be:

u = r(u), ∀ behavioral policies u in the new MDP (6.16)

where r is given by:

ut(A | x1, i1, a1, . . . , xt, it) = [r(u)]t(A | x1, i1, a1, . . . , xt, it)
= ut(A | (x1, i1), a1, . . . , (xt, it)).

u, defined for the original MDP satisfies u ∈ UR. It is easy to check that the
two MDPs induce the same probability distribution over the trajectories
ht = (x1, i1, a1, . . . , xt, it) when the corresponding policies are used.

The new MDP is decomposable and the equivalent aggregated MDP is
simply the original MDP. Simple policies (as defined in Definition 6.3) in
the new MDP correspond to behavioral policies in the original MDP.

Since Corollary 6.1 and Remark 6.2 clearly apply to the new decompos-
able MDP, we may conclude by applying the correspondence with policies
in the original MDP that the behavioral policies (and thus, in particular,
the Markov policies) are dominating in the original MDP. Thus, adding
extra randomization does not improve the performance.
Remark 6.3 (Related results)
A related model has been analyzed in Chapter 7 of Krass (1989). One can
show that the behavioral policies are equivalent to non-behavioral ones
(including mixed policies, and the policies with extra randomization) not
only through the marginal probabilities of the state and actions, but in the
actual probability distribution over the whole random processes of states
and actions. The proof for the case of mixed policies can be found in Dynkin
and Yushkevich (1979). (Similar results in the case of several controllers can
be found in Kuhn, 1953, Aumann, 1964, and Bernhard, 1992.)
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6.7 Equivalent quasi-Markov model and quasi-Markov policies∗

The way we viewed our MDP {X,A,P, c, d} until now was as a discrete
time model: transitions occur at every integer point. We note, however,
that if Pxax > 0 for some x and a, then when the state x is reached, it
may remain at x for some random time greater than 1, if action a is used.
It is therefore natural to investigate the state trajectories not only in the
original discrete setting, but also at some embedded times.

One possible choice of these embedded times is simply the time instants
at which state transition occur, i.e., time t at which Xt 6= Xt−1.

In cases where we use policies within UR (defined in Section 6.6), we may
consider, in addition, other embedded times that we now describe. Assume
that at each time instant, the policies in UR use a coin with two values:
I = {0, 1}. If the state at time t is x and the action used is a, then the
outcome It equals 1 with probability

q(x, a) def= qxa(1),

and it equals 0 w.p. 1−q(x, a). q(x, a) will be some arbitrary fixed parame-
ters that define UR. We shall say that a virtual transition occurs whenever
It = 1.

Define τ(0) = 0, and

τ(n + 1) := inf{n > τ(n) : In = 1 or Xn 6= Xn−1}, n ∈ IN (6.17)

(with the convention that inf{∅} = ∞). τ(n) denotes the instant at which
the nth transition (real or virtual) occurs.

Define also for n ∈ IN

η(n) := max{m ≥ 0 : n ≥ τ(m)}. (6.18)

η(n) denotes the number of transitions that occurred by time n.

Definition 6.4 (Quasi-Markov policies)
A policy u ∈ UR is said to be quasi-Markov if ut(ht) is only a function of
the state at time t and of η(t):

ut(ht) = ûη(t)(xt)

for all t ∈ IN and all histories ht = (x1, i1, a1, . . . , xt). û = {ûn(·)}n∈IN is
said to be a corresponding Markov policy.

Note that Xt = Xτn for all t ∈ [τn, τn+1). Thus the quasi-Markov policy
uses at time t the state at the last time that a transition occurred (not later
than t), as well as the number of transitions that have occurred. Under a
quasi-Markov policy, our MDP can be viewed as sampled at transition times
τ(n), and in between transitions the states and the probabilities used for
selecting actions are unchanged.
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Definition 6.5 (Quasi-Markov cost)
We say that a cost criterion C(β, ·) has a quasi-Markov structure if for all
u ∈ UR it depends on the distribution of the state and action trajectories
only through the following quantities:

pu
β(n; x,A) def= Eu

β

τ(n+1)−1∑

t=τ(n)

1{Xt = x,At ⊂ A, t > T}

(where T is the time that the process Xt hits some given set of states M⊂
X).

Note that pu
β(n;K) is simply the expected duration of the nth transition

that occurs before hitting M.
The total cost criterion is quasi-Markov whenever it can be expressed as

Ctc(β, u) = lim
m→∞

m∑
n=1

〈pu
β(n), c〉. (6.19)

In particular, (6.19) holds for the case of non-negative immediate costs, as
will be shown later.

Theorem 6.4 (Sufficiency of quasi-Markov policies)
Fix an arbitrary policy u ∈ UR. Then there exists a quasi-Markov policy v
achieving the same values of {pu

β(n)}n.

Proof. Choose an arbitrary u ∈ UR. Define

v̂n(A | x) def=
pu

β(n;x,A)
pu

β(n; x)
, x ∈ X,A ∈ A(x)

and the quasi-Markov policy v by

vt(A | ht)
def= v̂η(t)(A | xη(t)).

Step i:
Assume that the state distribution at time τ(n) is the same under u and v:

Pu(Xτ(n) ∈ X , T > τ(n)) = P v(Xτ(n) ∈ X , T > τ(n)), ∀X ∈ X.

We show that this implies that

pu
β(n; x,A) = pv

β(n; x,A), ∀x ∈ X,A ⊂ A(x).

For every integer m ≥ 1 and every x ∈ X,

Pu
β

(
Xτ(n)+m = x, τ(n + 1) > τ(n) + m,T > τ(n)

)

=
∫

A(x)

Pu
β

(
Xτ(n)+m−1 = x,Aτ(n)+m−1 ∈ da,

τ(n + 1) > τ(n) + m− 1, T > τ(n)
)Pxax(1− q(x, a)).
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Hence

pu
β(n;x) =

∞∑
m=0

Pu
β

(
Xτ(n)+m = x, τ(n + 1) > τ(n) + m,T > τ(n)

)

= Pu
β (Xτ(n) = x, T > τ(n))

+
∞∑

m=1

Pu
β

(
Xτ(n)+m = x, τ(n + 1) > τ(n) + m,T > τ(n)

)

= Pu
β (Xτ(n) = x, T > τ(n)) +
∞∑

m=0

∫

A(x)

Pu
β

(
Xτ(n)+m−1 = x,Aτ(n)+m−1 ∈ da,

τ(n + 1) > τ(n) + m− 1, T > τ(n)
)Pxax(1− q(x, a))

= Pu
β (Xτ(n) = x, T > τ(n)) +

∫

A(x)

pu
β(n; x, da)Pxax(1− q(x, a))

= Pu
β (Xτ(n) = x, T > τ(n)) + pu

β(n; x)
∫

A(x)

Pxax(1− q(x, a))
pu

β(n; x, da)
pu

β(n; x)

= Pu
β (Xτ(n) = x, T > τ(n)) + pu

β(n; x)
∫

A(x)

Pxax(1− q(x, a))v̂n(da | x).

Thus,

pu
β(n;x) =

Pu
β

(
Xτ(n) = x, T > τ(n)

)

1− ∫
A(x)

Pxax(1− q(x, a))v̂n(da | x)
.

Repeating the above for v, and recalling the assumption that Pu
β (Xτ(n) =

x, T > τ(n)) = P v
β (Xτ(n) = x, T > τ(n)), we conclude that indeed pu

β(n; x) =
pv

β(n;x). Hence

pu
β(n; x,A) = pu

β(n; x)v̂n(A | x) = pv
β(n; x)v̂n(A | x) = pv

β(n;x,A).

Step ii:
We show that Pu

β (Xτ(n) = x, T > τ(n)) = P v
β (Xτ(n) = x, T > τ(n)).

Denote

P̂yax =




Pyax1{x /∈M} if y 6= x,

Pxaxq(x, a)1{x /∈M} otherwise .

Then

Pu
β (Xτ(n) = x, T > τ(n− 1))

=
∑

y∈X

∫

A(y)

∞∑
m=0

Pu
β

(
Xτ(n−1)+m = y, Aτ(n−1)+m ∈ da,

τ(n) > τ(n− 1) + m, T > τ(n− 1)
)P̂yax
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=
∑

y∈X

∫

A(y)

pu
β(n− 1; y, da)P̂yax

=
∑

y∈X

∫

A(y)

pv
β(n− 1; y, da)P̂yax

= P v
β (Xτ(n) = x, T > τ(n− 1)).

The proof of the theorem now follows by an inductive argument.

We have thus shown that policy u ∈ UR can be replaced by a quasi-
Markov policy v having the same pβ . This is also true if u ∈ U , since U
can be identified with a subset of UR, where policies do not make use of
the extra randomization. We thus conclude:

Theorem 6.5 (Dominance of quasi-Markov policies)
Quasi-Markov policies are dominant for MDPs with quasi-Markov cost.

The following property of quasi-Markov policies is easily checked. Given
the state at the nth transition epoch, the duration of the next transition
and the state at the beginning of the next transition are independent. More
precisely, let u be a quasi-Markov policy that uses a conditional measure
ûn(· | x) during the random interval [τ(n), τ(n + 1)), if the state at time
τ(n) is x. Then for any integer t > 0,

Pu
β (Xτ(n+1) = y, τ(n + 1)− τ(n) = t | Xτ(n) = x) = Px,yR(x, t)

Pu
β − a.s., where

R(x, t) def= q(x)(1− q(x))t−1,

where q(x) =
∫
A(x)

q(x, a)ûn(da | x) and where n = η(t). This property
follows from the fact that

Pu(Xτ(n)+t = y, Xτ(n) = x, τ(n + 1)− τ(n) = t)
= Pu(Xτ(n) = x, Iτ(n)+1 = . . . = Iτ(n)+t−1 = 0, Iτ(n+1) = 1),

Xτ(n+1) = y
)
,

and the fact that It has a Bernoulli distribution with parameter q(x) at
t ∈ [τ(n), τ(n + 1)), if Xτ(n) = x.

Remark 6.4 (Y-embedded policies)
The idea of introducing policies that depend on the number of visits in some
states goes back to Feinberg (1986), who defined Y-embedded policies. For
a fixed subset Y of the state space, we call a policy Y-embedded if all
decisions are functions of the following three factors: (a) the current state
x, (b) the number m of visits to Y (which is the total time spent in Y up to
the current epoch), and (c) the time k passed after the last visit to Y . Given
any subset Y ⊂ X and initial distribution, it is possible to construct for
any policy u a corresponding randomized Y-embedded policy which selects
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actions for any x, m and k with the same conditional probabilities as the
ones that the original policy would choose. Feinberg (1968, Theorem 4.1)
showed that for each m, k = 0, 1, . . ., the distributions of state-actions are
the same at each epoch: k units of time after the mth visit to Y , we have
the same distribution under both policies. Note that for Y = X, the set of
Y-embedded policies is exactly the set of Markov policies. Feinberg’s results
imply that Y-embedded policies are dominant for the total cost criterion.



CHAPTER 7

The total cost: classification of MDPs

7.1 Transient and Absorbing MDPs

We begin by introducing transient and absorbing policies, and transient
and absorbing MDPs. These definitions are due to Hordijk (1977, p. 60).
Definition 7.1 (Transient and absorbing policies)
Fix an initial distribution β. Consider a partition of X into two disjoint
sets X′ and M. A policy u is said to be X′-transient if

∞∑
t=1

Pu
β (Xt = x, T > t) < ∞ for any x ∈ X. (7.1)

It is called X′-absorbing, or absorbing to M, if

Eu
βT < ∞. (7.2)

Condition (7.1) means that the expected time we spend (under policy
u) in any state x ∈ X′ is finite; condition (7.2) means that the expected
life-time of the whole set X′ is finite.
Definition 7.2 (Transient and absorbing MDPs)
Fix an initial distribution β. Consider a partition of X into two disjoint
sets X′ and M. The MDP is called an X′-transient MDP (absorbing to M,
respectively) if all policies are X′-transient (absorbing to M, respectively).
An X-transient MDP is called a transient MDP.

When using X′-transient MDPs with the total cost criterion, we shall
assume that the immediate costs are non-negative. We shall relax this con-
dition for MDPs with uniform Lyapunov functions and contracting MDPs,
defined in the following sections.

Sufficient conditions for determining that an MDP is X′-transient or
absorbing to M will be presented in Lemma 7.2, Remark 7.4, Remark 7.6
and Corollary 8.1.

Here are some properties of transient stationary policies.
Lemma 7.1 (Stationary policies in transient and absorbing MDPs)
Fix some initial distribution β on X and a stationary X′-transient policy
w. Then
(i)

f∗(x) :=
∞∑

t=1

pw
β (t; x)
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is the minimal solution to

f = β + fMP (w), f ≥ 0 (7.3)

(where f and β are row vectors on X, and MP (w) is the transition proba-
bility matrix of the Markov chain corresponding to the stationary policy w,
in which we replace columns corresponding to states in M by zeros). It is
the unique solution to (7.3) among those solutions f that satisfy
limn→∞ f [MP ]n(w) = 0.
(ii) Assume that the MDP is absorbing to M. Fix some policy u and de-
fine g∗(x) :=

∑∞
t=1 pu

β(t;x). If g∗ satisfies (7.3), then g∗(x) = f∗(x) for all
x ∈ X.

Proof. (i) It follows easily that f∗ is indeed a solution of (7.3). Iterating
(7.3), we get for all integers n:

f = β + (β + fMP (w))MP (w) = β + βMP (w) + fMP 2(w)

=
n−1∑

i=1

βMP i(w) + fMPn(w) =
n−1∑
t=1

pw
β (t) + fMPn(w). (7.4)

(i) follows since the above holds for all n and since f ≥ 0.
(ii) follows from (i) since g∗Pn(w) converges to zero. Indeed, define 1 :
X → IR to be the function whose entries are all 1. Since w is absorbing to
M, 〈g∗,1〉 < ∞. For any integer n and y ∈ X, the yth column of MPn(w)
is bounded by 1, so by the the generalized dominance convergence theorem
(Royden, 1988, Proposition 11.18),

lim
n→∞

g∗Pn(w) = g∗
(

lim
n→∞

Pn(w)
)

= 0. (7.5)

To get the last equality, it suffices to show the following: let y be some
state for which g∗(y) > 0. Then the yth row of the matrix MP∞ def=
limn→∞[MP ]n(w) is zero. Assume that for some z, MP∞yz 6= 0. There exists
some time t for which pu

β(t; y) > 0. Consider a policy v that behaves like
policy u until time t and then behaves like the stationary policy w. Then,

∞∑
s=1

pv
β(s; z) ≥ pu

β(t, y)
∞∑

n=0

[(MP )n(w)]yz = ∞.

This contradicts the fact that the MDP is absorbing. This shows that
MP∞yz = 0 for all z, from which (7.5) follows.

Definition 7.3 (Unichain and communicating MDPs)
An MDP is said to be unichain if under every u ∈ UD, the state process is
an ergodic Markov chain, i.e., all states communicate.
An MDP is said to be communicating (see Bather, 1973) if for any two
states x, y ∈ X, there exists a policy u ∈ UD (that may depend on x and
y) such that y is reached from x with positive probability.
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7.2 MDPs with uniform Lyapunov functions

We define in this section the framework of uniform Lyapunov functions
for MDPs, due originally to Hordijk (1977) and further investigated and
used by many authors (see Van Der Wal, 1981a, Cavazos-Cadena and
Hernández-Lerma, 1992, Arapostathis et al., 1993, and references therein).

We first present the definition of Cavazos-Cadena and Hernández-Lerma
(1992) related to the total expected life-time. The results in that reference
are useful for the total cost problem, provided that the costs are bounded.

Definition 7.4 (Uniform Lyapunov function for total expected life-time)
Consider a partition of X to the disjoint sets X′ and M. A function µ :
X → [1,∞) is said to be a uniform Lyapunov function for the total expected
life-time if (i)-(iii) below hold:
(i) For all (x, a) ∈ K,

1 +
∑

y∈X′
Pxayµ(y) ≤ µ(x).

(ii) For each x ∈ X, the mapping a → ∑
y∈X′ Pxayµ(y) is continuous in

A(x) (i.e., if an → a, then
∑

y∈X′ Px,an,yµ(y) converges to
∑

y∈X′ Pxayµ(y)).
(iii) For each x ∈ X and u ∈ UD,

lim
t→∞

Eu
x [µ(Xt)1{TM > t}] = 0.

Lemma 7.2 (Sufficient conditions for absorbing MDPs)
Consider a partition of X to the disjoint sets X′ and M.
The following statements are equivalent:
(i) There exists a uniform Lyapunov function for the total expected life-
time.
(ii) x → supu∈U Eu

x [TM] is a Lyapunov function for the total expected life-
time.
(iii) For all x, the MDP is absorbing to M and Eu

x [TM] is continuous over
UM .

The proof of the Lemma can be found in Cavazos-Cadena and Hernández-
Lerma (1992). We shall present and prove a more general equivalence result
in Theorem 7.3.

Consider a non-negative function ν : K → IR. We make throughout the
assumption that for every state x, ν(x, ·) are continuous on A(x). They will
serve as some bounds on the immediate costs.

Definition 7.5 (General Uniform Lyapunov function for the total cost)
Consider a partition of X to the disjoint sets X′ and M. A function µ :
X → [1,∞) is said to be a uniform Lyapunov function if M1(i)–M1(iii)
below hold:
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M1(i) For all (x, a) ∈ K,

ν(x, a) + 1 +
∑

y∈X′
Pxayµ(y) ≤ µ(x). (7.6)

M1(ii) For each x ∈ X, the mapping a → ∑
y∈X′ Pxayµ(y) is continuous in

A(x) (i.e., if an → a, then
∑

y∈X′ Px,an,yµ(y) converges to
∑

y∈X′ Pxayµ(y)).
M1(iii) For each x ∈ X and u ∈ UD,

lim
n→∞

∑

y∈X

[MP (u)]nxyµ(y) = 0, (7.7)

whereMP (u) is the Taboo probability matrix obtained by replacing columns
j ∈M by columns with zero entries.

If such a function µ exists, then the MDP is said to have a uniform
Lyapunov function.

When using MDPs with uniform Lyapunov functions, we shall assume
that the immediate costs satisfies (i) or (ii) in the following definition.
Definition 7.6 (Bounds on the immediate costs)
(i) The immediate costs are said to be ν-bounded if

||c||ν
def= sup

x,a

|c(x, a)|
ν(x, a)

< ∞, (7.8)

with similar relations for dk, k = 1, . . . , K.
(ii) The immediate costs are said to be ν-bounded from below if their neg-
ative parts are ν-bounded. In other words, let c−(x, a) def= min(c(x, a), 0).
Then

sup
x,a

|c−(x, a)|
ν(x, a)

< ∞, (7.9)

with similar relations for dk, k = 1, . . . , K.
We show in the next section that the Definitions 7.4 and 7.5 for uniform

Lyapunov functions are equivalent under some simple transformation of
the transition probabilities and costs. This allows one to make use of many
results obtained for the first definition. The transformation will enable us
to leave total expected costs unchanged, and yet, restrict to bounded im-
mediate costs. The parameters in the new MDP will be denoted by adding
a bar to the original one.

The following two sections establish general important properties of MDPs
with uniform Lyapunov functions; the reader may skip these in a first read-
ing of the monograph.

7.3 Equivalence of MDP with unbounded and bounded costs∗

We show that an MDP satisfying Definition 7.5 can be transformed into
an equivalent new one with bounded cost, satisfying Definition 7.4.
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Roughly speaking, in the new MDP, whenever for some state and action
(x, a), the immediate cost c(x, a) is larger in absolute value than one, then
we replace the cost by c(x, a)/(ν(x, a) + 1), and we ‘compensate’ for that
by staying in a state x, ν(x, a)+1 time longer (in some probabilistic sense)
than in the original MDP. The latter is done by decreasing the transition
probabilities out of that state by a factor of 1 + ν(x, a).

Definition 7.7 (Equivalent MDP)
Define the following New MDP with bounded costs:
• State space: X = X.
• Actions: A(x) = A(x).
• Transition probabilities:

Pxay =





Pxay

1 + ν(x, a)
if y 6= x,

ν(x, a) + Pxax

1 + ν(x, a)
otherwise .

• Immediate cost:

c(x, a) =
c(x, a)

1 + ν(x, a)
.

• Initial distribution: β = β.

We shall see that the new MDP is related to the original one in that the
state and action at time n in the original MDP, under any policy u ∈ UM ,
can be coupled with the state and action in the new MDP at time τ(n)
under some equivalent quasi-Markov policy u (see Section 6.7). Moreover,
the expected cost at time n in the initial MDP corresponds to the total
expected cost during [τ(n), τ(n + 1)). (τ(n) is defined in (6.17) for quasi-
Markov policies.)

More precisely, we consider the class of policies UR (defined in Section
6.6) for the new MDP. Recall that these policies use some extra independent
randomizations at each step. We assume that this is done by tossing a coin
whose outcome is within I def= {0, 1}. We set the probabilities q (in the
definition of the extra randomization in these policies) of obtaining 1, to
be

q(x, a) =
1

1 + ν(x, a)
.

For any u ∈ UM in the original MDP, we now define the quasi-Markov
policy u = s(u) ∈ UR as

ut(A|ht) = uη(t)(A|x), t ∈ IN, (7.10)

where η is defined in (6.18), and ht = (x1, i1, a1, . . . , xt) is the history
observed in the new MDP.
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Theorem 7.1 (Equivalence between unbounded and bounded MDPs)
Consider any Markov policy u in the original MDP, and the corresponding
quasi-Markov policy s(u) in the new MDP (see (7.10)). Then
(i) The total expected cost under both MDPs are the same:

Ctc(β, u) = Ctc(β, s(u)).

(ii) The total expected time under a quasi-Markov policy u until the set M
is hit in the new MDP, starting from an initial distribution β, is given by
M̂u(β) = M̂(β, u), where

M̂(β, u) def= Eu
β

∞∑
n=1

[1 + ν(Xn, An)]1{T > n}. (7.11)

(iii) The optimal value for COP with total cost criterion is the same in the
two MDPs, and a Markov policy is optimal in the original MDP (with un-
bounded cost) if and only if s(u) is optimal in the new MDP (with bounded
cost)

Proof. Choose some Markov policy u for the original MDP. It is easily
seen that the distribution of the process {Xτ(n)}n under the policy s(u) is
related to the distribution of {Xn}n under the policy u, by

P s(u)(Xτ(n+1) = y|Xτ(n) = x, T > τ(n))
= Pu(Xn+1 = y|Xn = x, T > n) (7.12)

(quantities with a bar correspond to the new MDP). Denote by F t the
σ-field generated by the history until time t of the new MDP. Denote by
Fτ(n) the σ-algebra generated by events {τ(n) ≤ t} ∩A, A ∈ F t. We note
that

E
s(u)

β

(
1{T > τ(n)}(τ(n + 1)− τ(n))|Fτ(n)

)

= 1{T > τ(n)}[1 + ν(Xτ(n), Aτ(n))] (7.13)

(we understand above 1{T > τ(n)}(τ(n + 1)− τ(n)) = 0 when τ(n) = ∞).
Hence, the total cost under s(u) is given by

Ctc(β, s(u)) =
∞∑

t=1

E
s(u)

β
c(Xt, At)1(T > t)

=
∞∑

n=1

E
s(u)

β
1{T > τ(n)}

τ(n+1)−1∑

r=τ(n)

c(Xr, Ar)

=
∞∑

n=1

E
s(u)

β

[
E

s(u)

β

(
1{T > τ(n)}×

(τ(n + 1)− τ(n))c(Xτ(n), Aτ(n))|Fτ(n)

)]
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=
∞∑

n=1

E
s(u)

β

[
c(Xτ(n), Aτ(n))1{T > τ(n)}

∣∣Fτ(n)

]

=
∞∑

n=1

Eu
βc(Xn, An)1{T > n} = Ctc(β, u),

where the equality before the last follows from (7.12). This establishes (i).
(ii) follows from (7.13) by similar arguments. (iii) follows since both Markov
as well as quasi-Markov policies are dominant for the total cost criterion
(Theorems 6.2, 6.5).

In the special case where the immediate costs are bounded below by
some positive constant, we conclude from Theorem 7.1 that the problem
of minimization of the total expected cost until a set M is reached can
be transformed into a problem of minimization of the expected total time
until the set M is reached. This is done as follows. Let c > 0 be a lower
bound on the immediate cost. Choose ν(x, a) = 2|c(x, a)|/c − 1. We note
that c is indeed ν-bounded with ||c||ν ≤ c. The new immediate cost is a
constant c(x, a) = c/2. Therefore the total expected time to reach M is
proportional to the total expected cost until it is reached.

Remark 7.1 (Unbounded immediate costs)
It follows from the proof of Theorem 7.1 (i) that it holds in fact for im-
mediate costs that need not be ν-bounded; in fact, all that is required for
it to hold is that the expectations and summation in the definition of the
total cost Ctc(β, u) are well defined. This is in particular the case when the
immediate costs are non-negative.

Before proceeding to the equivalence between the Lyapunov functions,
we present a useful Lemma (see Hordijk, 1977).

Lemma 7.3 (Policy independent total costs)
Assume that the MDP has a uniform Lyapunov function for the total cost.
Define

ν′(x, a) def= µ(x)−
∑

y∈X′
Pxayµ(y)− 1. (7.14)

Then

M̂ ′(x, u) def= Eu
x

∞∑
n=1

[1 + ν′(Xn, An)]1{T > n} = µ(x), ∀u.

Proof. It easily follows that M1 holds with ν′ replacing ν. Iterating (7.14)
we get

Eu
x

m∑
n=1

[(1 + ν′(Xn, An))1{T > n}] = µ(x)− Eu
xµ(Xm+1)1{T > m + 1}.

(7.15)
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Eu
xµ(Xm+1)1{T > m + 1} converges to 0 for any u ∈ UD by M1(iii). In

fact, it is proved in Hordijk (1977, pp. 43-44) that it converges to 0 for
any policy (and that the convergence is uniform in the policies). Therefore
M̂ ′(x, u) = M̂ ′(x) def= supu M̂ ′(x, u) = µ(x).

Remark 7.2 (Monotonicity properties)
It follows from the representation (7.15) that for any policy and state x,
Eu

xµ(Xm+1)1{T > m + 1} is monotone non-increasing in m, if condition
M1(i) of the Lyapunov function holds, even if the other conditions do not
hold. (We conclude from the Lemma that the limit is zero if µ is a uniform
Lyapunov function.)

Theorem 7.2 (Relation between the Lyapunov conditions)
(a) Assume that the original MDP has a uniform Lyapunov function µ
(Definition 7.5) for the total cost. Then the new MDP has the same uniform
Lyapunov function (Definition 7.4) µ for the total expected time until the
set M is reached.
(b) Assume that the new MDP has a uniform Lyapunov function µ for
the total expected time until the set M is reached. Then µ is a uniform
Lyapunov function for the original MDP.

Proof. (a) Assume that the original MDP has a uniform Lyapunov function.
Choose some x, and denote q(x, a) := [1 + ν(x, a)]−1, q̄ := 1 − q. The
following holds:

∑

y/∈M
Pxayµ(y) = q(x, a)

∑

y/∈M
Pxayµ(y) + q̄(x, a)µ(x). (7.16)

Since µ is a uniform Lyapunov function for the original MDP, we have

1 +
∑

y/∈M
Pxayµ(y) = 1 + q(x, a)

(
1 + ν(x, a) +

∑

y/∈M
Pxayµ(y)

)

− (1 + ν(x, a))q(x, a) + q̄(x, a)µ(x)

= q(x, a)
(
1 + ν(x, a) +

∑

y/∈M
Pxayµ(y)

)
+ q̄(x, a)µ(x)

≤ q(x, a)µ(x) + q̄(x, a)µ(x) = µ(x). (7.17)

Hence, condition (i) of Definition 7.5 is satisfied by µ.
Next, we check (ii). Definition 7.5 for the original MDP can be formu-

lated as
∑

y/∈M Pxayµ(y) being continuous in a for all x. The continuity
is established by noticing that q and q̄ are continuous in a, and by using
(7.16).
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We now check condition (iii). Define

ν′(x, a) def=
1 + ν′(x, a)
1 + ν(x, a)

− 1,

where ν′ is defined in Lemma 7.3, and where x = x and a = a. We obtain

1 + ν′(x, a) +
∑

y/∈M
Pxayµ(y)

= 1 + ν′(x, a) + q(x, a)
(
1 + ν′(x, a) +

∑

y/∈M
Pxay

)

− (1 + ν′(x, a))q(x, a) + q(x, a)µ(x) = µ(x).

Let u ∈ UD be a deterministic policy in the original MDP, and s(u) the
corresponding quasi-Markov policy in the new one. Iterating the above
equation, we obtain:

n∑
t=1

E
s(u)
x (1 + ν′(Xt, At))1(T > t) + E

s(u)
β µ(Xn+1)1{T > n + 1} = µ(x).

From Theorem 7.1 (and Remark 7.1), it follows that
∞∑

t=1

E
s(u)
x (1 + ν′(Xt, At))1(T > t)

=
∞∑

t=1

Eu
x (1 + ν(Xt, At))1(T > t) = µ(x).

We conclude by combining the two last equations that

lim
n→∞

E
s(u)
x µ(Xn+1)1{T > n + 1} = 0.

Any stationary deterministic policy in the new MDP is in particular a quasi-
Markov policy, and can be written as s(u), where u ∈ UD is a stationary
deterministic policy in the original MDP. We conclude that M1(iii) holds
for the new MDP.

(b) Assume that the new MDP has a uniform Lyapunov function as
stated. Recall the definition of q from the first part of the proof. We have
from (7.16) for any x

∑

y/∈M
Pxayµ(y) =

1
q(x, a)


 ∑

y/∈M
Pxayµ(y) + q̄(x, a)µ(x)




≤ 1
q(x, a)

(µ(x)− 1 + q̄(x, a)µ(x))

= µ(x)− 1
q(x, a)

≤ µ(x)− 1− ν(x, a).
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This establishes condition (i).
The proof of (ii) follows from (7.16). We finally check condition (iii).

([MP (u)]nµ)x

= Eu
x (µ(Xn)1{TM > n}) = Eu

x (µ(Xτ(n))1{TM > τ(n)})
≤ Eu

x (µ(Xn)1{TM > n}) =
(
[MP (u)]nµ

)
x

.

The last inequality follows since µ(Xn)1{TM > n} is a super-Martingale
and τ(n) is a stopping time, see e.g., p. 99 in Williams (1992). This implies
condition (iii).

7.4 Properties of MDPs with uniform Lyapunov functions∗

Ten different equivalent conditions are presented in Cavazos-Cadena and
Hernández-Lerma (1992) for an MDP to have a uniform Lyapunov function
for the total expected time until a state x is reached. The equivalence that
we established in the previous section between MDPs with general uniform
Lyapunov function, and MDPs with a uniform Lyapunov function for the
total expected time, may be helpful in extending the conditions to our
original MDP. We shall often present direct proofs for completeness.

Remark 7.3 The equivalence results that we present below are more gen-
eral than that of Cavazos-Cadena and Hernández-Lerma (1992) in the fol-
lowing points:
(i) The Taboo set M will not be restricted to a singleton.
(ii) We do not make the unichain assumption.
(iii) We obtain results for unbounded costs.

We begin by stating properties that are related to the total cost criterion.
• (M1) The MDP has a uniform Lyapunov function µ, i.e., it satisfies

conditions M1(i), M1(ii) and M1(iii) in Definition 7.5.
• (M1′) For all x ∈ X,

lim
n→∞

sup
u

Eu
xµ(Xn)1{T > n} = 0.

• (M2) M̂(x) def= supu∈U M̂(x, u) < ∞ is a uniform Lyapunov function,
where

M̂(x, u) def= Eu
x

∞∑
n=1

[1 + ν(Xn, An)]1{T > n} (7.18)

(M2(i), M2(ii) and M2(iii) are defined to be the corresponding proper-
ties in Definition 7.5.)

• (M3) For each x ∈ X, the following hold:
(i) for all u ∈ UD, M̂(x, u) < ∞ and
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(ii) u → M̂(x, u) is continuous over UD.

• (M4) For each x ∈ X, the following hold:
(i) limn→∞ supu∈U Eu

xM̂(Xn)1{T > n} = 0,
(ii) M̂(x) < ∞,
(iii) Eu

xM̂(Xn)1{T > n} is continuous over UM for all x ∈ X and n ∈ IN.

• (M5) For each x ∈ X, the function u → M̂(x, u) is continuous over UM

and is finite.

• (M5′) For each x ∈ X, the following hold:
(i) For all u ∈ UM , Ctc(x, u) < ∞, Mu(x) < ∞ (Mu is defined below
(6.3), and
(ii) u → Ctc(x, u) and u → Mu(x) are continuous over UM .

• (M6) For all x ∈ X,

lim
n→∞

sup
u∈U

Eu
xµ(Xn)

n
= 0.

• (M7) There is a policy w ∈ UD such that for every initial state x,
M̂(x) = M̂(x,w) < ∞.

• (M8) (i) For every initial state x, supu∈U M̂(x, u) < ∞,

(ii) For all ε > 0, there exists u(ε) ∈ UD such that M̂(x, u(ε)) >
M̂(x)(1− ε) for all x ∈ X.

• (M9) M̂(x) is a solution of the optimality equation

sup
a





1 + ν(x, a) +
∑

y∈X′
Pxayv(y)





= v(x). (7.19)

Remark 7.4 (Some derived properties)
(i) For the special case where M = {0}, where 0 is some arbitrary state, it
follows from the statement M̂(x) < ∞ that state 0 is recurrent under any
policy; in particular, the expected time between two consecutive visits of
state 0 is uniformly bounded.
(ii) Any one of the properties M2, M4 or M7 implies that the MDP is
absorbing for any initial state x.

Theorem 7.3 (Equivalence between conditions)
(i) M1 ⇔M2 ⇔M4 ⇔M5 ⇒M3 ⇒M7.
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(ii) If the MDP is unichain and M is a singleton, then M3 ⇒M2.
(iii) M1 ⇒M1′, M1 ⇒M6 , M1 ⇒M5′.

Proof. The proof of M1 ⇔M2 ⇒M5 is given in Lemma 7.5(iv). M5 ⇒M7
and M4 ⇒M2 are proved in Lemma 7.4.
M5 ⇒M2 and M1 ⇒M4 are established in Lemma 7.6 and Lemma 7.5(iii),
respectively.
(ii) was established by Cavazos-Cadena and Hernández-Lerma (1992) for
the case of bounded cost. The proof carries over directly to our case by
using Theorem 7.3.
(iii) M1 ⇒M1′ and M1 ⇒M6 are established in Lemma 7.5(i).
M1 ⇒M5′ is proved in Lemma 7.5 (v).

Lemma 7.4 (i) M2(i), M8(ii) and M9 hold.
(ii) M5 or M3 imply M7.
(iii) M4 ⇒M2.

Proof. M9 is well known, see e.g., Hordijk (1977, Theorem 6.1). This im-
plies M2(i). M8(ii) follows from Theorem 13.7 of Hordijk (1977) (see also
Feinberg and Sonin, 1984, Van Der Wal, 1981b, and references therein).
Since the class of stationary policies is compact, we obtain (ii).

(iii) M2(iii) follows from M4(i) and M2(ii) follows from M4(iii). M4(ii)
together with M9 imply M2(i).

Lemma 7.5 (i) M1 implies M1′, M6 and M6′ where
(M6): For all x ∈ X,

lim
n→∞

sup
u∈U

Eu
xM̂(Xn)

n
= 0.

(ii) M1 implies that M̂ ≤ µ, and M̂(β) ≤ 〈β, µ〉.
(iii) M1 implies M4.
(iv) Conditions M1 and M2 are equivalent and imply M5.
(v) M1 implies M5′.

Proof. Assume M1. It is proved in Hordijk (1977, pp. 43-44) that M1′ holds,
and that M6′ holds (although the proof is written for M = {z} for some
state z, it is unchanged for an arbitrary M). We show that M6 holds:

Recall the definition of ν′ in Lemma 7.3. Since, by definition, M1 holds
also for ν′ with the Lyapunov function µ, this implies that property M6′

holds for ν′, which implies M6.
Iterating (7.6), one obtains for any x and u ∈ UM

k−1∑
n=1

Eu
x (1 + ν(Xs, As))1{T > n} ≤ µ(x)− Eu

xµ(Xn)1{T > n} ≤ µ(x).

(7.20)
Taking the limit as n →∞, we obtain the first statement of (ii). The second
follows from the bounded convergence theorem.
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(iii) M4(i) was established by Hordijk (1977, pp. 43-44), and M4(ii) fol-
lows from statement (ii) of our Lemma. M4(iii) is obtained by showing that
Eu

x µ̂(Xn)1{T > n} is continuous over UM for all x ∈ X and n ∈ IN, where
µ̂ is any function that is bounded by the Lyapunov function µ. To show
that, we first note that Eu

β µ̂(X2)1{T > 2} is continuous in u ∈ UM ; this
follows from condition M1(ii). We proceed by induction to show that

Eu
x µ̂(Xn)1{T > n} = [(MP (u1)MP (u2) · · ·MP (un−1)) µ̂]x (7.21)

is continuous in u. Suppose (7.21) holds for some n. We have

Eu
x µ̂(Xn+1)1{T > n + 1} =

∑

y∈X′
MPxy(u1)Zy(u)

where
Zy(u) def= [(MP (u2)MP (u3) · · ·MP (un)) µ̂]x .

By Iterating (7.6) in property M1(i), it follows that Zy(u) ≤ µ(y) for any
u and y. Moreover, the inductive assumption implies that Zy is continuous
in u ∈ UM . Since [MP (u1)µ]x is continuous in u1, it follows from the
generalized dominated convergence that

[MP (u1)Z(u)]x = Eu
x µ̂(Xn+1)1{T > n + 1}

is continuous in u ∈ UM , which establishes the induction.
(iv) That M2 implies M1 is trivial.

Assume that M1 holds. M2(i) follows from property M9 (see Lemma 7.4 (i)).
M2(ii) follows from part (ii) of our Lemma and the dominated convergence
theorem. M2(iii) follows from property M4(iii) (and statement (iii) of our
Lemma).

Next, we show that M1 implies M5.
Let c′ : K → IR be any continuous function satisfying |c′| ≤ ν + 1. It

follows from property M1(i) that for all t ≥ 1 and all x,

Eu
βc′(Xt, At))1{T > t}+ Eu

βµ(Xt+1)1{T > t + 1} ≤ Eu
βµ(Xt)1{T > t}

(7.22)
where β = δx. By summing over t ∈ n, . . . , n + m, we get

Eu
β

n+m∑
t=n

[c′(Xt, At)1{T > t}] ≤ Eu
βµ(Xn)1{T > n}.

Taking the limit as m →∞, we get

Eu
β

∞∑
t=n

[c′(Xt, At)1{T > t}] ≤ sup
u∈U

Eu
βµ(Xn)1{T > n}, (7.23)

which tends to zero as n →∞ according to property M4(i).
Thus, Eu

β

∑n
t=1 [c′(Xt, At)1{T > t}] converges to C ′tc(β, u) uniformly in u ∈

Um (C ′tc(β, u) is the total cost corresponding to the immediate cost c′).
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For any n, we shall show that Eu
β

∑n
t=1 [c′(Xt, At)1{T > t}] is continuous

in u. The proof is then established by combining this continuity with the
uniform convergence (that we established in the previous paragraph).

Let c′(x, ut)
def=

∫
c′(x, a)ut(da|x). We have

Eu
β [c′(Xt, At)1{T > t}] =

∑

x∈X

Pu
β (Xt = x, T > t)c′(x, ut).

We note that c′(x, ut) is continuous in ut for every x, since it c′(·, ·) is
continuous. Moreover, Pu

β (Xt = x, T > t) are continuous over u ∈ UM ; this
follows from (7.21). Since c′(x, ut) ≤ ν(x, t) + 1 ≤ µ(x) for any u and x,
and since

∑
x∈X Pu

β (Xt = x, T > t)µ(x) is continuous, it follows from the
dominated convergence theorem that Eu

β [c′(Xt, At)1{T > t}] is continuous
in u. M5 follows by setting c′ = 1 + ν.

(v) The statements for Mu and Ctc(x, u) are obtained by replacing c′(x, a)
by 1 and by c, respectively, in the proof of M1 ⇒M5 in part (iv).

Remark 7.5 An alternative way to prove part (iv) of the Lemma is by
adapting the proof of Theorem 6.1 in Cavazos-Cadena and Hernández-
Lerma (1992): one may use the proof there to show that (iii) holds for
the modified MDP given in Definition 7.7. (This is done by replacing the
indicators 1(Xn 6= z) in Cavazos-Cadena and Hernández-Lerma (1992) by
1(Xn /∈M).) The result then follows by applying Theorems 7.1 and 7.2.

Lemma 7.6 M5 implies M2.

Proof. Since M5 ⇒ M7, there is a stationary policy w achieving M̂(x) =
M̂(x,w). Let va ∈ UM be given by va = (a,w,w, w, . . . , ). Then

M̂(x, va) = 1 + ν(x, a) +
∑

y∈X′
PxayM̂(y).

Since ν(x, a) and M̂(x, va) are continuous in a (by M5), it follows that∑
y∈X′ PxayM̂(y) is continuous in a, which establishes M2(ii).
Consider an arbitrary u ∈ UD and define v(n) = [u × n,w] to be the

policy that follows u for the n first periods, and then switches to the policy
w. Then

M̂(x, v(k− 1)) =
k−1∑
m=1

Eu
x (1 + ν(Xm, Am))1{T > m}+ Eu

xM̂(Xk)1{T > k}
(7.24)

M5 implies

M̂(x, u) = lim
n→∞

M̂(x, v(n)) = M̂(x, u) + lim
n→∞

Eu
xM̂(Xn)1{T > n}

which establishes M2(iii).

Since M1 implies M2, we conclude that an MDP with a uniform Lya-
punov function is absorbing.
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7.5 Properties for fixed initial distribution∗

The equivalent or necessary conditions in the previous section all involved
all initial states. It is natural to investigate the following questions:

• (i) Can one conclude that a property holds for all initial state by checking
at only one initial state?

• (ii) Do properties hold for arbitrary initial distributions β, rather than
for fixed initial states?

Cavazos-Cadena and Hernández-Lerma (1992) showed that some condi-
tions that hold for all initial states are equivalent to conditions that hold
for a particular single state z, provided that M = {z}. Below, we present
similar results for any initial distribution, which provides an answer to the
above questions.

Definition 7.8 For a fixed initial distribution β, define a state x to be β-
accessible if there exists some policy v ∈ UM (that may depend on x) and
an integer n such that

P v
β (Xn = x, T > n) > 0. (7.25)

Let X̂(β) def= {x ∈ X : x is β-accessible} .

Note that X̂(β) contains all states in the support of β. Thus,

Lemma 7.7 X = X̂(β) if any of the following conditions hold:
(i) β(y) > 0 for all y ∈ X,
(ii) M = {z} for some z, the MDP is communicating and β = δz,
(iii) M = {z} for some z, and for any y 6= z there exists a policy u ∈ UM

such that Pu
x (Xn = y) > 0 for some integer n.

We introduce the following conditions:

• (N1) M1 holds with X̂ replacing X and X̂∩X′ replacing X′. Moreover,
the function µ satisfies βµ < ∞.

• (N2) M̂(x) satisfies N1.

• (N3) The following hold:
(i) for all u ∈ UD, M̂(β, u) < ∞ and
(ii) u → M̂(β, u) is continuous over UD.

• (N4) The following hold:
(i) limn→∞ supu∈U Eu

βM̂(Xn)1{T > n} = 0,
(ii) M̂(β) < ∞,
(iii) Eu

βM̂(Xn)1{T > n} is continuous over UM for all n ∈ IN.
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• (N5) The function u → M̂(β, u) is continuous over UM and is finite.

• (N5′) (i) For all u ∈ UM , Ctc(β, u) < ∞, Mu(β) < ∞, and
(ii) u → Ctc(β, u) and u → Mu(β) are continuous over UM .

• (N6) For each x ∈ X̂, the function u → M̂(x, u) is continuous over UM

and is finite.

Remark 7.6 (Some derived properties)
Fix an initial distribution β. Then any one of the properties N3, N4, N5
or N6 implies that the MDP is absorbing for any initial state x.

Theorem 7.4 (Equivalence between conditions)
M1 ⇒N4 ⇔N1 ⇔N2 ⇔N5 ⇔N6 ⇒N3. M1 ⇒N5′.

Proof. The proof follows from Lemma 7.8 and Lemma 7.9 below.

Corollary 7.1 If X̂(β) = X, then N4, N5, N6, M1, M2, M4, M5 are
equivalent.

Lemma 7.8 M1 ⇒N4.

Proof. M1 ⇒N4: Define the sequence ξn ∈ IRX:
Let ξn(x) def= supu Eu

xµ(Xn)1{T > n}. It follows from M1′ (which is implied
by M1, see Lemma 7.5(i)) that ξn → 0 and that ξ < µ. Applying the
dominated convergence theorem, we obtain

lim
n→∞

Eu
βµ(Xn)1{T > n} ≤ lim

n→∞
βξn = β lim

n→∞
ξn = 0.

Lemma 7.9 (i) N5 implies N6. (ii) N6 ⇔N1 ⇔N2 ⇒N4 , N1 ⇒N5 ⇒N3,
N1 ⇒N5′.

Proof. N5 ⇒N6: Let x ∈ X̂(β). Let u and n be as in (7.25). Choose an ar-
bitrary sequence of Markov policies u(m) converging to some limit Markov
policy which we denote by w. Define the Markov policy v(m), m = 1, 2, . . .
as follows:

vt(m) =
{

ut if t < n,
wt−n+1(m) if t ≥ n.

(7.26)

Define similarly the policy v, where w(m) is replaced by w. One can show
using the Markov property that

M̂(β, v(m)) = Eu
β

n−1∑

k=1

(
1 + ν(Xk, Ak)

)
1{T > k} (7.27)

+
∑

y∈X̂(β)

Pu
β (Xn = y, T > n)Ew(m)

y

∞∑

k=1

(
1 + ν(Xk, Ak)

)
1{T > k}.
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The same relation holds for v (with w replacing w(m)). By Fatou’s Lemma,
we have

lim
m→∞

M̂(β, v(m)) ≥ Eu
β

n−1∑

k=1

(
1 + ν(Xk, Ak)

)
1{T > k}+ (7.28)

∑

y∈X̂(β)

Pu
β (Xn = y, T > n) lim

m→∞
Ew(m)

y

∞∑

k=1

(
1 + ν(Xk, Ak)

)
1{T > k}.

For any y ∈ X and t ∈ IN, one can show that

lim
m→∞

Ew(m)
y

(
1 + ν(Xt, At)

)
1{T > t} ≥ Ew

y

(
1 + ν(Xt, At)

)
1{T > t}

(for exact details, see the Lemma 8.1 (i) and its proof). If strict inequality
holds for some t for y ∈ X̂(β) (i.e., assumption N6 does not hold), then
this, together with (7.27) and (7.28), would imply that

lim
m→∞

M̂(β, v(m)) > M̂(β, v).

But since v(m) converges to v (this follows from the convergence of w(m)
to w and the definition of v(m) and v), this contradicts assumption N5
(N5 implies equality instead of the strict inequality in the above equation).
Hence, if N6 does not hold, then N5 does not hold. This implies (i).

(ii) We begin by showing N1 ⇔N2 ⇔N6. One may consider a new MDP
which is obtained by restricting the original one to X̂(β) (thus, in particu-
lar, Pxay are the same as the original MDP for all x, y ∈ X̂(β)). For each
Markov policy u in the new MDP we may associate a set V (u) of Markov
policies in the original MDP such that ut(·|y) = vt(·|y) for each v ∈ V (u),
t ∈ IN and y ∈ X̂(β); one can then construct a probability space for which
the trajectories of the states and actions are the same for the original MDP
under u, and the new MDP under v, so they have the same costs. Applying
Theorem 7.3, we then obtain the equivalence of N6 and the properties M1
and M2 for the new MDP which are properties N1 and N2 in the original
MDP.

Next, we show that N1 ⇒N4 ⇒N2. That N1 implies N4 is established
exactly as in the proof of Lemma 7.8. The implication N4 ⇒N2 follows by
arguments similar to Lemma 7.4(iii). Indeed, N4(ii) implies that M̂(x) is
finite for all x ∈ X̂. This, together with M9, implies N2(i).
Next we establish N2(iii). For any u(m) ∈ UD converging to some u ∈ UD,
we have

lim
m→∞

Eu(m)
x M̂(X2)1{T > 2} ≥ Eu

xM̂(X2)1{T > 2}.

This follows directly by using Fatou’s Lemma, since Px,a,y are continuous
over A(x). Assume that N2(iii) does not hold. Then there are some deter-
ministic policies u(m) ∈ UD converging to some limit policy u ∈ UD and
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some x ∈ X̂, such that

lim
m→∞

Eu(m)
x M̂(X2)1{T > 2} > Eu

xM̂(X2)1{T > 2}. (7.29)

Let v and n satisfy (7.25). Define the Markov policies

w(m) = (v, v, . . . , v︸ ︷︷ ︸
n−1

, u(m), u(m), u(m), . . .), w = (v, v, . . . , v︸ ︷︷ ︸
n−1

, u, u, u, . . .).

(7.30)
Then the strong Markov property implies

E
w(m)
β =

∑

y∈X

P v
β (Xn = y, T > n)Eu(m)

y M̂(X2)1{T > 2}.

Applying Fatou’s Lemma and (7.29), we obtain

lim
m→∞

E
w(m)
β M̂(Xn+1)1{T > n + 1}

≥ lim
m→∞

∑

y∈X

P v
β (Xn = y, T > n)Eu(m)

y M̂(X2)1{T > 2}

>
∑

y∈X

P v
β (Xn = y, T > n)Eu

y M̂(X2)1{T > 2}

= Ew
β M̂(Xn+1)1{T > n + 1}.

This contradicts N4(iii), which implies the relation N4 ⇒N2(ii).
We establish next N2(iii). Assume that it does not hold, i.e., there exists
some u ∈ UD such that

lim
m→∞

Eu
xM̂(Xm)1{T > m} > 0.

Let v and n and x be as in (7.25), and let u define the policy w as in (7.30).
Then by the strong Markov property, we have

Ew
β M̂(Xm+n)1{T > m + n}
≥ P v

β (Xn = x, T > n)Eu
xM̂(Xm)1{T > m}.

This implies that

lim
m→∞

Ew
β M̂(Xm)1{T > m} > 0,

which contradicts N4(i). This establishes the relation N4 ⇒N2(iii).
N1 ⇒N5 and N1 ⇒N5′ follow by the same arguments as in the proof of

Lemma 7.5 (iv)-(v).
N5 ⇒N3 is trivial.

We finally remark that the following relation holds:

Lemma 7.10 M3 ⇒N3.
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7.6 Examples of uniform Lyapunov functions

A natural question that arises is whether a given MDP has a uniform
Lyapunov function, and if it does, how can we compute it.

As we see from property M2 (Section 7.4), a candidate for a Lyapunov
function is obtained by solving an MDP in which we maximize the total
expected cost until we hit a set M, with respect to the immediate cost
1+ν. This might suggest that in order to minimize the total expected cost,
we have first to consider the problem of maximization of another total cost
problem.

This also illustrates another weakness of the uniform Lyapunov-function
approach: in order to apply this approach, the worst possible policy (the
one that maximizes some total expected cost, instead of the one minimizing
it) has to lead to a finite expected cost and to have some good properties.

Fortunately, it turns out in practice that when uniform Lyapunov func-
tions exist, it is often easy to identify and to compute one (which is typically
different than the candidate from property M2). This is in particular the
case in many problems in the control of queues, as we shall show below.
When uniform Lyapunov functions do not exist but the immediate costs
are bounded below, there is still a rich theory that can be applied (in par-
ticular, the one for transient MDPs, which we develop in the two following
chapters).

When costs are not bounded below and uniform Lyapunov functions do
not exist, then the characterization and computation of “good” policies are
particularly complex. The dynamic programming techniques that apply in
the other cases for the non-constrained control problem do not hold any
more, and optimal policies need not exist. We shall illustrate these problems
in Section 9.8.

In the remainder of this section we consider several applications in which
uniform Lyapunov functions exist and can be easily computed.

Example 7.1 (Flow and service control)
Consider the example of Chapter 5, this time with an infinite buffer L =
∞. The model is unchanged, except that we do not need to make the
assumption 0 ∈ B(x). Assume that
• The cost c is polynomially bounded;

• bmax < amin.

Let M def= {0} (it thus contains only the state of an empty queue).
Define now

ρ
def=

bmaxāmin

b̄maxamin

and note that ρ < 1.
Define further

µ(x) def= Crx
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where r is some arbitrary number satisfying r ∈ (1, ρ−1) and C is a positive
real number that will be determined later. Then for x > 1,

∑

y 6=0

Pxabyµ(y)− µ(x)

= b̄a(µ(x− 1)− µ(x)) + bā(µ(x + 1)− µ(x))
≤ b̄maxamin(µ(x− 1)− µ(x)) + bmaxāmin(µ(x + 1)− µ(x))
= Crx(r − 1)

(
bmaxāmin − b̄maxaminr−1

)

= Crx(r − 1)r−1bmaxāmin

(
r − ρ−1

)
< 0. (7.31)

In fact, if we denote

q
def= −(r − 1)r−1bmaxāmin

(
r − ρ−1

)
,

then we have by (7.31) that q > 0 and
∑

y 6=0

Pxabyµ(y) ≤ (1− q)µ(x). (7.32)

It is easily seen that (7.31) and hence also the above equation hold also for
x = 0 and x = 1.

Let ν(x, a, b) def= |c(x)| + |d1(a)| + |d2(b)|. Since the immediate cost is
polynomially bounded, we obtain by choosing C sufficiently large that 1 +
ν(x, a) < qµ(x) for all states x and actions a. Hence we get

1 + ν(x, a, b) +
∑

y 6=0

Pxabyµ(y) ≤ µ(x).

Thus, µ satisfies condition M1(i) in Definition 7.5. Condition M1(ii) clearly
holds (since the action space is finite). Condition M1(iii) is obtained by
iterating (7.32).

Remark 7.7 (Relaxing the stability conditions)
Note that the condition bmax < amin in the above example is a strong
stability condition. In practice, this condition can be completely dropped
when dealing with uniform Lyapunov functions for the discounted cost (this
will be shown in Section 10.5). There are ways to relax the above condition
(and in fact the requirement that condition M1(i) holds for all actions)
even for the total expected cost and the expected average cost. For more
details, see Altman, Hordijk and Spieksma (1997).

Example 7.2 (Optimal priority assignment)
Consider N infinite discrete time queues and a Bernoulli arrival processes
to each queue. More precisely, in the beginning of each time unit there is
a probability λ̂i of an arrival of a packet to queue i. The packets in each
queue are served according to the first-in-first-out (FIFO) order. If there
is at least one packet in queue i and this queue is being served at time
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slot t, then at the end of the time slot the service is completed and the
packet is transmitted successfully and leaves the system with probability
µ̂i; otherwise, with probability 1−µ̂i, it stays in the queue. We assume that
the arrivals at different queues and at different slots are independent, that
the completion of services are independent, and the latter are independent
of the arrival processes. This defines an MDP as follows.

• The state space is X = INN, where x ∈ X stands for the number of
packets in each queue after the beginning of a time slot (and after the
possible arrivals occurred in that slot).

• The action space is A = {1, . . . , N}; if action a is chosen, then the queue
to be served is queue number a. In particular, the available actions at
state x are A(x) = {a : xa > 0}. In other words, service can be assigned
to non-empty queues only.

This problem corresponds to the assignment of the access to a commu-
nication channel among different types of traffic; each traffic type (voice,
data, video, etc.) has its own queue. A typical problem is to minimize a
weighted sum of the expected delays of non-interactive traffic (such as data
transfer) subject to constraints on the expected delays of interactive traffic
(voice, video). The fact that service may fail may correspond to a noisy
channel.

The immediate costs that appear both in the objective function to be
minimized as well as in the constraints are assumed to be linear in the
queue sizes, with non-negative coefficients. In other words, c(x, a) has the
form

c(x, a) =
N∑

i=1

cixi

(they do not depend on a), where ci ≥ 0. The costs dk(x, a) have a similar
linear form. The reason for choosing linear costs is that by the well-known
Little Theorem, the expected queue lengths are proportional to the ex-
pected delays (see e.g., Kleinrock, 1976, p. 17).

We assume that
N∑

i=1

λ̂i

µ̂i
< 1.

Under this assumption, it has been shown in Makowski and Shwartz (1987)
that the queue lengths distribution is tight, and that the queue lengths are
uniformly integrable (in time). As will be shown in Section 11.9, this implies
the existence of a Lyapunov function for this problem.

Consider the problem of minimizing the total expected cost until the set
M = {0} is reached, where 0 corresponds to the state in which all queues
are empty. As was shown on p. 145 in Spieksma (1990), a possible choice
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of a Lyapunov function µ is given by

µ(x) =
N∏

i=1

(1 + εi)xi ,

where εi, i = 1, . . . , N are some strictly positive real numbers.
Moreover, the function ν in Definition 7.5 can be chosen to be propor-

tional to µ. This means, in particular, that also immediate costs that are
polynomially bounded have a uniform Lyapunov function.

In fact, the above uniform Lyapunov function is derived in Chapter 9
of Spieksma (1990) for an even more general control problem, in which
packets that are successfully transmitted may be rerouted back to one of
the queues with positive probabilities.

It turns out that the constrained problem can be fully solved using a lin-
ear program with finitely many decision variables, see Altman and Shwartz
(1989). For other solution approaches, see Nain and Ross (1986).

We illustrated in the above examples the usefulness of the approach
based on the uniform Lyapunov function. Another example of a routing
problem into a two-center open Jackson network can be found in Chapter
9 of Spieksma (1990).

7.7 Contracting MDPs

Let µ : X → [1,∞) be given. For any functions q : X → IR, Q : X×X → IR,
define their µ-norms

||q||µ = sup
x∈X

q(x)
µ(x)

, ||Q||µ = sup
x∈X

∑
y∈X Qxyµ(y)

µ(x)
. (7.33)

It is easily verified that ||·||µ is indeed a norm. In particular, it satisfies
||Qq||µ ≤ ||Q||µ ||q||µ, and for Q1, Q2 : X × X → IR, we have

∣∣∣∣Q1Q2
∣∣∣∣

µ
≤∣∣∣∣Q1

∣∣∣∣
µ

∣∣∣∣Q2
∣∣∣∣

µ
. We say that q and Q are µ-bounded if ||q||µ < ∞ and ||Q||µ <

∞, respectively. We define Fµ to be the set of functions from X to IR having
finite µ-norm, and Mµ to be the set of non-negative measures over X given
by Mµ := {q :

∑
x∈X q(x)µ(x) < ∞} (we shall use the notation 〈q, µ〉 for∑

x∈X q(x)µ(x).)
We shall say that a function f : K → IR is in Fµ if the function whose

x entry is supa∈A(x) |f(x, a)|, is in Fµ. Similarly, a non-negative measure q

defined on K is said to be in Mµ if the measure q is in Mµ, where q(x) :=
q(x, A(x)).
Definition 7.9 (Contracting MDPs)
Let X′ and M be two disjoint sets of states with X = X′ ∪M. An MDP
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is said to be contracting (on X′) if there exist a scalar ξ ∈ [0, 1) (called
the contracting factor) and a vector µ : X → [1,∞), such that for all
x ∈ X, a ∈ A(x), ∑

y/∈M
Pxayµ(y) ≤ ξµ(x). (7.34)

When using contracting MDPs, we shall make the following assumptions
on the initial distribution, the transition probabilities and the costs:

• 〈β, µ〉 < ∞.

• The transition probabilities are µ-continuous, i.e., if a(n) → a, then

lim
n→∞

∑

y∈X

|Pxa(n)y − Pxay| µ(y) = 0. (7.35)

c, dk ∈ Fµ, 1 ≤ k ≤ K : they are µ-bounded by a constant b < ∞.
(7.36)

•

An alternative way to write (7.34) is

sup
w∈UD

||MP (w)||µ ≤ ξ. (7.37)

The µ-continuity, defined in (7.35), is related to standard continuity as
follows:

Lemma 7.11 (µ-continuity, Lemma 5.1 in Spieksma, 1990, p. 96)
The following assertions are equivalent for a matrix Q(u), with u ∈ US and
||Q(u)||µ < ∞:
(i) Q(u) is µ-continuous on US,
(ii) Q(u) and Q(u)µ are pointwise continuous on US,
(iii) For any pointwise converging sequence qn of µ-bounded functions with
supn∈IN ||qn||µ < ∞, and for any converging sequence of stationary policies
un with a limit u∗,

lim
n→∞

[Q(un)qn]x = [Q(u∗)q∗]x, ∀x ∈ X.

The µ-continuity of the transition probabilities imply also the following.

Lemma 7.12 (µ-continuity and uniform integrability)
The µ-continuity of the transition probabilities, defined in (7.35), together
with the assumption that

∑

y/∈M
Pxayµ(y) ≤ ξ′(x)µ(x) (7.38)

for some ξ(·)′ > 0, implies that
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(i) For any fixed x, {Pxay}a are integrable with respect to µ uniformly in
a, i.e., for any sequence of compact sets Xn increasing to X,

lim
n→∞

sup
a

∑

y/∈Xn

Pxayµ(y) = 0.

(ii) Let un → u (weakly) where u and un are probability measures over
A(x). Then

lim
n→∞

∑

y∈X

|Pxy(un)− Pxy(u)| µ(y) = 0. (7.39)

Proof. (i) follows directly from Lemma 17.4 (ii) in the Appendix.
(ii) The weak convergence of un implies that Pxy(un) converges to Pxy(u)
for all x and y. (i) implies that Px·(un) are integrable with respect to µ,
uniformly in n, so that

lim
n→∞

∑

y∈X′
Pxy(un)µ(y) =

∑

y∈X′
Pxy(u)µ(y),

see Lemma 17.4. This implies (7.39) (by Scheffé’s Lemma, see e.g., Williams,
1992, p. 55).

Lemma 7.13 (Rate of convergence)
Consider the contracting MDP. Then

pu
x(t;X′) ≤

∑

y∈X′
pu

x(t; y)µ(y) ≤ µ(x)ξt−1 (7.40)

(thus the µ-norm of pu
(·)(t) converges to 0 at a geometric rate, uniformly

over all u ∈ U , i.e., for any x ∈ X) Moreover,

pu
β(t;X′) ≤

∑

y∈X′
pu

β(t; y)µ(y) ≤ 〈β, µ〉ξt−1, (7.41)

and ∞∑
t=1

pu
β(t;X′) ≤

∞∑
t=1

∑

y∈X′
pu

β(t; y)µ(y) ≤ 〈β, µ〉
1− ξ

, (7.42)

which implies that the MDP is X′-absorbing.

Proof. Choose any u ∈ U and let v = v(u) be the corresponding Markov
policy given in (6.11). Viewing pu

(·)(t; ·) as a function X×X → IR, we have

||pu
· (t; ·)||µ ≤ ||MP (v1)||µ ||MP (v2)||µ · · · ||MP (vt−1)||µ ≤ ξt−1,

which implies (7.40) and (7.41). (7.42) easily follows.

Hence, contracting MDPs are a subclass of absorbing MDPs, which are
a subclass of transient MDPs. The converse need not hold; if X = IN and
Pn,n+1(w) = 1 for some w ∈ US , then w is transient but non-absorbing.
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For the case of finite state and action spaces, however, the converse holds,
and any transient policy is contracting, see Kallenberg (1983).

Lemma 7.1 can be strengthened:
Lemma 7.14 (Uniqueness of a bounded solution)
Consider a contracting MDP. Fix a stationary transient policy w on X′.
Fix some initial distribution β such that 〈β, µ〉 < ∞. Then

f(x) =
∞∑

t=1

pw
β (t; x)

is the unique µ-bounded solution of

f = β +MfP (w). (7.43)

Proof. Let f ′ be some µ-bounded solution of (7.43). Iterating (7.43), we
get:

f ′(y) = β(y) + pw
β (2; y) +

∑

x∈X′
f ′(x)[MP 2(w)]xy (7.44)

= β(y) + pw
β (2; y) + pw

β (3; y) +
∑

x∈X′
f ′(x)[MP 3(w)]xy

= . . . = β(x) + pw
β (2; x) + . . . + pw

β (t; x) +
∑

x∈X′
f ′(x)[MP t(w)]xy.

We have (as in Lemma 7.13)
∣∣∣∣∣
∑

x∈X′
f ′(x)[MP t(w)]xy

∣∣∣∣∣ ≤ µ(y) ||f ′||µ
∣∣∣∣MP t(w)

∣∣∣∣
µ
≤ µ(y) ||f ′||µ ξt → 0.

The proof is established by taking the limit as t →∞ in (7.44).

Remark 7.8 (Relation to other definitions)
The definition introduced in this section for contracting MDPs is taken
from Dekker and Hordijk (1988) and Spieksma (1990). It is weaker than
(and thus implies) previous definitions, such as the one by Wessels (1977),
who considers a similar definition but with an empty set M. Allowing a
non-empty set, M, turns out to be especially important in the average cost
case.

Theorem 7.5 (Contracting MDP implies a uniform Lyapunov function)
Assume that an MDP is contracting. Then it has a uniform Lyapunov func-
tion with the same function µ, up to a multiplicative constant. Moreover,
ν can be chosen proportional to µ.

Proof. Assume that the MDP is contracting with a geometric Lyapunov
function µ. For any constant C, and for all (x, a) ∈ K,

|c(x, a)|+ 1 +
∑

y/∈M
PxayCµ(y) ≤ bµ(x) + 1 +

∑

y/∈M
PxayCµ(y)
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≤ bµ(x) + 1 + ξCµ(x) = Cµ(x) + 1 + (b + (ξ − 1)C)µ(x).

For all C sufficiently large, 1 + (b + (ξ − 1)C)µ(x) is negative, so that Cµ
satisfies M(i) in Definition 7.5.
M(ii) follows from the µ-continuity of the transition probabilities (see (7.35)).
M(iii) follows since ||[MP (u)]n||µ ≤ ξn (see (7.37)).

We note that in all the examples presented in Section 7.6, the MDPs
were in fact contracting.



CHAPTER 8

The total cost: occupation measures
and the primal LP

We study in this chapter the total cost criterion for X′-transient MDPs,
i.e., the total expected cost until a set of states M = X \X′ is reached.

8.1 Occupation measure

For any given initial distribution β and policy u, define the occupation
measure ftc(β, u) on (K, IK) related to the total cost criterion by

fn
tc(β, u;K) =

n∑
t=1

pu
β(t;K), ftc(β, u;K) =

∞∑
t=1

pu
β(t;K), K ⊂ K.

With some abuse of notation, we use ftc also for the restriction over X′,
i.e., ftc(β, u;X ) := ftc(β, u;∪x∈X (x, A(x))). Define

LU (β) =
⋃

u∈U

{ftc(β, u)} for any class of policies U, (8.1)

Qtc(β) = (8.2)



ρ ∈ M(K) :
∑

y∈X

∫

A(y)

ρ(y, da)(δx(y)− Pyax1{x ∈ X′}) = β(x)

and ρ(x, A(x)) < ∞ for all x ∈ X,





where M(K) is the set of non-negative measures over K and δx is the Dirac
probability measure concentrated on x. We set L(β) = LU (β)∪LM(UM )(β).

Define

Qb
tc(β) def= the subset of finite measures among Qtc(β),

Qν
tc(β) def= {q ∈ Qb

tc(β) : 〈q, ν〉 < ∞}, Qµ
tc(β) def= Qtc(β) ∩Mµ. (8.3)

The two definitions in (8.3) are for MDPs with a uniform Lyapunov func-
tion and for contracting MDPs (the parameters ν and µ are introduced in
Definitions 7.5 and 7.9, respectively).

For any sets B,B1, B2 of measures (equipped with a given topology) on
some measurable space, define
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• coB := the closed convex hull of a set B (see definition in Dunford and
Schwartz, 1988, p. 414);

• min B := the set of minimal elements in B, i.e., ρ ∈ min B if there does
not exist some ρ′ ∈ B, ρ′ ≤ ρ (i.e., ρ′(A′) ≤ ρ(A′) for any A′), such that
ρ′(A) < ρ(A) for some A;

• B1 ≺ B2 if ∀ρ2 ∈ B2 there exists ρ1 ∈ B1, such that ρ1 ≤ ρ2.

Definition 8.1 (Completeness for the total cost criterion)
A class of policies U is called complete for the total cost criterion (for a
given initial distribution β) if LU (β) = L(β). It is called weakly complete
if LU (β) ≺ L(β).

Theorem 8.1 (Completeness of stationary policies)
(i) Consider an X′-transient MDP. Then the set of stationary policies is
weakly complete.
(ii) If the MDP is absorbing to M, then the set of stationary policies is
complete.

Proof. Choose a policy u ∈ U and let w be a stationary policy satisfying

wy(A) =
ftc(β, u; y,A)
ftc(β, u; y)

, y ∈ X,A ⊂ A(y) (8.4)

whenever the denominator is non-zero. (When it is zero, wy(·) is chosen
arbitrarily.) We show that ftc(β, w) ≤ ftc(β, u). For any x ∈ X,

ftc(β, u; x) = β(x) +
∞∑

t=2

pu
β(t, x)

= β(x) +
∞∑

t=2

∑

y∈X

∫

A(y)

pu
β(t− 1; y, da)Pyax1{x ∈ X′}

= β(x) +
∑

y∈X

∫

A(y)

ftc(β, u; y, da)Pyax1{x ∈ X′} (8.5)

= β(x) +
∑

y∈X

ftc(β, u; y)
∫

A(y)

Pyaxwy(da)1{x ∈ X′}

= β(x) +
∑

y∈X

ftc(β, u; y)MPyx(w). (8.6)

Hence, by Lemma 7.1 (i), ftc(β,w;x) ≤ ftc(β, u;x) for all x ∈ X. This
implies by the definition of w that ftc(β,w) ≤ ftc(β, u), so that the set of
stationary policies is weakly complete.

(ii) Follows from Lemma 7.1 (ii) and (8.6).

Next we present some examples that show that the stationary policies
are not complete in the general transient case.
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Example 8.1 (Incompleteness of stationary policies)
Consider the following MDP:
• State space: X = {1, 2}.
• Actions: A(1) = {a}; A(2) = {a, b}.
• Transition probabilities: P1,a,1 = P2,a,1 = 1, P2,b,2 = 1.
Let M = {1}; we consider the occupation measure corresponding to the
total time until hitting M.

1 2

a

a b

Figure 8.1 Incompleteness of stationary policies (Example 8.1)

Let g(p) be the stationary policy that chooses action b (at state 2) with
probability p. We shall take 2 as initial state and consider the occupation
measure until state 1 is reached. Then

ftc(2, g(p); 2) =
{ ∞ if 0 ≤ p < 1,

0 if p = 1.

However, the Markov policy u(p) that uses action a at time 1 with proba-
bility p, and then always uses actions b at state 2, achieves ftc(2, u(p); 2) =
1 − p, 0 ≤ p ≤ 1. To conclude, the values of ftc(2, u; 2) achievable by the
stationary policies are two isolated points: {0,∞}, whereas those achievable
by the Markov policy u(p) are the whole interval [0,∞].

In the above example, the MDP is not transient: under action b we
remain forever at state b. Next, we present an example due to Feinberg
and Sonin (1996, Section 4), where the MDP is transient and the stationary
policies are not complete.

Example 8.2 (Incompleteness of stationary policies, a transient MDP)
Consider the following MDP:
• State space: X = {−1, 0, 1, 2, . . .}; let X′ = {0, 1, 2, . . .}.
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• Actions: A = {f, b} = {forward, backword}; A(0) = {f},A(x) = A for
x > 0.

• Transitions: Px,f,x+1 = γx+1,Px,f,x−1 = γx, x = 1, 2, . . .; the transition
probabilities to all other states in X′ are zero.

Let (dx)∞x=1 be a sequence of positive integers. d defines a policy u in the
following way. If a state x = 1, 2, . . . is visited for the mth time, then policy
u selects b if m ≤ dx, and selects f if m > dx. We consider 0 as the initial
state.

Feinberg and Sonin chose dx = 2x−1, x = 1, 2, . . .. The γx, x = 1, 2, . . .
were chosen to satisfy the following constraints:
(i) Pu

0 (T = ∞) > 0.9,
(ii) γx ≤ γx+1,
(iii) γx < 1.

For these values, they show that

ftc(0, u;x) ≥ 0.9(32x−1 + 1) > 5

for x ≥ 3. If a stationary policy w achieving the same occupation measures
as u existed, it would necessarily satisfy (8.4). However, Feinberg and Sonin
show that for such w, ftc(0, w; x) ≤ 5. We conclude that the stationary
policies are not complete.

That this MDP is indeed transient follows from the fact that for each
policy u and for each state x, the probability to return to state x (before
being absorbed in state −1) is bounded above by γx. Hence,

ftc(y, u;x) ≤ 1
1− γx

< ∞

for all y ∈ X and for all x = 1, 2, . . .. Finally, for x = 0, we have ftc(y, u; 0) ≤
ftc(y, u; 1).

8.2 Continuity of occupation measures

Definition 8.2 (µ-continuity of policies)
Consider some U ⊂ UM and Q : U ×X → IR. Q is said to be µ-continuous
on U if for any converging sequence u(n) ∈ U with limit u ∈ U

lim
n→∞

∑

y∈X

|Q(u(n), y)−Q(u, y)|µ(y) = 0.

(The convergence of policies is understood with respect to the topology
over UM defined in Section 6.3.)

Definition 8.3 (Lower semi-continuity)
Consider a class of policies U and some Borel space Y . Consider a measured-
value function f : U → M(Y ), where f(u;Y) stands for the measure it
assigns to a Borel set Y ⊂ Y for u ∈ U . It is said to be weakly lower
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semi-continuous (l.s.c.) on U if for any u ∈ U and any sequence un ∈ U
that weakly converges to u, we have

lim
n→∞

〈f(un), c〉 ≥ 〈 lim
n→∞

f(un), c〉,

for any non-negative function c : Y → IR which is lower semi-continuous.

Lemma 8.1 (Continuity properties of ftc)
(i) For transient MDPs, the measures ftc(β, ·) defined on K are weakly l.s.c.
over UM . The state occupation measures ftc(β, u; ·) are weakly continuous
over UM . The above statements also hold for the policies M(UM ).
(ii) Consider an MDP with a uniform Lyapunov function. For any continu-
ous function c′ : K → IR satisfying |c′| ≤ ν +1, 〈ftc(β, ·), c′〉 are continuous
over UM (thus the measures ftc(β, ·), defined over K, are weakly continuous
over UM ). The above statement holds also for the policies M(UM ).
(iii) Consider a contracting MDP. Then the state occupation measures
ftc(β, ·) (defined on X) are µ-continuous over UM .

Proof. (i) Assume that un → u, where un, u ∈ UM (i.e., for any x ∈ X
and t, un

t (x) converges weakly to ut(x)). Then MPxy(un
1 ) → MPxy(u1)

for all x, y ∈ X. By the bounded convergence theorem, this implies that∑
x β(x)Pxy(un

1 ) → ∑
x β(x)Pxy(u1) for all y ∈ X′. Moreover, the m step

probabilities also converge, i.e., for all integers m:

lim
n→∞

pun

β (m; y) = lim
n→∞

∑

x∈X

β(x)[MP (un
1 )MP (un

2 ) · · ·MP (un
m−1)]xy

=
∑

x∈X

β(x)[MP (u1)MP (u2) · · ·MP (um−1)]xy = pu
β(m; y), (8.7)

for all y ∈ X. (8.7) is established by induction. It holds for m = 1. Assume it
holds for arbitrary m. Consider the probability measures over X: ν(n) :=
pun

β (m; ·) and ν := pu
β(m; ·), and let qy(n) and qy be the y column of

MP (un
m) and MP (um), respectively. Then,

pun

β (m + 1; y) =
∫

X′ qy(n)dν(n), pu
β(m + 1; y) =

∫

X′ qydν.

The entries of qy are bounded by 1, so by applying the generalized domi-
nance convergence theorem (Royden, 1988, Proposition 11.18), we get

pun

β (m + 1; y) → pu
β(m + 1; y),

from which (8.7) follows.
Denote

Zn(m, y) :=
∫

A(y)

pun

β (m; y, da)c′(y, a),

Z(m, y) :=
∫

A(y)

pu
β(m; y, da)c′(y, a),
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where c′ is an arbitrary non-negative l.s.c. function. Since pun

β (m) converges
weakly to pu

β(m) (from (8.7)) for all m and x, it follows that

lim
n→∞

Zn(m, y) ≥ Z(m, y),

see Doob (1994, p. 133) (in the related theorem in Doob, the cost c′ is as-
sumed to be bounded; however, it can easily be seen that only boundedness
from below is used in the proof of that theorem). Applying Fatou’s Lemma
(Royden, 1988, Proposition 11.17) with respect to the (infinite) measure
over IN×X generated by µn(m, y) = µ(m, y) = 1{y ∈ X′} for all m and y,
we obtain

lim
n→∞

〈ftc(β, un), c′〉 = lim
n→∞

∑
m,y

Zn(m, y) ≥
∑
m,y

Z(m, y) = 〈ftc(β, u), c′〉,

which concludes the proof of the first statement in (i). (The equalities
above follow from the fact that the integrand is non-negative, see Tonelli’s
Theorem in Royden, 1988, Theorem 12.20.) This implies all the statements
in (i) concerning the lower semi-continuity in UM .

The lower semi-continuity on M(UM ) follows from that on UM , see
Doob (1994, p. 133).
(ii) Due to Theorem 7.4, we can conclude that Ctc(β, u) is continuous
over UM (property N5′ there). One can easily show that for any policy
u, Ctc(β, u) = 〈ftc(β, u), c〉 (for a detailed proof of this, see Theorem 8.3).
Hence the statements are established for the Markov policies.

Let γn be a sequence in M1(UM ) converging weakly to some γ. Let γ̂n and
γ̂ be the corresponding policies in M(UM ). Then the continuity on M(UM )
follows since ftc(β, ·) are bounded and continuous functions on UM , so that
the weak convergence of γn implies (Billingsley, 1968, Theorem 2.1):

lim
n→∞

ftc(β, γ̂n)

= lim
n→∞

〈γn, ftc(β, ·)〉 = 〈 lim
n→∞

γn, ftc(β, ·)〉 = ftc(β, γ̂).

(iii) Contracting MDPs have a uniform Lyapunov function with the same
µ, and for which ν can be chosen proportional to µ (Theorem 7.5). This
implies by (ii) that

lim
n→∞

∑

y∈X

ftc(β, un; y)µ(y) =
∑

y∈X

ftc(β, u; y)µ(y).

The result now follows from Scheffé’s Lemma, see e.g., Williams (1992,
p. 55).

As an example where the occupation measures are l.s.c. in the policies,
and not continuous, consider the following example.

Example 8.3 Consider X to be the natural numbers, let M = {0} and
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assume that A(x) = {a, b} for all x. For any state x > 1, action a results in
a transition to state x + 1, and action b results in a transition to state 1.
From state 1 we leave the set X′ in one step. Assume that we start at some
state y > 1. For any n, a policy un that chooses action b for the first time
at some instant larger than n achieves ftc(β, un; 1) = 1. But the policy u
that is obtained as the weak limit of un, i.e., the policy that always chooses
action a, achieves ftc(β, u; 1) = 0.

b

b

b

a a a

0 1 2 3
b

Figure 8.2 Discontinuity of ftc (Example 8.3)

Note that the condition

lim
n→∞

sup
u∈UM

∞∑
t=n

pu
β(t;X) = 0 (8.8)

is not satisfied. Condition (8.8) would hold if the MDP had a uniform
Lyapunov function since

∞∑
t=n

pu
β(t;X) ≤

∞∑
t=n

Eu
β (1 + ν(Xt, At))1{T > t} ≤ Eu

βM̂(Xn)1{T > n}

(see definitions in Section 7.4), which tends to zero as n →∞, uniformly in
u. This follows from property N4 in Theorem 7.4. In our example we have,
however,

∑∞
t=n pun

β (t; 1) = 1. Thus

lim
n→∞

sup
u∈UM

∞∑
t=n

pu
β(t;X) ≥ 1.
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In the above example, the MDP is transient. However, continuity may fail
also for absorbing MDPs. We illustrate this in the following counter exam-
ple, due to Fisher and Ross (1968), which was further studied in Spieksma
(1990).
Example 8.4 (Fisher and Ross’ example)
Consider the following (unichain) MDP:
• State space: X = {0, 1, 1′, 2, 2′, 3, 3′, . . .}.
• Actions: a single (trivial) action at states 0 and i′, actions a and b at

state i.
• Transition probabilities:

P0,a,i = P0,a,i′ =
3
2

(
1
4

)i

, i > 0,

Pi,a,0 = 1− Pi,a,i′ =
(

1
2

)i

,

Pi,b,0 = 1− Pi,b,i+1 =
1
2
,

Pi′,a,0 = 1− Pi′,a,i′ =
(

1
2

)i

.

Let u(n) be the stationary policy that chooses action b for i ≤ N , and
action a for i > N . Let u be the policy that chooses action b for all i.

2−i

0.5

i i + 1
action a

action b

3
2
4−i

0
3
2
4−i

2−i
i′

1− 2−i

1− 2−i

0.5

Figure 8.3 Discontinuity of ftc, absorbing MDP (Example 8.4)

Fisher and Ross computed the total expected time between two consec-
utive visits of the state 0:

E
u(n)
0 T = ftc(0, u(n);X′) = 5−

n−1∑

j=1

3
2

(
1
4

)j (
1
2

)n−j−1

− 3
∞∑

j=n

(
1
4

)j

.
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On the other hand, Eu
0 T = 7/2 (this follows (11.17) in Spieksma (1990)).

Hence ftc is discontinuous over the stationary policies in this example:

5 = lim
n→∞

E
u(n)
0 T > Eu

0 T =
3
2
.

Lemma 8.2 (Splitting in a state)
Choose w ∈ US and a state y. Define wa ∈ US to be the policy that always
chooses action a when in state y, and otherwise behaves exactly like w.
Then, there exists a probability measure γ over A(y) such that

ftc(β,w) =
∫

A(y)

γ(da)ftc(β,wa).

Proof. Define the stopping times T (y) def= infr>1{Xr = y}, y ∈ X, with the
convention that inf{∅} = ∞. Define the probability of ever reaching state
y from state x before hitting M:

p(u;x, y) := Pu
x (T (y) < TM).

Define γ in the following way: for any A ⊂ A(y),

γ(A) def=
∫

A

wy(da)(1− p(wa; y, y))
1− p(w; y, y)

.

It follows from standard properties of Markov chains (see Kemeney et
al., 1976, Corollary 4-20) that

ftc(x,w; y) = 1{x = y}+ p(w; x, y)ftc(y, w; y).

By setting x = y, we get

ftc(y, w; y) =
1

1− p(w; y, y)
=

∫
wy(da)

1− p(w; y, y)

=
∫

wy(da)(1− p(wa; y, y))
1− p(w; y, y)

ftc(y, wa; y) =
∫

A(y)

γ(da)ftc(y, wa; y),

which establishes the proof for the case x = y. For other x,

ftc(x,w; y) = p(w; x, y)ftc(y, w; y)

=
∫

A(y)

γ(da)p(w; x, y)ftc(y, wa; y)

=
∫

A(y)

γ(da)ftc(x,wa; y).
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8.3 More properties of MDPs∗

Lemma 8.3 (Boundedness of the life-time)
(i) For X′-transient MDPs, supu∈U ftc(β, u; y) < ∞ for all y ∈ X.
(ii) For an MDP absorbing to M = X \X′, supu∈U ftc(β, u;X) < ∞.
(iii) For a contracting MDP, supu∈U

∑
y∈X ftc(β, u; y)µ(y) < ∞, and

ftc(β, u; ·) are integrable w.r.t. µ uniformly over all policies.

Proof. (i) and (ii) follow from a result on positive dynamic programming,
see p. 108 in Dynkin and Yushkevich (1979). It states the following: given
a non-negative cost c, for any ε > 0, there exists some policy w such that

sup
u∈U

Ctc(x, u) < Ctc(x,w) + ε, ∀x ∈ X. (8.9)

Hence
sup
u∈U

Ctc(β, u) < Ctc(β, w) + ε. (8.10)

By choosing c(x, a) = 1{x = y}, we obtain (i). By considering c(x, a) = 1,
we obtain (ii). The first part of (iii) was established in (7.42), and can be
obtained alternatively by (8.10) with c(x, a) = µ(x) (see Spieksma, 1990,
Lemma 5.3(ii) and its proof). For the uniform integrability, we shall re-
strict ourselves, without loss of generality, to Markov policies. The uniform
integrability can be obtained from the continuity of ftc(β, u), Lemma 8.1
(iii) and Lemma 17.4(ii) from the appendix.

The statements of the above theorem also hold for mixed policies due to
Theorem 6.1. It is shown in Theorem 13.7 in Hordijk (1977, p. 122) that
a relation similar to (8.9) holds with w ∈ US : for any ε > 0 there exists
w ∈ US such that supu∈U Ctc(x, u)(1 − ε) ≤ Ctc(x,w), ∀x ∈ X, which
implies that

sup
u∈U

Ctc(β, u)(1− ε) < Ctc(β, w). (8.11)

Theorem 6.1 and (8.11) imply the following:
Corollary 8.1 (Sufficient conditions for transient and absorbing MDPs)
A sufficient condition for an MDP to be X′-transient (resp., X′-absorbing)
is that every stationary policy is X′-transient (resp., X′-absorbing).

8.4 Characterization of the sets of occupation measure

Theorem 8.2 (Characterization of the sets of occupation measure)
(i) For transient MDPs, L(β) is convex, and

minQtc(β) = LUS (β) ≺ LUM (β) = L(β) ⊂ Qtc(β).

(ii) For MDPs with uniform Lyapunov functions, LUS
(β) is convex and

compact, and satisfies

LU (β) = L(β) = LUS (β) = coLUD (β) = Qb
tc(β) = Qν

tc(β) = minQtc(β).
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(iii) For contracting MDPs, LUS
(β) is convex and compact, and satisfies

LU (β) = L(β) = LUS
(β) = coLUD

(β) = Qµ
tc(β) = minQtc(β).

Proof. (i) Theorem 6.1 implies that L(β) = LUM (β) is convex. The weak
completeness of LUS

(β) was established in Theorem 8.1. That L(β) ⊂
Qtc(β) follows from (8.5). Finally, we show that LUS (β) = minQtc(β).
For any ρ ∈ Qtc(β), define w(ρ) to be any stationary policy such that
wy(A) = ρ(y,A)[ρ(y, A(y))]−1 whenever the denominator is non-zero. We
have

ρ(x, A(x)) = β(x) +
∫

K
ρ(dκ)Pκx1{x /∈M}

= β(x) +
∑

y

ρ(y, A(y))
∫

A(y)

Pyax1{x /∈M}wy(da)

= β(x) +
∑

y

ρ(y, A(y))MPyx(w). (8.12)

By Lemma 7.1 (i), we conclude that ftc(β,w(ρ); x) ≤ ρ(x, A(x)) for all
x ∈ X. By the definition of w(ρ), it follows that ftc(β, w(ρ)) ≤ ρ.

(ii) That L(β) = LUS (β) follows from Theorem 8.1 (ii); hence LUS (β)
is convex. The compactness of LUM (β) follows since by Section 6.3 and
Lemma 8.1 it is the image of the compact set UM under the continuous
function ftc(β, ·). We show that LUS

(β) is equal to the closed convex hull
of LUD

(β) (and thus to LU (β)). Since it is compact, by the Krein-Milman
theorem (see Krein and Milman, 1940, or Dunford and Schwartz, 1988,
p. 440), it is the closed convex hull of its extreme points. Choose some
extreme point ρ of LUS

(β). Define w(ρ) to be again a stationary policy
such that wy(A) = ρ(y,A)[ρ(y, A(y))]−1 whenever the denominator is non-
zero. When it is zero, we let wy be concentrated on a(y), where a(y) is
some arbitrary action in A(y). It follows from the proof of Theorem 8.1
that ftc(β, w) = ρ. Assume that w /∈ UD. Then there exists some y ∈ X
such that ρ(y, A(y)) > 0. But then by Lemma 8.2, ftc(β,w) is not an
extreme point of LUS

(β), as it can be expressed as a convex combination
of the distinct points ftc(β, wa) (where wa are given in Lemma 8.2).

For all f ∈ L(β), 〈f, ν〉 < ∞ and f is a finite measure. Indeed, for an
MDP with a uniform Lyapunov function,

〈f, ν〉 = Eu
β

∞∑
n=1

(
1 + ν(Xn, An)

)
1{T > n} < ∞;

the last inequality follows from Theorem 7.4 (see property N2 there). The
first equality follows easily from the monotone convergence theorem (for
a precise proof, see Theorem 8.3 part (i)). Since by the part (i) of our
theorem, L(β) ⊂ Qtc(β), we conclude that L(β) ⊂ Qν

tc(β) ⊂ Qb
tc(β). It

remains to show that Qb
tc(β) ⊂ LUS (β).
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Let ρ ∈ Qb
tc(β), and let w be the stationary policy as in the proof of (i).

Since [MPyx(w)]n converges to 0 pointwise, it follows from the bounded
convergence theorem (e.g., Royden, 1988, Proposition 11.18) that

lim
n→∞

ρMPn(w) = 0.

By combining (8.12) with Lemma 7.1 (i), we conclude that ρ = ftc(β,w) ∈
Qb

tc(β). The rest follows from part (i).
(iii) Since contracting MDPs are a special case of MDPs with uniform Lya-
punov functions (Theorem 7.5), all the statements in (ii) hold. According
to this theorem, we may choose ν to be proportional to µ. This implies
that Qµ

tc(β) ⊂ LUS
(β), which concludes the proof.

Note that the closure of the convex hull in Theorem 8.2 (ii) and (iii) is
taken in the weak convergence topology.

8.5 Relation between cost and occupation measure

We have the following properties of the total costs:

Theorem 8.3 (Linear representation and boundedness of the cost)
For any u ∈ U and u ∈ M(UM ),

Ctc(β, u) = 〈ftc(β, u), c〉 :=
∫

K
c(κ)ftc(β, u; dκ) (8.13)

holds if
(i) the immediate costs are non-negative, or
(ii) the MDP has a uniform Lyapunov function, and the immediate costs
are ν-bounded from below.
If the MDP is contracting, then the finite and infinite horizon total costs
are uniformly µ-bounded over all policies:

||Cn
tc(·, u)||µ ≤

b

1− ξ
||Ctc(·, u)||µ ≤

b

1− ξ
. (8.14)

(Ctc(·, u) is the vector of total cost corresponding to all initial states, and
b is the µ-bound on the immediate costs.)

Proof. (i)

Ctc(β, u) =
∞∑

t=1

Eu
βc(Xt, At) =

∞∑
t=1

∫

K
pu

β(t; dκ)c(κ)

=
∫

K

∞∑
t=1

pu
β(t; dκ)c(κ) = 〈ftc(β, u), c〉,

where the change between integration and summation follows since the
integrand is non-negative (see Royden, 1988, Corollary 11.14).
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(ii) For the finite horizon cost, we have by Fubini’s Theorem (Roy-
den, 1988, Theorem 12.19),

Ct
tc(β, u) = 〈

t∑
s=1

pu
β(s), c〉

= 〈
t∑

s=1

pu
β(s), ν + c〉 − 〈

t∑
s=1

pu
β(s), ν〉.

By part (i) of the theorem, this difference converges to

〈ftc(β, u), ν + c〉 − 〈ftc(β, u), ν〉 = 〈ftc(β, u), c〉;
the above difference is indeed well defined since 〈ftc(β, u), ν〉 ≤ 〈β, µ〉 < ∞
by property M2 of the uniform Lyapunov functions.

(8.14) follows from

||Ctc(u)||µ = ||〈ftc(·, u), c〉||µ ≤ b ||ftc(·, u)||µ ≤
b

1− ξ
, (8.15)

and
∣∣∣∣Ct

tc(·, u)
∣∣∣∣

µ
=

∣∣∣∣〈f t
tc(·, u), c〉

∣∣∣∣
µ
≤ b ||ftc(·, u)||µ ≤

b

1− ξ
. (8.16)

Lemma 8.4 (The transient case: lower semi-continuity of the costs)
Consider the transient framework, (Definition 7.1 with non-negative costs).
Then C(β, ·) (and Dk(β, ·), k = 1, . . . , K) are lower semi-continuous on UM

and on M(UM ).

Proof. Follows directly from Lemma 8.1 (i).

Lemma 8.5 (Uniform convergence and continuity of the costs)
Assume that the MDP has a uniform Lyapunov function and the immediate
costs are ν-bounded. Then
(i)Ct

tc(β, u) converges to Ctc(β, u) uniformly over U and M(UM ) as t →∞.
In particular, if the MDP is contracting then for any u,

|Ctc(β, u)− Ct
tc(β, u)| ≤ b〈β, µ〉ξt

1− ξ
.

(ii) Ctc(β, u) is continuous on UM and on M(UM ).
Assume that the the immediate costs are only ν-bounded below. Then

(iii) C(β, ·) (and Dk(β, ·), k = 1, . . . , K) are lower semi-continuous on UM

and on M(UM ).

Proof. (i) For any policy u,

|Ctc(β, u)− Ct
tc(β, u)|
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≤
∞∑

s=t+1

Eu
βν(Xt, At)1{T > s}

≤ Eu
βM̂(Xt+1)1{T > t + 1}. (8.17)

(ν and M̂ are given in Definition 7.5 and in Section 7.4, respectively.) The
right-hand side of (8.17) converges to zero uniformly in u ∈ UM due to
property N4 (i) and Theorem 7.4. The generalization to any policy follows
from Theorem 6.1.

For contracting MDPs, we have for any policy u,

|Ctc(β, u)− Ct
tc(β, u)|

≤
∞∑

s=t+1

Eu
β |c(Xt, At)|1{T > s} =

∞∑
s=t+1

∫

K
pu

β(s; dκ)|c(κ)|

≤ b

∞∑
s=t+1

∑

y∈X′
pu

β(s; y)µ(y) ≤ b〈β, µ〉ξt

1− ξ
.

The last inequality follows from Lemma 7.13.
(ii) The continuity follows by combining Theorem 8.3 with Lemma 8.1 (ii).
(For the Markov policies, this is established in Theorem 7.4, by applying
N5′.)
(iii) This is obtained by using the linear representation of the cost (Theorem
8.3) and by decomposing the immediate cost into the negative and positive
parts. Then Lemmas 8.4 and 8.5(ii) are used for the positive and negative
parts, respectively.

8.6 Dominating classes of policies

Theorem 8.4 (Dominating policies)
(i) Consider the transient framework, (Definition 7.1), together with non-
negative costs. Then both US and U are dominating classes of policies.
(ii) Consider an MDP with a uniform Lyapunov function and immediate
costs that are ν-bounded from below. Then any complete class of policies
(Definition 8.1) is a dominating class of policies.
(iii) Under the assumptions of either (i) or (ii), if COP is feasible, then
there exist optimal policies in US and in U .

Proof. (i) follows from the linear representation of the cost (Theorem 8.3)
as well as the weak completeness of the set of stationary policies (Theorem
8.1). We delay the proof for U to the next chapter (Corollary 9.1).
(ii) follows from similar arguments.
(iii) Recall that the sets US of stationary policies and U are compact. Under
the assumptions of (i) or (ii), the costs are lower semi-continuous on US

and on U (Lemmas 8.5, 8.4). This implies that the feasible set of stationary
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policies ΠV := {u : u ∈ US , Dtc(β, u) ≤ V } is compact, since it is obtained
as the intersection of the compact set US and the inverse map of the closed
sets (−∞, Vk]. Finally, by the lower semi-continuity of Ctc(β, u) on ΠV , we
conclude that Ctc(β, u) achieves its minimum on ΠV (β, u), i.e., there exists
an optimal stationary policy for COP. Similarly, it follows that there exists
an optimal policy within U .

8.7 Equivalent Linear Program

We show below that COP is equivalent to an LP with an infinite set
of decision variables and a countable set of constraints. Such equivalence
was obtained for the total cost criterion for finite states and actions by
Kallenberg (1983). The LP formulation constitutes an important method
for computing stationary optimal policies.

Consider the following LP that will correspond to the transient case:
LP1(β) : Find the infimum C∗ of C(ρ) := 〈ρ, c〉 subject to:

Dk(ρ) := 〈ρ, dk〉 ≤ Vk, k = 1, . . . ,K, ρ ∈ Qtc(β) (8.18)

where Qtc(β) was defined in (8.2).
LPb

1(β) for the case of uniform Lyapunov function is defined similarly,
with the set Qb

tc(β) replacing the set Qtc.
We show that there is a one to one correspondence between feasible (and

optimal) solutions to the LP, and the feasible (and optimal) solutions to
COP.
Theorem 8.5 (Equivalence between COP and LP, the transient case)
Consider a transient MDP and non-negative immediate costs. Then
(i) C∗ = Ctc(β).
(ii) For any u ∈ U , ρ(u) := ftc(β, u) ∈ Qtc(β), Ctc(β, u) = C(ρ(u))
and Dtc(β, u) = D(ρ(u)); conversely, for any ρ ∈ Qtc(β), the station-
ary policy w(ρ) (defined above (8.12)) satisfies Ctc(β,w(ρ)) ≤ C(ρ) and
Dtc(β,w(ρ)) ≤ D(ρ).
(iii) LP1(β) is feasible if and only if COP is. Assume that COP is feasi-
ble. Then there exists an optimal solution ρ∗ for LP1(β), and the stationary
policy w(ρ∗) is optimal for COP.

Proof. We start from (ii). The first claim follows from (8.5). The claims on
the costs follow from Theorem 8.3 and Theorem 8.1.
(i) and (iii) now follow from (ii) and Theorem 8.4.

For the case of a uniform Lyapunov function, we similarly get
Theorem 8.6 (Equivalence between COP and LP for MDPs with a uni-
form Lyapunov function)
Assume that the MDP has a uniform Lyapunov function and that the im-
mediate costs are ν-bounded from below. Then
(i) C∗ = Ctc(β).
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(ii) For any u ∈ U , ρ(u) := ftc(β, u) ∈ Qb
tc(β), Ctc(β, u) = C(ρ(u))

and Dtc(β, u) = D(ρ(u)); conversely, for any ρ ∈ Qb
tc(β) the station-

ary policy w(ρ) (defined above (8.12) satisfies Ctc(β,w(ρ)) = C(ρ) and
Dtc(β,w(ρ)) = D(ρ).
(iii) LPb

1(β) is feasible if and only if COP is. Assume that COP is feasi-
ble. Then there exists an optimal solution ρ∗ for LPb

1(β) and the stationary
policy w(ρ∗) is optimal for COP.

8.8 The dual program

Next, we present the formal dual program DP for the LP above. The deci-
sion variables are φ : X → IR and the K-dimensional non-negative vectors
λ ∈ IRK

+ .

DP1(β) : Find Θ∗ := supφ,λ 〈β, φ〉 − 〈λ, V 〉 subject to

φ(x) ≤ c(x, a) + 〈λ, d(x, a)〉+
∑

y∈X

Pxayφ(y), x ∈ X, a ∈ A(x).

We shall show in the next chapter that when choosing the decision variables
φ to be in the appropriate linear space, then there is no duality gap, and

Θ∗ = C∗ = Ctc(β), (8.19)

for both transient MDPs as well as for MDPs with uniform Lyapunov
functions. In particular, for the case of a uniform Lyapunov function with
ν-bounded costs, we shall restrict ourselves to φ ∈ Fµ; and for the transient
framework with non-negative immediate costs, a possible choice is for φ to
vanish outside some compact set.



CHAPTER 9

The total cost: Dynamic and Linear
Programming

In the previous chapter we obtained an LP that was seen to be equivalent
to COP; it yields the same value, and can be used to compute an opti-
mal stationary policy for COP. That LP was the starting point for the
analysis of constrained MDP by Derman and Veinott (1972). DP1(β), the
dual of that LP, was obtained directly by Kallenberg (1983) from dynamic
programming arguments (for the finite state and action spaces without
constraints).

We follow in this chapter a similar approach to obtain DP1(β), using
dynamic programming arguments and Lagrangian techniques. Then, by
using standard saddle-point theorems, we show that there is no duality gap
between DP1(β) and LP1(β). The derivation of DP1(β) is independent
of the geometric description of achievable occupation measures developed
in the previous chapter.

In obtaining the Linear Program for the general transient case, we estab-
lish a calculation approach for the value function of COP based on finite
state approximation. Unlike previous approaches for state approximations
for COP (most of which were derived for the contracting framework, see
Chapter 16 and Altman, 1993, 1994), we do not need here any Slater-type
condition (see (9.32) below).

Some analysis of constrained MDPs was presented in the past by consid-
ering directly the Lagrangian formulation for a single constraint, see Beut-
ler and Ross (1985, 1986), Sennott (1991, 1993). The use of Lagrangian
techniques for several constraints is quite recent (see e.g., Arapostathis et
al., 1993, Piunovskiy, 1993, 1994, 1995, 1996, 1997a, 1997b, and Altman
and Spieksma, 1995), and has not been much exploited. Not only does the
Lagrangian approach enable one to derive different linear programming for-
mulations (as we illustrate in this chapter), but also to obtain many results
on asymptotic behavior of constrained MDPs (this is done in Chapters
13-16).

We finally present a different LP approach for computing the optimal
values and optimal mixed strategies. Although in practice this alternative
approach has a numerical complexity which is too high (in the case of finite
states and actions), it has special features that will make it very useful in
the study of sensitivity analysis, see e.g., Tidball and Altman (1996).
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9.1 Non-constrained control: Dynamic and Linear Programming

We describe in this section the dynamic programming formulation for solv-
ing unconstrained MDPs. This approach has been developed starting from
Shapely (1953), in the context of Markov games, which generalize MDPs
to a setting with several controllers. For more detailed presentation, algo-
rithmic procedures and references, see e.g., Puterman (1994).

Lemma 9.1 (Uniform optimality and optimality for a given β)
Fix an initial distribution β. Assume either (i) that the cost is non-negative,
or (ii) that the MDP has a uniform Lyapunov function, the immediate costs
are ν-bounded from below, and 〈β, ν〉 < ∞.
If u is uniformly optimal (see Definition 2.1), then it minimizes Ctc(β, u).

Proof. Let u be uniformly optimal. For any policy v,

Ctc(β, u) =
∑

x∈X

β(x)Ctc(x, u)

≤
∑

x∈X

β(x)Ctc(x, v) = Ctc(β, v),

which establishes the proof. The equalities follow by changing the order of
expectations, since, by Theorem 8.3, we have:

Ctc(β, v) =
∑

x∈X

β(x)〈ftc(x, v), c〉 = 〈
∑

x∈X

β(x)ftc(x, v), c〉.

Under (i), this change is justified since the integrands are non-negative (see
Royden, 1988, Corollary 11.14). For case (ii), it follows since

Ctc(β, v) =
∑

x∈X

β(x) (〈ftc(x, v), ν + c〉 − 〈ftc(x, v), ν〉)

= 〈ftc(β, v), ν + c〉 − 〈ftc(β, v), ν〉
= 〈ftc(β, v), c〉.

The integrands are again non-negative and the integrals are well defined
(in particular, 〈ftc(β, v), ν〉 ≤ 〈β, µ〉, see Lemma 7.5 (ii)).

Introduce the dynamic programming inequality:

φ(x) ≥ min
a∈A(x)


c(x, a) +

∑

y∈X′
Pxayφ(y)


 , x ∈ X. (9.1)

Theorem 9.1 (Dynamic programming: the transient case)
Consider the transient framework (Definition 7.1 and non-negative imme-
diate costs). Then
(i) The optimal value Ctc(x), x ∈ X, is the smallest (componentwise) non-
negative solution of (9.1).
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(ii) For any state x, let A(x) be the set of actions that achieve the mini-
mum of [c(x, a) +

∑
y∈X′ PxayCtc(y)]. A stationary policy g is uniformly

optimal (see Definition 2.1) if it chooses actions within A(x), x ∈ X w.p.1
(i.e., for which g(A(x)) = 1 for all x ∈ X). If, moreover, for all x ∈ X

lim
t→∞

Eu
xφ(Xt+1)1{T > t + 1} = 0, ∀u ∈ US (9.2)

holds with φ = Ctc, then also the converse holds.
Fix some initial distribution β. Let v be a stationary policy that does not
choose among A(x) at some x for which ftc(β, v;x) > 0. Assume that (9.2)
holds for all x in the support of β. Then Ctc(β, v) > Ctc(β).
(iii) The optimal value Ctc(x), x ∈ X, achieves (9.1) with strict equality.

Proof. (i) We consider any non-negative solution φ of (9.1) and let w be
a stationary policy that chooses at state x an action that achieves the
minimum of [c(x, a) +

∑
y∈X′ Pxayφ(y)]. We iterate (9.1) and obtain:

φ(x) ≥ c(x,w) +
∑

y∈X′
Pxwyφ(y) = c(x,w) + Ew

x φ(X2)1{T > 2}

≥ c(x,w) + Ew
x

[
c(X2, A2)1{T > 2}+ Ew

X2
φ(X3)1{T > 3}]

= c(x,w) + Ew
x c(X2, A2)1{T > 2}+ Ew

x φ(X3)1{T > 3}

≥ . . . ≥
n∑

t=1

Ew
x c(Xt, At)1{T > t}+ Ew

x φ(Xn+1)1{T > n + 1}

≥ Cn
tc(x,w) (9.3)

where the last inequality follows from the fact that φ is non-negative. Since
(9.3) holds for all integers n, we conclude that φ(x) ≥ Ctc(x).

On the other hand,

Ctc(x) = inf
u∈UM

Ctc(x, u) = inf
u∈UM

[
c(x, u1) + Eu

x

∞∑
t=2

c(Xt, At)1{T > t}
]

= inf
u∈UM


c(x, u1) +

∑

y∈X′
Pxu1yCtc(y)




= min
a∈A(x)


c(x, a) +

∑

y∈X′
PxayCtc(y)


 . (9.4)

This establishes (i) and (iii).
If g is a policy as in (ii), then it follows by applying the first part of the

proof of (i), with φ = Ctc and w = g that Ctc(x) ≥ Ctc(x, g), and hence
g is uniformly optimal. To obtain the converse, assume that u ∈ US does
not satisfy the condition in the theorem (which g satisfies), i.e., for some
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x ∈ X and δ > 0,

c(x, u) +
∑

y∈X′
PxuyCtc(y) = min

a∈A(x)


c(x, a) +

∑

y∈X′
PxayCtc(y)


 + δ.

Since by (iii), (9.1) is obtained with equality for φ = Ctc, we have

Ctc(x) + δ = c(x, u) +
∑

y∈X′
PxuyCtc(y)

= c(x, u) + Eu
x [Ctc(X2)1{T > 2}]

≤ c(x, u) + Eu
x [c(X2, A2)1{T > 2}+ Eu

X2
Ctc(X3)1{T > 3}]

≤ . . . ≤
n∑

t=1

Eu
xc(Xt, At)1{T > t}+ Eu

xCtc(Xn+1)1{T > n + 1}.

Taking the limit as n → ∞ (and using part (i)), we obtain Ctc(x, u) ≥
Ctc(x) + δ. Hence u is not uniformly optimal.

The statements concerning β is obtained by similar arguments. This
establishes (ii).

In the following example we show that, indeed, (9.1) may have several
solutions larger than the value function.

Example 9.1 (On the necessity of the restrictions on φ)
Consider a discrete time queueing model. At each time period t, there
may be an arrival of a customer with probability λ, or a departure from
the queue with probability µ′. We assume that µ′ > λ. The arrivals and
departures in different time periods are independent. The state space is the
set of integers, and a state x has the meaning that there are x customers in
the queue. There is no control here (thus, we may assume that A(x) = {a}
contains a dummy control action a at all states). We wish to compute
M(x):= the expected time it takes the queue to empty (i.e., to reach state
0) starting from state x. In other words, we wish to compute the total
expected cost with respect to the immediate cost c(x) = c(x, a) = 1 until
the set M = {0} is reached. The solution satisfies

M(0) = 1 + λM(1),
M(x) = 1 + µ′M(x− 1) + (1− µ′ − λ)M(x) + λM(x + 1) (9.5)

for x > 0. In particular, it satisfies (9.1). (9.5) is a difference equation whose
solution φ(x) is given by

φ(x) = const ·
[(

µ′

λ

)x

− 1
]

+
x

µ′ − λ
, x > 0, (9.6)
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and φ(0) = 1 + λφ(1). The expected time to reach 0 is

M(x) =





x

µ′ − λ
for x > 0,

µ′

µ′ − λ
for x = 0.

But any other constant in (9.6) yields another solution of (9.1), so M(x) is
not the unique solution, nor the smallest one. It is, however, the smallest
non-negative solution of (9.6) (and of (9.1)).

Theorem 9.2 (Dynamic programming: uniform Lyapunov function)
Consider an MDP with a uniform Lyapunov function.
(i) Assume that the immediate costs are ν-bounded. Then the optimal value
Ctc(x), x ∈ X is the unique solution of (9.1) in the class of µ-bounded func-
tions. If the immediate costs are ν-bounded only from below, then Ctc(x), x ∈
X is the minimal solution of (9.1) in the class of functions which are µ-
bounded from below. In both cases Ctc achieves (9.1) with strict equality.
(ii) Assume that the immediate costs are ν-bounded from below. For any
state x, let A(x) be the set of actions that achieve the minimum of [c(x, a)+∑

y∈X′ PxayCtc(y)]. Any stationary policy g that chooses actions within
A(x), x ∈ X with probability one (i.e., for which gx(A(x)) = 1 for all
x ∈ X) is uniformly optimal. If the immediate costs are ν-bounded, then
the converse also holds.
Fix some initial distribution β. Let v be a stationary policy that does not
choose among A(x) at some x for which ftc(β, v; x) > 0. Assume that ei-
ther
– the immediate costs are ν-bounded from below, and (9.2) holds for all x
in the support of β; or
– the immediate costs are ν-bounded.
Then Ctc(β, v) > Ctc(β).

Proof. Assume that the immediate costs are ν-bounded and let φ ∈ Fµ be
a solution to (9.1). Since φ ∈ Fµ, it follows from property M1(iii) of the
uniform Lyapunov function that limt→∞Eu

βφ(Xt)1{T > t} = 0. We take
the limit in (9.3) as n → ∞ and obtain φ(x) ≥ Ctc(x). (i) then follows
from (9.4). For the case that the immediate costs are only ν-bounded from
below, the proof of (i) is obtained by combining the arguments here with
those of Theorem 9.1, by considering separately the positive and negative
parts of φ.
The proof of (ii) is the same as in Theorem 9.1.

Remark 9.1 Consider Example 9.1. If we choose the µ norm to be µ(x) =
αx, for some 1 < α < µ′/λ, then it can be seen that we obtain a contracting
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Markov chain with respect to this norm and to the set M = {0}. We see
that M is indeed the unique µ-bounded solution of (9.6) (and of (9.1)).

Remark 9.2 By the same arguments as in the proof of Theorem 9.2, one
can show that for any stationary policy w ∈ US , the cost Ctc(x,w) is the
unique solution in Fµ of

φ(x) ≥ c(x,w) +
∑

y∈X′
Pxwyφ(y), x ∈ X (9.7)

and the above inequality is then achieved as equality.

9.2 Super-harmonic functions and Linear Programming

Definition 9.1 (Super-harmonic functions)
Fix some X′ ⊂ X. A function φ : X → IR is called super-harmonic (for the
total cost criterion) if it satisfies for all x ∈ X and a ∈ A(x):

φ(x) ≤ c(x, a) +
∑

y∈X′
Pxayφ(y). (9.8)

Super-harmonic functions have an important role in MDPs, illustrated
by the following theorem (which is closely related to Theorems 3.1 and 3.4
in Hordijk, 1977).

Theorem 9.3 (The value and super-harmonic functions)
(i) Consider the transient framework, (Definition 7.1 and non-negative im-
mediate cost). Let φ be a super-harmonic function. If for some optimal
stationary policy g,

lim
t→∞

Eg
xφ(Xt)1{T > t} ≤ 0, ∀x ∈ X (9.9)

then the value Ctc ≥ φ (componentwise!).
(ii) Consider an MDP with a uniform Lyapunov function and ν-bounded
immediate cost. Then the value Ctc is the largest super-harmonic function
among the µ-bounded functions. If the immediate cost is only ν-bounded
from below, then Ctc is the largest super-harmonic function among those
satisfying (9.9).

Proof. (i) From Theorem 9.1 it follows that Ctc is a super-harmonic func-
tion. Choose a super-harmonic function φ and let g be an optimal stationary
policy satisfying (9.9). Then

φ(x) ≤ c(x, g) +
∑

y∈X′
Pxgyφ(y) = c(x, g) + Eg

xφ(X2)1{T > 2}

≤ c(x, g) + Eg
x

[
c(X2, A2)1{T > 2}+ Eg

X2
φ(X3)1{T > 3}]

= c(x, g) + Eg
xc(X2, A2)1{T > 2}+ Eg

xφ(X3)1{T > 3}
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≤ . . . ≤
n∑

t=1

Eg
xc(Xt, At)1{T > t}+ Eg

xφ(Xn+1)1{T > n + 1}.

(i) is established by taking the limit as n →∞. (A proof of a more general
statement can be found in Lemma 3.6 in Feinberg and Sonin, 1983.)
(ii) follows as the proof of (i). In particular, for the case of ν-bounded
immediate costs, this follows from the dominated convergence theorem,
since for any policy g, lim

t→∞
Eg

xµ(Xt)1{T > t} = 0 (see property M1′ in

Section 7.4).

Motivated by Theorem 9.3, we introduce the following infinite Linear
Program with decision variables φ(y), y ∈ X.

DP(β) : Find φ∗ := supφ 〈β, φ〉 subject to

φ(x) ≤ c(x, a) +
∑

y∈X′
Pxayφ(y), x ∈ X, a ∈ A(x).

For the transient case (where the immediate cost is assumed to be non-
negative), we may further add non-negativity constraints on φ without loss
of optimality. Indeed, if φ is feasible for DP(β), then it is easily seen that
φ′ given by φ′(y) = max(φ(y), 0), y ∈ X, is also feasible, and it clearly
dominates φ.

We begin by considering the MDP with a uniform Lyapunov function.
Theorem 9.3 implies the following:
Theorem 9.4 (Dual Linear Program for MDPs with uniform Lyapunov
functions)
Assume that the MDP has a uniform Lyapunov function and the immediate
costs are ν-bounded. Consider DP(β) where the decision variables are re-
stricted to the set φ ∈ Fµ. Then for any initial distribution β (with 〈β, µ〉 <
∞), DP(β) is feasible; its value equals Ctc(β) and φ(x) = Ctc(x), x ∈ X is
an optimal solution.

A similar statement could be obtained for other cases (the transient
case with non-negative immediate costs and the case of uniform Lyapunov
function with costs ν-bounded from below) when restricting to functions
for which the condition (9.9) from Theorem 9.3 (i) holds. However, the
above condition may be difficult to verify. We therefore adopt an alterna-
tive approach, and identify a simple subclass of functions satisfying that
condition. Of course, if we restrict the LP to a subclass of functions, we risk
obtaining only a lower bound to the optimal value. Our choice of functions
φ will turn out, however, to be rich enough to obtain the same value as the
one obtained by the richer class of policies satisfying (9.9). We begin by
considering the absorbing case with unbounded costs.



124 THE TOTAL COST: DYNAMIC AND LINEAR PROGRAMMING

Theorem 9.5 (The dual Linear Program, absorbing case)
Assume that the MDP is absorbing to M, and the immediate costs are non-
negative (not necessarily bounded). Consider DP(β) where the decision
variables φ are all non-negative bounded functions. Then for any initial
distribution β, DP(β) is feasible and its value equals Ctc(β).

Proof. Denote by C1(β) the value of DP(β) restricted to bounded φ. Since
the MDP is absorbing to M, it follows that for any bounded function φ,
(9.9) holds for all policies: limt→∞Eg

xφ(Xt)1{T > t} = 0. Theorem 9.3 (i)
implies that

C1(x) ≤ Ctc(x) (9.10)

for all x.
Let Xn be an increasing sequence of finite sets of states converging to

X. Consider COP with an immediate cost cn(x, a) = c(x, a)1{x ∈ Xn};
denote by Cn

tc(β, u) the corresponding total expected cost, and by Cn
tc(β)

the corresponding optimal value. For any policy u and initial distribution
β, Cn

tc(β, u) is increasing in n, and hence also Cn
tc(β). Denote by C∗tc(β) the

limit of Cn
tc(β) as n tends to infinity. By Theorem 9.1, we have

Cn
tc(x) = min

a∈A(x)


cn(x, a) +

∑

y∈X′
PxayCn

tc(y)


 , x ∈ X, (9.11)

which implies that for all x ∈ X and a ∈ A(x) we have

Cn
tc(x) ≤ cn(x, a) +

∑

y∈X′
PxayCn

tc(y) ≤ c(x, a) +
∑

y∈X′
PxayCn

tc(y). (9.12)

Thus Cn
tc is a bounded super-harmonic function. Hence

C∗tc(x) ≤ C1(x) ≤ Ctc(x). (9.13)

Let an be a minimizing action in (9.11) (it is, of course, a function of x),
and let a∗ be some limit point (as n → ∞) obtained by diagonalization.
By Fatou’s Lemma, applied to (9.11), we get

C∗tc(x) ≥ c(x, a∗) +
∑

y∈X′
Pxa∗yC∗tc(y), x ∈ X.

It then follows from Theorem 9.1 (i) that Ctc(x) ≤ C∗tc(x), and hence, by
(9.13), we have Ctc(x) = C1(x).

Next, we introduce the transient case:

Theorem 9.6 (The dual Linear Program, transient case)
Assume that the MDP is X′-transient, and the immediate costs are non-
negative. Consider DP(β) where the decision variables φ are all non-negative
functions that vanish outside of some finite set of states. In other words,
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for each φ in this class, there exists some finite Y ⊂ X such that

φ(x) = 0 for all x /∈ Y. (9.14)

Then for any initial distribution β, DP(β) is feasible and its value equals
Ctc(β).
Proof. Denote again by C1(β) the value of DP(β) restricted to φ that satis-
fies (9.14). Since the MDP is X′-transient, it follows that for any function φ
satisfying (9.14), (9.9) holds for all policies: limt→∞Eg

xφ(Xt)1{T > t} = 0.
Theorem 9.3 (i) implies that

C1(x) ≤ Ctc(x) (9.15)

for all x.
Let Xn be a sequence of finite sets of states, increasing to X. Consider

a sequence COPn of truncated problems where COPn differs from the
original COP by the fact that the process is restricted to Xn. This is done
by altering transition probabilities and the costs:

Pn
xay =




Pxay if x, y ∈ Xn,
1 if x /∈ Xn, y = 0,
0 otherwise,

cn(x, a) = c(x, a)1{x ∈ Xn}.

(9.16)
Here, 0 is some arbitrary (possibly new) state which is not in X′. De-
note by Cn

tc(β, u) the corresponding total expected cost, and by Cn
tc(β) the

corresponding optimal value. For any policy u and initial distribution β,
Cn

tc(β, u) is increasing in n, and so too is Cn
tc(β). By Theorem 9.1, we have

Cn
tc(x) = min

a∈A(x)


cn(x, a) +

∑

y∈X′
Pn

xayCn
tc(y)


 , x ∈ X, (9.17)

which implies that for all x ∈ X and a ∈ A(x), we have

Cn
tc(x) ≤ c(x, a) +

∑

y∈X′
Pn

xayCn
tc(y) ≤ c(x, a) +

∑

y∈X′
PxayCn

tc(y). (9.18)

Thus Cn
tc is a super-harmonic function that vanishes outside of Xn. Denote

by C∗tc(β) the (increasing) limit of Cn
tc(β) as n tends to infinity. Hence

C∗tc(x) ≤ C1(x) ≤ Ctc(x). (9.19)

Let an be a minimizing action in (9.17) and let a∗ be some limit point
obtained by diagonalization. By Fatou’s Lemma, applied to (9.17), we get

C∗tc(x) ≥ c(x, a∗) +
∑

y∈X′
Pxa∗yC∗tc(y), x ∈ X.

It then follows from Theorem 9.1 (i) that Ctc(x) ≤ C∗tc(x), and hence, by
(9.19), we have Ctc(x) = C1(x).
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By arguments similar to the previous theorems we get the following:

Theorem 9.7 (The dual Linear Program, uniform Lyapunov functions)
Assume that the MDP has a uniform Lyapunov function, and the immediate
costs are ν-bounded below. Consider DP(β) where the decision variables φ
are functions that are bounded from above. Then for any initial distribution
β, DP(β) is feasible and its value equals Ctc(β).

Proof. Denote by C1(β) the value of DP(β) restricted to φ bounded from
above. Since the MDP is absorbing to M, it follows that for any bounded
function φ, (9.9) holds for all policies: limt→∞Eg

xφ(Xt)1{T > t} ≤ 0.
Theorem 9.3 (ii) implies (9.10) for all x.

Let Xn be as in the proof of Theorem 9.5, and consider COP with an
immediate cost cn(x, a) = c−(x, a) + c+(x, a)1{x ∈ Xn}, where c+(x, a) =
max(c(x, a), 0) and c−(x, a) = min(c(x, a), 0). Denote by Cn

tc(β, u) the cor-
responding total expected cost, and by Cn

tc(β) the corresponding optimal
value. As in the proof of Theorem 9.5, Cn

tc(β) is increasing in n. Denote by
C∗tc(β) the limit of Cn

tc(β) as n tends to infinity.
By Theorem 9.2, (9.17) holds, which implies again (9.12). Thus Cn

tc is
a super-harmonic function which is bounded from above, which implies
(9.13). Let an and a∗ be as in the proof of Theorem 9.5. We rewrite (9.17)
as

Cn
tc(x) = min

a∈A(x)


cn(x, a) +

∑

y∈X′
Pxay[Cn

tc(y) + µ(y)]−
∑

y∈X′
Pxayµ(y)


 ,

(9.20)
x ∈ X. The second summation is continuous in a from the definition of the
uniform Lyapunov function. Hence, applying Fatou’s Lemma to the first
summation, we obtain

C∗tc(x) ≥ c(x, a∗) +
∑

y∈X′
Pxa∗y[C∗tc(y) + µ(y)]−

∑

y∈X′
Pxa∗yµ(y)

= c(x, a∗) +
∑

y∈X′
Pxa∗yC∗tc(y), x ∈ X.

It then follows from Theorem 9.2 (i) that Ctc(x) ≤ C∗tc(x), and hence, by
(9.13), we have Ctc(x) = C1(x).

Remark 9.3 (On the solvability of the dual program)
Unlike the case of uniform Lyapunov function with ν-bounded cost, or
the absorbing case with bounded costs, the sup in DP(β) need not be
achieved in the setting of Theorem 9.5 or 9.6 (i.e., the dual LP need not be
solvable); we cannot expect φ(x) = Ctc(x), x ∈ X to be an optimal solution
since there is no reason to expect Ctc(x) to be bounded.
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Remark 9.4 (State truncation)
We have in fact presented in the proof of Theorem 9.6 a state truncation
procedure that enables us to approximate the value of a non-constrained
MDP with countable state space by an MDP with a finite state space. The
policy that chooses at state x the action a∗ = a∗(x) is optimal for the MDP,
due to Theorem 9.1 (ii). Since this policy is the limit of policies optimal
for the truncated MDPs, we also conclude that the policies converge. A
different approach to state truncation will be presented in Chapter 16; it
will be used for the contracting framework.

The restriction in the dual LP to bounded functions φ in the absorbing
case (Theorem 9.5), or to functions φ converging to zero for the general
transient case (Theorem 9.6), is indeed necessary. This can be seen from
our Example 9.1. Any function among (9.6) is feasible for the dual LP. The
supremum over all these unbounded functions is infinity, and not M(·).

9.3 Set of achievable costs

Define for any class of policies U the set of achievable vector performance
measures:

Mtc
U

(β) = ∪u∈U{(Ctc(β, u), Dk
tc(β, u), k = 1, . . . , K)}, (9.21)

and set Mtc(β) := Mtc
U (β) ∪Mtc

M(UM )
(β).

Define also Vtc(β),Vν
tc(β),Vµ

tc(β) and Vb
tc(β) by

⋃
ρ

{(〈ρ, c〉, 〈ρ, d1〉, 〈ρ, d2〉, . . . , 〈ρ, dK〉)}, (9.22)

where the union is taken over ρ in Qtc(β),Qν
tc(β),Qµ

tc(β) and Qb
tc(β), re-

spectively (Qtc(β) is defined in (8.2)).
Recall the definition of minB from Section 8.1. The next characteriza-

tion of achievable costs follows from Theorem 8.2, as well as the linear
representation of the cost (Theorem 8.3).

Theorem 9.8 (Characterization of the sets of achievable costs)
(i) For transient MDPs with non-negative immediate costs, Mtc(β) is con-
vex, and

minVtc(β) = Mtc
US

(β) ≺ Mtc
UM

(β) = Mtc(β) ⊂ Vtc(β)

(≺ is defined in Section 8.1).
(ii) For MDPs with a uniform Lyapunov function and immediate costs ν-
bounded from below, Mtc

US
(β) is convex and compact, and satisfies

Mtc
U (β) = Mtc(β) = Mtc

US
(β) = coMtc

UD
(β)

= Vν
tc(β) = Vb

tc(β) = minVtc(β).
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For contracting MDPs, the above holds, in particular, with Vµ
tc(β) replacing

Vν
tc(β).

9.4 Constrained control: Lagrangian approach

We now go back to our constrained control problem. We follow the same
steps as in Section 3.3, to show that
• COP is equivalent to solving a non-constrained sup-inf problem; the

sup and inf can be interchanged under suitable conditions.

• The inf in the inf-sup problem is in fact achieved by some policy which
is optimal for COP.

• Under the Slater conditions (9.32), the sup in the sup-inf problem is
achieved by some Lagrange multiplier.
The main result is presented in the following theorem. Its derivation is

independent of the theory we developed in the previous chapter for the
achievable sets of occupation measure.

Theorem 9.9 (The Lagrangian)
Consider either
– the transient framework (Definition 7.1 and non-negative immediate cost),
or
– MDPs with a uniform Lyapunov function and immediate costs ν-bounded
from below
(i) The value function satisfies

Ctc(β) = inf
u∈U

sup
λ≥0

Jλ
tc(β, u) = inf

u∈UM

sup
λ≥0

Jλ
tc(β, u) = inf

u∈M(UM )
sup
λ≥0

Jλ
tc(β, u),

(9.23)
where

Jλ
tc(β, u) := Ctc(β, u) + 〈λ,Dtc(β, u)− V 〉

=
∞∑

t=1

Eu
β jλ(Xt, At)1{T > t} − 〈λ, V 〉

jλ(x, a) := c(x, a) + 〈λ, d(x, a)〉. (9.24)

(ii) A policy u∗ is optimal for COP if and only if Ctc(β) = supλ≥0 Jλ
tc(β, u∗).

(iii) The value satisfies

Ctc(β) = sup
λ≥0

min
u∈M(UM )

Jλ
tc(β, u) = sup

λ≥0
min

u∈UD

Jλ
tc(β, u). (9.25)

Moreover, there exists some u∗ ∈ U such that

Ctc(β) = inf
u∈U

sup
λ≥0

Jλ
tc(β, u) = sup

λ≥0
Jλ

tc(β, u∗), (9.26)

and u∗ is optimal for COP.
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In order to prove the theorem, we need the following (e.g., Aubin, 1993,
p. 126):
Lemma 9.2 (Minmax Theorem)
Let G1 and G2 be convex subsets of linear topological spaces, and let G1 be
compact. Consider a function Ψ : G1 ×G2 → IR such that
– for each g2 ∈ G2, g1 → Ψ(g1, g2) is convex and lower semi-continuous,
and
– for each g1 ∈ G1, g2 → Ψ(g1, g2) is concave.
Then there exists some g∗1 ∈ G1 such that

inf
G1

sup
G2

Ψ(g1, g2) = sup
G2

Ψ(g∗1 , g2) = sup
G2

inf
G1

Ψ(g1, g2).

We are now ready to prove Theorem 9.9.
Proof of Theorem 9.9: (i) The first equality in (9.23) is standard: if u ∈ U
is feasible (i.e., it satisfies the constraints Dtc(β, u) ≤ V ), then

sup
λ≥0

Jλ
tc(β, u) = Ctc(β, u). (9.27)

If u ∈ U is not feasible, then it is easily seen that

sup
λ≥0

Jλ
tc(β, u) = ∞. (9.28)

We conclude that

inf
u∈U

sup
λ≥0

Jλ
tc(β, u) = inf

u∈U,Dtc(β,u)≤V
sup
λ≥0

Jλ
tc(β, u)

= inf
u∈U,Dtc(u)≤V

Ctc(β, u) = Ctc(β).

Similarly, let C ′tc(β) := inf Ctc(β, u) over the set {u ∈ UM : Dtc(β, u) ≤ V }.
Then we have

C ′tc(β) = inf
u∈UM

sup
λ≥0

Jλ
tc(β, u).

However, it follows from Section 6.4 that C ′tc(β) = Ctc(β). This establishes
the second equality. The third equality follows by the same arguments. This
establishes (i). Moreover, (9.27) and (9.28) imply (ii).

(iii) We shall apply Lemma 9.2 where G1 stands for the convex and
compact set M(UM ) (for a discussion on the compactness, see Section 6.3),
and G2 stands for the convex set {λ ≥ 0}. Jλ(β, u) : G1 × G2 → IR
is affine in both its arguments, and thus in particular, convex in its first
argument and concave in the second. Jλ(β, u) is lower semi-continuous in
u (see Lemmas 8.4 and 8.5). Hence by Lemma 9.2, we have

sup
λ≥0

min
u∈M(UM )

Jλ
tc(β, u) = inf

u∈M(UM )
sup
λ≥0

Jλ
tc(β, u) = Ctc(β) (9.29)

where the last equality follows from (9.23); this establishes the first equality.
For fixed λ, Jλ

tc(β, u) is minimized by a policy in UD (by Theorems 9.1 and
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9.2), i.e.,
min
u∈U

Jλ
tc(β, u) = min

u∈UD

Jλ
tc(β, u) (9.30)

for any class of policies U that contains UD. The proof of (9.25) is estab-
lished by combining this with (9.29).

By combining (9.29) with (9.30), we get

Ctc(β) = sup
λ≥0

min
u∈U

Jλ
tc(β, u). (9.31)

(9.26) is obtained by again applying Lemma 9.2 with G1 as the convex and
compact set U , and G2 as the convex set {λ ≥ 0}. Here again, Jλ

tc(β, u) :
G1 × G2 → IR is affine in both its arguments, and thus in particular,
convex in its first argument and concave in the second; Jλ

tc(β, u) is lower
semi-continuous in u (see Lemmas 8.4 and 8.5). This implies, in particular,
the existence of of u∗ ∈ U that minimizes the Lagrangian Jλ

tc(β, u). By part
(ii) of the theorem it is also optimal for COP.

By the same type of arguments as in the proof of part (i) of Theorem 9.9,
we obtain from (9.31) the following corollary for the transient framework
(the case of uniform Lyapunov function was already established in Chapter
8).

Corollary 9.1 (Dominance of U)
Consider the transient framework (Definition 7.1) with non-negative im-
mediate costs. Then U = M(UD) is a dominating class of policies.

Proof. Choose an arbitrary policy v. Consider a new COP with the same
state and action spaces, the same transition probabilities, and with K + 1
constraints. The immediate costs {c̃, d̃1, . . . , d̃K+1} are given in terms of
the immediate costs corresponding to the original COP:

c̃ = 0, d̃k = dk, k = 1, . . . , K, d̃K+1 = c.

We set
Ṽk := D̃tc(β, v), k = 1, . . . , K + 1.

The new COP is feasible since the policy v is feasible (by definition of Ṽk).
By the same arguments as in the first part of the proof of Theorem 9.9,
it follows from (9.26) that there exists a feasible policy u among U for the
new COP. This implies that u dominates v (for the original COP).

Next, we consider the existence of maximizing Lagrangians.

Theorem 9.10 (The Lagrangian: Slater condition)
Consider either the transient framework with non-negative costs or MDPs
with a uniform Lyapunov function and costs ν-bounded from below. If there
exists some policy u for which

Dtc(β, u) < V, (9.32)
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then there exist non-negative Lagrange multipliers λ∗ = {λ∗1, . . . , λ∗K} such
that

Ctc(β) = min
u∈U

Jλ∗
tc (β, u) = min

u∈UD

Jλ∗
tc (β, u). (9.33)

Moreover, any optimal policy u∗ satisfies the Kuhn-Tucker conditions:

λ∗k(Dk
tc(β, u∗)− Vk) = 0, k = 1, . . . ,K.

Proof. Jλ
tc(β, u) is a convex function over the convex set U , and Ctc(β, u)

and Dk
tc(β, u) are lower semi-continuous in U (see Lemmas 8.4 and 8.5).

By a standard minmax theorem (see e.g., Rockafellar, 1989 p. 45, and
Theorems 17 and 18 on p. 41), it follows that there exist non-negative
Lagrange multipliers λ∗ = {λ∗1, . . . , λ∗K} such that

min
u∈U

Jλ∗
tc (β, u) = sup

λ≥0
min
u∈U

Jλ
tc(β, u) = min

u∈U
sup
λ≥0

Jλ
tc(β, u),

which equals Ctc(β), according to Theorem 9.9 (iii). The second equality
in (9.33) follows from the fact that for fixed λ, Jλ(β, u) is minimized by
a policy in UD (by Theorem 9.1 (ii) and and 9.2 (ii)). The Kuhn-Tucker
conditions follow from standard arguments (similar to the proof of part (i)
of Theorem 9.9, see Rockafellar, 1989, Theorem 15).

Since stationary policies were shown to be dominating (Theorem 8.4)
under suitable conditions, Theorem 9.9 implies the following corollary.
Corollary 9.2 (Saddle-point)
Consider either the transient framework (Definition 7.1 and non-negative
immediate cost) or an MDP with a uniform Lyapunov function and imme-
diate costs ν-bounded from below. Then

Ctc(β) = sup
λ≥0

min
u∈US

Jλ
tc(β, u) = min

u∈US

sup
λ≥0

Jλ
tc(β, u) = sup

λ≥0
Jλ

tc(β, u∗)

for some u∗ ∈ US.
The above corollary relies on the fact, established in the previous chapter,

that the stationary policies are dominating (Theorem 8.4). This is the only
place in this section where we make use (indirectly) of the convex and
compact properties of occupation measures (corresponding to stationary
policies).

9.5 The Dual LP

Consider the DP with decision variables φ(y), y ∈ X and λ ∈ IRK
+ (IRK

+ are
vectors in IRK whose entries are non-negative).

DP1(β): Find Θ∗(β) := supφ,λ 〈β, φ〉 − 〈λ, V 〉 subject to

φ(x) ≤ c(x, a) + 〈λ, d(x, a)〉+
∑

y∈X′
Pxayφ(y), x ∈ X, a ∈ A(x).
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We begin by considering MDPs with a uniform Lyapunov function. Com-
bining Theorem 9.4 and Theorem 9.7 with Theorem 9.9, we show that the
value of DP1(β) equals the value of COP. This, together with Theorem
8.6, implies that there is no duality gap between LPb

1(β) and the dual
program DP1(β).

Theorem 9.11 (The dual LP for MDPs with uniform Lyapunov function)
Consider an MDP with a uniform Lyapunov function and ν-bounded im-
mediate costs. Consider DP1(β) restricted to ψ ∈ Fµ. DP1(β) is feasible
if and only if COP is feasible. The value of DP1(β) equals Ctc(β) and
φ(x) = Ctc(x), x ∈ X is an optimal solution.

A similar result is obtained for the absorbing and the transient cases with
non-negative immediate costs, and the case of uniform Lyapunov function
with immediate costs ν-bounded from below. By combining Theorems 9.5,
9.6, 9.7 and 9.9, we have:

Theorem 9.12 (The dual LP, unbounded immediate costs)
Consider either
(i) an MDP absorbing toM with non-negative immediate costs, with DP1(β)
restricted to non-negative bounded φ; or
(ii) an X′-transient MDP with non-negative immediate costs, with DP1(β)
restricted to non-negative φ satisfying (9.14) (i.e., that vanish outside a fi-
nite set), or
(iii) an MDP with uniform Lyapunov function and with immediate costs
ν-bounded from below, with DP1(β) restricted to φ that are bounded from
above.
Then DP1(β) is feasible (φ = 0 is a feasible solution in cases (i) and (ii)).
Moreover, the value of DP1(β) equals Ctc(β).

9.6 State truncation

We consider in this section transient MDPs with non-negative immediate
costs. We already showed in Remark 9.4 that the value of a non-constrained
MDP can be computed as the limit of the (increasing sequence of) values
of the MDPs with truncated spaces, (as described in the proof of Theorem
9.6). In other words, we showed that

lim
n→∞

Cn
tc(β) = sup

n∈IN
Cn

tc(β) = Ctc(β),

where Cn
tc(β) is the value of the MDP truncated to the finite set Xn. More-

over, we showed that the optimal policies converge.
We show that a similar result holds for the constrained MDP. Indeed,

for any λ ≥ 0, we have by Remark 9.4:

lim
n→∞

Jλ,n
tc (β) = sup

n∈IN
Jλ,n

tc (β) = Jλ
tc(β) (9.34)
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where
Jλ,n

tc (β) = inf
u∈U

Jλ,n
tc (β, u), Jλ

tc(β) = inf
u∈U

Jλ
tc(β, u)

and where Jλ,n
tc (β, u) is the Lagrangian defined above (9.24), corresponding

to the nth-truncated MDP. According to Corollary 9.2, we have

Cn
tc(β) = min

u∈U
sup
λ≥0

Jλ,n
tc (β, u), Ctc(β) = sup

λ≥0
min
u∈U

Jλ
tc(β, u).

Combining this with (9.34), we have

Ctc(β) = sup
λ≥0

sup
n∈IN

inf
u∈U

Jλ,n
tc (β, u) = sup

n∈IN
sup
λ≥0

inf
u∈U

Jλ,n
tc (β, u) = sup

n∈IN
Cn

tc(β).

This establishes the convergence of the values for the state-truncated COP
to the value of COP. Unlike previous approaches for state approximations
for COP (most of which were derived for the contracting framework, see
Chapter 16 and Altman 1993, 1994), we do not need here any Slater-type
condition.

9.7 A second LP approach for optimal mixed policies

In this section we present an alternative LP formulation for COP. The
decision variables will correspond to the probability measures over the space
of all stationary deterministic policies; in particular, this will mean for the
case that the state and action spaces are finite, that the number of decision
variables will be equal to the number of stationary deterministic policies;
this is in contrast to the previous LP approach for which the number of
decision variables is typically much smaller:

∑
x∈X |A(x)|.

It follows from Corollary 9.1 (for the transient framework with non-
negative immediate costs) and Theorem 8.4 (for the case of uniform Lya-
punov function) that Ctc(β) is the value of COP restricted to U :

min
u∈U

Ctc(β, u) subject to Dtc(β, u) ≤ V.

This can be rewritten as a Linear Program:

LP2(β): min
γ∈M1(UD)

∫
Ctc(β, u)γ(du)

subject to
∫

Dk
tc(β, u)γ(du) ≤ V k, k = 1, . . . , K (9.35)

This yields the following:

Theorem 9.13 (Relation between COP and LP2(β))
Consider either the case of uniform Lyapunov function and immediate
costs that are ν-bounded from below, or the transient framework (with non-
negative immediate costs). Then
(i) COP is feasible if and only if LP2(β) is feasible (i.e., the set satisfying
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(9.35) is non-empty). If LP2(β) is feasible, then there exists an optimal
policy in U for COP.
(ii) The values of COP and of LP2(β) are equal.
(iii) If γ is a solution of LP2(β), then the policy γ̂ ∈ U is optimal for
COP.

9.8 More on unbounded costs

We consider all along this book immediate costs that are bounded below
either by a constant (which is taken to be zero in the case of transient
MDPs) or by some function (whose infimum may be −∞) that satisfies the
uniform Lyapunov conditions (Definition 7.5).

To illustrate the importance of these types of assumptions, we briefly
describe some phenomena that arise in MDPs in which the boundedness
assumption of the cost is dropped. The following example is due to Van
Der Wal (1981a).

Example 9.2 (Costs unbounded from below)
Consider the following MDP:

• State space: X = {0, 1, 2, . . .}.
• Action space: A = {1, 2}.
• Transition probabilities:

Pxay =





1 if x = y = 0,
1/2 if y = 0, x > 0, a = 1,
1/2 if y = x + 1, x > 0, a = 1,
1 if a = 2, y = 0,
0 otherwise.

• Immediate costs:

c(x, a) =





0 if x = 0,
0 if a = 1,
−2x + 1 if a = 2.

Thus, at state x the system either goes to state 0 and the cost is −2x + 1
as a result of action 2, or no cost is incurred and the system moves with
equal probabilities to states 0 and x + 1, as a result of action 1.

Consider the problem of minimizing the total expected cost until state 0
is reached. Note that this MDP is absorbing to the set {0}.

Clearly, the value is C(x) = −2x. However,

• The stationary deterministic policies are not optimal, nor even ε-optimal
at states x > 0. (A set of policies U is called ε-optimal at x if for every
ε > 0 there exists some policy u ∈ U such that Ctc(x, u) ≤ Ctc(x) + ε).
Indeed, if g ∈ UD chooses action 1 at all states, then C(x, g) = 0.
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Otherwise, if for at least one state y it chooses 2 (i.e., g(y) = 2), then
C(y, g) = −2y + 1 = C(y) + 1.

• The value C(x) satisfies the optimality equation (9.1) with equality.
However, it follows from the previous point that the stationary policy
that chooses the argmin in (9.1) is not optimal.

We conclude from the above example that the analog of Theorems 9.1
(ii) and 9.2 (ii) do not hold. In fact, an optimal policy does not exist for
any initial state x > 0. Indeed, choose an arbitrary policy u. If it chooses
with probability 1 action 1 at all times, then we know it is not optimal.
If with positive probability it does not choose action 1 at all times, then
consider the following policy v: at the first step, v chooses action 1. Then,
if a transition to 0 does not occur, then for all the following steps t, the
policy v behaves as follows. At step t + 1, v uses the action that policy u
uses at time t. It can be shown that v has a cost strictly lower than the
cost obtained by u.

Dynamic programming related to An MDP in which the immediate
costs are non-negative but the total expected cost is maximized is called
positive dynamic programming. Some interesting properties of such (non-
constrained) problems are known (see e.g., Hordijk, 1974, and Van Der
Wal, 1981a). We formulate these in terms of the equivalent problem of
minimization of the total expected cost with non-positive immediate costs:
1. The stationary deterministic policies are not optimal (nor even ε-optimal).
2. Optimal policies need not exist.
3. For each state x, the stationary randomized policies US are ε-optimal.
4. We say that a set of policies U is ε-uniform optimal if for every ε > 0

there exists a policy u ∈ U such that for all states x, Ctc(x, u) ≤ Ctc(x)+
ε. Then neither the the stationary policies US nor the Markov policies
UM are uniformly optimal.

5. The stationary policies US are still “uniformly good” in the following
sense: for every ε > 0 there exists some g ∈ US such that for all states
x, Ctc(x, u) ≤ Ctc(x)(1 + ε).





CHAPTER 10

The discounted cost

A simple and natural way to treat the discounted cost is to transform it
into a total cost problem until some new dummy state is reached. We shall
use this approach in this chapter to obtain the results corresponding to
those obtained for the total cost problem. We shall illustrate the results by
extending the model of Chapter 5 to the infinite buffer case (i.e., L = ∞).

10.1 The equivalent total cost model

We consider a discounted cost criterion for an MDP with a state space Xα,
transition probabilities Pα, and a discount factor α. The equivalent total
cost model is obtained by adding an extra state xo; we are then interested
in the total cost until xo is reached. The probability to move from any state
in Xα to xo is equal to 1−α for any action. We summarize this in a formal
way:
• The state space is given by X = Xα ∪{xo}, where xo is some additional

dummy state; and X′ := Xα,M = {xo}. The action space is unchanged.
• The transition probabilities are

Pxay =





αPα
xay if x, y ∈ Xα

1− α if x ∈ Xα, y = xo

1 if x = y = xo

0 otherwise .

• There is only one dummy action ao available at state xo, i.e., A(xo) =
{ao}, and c(xo, ao) = dk(xo, ao) = 0, k = 1, . . . ,K. (The immediate
costs in other states are unchanged.)

• The normalization is obtained by setting the new initial distribution

βα(y) =
{

(1− α)β for y 6= xo

α for y = xo.

Next, we observe that in the equivalent total cost model,
∞∑

t=1

pu
β(t,Xα) = 1

for any policy u and initial distribution β on Xα, so that the equivalent
MDP is Xα-absorbing. One can also check that
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Lemma 10.1 µ(x) = 1/(1 − α), x ∈ X, is a uniform Lyapunov function
for the total expected life-time (Definition 7.4) for the new MDP.

10.2 Occupation measure and LP

The occupation measure for the discounted cost is defined as

fα(β, u; x,A) := (1− α)
∞∑

t=1

αt−1pu
β(t; x,A), x ∈ Xα,A ⊂ A(x).

Let fα(β, u) be the probability measure on (K′, IK′) given by fα(β, u)(x,A)
:= fα(β, u;x,A). (Here K′ := {(x, a) : x ∈ Xα, a ∈ A(x)}, and IK′ is its
Borel σ-field.)

As for the total cost model, define for any class of policies U

Lα
U

(β) =
⋃

u∈U

fα(β, u), (10.1)

and define Lα := Lα
U ∪Lα

M(UM )
. A class of policies U is said to be complete

with respect to the discounted cost problem if Lα = Lα
U

. Define

Qα(β) = (10.2)



ρ ∈ M(K′) :
∑

y∈Xα

∫

A(y)

ρ(y, da)(δx(y)− αPyax) = (1− α)β(x),

x ∈ Xα, ρ(x, A(x)) < ∞ for x ∈ Xα.





Define Qα,b(β) def= the subset of finite measures among Qα(β). Using the
above equivalent absorbing total cost model, we may apply Theorems 8.1
(ii), Theorem 8.2 and Lemma 10.1 to conclude that
Corollary 10.1 (Properties of occupation measures)
The set of stationary policies is complete. Moreover, Lα

US
(β) is convex and

compact, and satisfies

Lα(β) = Lα
U (β) = Lα

U (β) = Lα
US

(β) = coLα
UD

(β) = minQα(β) = Qα,b(β).

Since the equivalent total cost MDP (obtained from the original dis-
counted cost one) is Xα-absorbing, all results obtained for the total cost
under the assumption that the immediate costs are non-negative hold for
the discounted cost as well.

10.3 Non-negative immediate cost

Since the equivalent MDP is absorbing (and thus transient), we recover
for non-negative immediate cost all the results from Lemma 8.4, as well
as Theorems 8.3, 8.4 and 8.5. (Everywhere in these lemmas and theorems,
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the subscript tc should be replaced by the subscript α.) In particular, the
equivalent LP (that corresponds to the one in (8.18)) becomes
LPα

1(β) : Find the infimum C∗ of C(ρ) := 〈ρ, c〉 subject to:

Dk(ρ) := 〈ρ, dk〉 ≤ Vk, k = 1, . . . ,K, ρ ∈ Qα(β). (10.3)

We may again obtain a Lagrangian formulation and recover the corre-
sponding saddle point and optimality results from Section 9.4. This leads
us again to results on the dual LP and on the duality gap, as in Section
9.5, and to state truncation techniques, as in Section 9.6.

For the dual LP, the decision variables are φ : Xα → IR, which are
restricted to be non-negative, and the K-dimensional non-negative vectors
λ ∈ IRK

+ . We have:

DPα
1 (β) : Find Θ∗ := supφ,λ 〈β, φ〉 − 〈λ, V 〉 subject to

φ(x) ≤ (1− α)(c(x, a) + 〈λ, d(x, a)〉) + α
∑

y∈Xα

Pxayφ(y),

x ∈ Xα, a ∈ A(x).

10.4 Weak contracting assumptions and Lyapunov functions

We formulate the conditions for the equivalent total cost MDP to be con-
tracting in terms of the original discounted MDP, and thus to have a uni-
form Lyapunov function for the total expected cost. We then present the
conditions for the immediate costs to be ν-bounded (or ν-bounded from
below) for ν = µ.

By using (10.2), the following condition on the discounted MDP will
imply that the equivalent total cost MDP is Xα-contracting (i.e., (7.34)
will hold): some scalar ξ ∈ [0, 1), a vector µ : Xα → [1,∞), and a finite set
Mα exist, such that for all x ∈ X, a ∈ A,

α
∑

y/∈Mα

Pα
xayµ(y) ≤ ξµ(x). (10.4)

We call this the weak contracting condition. In that case, the equivalent
total cost MDP is contracting with the same ξ and µ, and with M :=
Mα ∪ {xo}. In many applications, the set Mα can be chosen to be an
empty set.

A sufficient condition for (10.4) to hold is that the original MDP has a
uniform Lyapunov function (ULF) µ with respect to the sets M,X′, with
M∪X′ = Xα. Indeed, since µ is a ULF, it follows that it remains a ULF
if we replace µ(x) by 1 for all x ∈ M. So we shall assume without loss of
generality that µ(x) = 1 for x ∈M. We have

α
∑

y∈Xα

Pxayµ(y) = α
∑

y∈X′
Pxayµ(y) + α

∑

y∈M
Pxayµ(y)
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≤ α(
∑

y∈X′
Pxayµ(y) + 1)

≤ αµ(x).

The last inequality follows since µ is a uniform Lyapunov function. We
thus conclude that the weak contracting condition indeed holds if the orig-
inal MDP has a uniform Lyapunov function, with ξ = α, Mα = M, and
µα(x) = µ(x)1{x ∈ X′}+ 1{x ∈M}.

We conclude:

Theorem 10.1 (Conditions for contracting and uniform Lyapunov func-
tion)
Assume that either one of the following assumptions hold:
(i) The original MDP has a uniform Lyapunov function for the total ex-
pected time (Definition 7.4) and the immediate costs are µ-bounded,
(ii) The original MDP is weakly contracting, i.e., it satisfies Definition 7.9
of contracting MDPs with (10.4) replacing (7.34).
Then the equivalent MDP is contracting. If
(iii) Condition (ii) holds with the immediate costs only µ-bounded below,
then the new MDP has a uniform Lyapunov function with ν proportional
to µ, and the immediate costs are µ-bounded below.

Under assumptions (i) or (ii) or (iii) of the theorem, it now follows that
Lemma 8.5 as well as Theorems 8.3, 8.4 and 8.6, hold. The equivalent LP
(that corresponds to the one in (8.18)) is again (10.3), where the decision
variables ρ are constrained to lie in Qα(β) The corresponding results for
the Lagrangian approach and dual LP follow too. In particular, Theorems
9.2, 9.3, 9.4 and 9.7 hold for the case of no constraints. The relation to
the Lagrangian is given in Theorem 9.9 and in the other theorems in that
section. The corresponding dual LP is again DPα

1(β), where φ is restricted
to Fµ under conditions (i) or (ii) of Theorem 10.1, and is restricted to
functions that are bounded from above, under condition (iii).

Remark 10.1 (Equivalence between contracting and discounted CMDPs)
We established in this section the theory of discounted cost problem as a
special case of the total cost problem. It turns out that the converse is also
true for the special case of contracting MDPs. Indeed, Van Der Wal (1981a)
has shown (p. 101) that the contracting total cost problem with µ-bounded
immediate cost is equivalent to a discounted cost problem with bounded
cost.

10.5 Example: flow and service control

We consider again the model and notation of Chapter 5, this time with
L = ∞. The model is unchanged, except for the following:
• Unlike the finite case, we do not make here the assumption that 0 ∈ B(x).
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(This assumption was needed to check that some properties hold at the
boundary x = L.)

• The immediate cost c is polynomially bounded.
• N is defined here to be the set of polynomially bounded functions on X.

Theorem 10.2 (Structure of optimal policies)
Under the above conditions, all statements of Theorem 5.1 hold for the case
L = ∞ as well.

Proof. We only point where the proof changes with respect to that of The-
orem 5.1.

(5.1) follows from Corollary 9.2, which is used together with Theorem 9.9
whenever we used Theorem 3.6 in Chapter 5.

We now establish Lemma 5.2 for L = ∞. We shall show that the weak
contracting condition (10.4) holds with respect to some function µ, where
we let N correspond to functions that are µ-bounded. This implies that
the discounted cost is equivalent to a total cost contracting MDP. (i) then
follows from Theorem 9.2 (i), and (ii) follows from Theorem 9.2 (ii). Fi-
nally, (iii) follows from a well-known value iteration theorem, see e.g., Wes-
sels (1977) (for more details, see Chapter 15).

It remains to check the weak contraction. Choose some ξ, α < ξ < 1,
and denote ξ̂ := α/ξ. We have to show that for all x, a, b,

ξ̂R(x, a, b, µ)(x) ≤ µ(x).

Define

r
def= 1 +

ξ̂−1 − 1
āb

, µ(x) def= rx.

Then
ξ̂R(x, a, b, µ)(x)− µ(x) =




[
ābr2 + (ab + āb̄− ξ̂−1)r + ab̄

]
ξ̂rx−1 = −ξ̂rx−1ab̄(r − 1) < 0, x > 0

ξ̂[ābr + (1− āb− ξ̂−1)] = 0, x = 0.

This establishes Lemma 5.2.
The proof of the theorem is now the same as that of Theorem 5.1 except

that we use Theorem 9.2 (ii) instead of Theorem 3.4.





CHAPTER 11

The expected average cost

We study in this chapter the expected average cost. Just as for the total
cost, we shall be especially interested in the following frameworks:
(i) The case for which the costs are bounded below (known as negative
dynamic programming)

c and dk, k = 1, . . . ,K, are bounded below, i.e.,
infκ∈K c(κ) ≥ b and infk,κ∈K dk(κ) ≥ b for some constant b.

(11.1)

An additional growth condition on the cost will often be made. This case
exhibits features similar to those in the total cost with non-negative imme-
diate cost (and a transient framework).
(ii) The case for which the occupation measures are tight and some uniform
integrability conditions of the immediate costs hold. This will be directly
related to the uniform Lyapunov framework (Section 11.9), and will exhibit
features similar to the corresponding ones in the total cost criterion.

We shall assume throughout this chapter that

(B1) Under any w ∈ US , X contains a single (aperiodic) ergodic
class, and absorption into the positive recurrent class (11.2)
takes place in a finite expected time (that may depend on w).

Remark 11.1 (i) Note that this assumption may restrict the choice of the
initial distribution β. To see that, fix some stationary policy w; even if for
any fixed initial state x, absorption into the positive recurrent class takes
place in a finite expected time (that may depend on the initial state x),
the choice of β may render the expected absorption time infinite.
(ii) Sufficient and necessary conditions for (11.2) in terms of policies in UD

can be found in Fisher (1968).

11.1 Occupation measure

For any given initial distribution β and policy u, define the finite horizon
occupation measure f t

ea(β, u;x, ·)

f t
ea(β, u;x,A) =

1
t

t∑
s=1

Pu
β (Xs = x,As ∈ A), A ⊂ A(x). (11.3)
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Let f t
ea(β, u) be the probability measure on (K, IK) generated by the rect-

angles (x,A), (A ⊂ A(x)) such that f t
ea(β, u)(x,A) := f t

ea(β, u; x,A). With
some abuse of notation, we define f t

ea(β, u;x) = f t
ea(β, u; x, A(x)). The sub-

script ea stands for expected average.
We denote by Fea(β, u) the non-empty compact set obtained as all the

limits, in the sense of vague convergence of measures, of {f t
ea(β, u)} (see

Definition 17.1 in the appendix). Any subprobability measure on K can be
written as

f = ∆ff ′ (11.4)

where ∆f ∈ [0, 1], and where f ′ is a probability measure. Define,

LU (β) =
⋃

u∈U

{Fea(β, u)} for any set of policies U,

Qea(β) =



ρ ∈ M1(K) :

∑

y∈X

∫

A(x)

ρ(y, da)(δx({y})−Pyax) = 0, x ∈ X



 ,

(11.5)
where M1(K) are the set of probability measures over K, and δx is the Dirac
probability measure concentrated on x. We set L(β) = LU (β)∪LM(UM )(β).
LU (β) is called the set of expected occupation measures achievable by U .

Definition 11.1 (Completeness and weak completeness, expected average
cost)
A class of policies U is called complete for the expected average cost crite-
rion (for a given initial distribution β) if

L(β) = LU (β) and ∀u ∈ U, Fea(β, u) is a singleton.

It is called weakly complete if

L(β) ∩M1(K) = LU (β)

and ∀u ∈ U, Fea(β, u) is a singleton.

Thus a complete class of policies U has the property that the achievable
expected occupation measures under U is the same as under all policies.
A weakly complete class of policies achieves all those expected occupation
for which the measure of K is one.

Definition 11.2 For any sets B1, B2 of subprobability measures on K, de-
fine B1 ∝ B2 if ∀f1 ∈ B1 there exists f2 ∈ B2 such that f ′1 = f ′2 and
∆f1 ≤ ∆f2 (where f ′ and ∆f are defined in (11.4)).

Theorem 11.1 (Weak completeness of stationary policies)
The stationary policies are weakly complete and LU (β) ∝ LUS

(β).
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Proof. Choose a policy u ∈ U . Let tn be some increasing sequence of times
along which f t

ea(β, u) converges vaguely to some limit f ∈ Fea(β, u). Define
γ that maps states y to measures over A(y):

γy(A) =
f(y,A)

f(y, A(y))
, A ⊂ A(y)

whenever the denominator is non-zero. When it is zero, γy(·) is chosen
arbitrarily. Define the stationary policy w as wx(A) = γx(A). It follows
from assumption (11.2) that the Markov chain with transition probabilities
P (w) has a unique invariant probability measure π(w), independent of the
initial distribution β, that satisfies

πy(w) = lim
t→∞

f t
ea(β,w; y),

and hence, Fea(β, w) = {fw} is a singleton and it satisfies

fw(y,A) = wy(A)πw(y). (11.6)

We show that fw = ∆f for some ∆ ∈ [0, 1]. It follows from (6.4) (when
setting M = ∅}) that for any x ∈ X,

f t
ea(β, u; x)− β(x)

t
=

∫

K
f t

ea(β, u; dκ)Pκx −
∫
K pu

β(t; dκ)Pκx

t
. (11.7)

By applying Lemma 17.2(i) in the appendix, we get from (11.7)

f(x, A(x)) = lim
n→∞

f tn
ea (β, u; x) = lim

n→∞

∫

K
f tn

ea (β, u; dκ)Pκx ≥
∫

K
f(dκ)Pκx.

(11.8)
By definition of γ and of Pxy(w),

∫

K
f(dκ)Pκx =

∑
y

f(y, A(y))
∫

A(y)

γy(da)Pyax =
∑

y

f(y, A(y))Pyx(w),

(11.9)
which, together with (11.8), leads to

f(x, A(x)) ≥
∑

y

f(y, A(y))Pyx(w). (11.10)

Measures satisfying (11.10) are called excessive measures; π(w) is known to
be the unique probability measure over X satisfying the inequality (11.10),
(this is a straightforward extension of Proposition 6.4 in Kemeney, Snell
and Knapp (1976), see Altman and Shwartz (1991a)). This, together with
the definition of γ, implies that {f} ∝ {fw}, which establishes the proof.

Lemma 11.1 (Tightness of occupation measure)
{f t

ea(β, u)}t∈IN are tight for any u ∈ US and any u ∈ U .
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Proof. Assumption (11.2) implies that the stationary state probabilities
π(u) exist under any u ∈ US and Pn(u) converge to π(u) in total variation.
Hence f t

ea(β, u; y,A) converge weakly to πu(y)uy(A). Lemma 17.2(ii) (in
the appendix) then implies the tightness of {f t

ea(β, u)}t∈IN.
The claim for U follows from the bounded convergence theorem (Roy-

den, 1988, Proposition 11.18): for any y ∈ X, measurable A ⊂ A(y)
and u ∈ US , f t

ea(β, u; y,A) is bounded by 1 and converges weakly to
πu(y)uy(A). Hence for any γ ∈ M1(US), the following limit exists:

fea(β, γ̂; y,A) (11.11)
= lim

t→∞
f t

ea(β, γ̂; y,A) = lim
t→∞

〈γ, f t
ea(β, ·; y,A)〉 = 〈γ, fea(β, ·; y,A)〉.

This implies that fea(β, γ̂) is a probability measure, and the result follows
from Lemma 17.2(ii) (in the appendix).

Theorem 11.2 (Continuity of occupation measures)
(i) Let U be some subset of US. Assume that LU (β) are tight. Then f :
LU → IR are weakly continuous over U .
(ii) Assume that LUD

(β) are tight. Then f : LU → IR are weakly continuous
over U .

Proof. (i) For any u ∈ US we use fea(β, u) to denote the singleton Fea(β, u) =
{fea(β, u)}. Let un be a sequence of stationary policies converging to u (i.e.,
un(· | x) converge weakly to u(· | x) for all x ∈ X).
Let n(i) be an increasing sequence of integers. Since LUS

(β) are tight, it
follows that there is a subsequence n(i(j)) of n(i) along which a limit (in
the sense of weak convergence of probability measures)

f ′ = lim
j→∞

fea(β, un(i(j)))

exists (Prohorov’s Theorem, see Billingsley, 1968, p. 37). Since un converges
to u, it also follows that the transition probabilities P (un) converge to P (u)
(pointwise). Since all entries of P (un) are bounded by 1, it follows from
Fatou’s Lemma that for all x ∈ X,

lim
j→∞

∑

y∈X

fea(β, un(i(j)); y)[P (un(i(j)))]yx ≥
∑

y∈X

f ′(y)[P (u)]yx.

Since for each n and y ∈ X,

fea(β, un; x) =
∑

y∈X

fea(β, un; y)[P (un)]yx,

we obtain

f ′(x, A(x)) ≥
∑

y∈X

f ′(y, A(y))[P (u)]yx, f ′ ∈ M1(K). (11.12)

Due to assumption (11.2), πu is the unique solution to π ≥ πP (u), π ∈
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M1X. Hence f ′(y, A(y)) = πu, (see Theorem 1.10 of Revuz, 1975, p. 67, or
Lemma 3.1 in Altman and Shwartz, 1991a).

Choose any bounded continuous function c′ : K → IR. In order to estab-
lish the proof, we have to show that

lim
j→∞

〈fea(β, un(i(j))), c′〉 = 〈fea(β, u), c′〉. (11.13)

Since un → u, it follows that for every y,

lim
j→∞

∫

A(y)

πun(i(j))(da | y)c′(y, a) =
∫

A(y)

πu(da | y)c′(y, a).

This implies (11.13) by the bounded convergence theorem, since

〈fea(β, un), c′〉 =
∑

y∈X

fea(β, un; y)
∫

A(y)

πun(da | y)c′(y, a).

(ii) Follows as the proof of the second part of Lemma 8.1 (ii).
The following set of assumptions will turn out to be especially useful for

the case that the immediate costs are not bounded below.
• (B2(u)) Given a policy u, the expected occupation measures {f t

ea(β, u)}t

are tight.
• (B2) Assumption B2(u) holds for all policies u.
• (B2∗) The family of stationary probabilities {πu, u ∈ USD} is tight.

There are many known sufficient conditions for assumptions (B2), (B2∗),
see e.g., Section 4 of Altman and Shwartz (1991a). We note also that (B2∗)
is equivalent to LUS

(β) being tight; this follows from Lemma 17.1 and
Lemma 17.2(ii) (in the appendix): For any u ∈ US , y ∈ X,A ⊂ A(y),
we have f t

ea(β, u; y,A) = fea(β, u; y)uy(A). Hence the following weak limit
exists and satisfies

fea(β, u, yA) def= lim
t→∞

f t
ea(β, u; y,A) = πu(y)uy(A). (11.14)

Assume that (B2∗) holds. Let u(n) be an arbitrary sequence of station-
ary policies. Let n[j] be a subsequence along which πu(n[j]) weakly con-
verge to some probability measure f (that such a subsequence can be
chosen follows from Lemma 17.1 in the appendix). (11.14) implies that
limj→∞ fea(β, u(n[j]);K) = f(K) = 1, and hence, by applying again Lemma
17.2(ii) (in the appendix), we see that {fea(β, u(n))}n (and hence LUS

(β))
are tight. The converse follows from the same argument.

11.2 Completeness properties of stationary policies

Theorem 11.3 (Completeness of stationary policies)
(i) LUS (β) and L(β) are convex and satisfy

L(β) = LUM (β) ∝ LUS (β) = Qea(β).
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(ii) Under Assumption (B2), LUS
(β) is convex, compact and tight, and

satisfies
LU (β) = L(β) = LUS

(β) = coLUD
(β) = Qea(β).

Hence the stationary policies are complete.

In order to prove the theorem, we need the following lemma (that corre-
sponds to Lemma 8.2 in the case of total cost). Its proof is a straightforward
extension of the proof that we presented for the finite case (in the proof of
Theorem 4.2).

Lemma 11.2 (Splitting in a state)
Choose w ∈ US and a state y. Define wa ∈ US to be the policy that always
chooses action a when in state y, and otherwise behaves exactly like w.
Then, there exists a probability measure γ over A(y) such that

fea(β, w) =
∫

A(y)

γ(da)fea(β, wa)

(where fea(β, wa) = limt→∞ f t
ea(β,wa)).

Proof of Theorem 11.3: (i) Theorem 6.1 implies that L(β) is convex, and
that L(β) = LUM (β). Theorem 11.1 implies that LUM (β) ∝ LUS (β). Since
for each w ∈ US , (11.10) is obtained with equality (see paragraph below
(11.10)), it follows from (11.9) and (11.10) that fea(β,w) ∈ Qea(β). It
remains to show the converse. For any ρ ∈ Qea(β), define again γ that
maps states y to measures over A(y):

γy(A) =
ρ(y,A)

ρ(y, A(y))
, A ⊂ A(y)

whenever the denominator is non-zero. When it is zero, γy(·) is chosen
arbitrarily. Define the stationary policy w as wx(A) = γx(A). It follows
from the definition of Qea(β) and of γ that for all x ∈ X,

ρ(x,A(x)) =
∑

y∈X

ρ(y, A(y))
∫

A(y)

γy(da)Pyax =
∑

y∈X

ρ(y, A(y))Pyx(w).

Since πy(w) = fea(β, w; y), y ∈ X is the unique solution to π = πP (w)
that satisfies π(X) = 1, π ≥ 0, it follows that ρ(x, A(x)) = fea(β, u;x)
for all x ∈ X, and by the definition of γ, ρ = fea(β, u). This establishes
LUS (β) = Qea(β).

Next, we show that LUS
(β) is convex. Choose an arbitrary constant

0 < α < 1 and choose f1, f2 ∈ LUS . Since L(β) is convex, f := αf1 + (1−
α)f2 ∈ L(β). Moreover, since f1, f2 ∈ M1(K), it follows that f ∈ M1(K).
Theorem 11.1 then implies that there exists a stationary policy w such that
Fea(β,w) = {f}, and thus, f ∈ LUS

(β). This establishes the convexity of
LUS

(β).
(ii) We first show that L(β) = LUS (β). Choose some policy u and initial
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distribution β, and some f ∈ Fea(β, u). By Theorem 11.1, there is some
∆ ∈ [0, 1], a stationary policy w such that Fea(β, w) = {fw} for some
fw, and f = ∆fw. It follows from Lemma 17.2(ii) (in the appendix) that
f(K) = 1. This implies that ∆ = 1, so that fw = f . Consequently, L(β) =
LUS (β).

Next, we show that L(β) is compact. Let fi ∈ L(β), i ∈ IN. Let f be
some limit point of fi in the sense of weak convergence of measures over
K (its existence follows from Lemma 17.1 in the appendix). Our aim is to
find a policy u such that Fea(β, u) = {f}.

By Theorem 11.1, there exists a stationary policy gi that achieves fi,
i.e., Fea(β, gi) = {fi}. Let εi := d(f, fi), so that limn→∞ εn = 0, where d
is a metric compatible with the weak convergence topology, i.e., fi weakly
converges to f if and only if d(f, fi) converges to 0 (see e.g., the Prohorov
metric in Daley and Vere-Jones, 1988, p. 624). Consider the non-stationary
policy u, that uses g1 until the time t1 := min{t : d(f1, f

t
ea(β, u)) ≤ ε1}, and

uses gi between ti−1+1 and ti, where ti := min{t > ti−1 : d(fi, f
t
ea(β, u)) ≤

εi}. The fact that tn < ∞ is proved by contradiction as follows. Suppose
the policy u uses gn from time s onward forever. Then

f t
ea(β, u; y,A)

=
s

t
fs

ea(β, u; y,A) + [gn]y(A)
t− s

t

∑

z∈X

Pu
β (Xs = z)

(
t−s∑
r=1

[P r(gn)]zy

)

(where P (gn) is the transition probabilities matrix under gn). It then fol-
lows easily that f t

ea(β, u) weakly converges to fn (as t → ∞). Thus tn is
indeed finite (which contradicts the fact that gn is used forever after s,
which once more confirms that tn is indeed finite). Now,

d(f, f tn
ea (β, u)) ≤ d(f, fn) + d(fn, f tn

ea (β, u)) ≤ 2εn.

Hence
lim

n→∞
f tn

ea (β, u) = f, (11.15)

which establishes the compactness of L.
Next we show that LUS (β) is equal to the closed convex hull of LUD (β).

Since it is compact, by the Krein-Milman Theorem (Krein and Milman,
1940), it is the closed convex hull of its extreme points. Choose some
extreme point ρ of LUS

(β). Define w(ρ) to be a stationary policy such
that wy(A) = ρ(y,A)[ρ(y, A(y))]−1 whenever the denominator is non-zero.
When it is zero, we let wy be concentrated on a(y), where a(y) is some
arbitrary action in A(y). We have fea(β, w) = ρ (by the proof of Theo-
rem 11.1). Assume that w /∈ UD. Then there exists some y ∈ X such that
ρ(y, A(y)) > 0. But then by Lemma 11.2, fea(β, w) is not an extreme point
of LUS (β), as it can be expressed as a convex combination of the distinct
points ftc(β, wa) (where wa are given in Lemma 8.2).

Tightness of LUS follows from Lemma 17.2(ii) in the appendix.
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Remark 11.2 (The importance of being tight)
In order for the stationary policies to be complete, assumption (B2) is in-
deed necessary, as can be shown using the Fisher and Ross example (Exam-
ple 8.4) which satisfies the unichain assumption. Indeed, Spieksma (1990,
Theorem 11.11) showed that there exists a non-stationary policy u for
which fea(x, u;K) = 0.7. Hence, fea(x, u; ·) is not a probability measure,
and therefore Assumption (B2(u)) does not hold (see Lemma 17.1 in the
appendix).

11.3 Relation between cost and occupation measure

We shall assume in the rest of this chapter that the immediate costs are
either bounded below or that (B2) and the uniform integrability condition
(B3), introduced below, hold. For the former case (cost bounded below),
we shall use either the additional assumption (B2), or alternatively, assume
some growth condition.

• (B3(u)) Given a policy u, the expected occupation measures {f t
ea(β, u)}t

are integrable with respect to the absolute value of the immediate costs
|c|, |d1|, . . . , |dK |, uniformly in t.

• (B3) Assumption (B3(u)) holds for all u ∈ U .

(B3) implies the following:

• (B3∗) The set of measures L(β) is integrable with respect to the absolute
value of the immediate costs |c|, |d1|, . . . , |dK |, uniformly in u ∈ UM (and
hence over U and U and M(UM )).

The proof that (B3) implies (B3∗) is postponed to Lemma 11.6.
Assumptions (B2) and (B3) will suffice to obtain a similar linear repre-

sentation of the cost as was obtained for the total cost case (Section 8.5).
When (B3) does not hold, we shall use assumption (11.1) to show that US

and U have these properties. For other policies, that representation will not
hold in general. To illustrate that, let c(κ) = 1 for all κ ∈ K, and consider
a policy u for which the occupation measures are not tight (e.g., the Fisher
and Ross (1968) Counter-example, see Remark 11.2). Then we have

1 = Cea(β, u) = Ct
ea(β, u) > 〈f, c〉, ∀t ∈ IN.

We have the following properties of the expected average costs (see Alt-
man and Shwartz, 1991a, Lemma 2.3):

Theorem 11.4 (Linear representation of the cost)
(i) Assume (B2)-(B3). Then for any β, u ∈ U ∪M(UM ) and f ∈ Fea(β, u),

Cea(β, u) ≥ 〈f, c〉 :=
∫

K
c(κ)f(dκ) (11.16)
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with equality holding for some f ∈ Fea(β, u); the expected average costs are
uniformly bounded over all policies:

sup
u
|Cea(β, u)| < ∞. (11.17)

(ii) Assume that the cost is bounded below, i.e., (11.1) holds. Fix some β
and u ∈ US or u ∈ U .
– If either (ii.1) The total expected cost to reach some recurrent state z is
finite, or (ii.2) Cea(z, u) = ∞, then (11.16) holds with equality.
– For any u, if c is non-negative or if f ∈ M1(K) for some f ∈ Fea(β, u),
then (11.16) holds.

Proof. (i) Choose any u ∈ U and let tn be some sequence along which the
weak limit f = limn→∞ f tn

ea (β, u) exists. Then

Cea(β, u) = lim
t→∞

Ct
ea(β, u) = lim

t→∞

∫
f t

ea(β, u; dκ)c(κ)

≥ lim
n→∞

∫
f tn

ea (β, u; dκ)c(κ).

Due to the uniform integrability of f tn
ea (β, u; dκ) w.r.t. the cost c, the inte-

gration and limit may be interchanged, see Lemma 17.4 in the appendix.
This establishes (11.16). Equality is obtained in (11.16) by choosing tn so
as to achieve the limsup:

lim
t→∞

∫
f t

ea(β, u; dκ)c(κ) = lim
n→∞

∫
f tn

ea (β, u; dκ)c(κ)

and so that a weak limit f =w limn→∞ f tn
ea (β, u) exists. (Such a choice is

possible due to Lemma 17.1(i) in the appendix.)
Finally, (11.17) follows from (B3) and from the fact that

sup
u
|Cea(β, u)| ≤ sup

f∈L(β)

〈f, |c|〉.

This establishes (i).
(ii) Consider u ∈ US . Assume (ii.1). Call a ‘cycle’ the period between

two consecutive visits to some state z. If the total expected cost per cycle
is finite, then the result follows from standard theory of Markov chains,
see e.g., Chung (1967, p. 91-92). Note that this cost is always well defined
since the immediate cost is bounded below. If Cea(z, u) = ∞, then the
expected cost per cycle is infinite, since the expected average cost equals
the expected cost per cycle divided by the expected cycle duration (which
is finite due to assumption (11.2)). In that case, one may replace the im-
mediate cost c by the truncated cost cB(κ) = min(c(κ), B). For every finite
B, the corresponding total expected cost per cycle is finite, as well as the
total expected cost until state z is first reached. Hence, by the first part
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of the proof, (11.16) holds. The result is then obtained by the monotone
convergence theorem.

To establish (11.16) for the case of non-negative cost and arbitrary u,
we choose some f ∈ Fea(β, u), and a sequence tn such that f is the vague
limit f =v limn→∞ f tn

ea (β, u). Following Lemma 17.2(i) (in the appendix),
we then have

Cea(β, u) = lim
t→∞

∫
f t

ea(β, u; dκ)c(dκ) ≥ lim
n→∞

∫
f tn

ea (β, u; dκ)c(dκ)

≥
∫

lim
n→∞

f tn
ea (β, u; dκ)c(dκ) = 〈f, c〉. (11.18)

To establish (11.16) for the case of f ∈ M1(K), we define c′(x, a) = c(x, a)−
b, where b is as in (11.1). By (11.18) we obtain

Cea(β, u) = b + lim
t→∞

∫
f t

ea(β, u; dκ)c′(dκ) ≥ b + 〈f, c′〉 = 〈f, c〉.

Next, establish the first statement in (ii) for γ̂ ∈ U . The expected average
cost corresponding to the immediate cost cB (as defined above) satisfies:

CB
ea(β, γ̂) = lim

t→∞
Ct,B

ea (β, γ̂) = lim
t→∞

∫

U
γ(du)Ct,B

ea (β, u)

=
∫

U
γ(du)CB

ea(β, u),

due to the bounded convergence theorem. For stationary u, we have

lim
B→∞

CB
ea(β, u) = Cea(β, u)

(due to the first part of (ii)). Hence, by the monotone convergence theorem,
the right-hand side converges to

∫
U γ(du)CB

ea(β, u). Since for every positive
B, CB

ea(β, γ̂) ≤ Cea(β, γ̂), this implies that

Cea(β, γ̂) ≤
∫

U
γ(du)Cea(β, u).

Since fea(β, γ̂) =
∫
U γ(du)fea(β, u) (see (11.11), it follows by Fubbini’s

Theorem that
Cea(β, γ̂) ≤ 〈fea(β, γ̂), c〉.

The proof now follows from the last statement of part (ii) of the theo-
rem (which we have already proved), since, by Lemma 11.1, fea(β, γ̂) is a
probability measure.

As we did for the total cost, we may relax the assumptions in The-
orem 11.4 (i) and combine them with those of part (ii). We obtain the
following:
Theorem 11.5 (Relaxing the assumptions in Theorem 11.4 (i))
(i) Define c+(x, a) = max(c(x, a), 0) and c−(x, a) = min(c(x, a), 0) (so that
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c = c+ + c−). Assume that (B2) holds, and that assumption (B3) applies
for c−. Then (11.16) holds for any u.
(ii) If, moreover, u ∈ US or u ∈ U and conditions (ii.1) or (ii.2) of Theo-
rem 11.4 hold, then (11.16) is obtained with equality.
Remark 11.3 (11.11), together with Theorem 11.4 (i), implies that

Cea(β, γ̂) = 〈γ, Cea(β, ·)〉, ∀γ̂ ∈ U
under assumptions (B2)-(B3), or under the assumptions (ii.1) or (ii.2) of
Theorem 11.4 (ii), or under the assumptions of Theorem 11.5 (ii).

Next we describe continuity properties of the expected average cost.
Lemma 11.3 (Continuity of the cost, uniform integrability assumptions)
Assume (B2)-(B3). Then Cea(β, u) is continuous on US and on U .
Proof. This follows from the continuity of the occupation measures over
US and U (Theorem 11.2), from the fact that (11.16) holds with equality
for u ∈ US and u ∈ U (since Fea(β, u) is then a singleton), and from (B3∗).
Indeed, let U stand for either US or U . Let un be a sequence of policies in
U converging to a policy u ∈ U . Then

lim
n→∞

Cea(β, un) = lim
n→∞

〈fn
ea(β, un), c)〉 = 〈fea(β, u), c)〉 = Cea(β, u).

(11.19)
(The integration and limit may be interchanged due to (B3∗), see Lemma
17.4(i) in the appendix.

Next, we obtain continuity properties for the case of cost bounded be-
low. We shall assume in addition either (B2) or another growth condition,
due to Borkar (1983), and adapted to constrained MDPs in Altman and
Shwartz (1991a):
There exists a sequence of increasing compact subsets Ki of K such that
∪iKi = K and such that the immediate cost functions c satisfies

lim
i→∞

{c(κ); κ /∈ Ki} = ∞. (11.20)

Note that the so-called ‘moment condition’ (11.20) implies that c is bounded
below by some b. (Note that c and d achieve their minima over each com-
pact set Ki, since they are continuous on K, by (6.1)).

A sufficient condition for (11.20), which is frequently used in the litera-
ture (e.g., Cavazos-Cadena, 1989, Cavazos-Cadena and Sennott, 1992), is
the following moment condition:

∀` ∈ IR, the set {x ∈ X : infa c(x, a) < `} is finite . (11.21)

Lemma 11.4 (Lower semi-continuity of the cost)
Assume that either
(i) (11.20) holds for the immediate cost c, or
(ii) c is bounded below and that Assumption (B2∗) holds.
Then Cea(β, u) is l.s.c. over US and U .
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Proof. Let un be a sequence of stationary policies converging to u (i.e.,
un(· | x) converges weakly to u(· | x) for all x ∈ X).

Assume that fea(β, un) are tight.
Theorem 11.2 (i) implies that fea(β, un) converges weakly to fea(β, u).
We have

lim
n→∞

Cea(β, un) = lim
n→∞

〈fea(β, un), c〉 ≥ 〈fea(β, u), c〉,

where the first equality follows from Theorem 11.4, and the inequality fol-
lows from Doob (1994, p. 133) (in the related theorem in Doob, the cost is
assumed to be bounded; However, it can easily be seen that only bounded-
ness from below is used in the proof of that theorem). Thus, (ii) is estab-
lished, and (i) is established for the case that fea(β, un) are tight.

Assume now that (11.20) holds. Let n(i) be some sequence of integers
along which limn Cea(β, un) is obtained as a limit. To establish lower semi-
continuity, it clearly suffices to consider the case that limi Cea(β, un(i)) is
finite. But in that case, it follows that fea(β, un(i)) are tight, so the result
is obtained from the first part of the proof.

Indeed, assume that {fea(β, un(i))}i are not tight. Let Kn be a sequence
of compact subsets of K, increasing to K. Since fea(β, un) are not tight,
there exists some δ and a subsequence n(i(j)) of n(i) such that

fea(β, un(i(j));Kc
j) > δ

for all j. Hence

Cea(β, un(i(j))) = 〈fea(β, un(i(j))), c〉 ≥ δ inf
κ/∈Kj

c(κ),

which tends to infinity as j → ∞ (the first equality follows from Theo-
rem 11.4). This contradicts the fact that t limi Cea(βun(i)) is finite, and
establishes the proof.
Remark 11.4 (Other conditions for lower semi-continuity)
The results of Lemma 11.4 can be obtained by using a combination of
conditions of Lemmas 11.3 and 11.4, as in Theorem 11.5 (ii).

11.4 Dominating classes of policies

Theorem 11.6 (Dominance under tightness and uniform integrability)
Assume (B2)-(B3). Then, any complete class of policies is a dominating
class. If COP is feasible, then there exist optimal policies in US and in U .

Proof. The proof is the same as the one for the total cost, i.e., the proof of
Theorem 8.4. (The basic steps can be found in Altman and Shwartz, 1991a,
Theorem 2.8 and Corollary 5.4.)

Next, we relate weakly complete classes of policies to dominating poli-
cies. In general, the fact that a class of policy is dominant does not ensure
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the fact that an optimal policy exists; it only implies that we may re-
strict our search for such a policy to that dominating class. The existence
of optimal stationary policies for COP was established by Altman and
Shwartz (1991a) Corollary 5.4, and in Altman (1994) Theorem 4.2 (under
suitable conditions). This implies the existence of optimal policies within
any dominating class of policies.

Theorem 11.7 (Dominant policies: a growth condition on the cost)
Assume that the growth condition (11.20) holds for the immediate cost c or
for dk, for some k = 1, . . . ,K.
(i) Let U be a class of policies that is weakly complete and for which (11.16)
holds with equality for the immediate costs c as well as for dk (k = 1, . . . , K)
for all u′ ∈ U . Then U is a dominating class. In particular, U can be taken
to be US.
(ii) U is a dominating class of policies.
(iii) If COP is feasible, then there exist optimal policies for COP within
U , and in particular, within US and U .

Proof. (i) The proof is related to Altman and Shwartz (1991a, p. 800,
Theorem 4.4). It clearly suffices to show that for any u for which Cea(β, u) <
∞ and Dk

ea(β, u) < ∞, k = 1, . . . ,K, there exists some u′ ∈ U such that

Cea(β, u′) ≤ Cea(β, u) Dea(β, u′) ≤ Dea(β, u).

Thus, assume without loss of generality that (11.20) holds for c. Choose
some policy u, and f ∈ Fea(β, u). Assume that Cea(β, u) < ∞ and that
{f t

ea(β, u)}t are not tight. Then there exists some ε > 0 and an increasing
sequence {tl} such that f tl

ea(Kc
l ) > ε. Denote cj := inf{c(κ) : κ /∈ Kj}. It

follows that
Ctj

ea(β, u) ≥ cjε + max(b, 0), j ∈ IN.

Since by (11.20), limj→∞ cj = ∞, it follows that Cea(β, u) = ∞, which
contradicts our assumption. Hence, if Cea(β, u) < ∞, then {f t

ea(β, u)}t are
tight and f is a probability measure (this follows from Lemma 17.1 in the
appendix). If U is a weakly complete class of policies, then there exists
some u′ ∈ U such that fea(β, u′) = f . The last part of Theorem 11.4 (ii)
and the assumption that (11.16) holds with equality for u′ implies that
u′ dominates u. The statement for US follows since by Theorem 11.1 it is
weakly complete and since by Theorem 11.4 (ii) it satisfies (11.16) with
equality.
(ii) We postpone the proof of U to the next chapter (Corollary 12.1).
(iii) Assume that COP is feasible, and let gi be a sequence of stationary
policies which are εi optimal, where limi→∞ εi = 0. Assume moreover that
fea(β, gi) converges to some limit f (in the sense of weak convergence of
measures over K). We may repeat now the argument in the part of the
proof of compactness in Theorem 11.3 above (11.15); we may choose an
increasing sequence tn and construct a Markov policy u that uses policy gi



156 THE EXPECTED AVERAGE COST

during time [ti, ti+1), such that

lim
n→∞

f tn
ea (β, u) =v f

(f is not necessarily a probability measure) and moreover,

Cea(β, u) := lim
n→∞

Ctn
ea(β, u) = lim

n→∞
Cea(β, gn) = Cea(β),

D
k

ea(β, u) := lim
n→∞

Dk,tn
ea (β, u) = lim

n→∞
Dk

ea(β, gn) ≤ Vk k = 1, . . . , K.

But then, by the first part of the theorem, there exists an optimal policy in
U , and in particular, among US . The statement for U follows from Theorem
11.7 (ii).

Theorem 11.8 (Dominant policies: tightness and cost bounded below)
Assume (B2) and that either
(i) the immediate cost c or for dk, k = 1, . . . ,K are bounded below, or
(ii) (B3) holds for the negative part c− and dk,− of the immediate costs c
and dk, k = 1, . . . , K.
Then all claims of Theorem 11.7 hold.

Proof. The proof of (i) is almost the same as that of Theorem 11.7: the
only place we used condition (11.20) there was to exclude policies for which
(B2(u)) does not hold. Now these policies are excluded due to assumption
(B2). The proof of (ii) is obtained similarly.

We show below that Theorem 11.7 holds when the growth condition
(11.20) is replaced by a weaker condition, due to Borkar (1983), which was
applied to constrained MDPs in Altman and Shwartz (1991a, Section 4).

Definition 11.3 (Almost monotone costs)
c : K → IR is called V -almost monotone if there exists a sequence of

increasing compact subsets Ki of K such that ∪iKi = K and

lim
i→∞

{c(κ); κ /∈ Ki} > V. (11.22)

Theorem 11.9 (Weak completeness and dominance)
Assume that U is weakly complete and that (11.16) holds with equality for
both immediate costs c as well as dk for all u′ ∈ U . Assume that there
exists some feasible policy u′ ∈ U i.e., Dk

ea(β, u′) ≤ Vk, and define V0 :=
Cea(β, u′). If c is V0-almost monotone and dk are Vk-almost monotone for
all k = 1, . . . , K, then
(i) U is a dominating class of policies. Moreover, U can be taken as US or
U .
(ii) If COP is feasible, then there exist optimal policies for COP within
U , and in particular, within US and U .

Proof. We do not present the detailed proof. The proof of (i) follows from
ideas similar to those in Theorem 11.7. The exact proof of the dominance
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of U can be found in Altman and Shwartz (1991a, Lemma 4.6). The exis-
tence of optimal policies within US was established in Altman (1994, The-
orem 4.2). This, together with the dominance of U , implies the existence
of an optimal policy within U .

11.5 Equivalent Linear Program

We now obtain an LP formulation similar to the one we obtained for the
total cost; we show again that the COP is equivalent to an LP with an
infinite set of decision variables and a countable set of constraints. Consider
the following LP:
LP3(β): Find the infimum C∗ of C(ρ) := 〈ρ, c〉 subject to:

Dk(ρ) := 〈ρ, dk〉 ≤ Vk, k = 1, . . . , K, ρ ∈ Qea(β),

where Qea(β) was defined in (11.5).
Define w(ρ) to be any stationary policy such that

wy(A) = ρ(y,A)[ρ(y, A(y))]−1

whenever the denominator is non-zero. We show that there is a one-to-one
correspondence between feasible (and optimal) solutions of the LP, and the
feasible (and optimal) solutions of COP.

Theorem 11.10 (Equivalence between COP and LP3(β))
Assume that one of the following three conditions holds:

• The immediate cost is bounded below (11.1) and satisfies the growth con-
dition (11.20) or (11.22); moreover, for any stationary policy u, the
total expected cost to reach some recurrent state z is either finite, or
Cea(z, u) = ∞.

• (B2) holds and the costs are bounded below; moreover, for any stationary
policy u, the total expected cost to reach some recurrent state z is either
finite, or Cea(z, u) = ∞.

• (B2) holds, and (B3) holds for the the negative part c− and dk,− of
immediate costs c and dk, k = 1, . . . ,K.

Then
(i) C∗ = Cea(β).
(ii) For any u′ ∈ U , there exists a dominating stationary policy u ∈ US

such that ρ(u) := fea(β, u) ∈ Qea(β), Cea(β, u) = C(ρ(u)) and Dea(β, u) =
D(ρ(u)); conversely, for any ρ ∈ Qea(β), the stationary policy w(ρ) satisfies
Cea(β, w(ρ)) = C(ρ) and Dea(β,w(ρ)) = D(ρ).
(iii) LP3(β) is feasible if and only if COP is feasible. Assume that COP
is feasible. Then there exists an optimal solution ρ∗ for LP3(β), and the
stationary policy w(ρ∗) is optimal for COP.

Proof. We start from (ii). The first claim follows from the fact that it holds
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for stationary policies (as is shown in the first paragraph of the proof of
Theorem 11.3), by combining Theorem 11.3 with Theorems 11.4 (ii), 11.6,
11.7, 11.8 and 11.9. The claims on the costs follow from Theorem 11.4. The
converse part follows by noting that for any ρ ∈ Qea(β), ρ = fea(β,w(ρ))
(this follows from the first paragraph of the proof of Theorem 11.3), and
by applying again Theorem 11.4. This establishes (ii), and thus implies (i).
(iii) now follows from (ii) and Theorems 11.6, 11.7, 11.8 and 11.9.

11.6 The Dual Program

Next, we present the formal dual program DP for the LP above. The deci-
sion variables are ψ ∈ IR, φ : X → IR and the K-dimensional non-negative
vectors λ ∈ IRK

+ .

DP3(β): Find Θ∗(β) := supψ,φ,λ ψ − 〈λ, V 〉 subject to

φ(x) + ψ ≤

c(x, a) + 〈λ, d(x, a)〉+

∑

y∈X

Pxayφ(y)


 , x ∈ X, a ∈ A(x).

We shall show in the next chapter that when choosing the decision variables
φ to be in the appropriate linear space, then there is no duality gap, and

Θ∗ = C∗ = Cea(β), (11.23)

for both the case that (B2)-(B3) hold, as well as the framework of costs
bounded below.

11.7 The contracting framework

We present below the contracting framework, which provides simple suffi-
cient conditions for assumptions (B2)-(B3).

The cost is assumed to be µ-bounded (7.36), the transition probabilities
are µ-continuous (Assumption (7.35)), and the initial distribution satisfies
〈β, µ〉 < ∞.

In the context of expected average cost, we shall define the ‘contracting
framework’ to be the µ-uniformly geometrically recurrent MDP, together
with the above assumptions on the transition probabilities, immediate costs
and initial distribution.

Definition 11.4 (µ-uniformly geometric recurrence)
For a given vector µ : X → [1,∞), an MDP is µ-uniformly geometrically
recurrent if it satisfies Definition 7.9 (contracting MDP) with the set M
being finite.

Definition 11.5 (µ-uniformly geometric ergodicity)
The MDP is said to be µ-uniformly geometrically ergodic if there exist
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constants σ > 0 and ξ̃ < 1 such that for all u ∈ US,
{ ||Pn(u)−Π(u)||µ ≤ σξ̃n, ∀n ∈ IN,

||P (u)||µ ≤ σ
(11.24)

where Pn(u) is the matrix of n-step transition probabilities under policy u,
and Π(u) is the matrix whose rows are equal to the steady-state probabilities
under u.
We present below a part of the remarkable equivalence relation established
in Spieksma (1990, Key Theorem II, p. 108, and Lemma 5.3 (ii)) and Dekker
et al. (1994).
Theorem 11.11 (µ-uniformly geometric ergodicity and recurrence)
Assume that (11.2) holds. Then,
(i) if the MDP is µ-uniform geometrically recurrent, then it is µ-uniformly
geometrically ergodic.
(ii) if the MDP is µ-uniform ergodic, then it is µ̃-uniformly geometrically
recurrent with

µ̃ = sup
w∈US

∞∑
n=0

MPn(w)µ.

Note that ν ≤ µ̃; on the other hand, if the MDP is µ̃-uniformly geometri-
cally recurrent, then µ̃ is µ-bounded. Indeed,

µ̃ ≤ µ + sup
w∈US

MP (w)µ̃ ≤ µ + ξµ̃

so that µ̃ ≤ µ/(1− ξ).
Next we present uniform tightness and integrability properties of con-

tracting MDPs.
Lemma 11.5 (Tightness and uniform integrability)
Under the contracting framework, the sets {f t

ea(β, u)}t∈IN,u∈U are tight
and are, moreover, uniformly integrable with respect to the cost c and to
µ(y, a) := µ(y). Hence (B2) and (B3) hold.
Proof. The uniform integrability follows directly from Corollary 6.2 in
Spieksma (1990), who restricted herself to Markov policies, to fixed initial
states, and to uniform integrability with respect to µ. The generalization
to any policy follows from Theorem 6.1. The proof in Spieksma (1990)
extends in a straightforward way to any initial distribution (satisfying of
course 〈β, µ〉 < ∞). Tightness follows from the uniform integrability (see
Lemma 6.5 in Spieksma (1990)).

Finally, we present a result by Spieksma (1990, Proposition 5.1, p. 97)
that establishes a stronger version of the continuity of the occupation mea-
sure over the set of stationary policies.
Theorem 11.12 (Continuity of occupation measures)
Consider the contracting framework. Then the state occupation measures
fea(β, •; •) are µ-continuous over US.
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11.8 Other conditions for the uniform integrability

We present in this section other conditions for the uniform integrability
conditions (B3) and (B3∗).
Lemma 11.6 Assume (B2). Then assumption (B3) implies (B3∗).

Proof. Assume that (B3) holds and (B3∗) does not hold. Then there is
a sequence fi ∈ L(β), i ∈ IN converging to some f that are not uniformly
integrable with respect to, say, |c|. Let g be a stationary policy that achieves
f , i.e., Fea(β, g) = {f}. Its existence follows from Theorem 11.3 (ii). We
have limi→∞ 〈fi, |c|〉 < 〈f, |c|〉, see Lemma 17.4(ii) in the appendix. But
this contradicts the linear representation of the cost (Theorem 11.4) for
the policy g, or the continuity of the cost in the policies (see (11.19)).

Lemma 11.7 (Linear representation of the cost implies B3(u))
Let Cea(β, u) be the expected average cost corresponding to the immediate
cost |c|. Assume that for some u and f ∈ Fea(β, u),

Cea(β, u) = 〈f, |c|〉. (11.25)

Then {f t
ea(β, u)} are uniformly integrable with respect to |c|.

Proof. Assume that B3(u) does not hold. Let t(n) be a subsequence along
which limn→∞ f

t(n)
ea (β, u) = f . Then

Cea(β, u) = lim
t→∞

〈f t
ea(β, u), |c|〉 ≥ lim

n→∞
〈f t(n)

ea (β, u), |c|〉 > 〈f, |c|〉

according to Lemma 17.4(ii) in the appendix, which contradicts the linear
representation of the cost (11.25).

Lemma 11.8 Assume
• (a1) f t

ea(β, u) are integrable with respect to |c|, |d1|, . . . , |dK |, for all t
and u;

• (a2) This integrability is uniformly in {t, u ∈ US};
• (a3) The stationary policies are dominating in the following sense. For

any non-negative immediate cost r,

sup
u∈U

R(β, u) = sup
u∈US

R(β, u),

where R(β, u) is the expected average cost corresponding to the immediate
cost r.

Then (B3) holds.

Proof. Assume that B3(u) does not hold for some Markov policy u, with
respect to, say, |c|. Let Kn ⊂ K be a sequence of sets converging to K.
There is some ε > 0 and a strictly increasing sequence t(n) such that

∫
1{κ /∈ Kn}|c(κ)|f t(n)

ea (β, u; dκ) > ε.
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(That t(n) can be chosen to be strictly increasing follows from the integra-
bility of f t.) This implies, in particular, that for every n,

lim
t→∞

∫
1{κ /∈ Kn}|c(κ)|f t

ea(β, u; dκ) > ε. (11.26)

(a2) implies that there exists some n such that for the immediate cost
r(x, a) = |c(x, a)|1{x /∈ Kn}, we have

sup
u∈US

R(β, u) < ε/2. (11.27)

However, (11.26) and (11.27) are not compatible with Assumption (a3).
This establishes the lemma by contradiction.

11.9 The case of uniform Lyapunov conditions

We establish in this section the equivalence between conditions (B2)-(B3)
and MDPs with uniform Lyapunov functions.

We first show that MDPs with uniform Lyapunov functions (as defined
in Definition 7.5) for which M is a finite set, satisfy conditions (B2)-(B3).

The proof of the following theorem uses ideas from Spieksma (1990)
Lemma 2.3.
Theorem 11.13 (Tightness and uniform integrability under a uniform
Lyapunov function)
Assume that the MDP has a uniform Lyapunov function µ, that the set M
is finite, and that 〈β, µ〉 < ∞. Then the sets {f t

ea(β, u)}t,u are
(i) Integrable with respect to the immediate costs c, d1, . . . , dK , uniformly
in t and u. Hence (B3) holds.
(ii) Are tight, i.e., (B2) holds.

Proof. Without loss of generality, we restrict ourselves to Markov policies.
Denote c′(x, a) := 1 + ν(x, a), where ν (given in Definition 7.5) is a bound
on the immediate costs. Both (i) and (ii) follow by showing that f t

ea(β, u)
are integrable w.r.t. c′, uniformly in u ∈ UM and t ∈ IN.

We use the last exit time decomposition. Define

T [s] def= min{n > s : Xn ∈M}, (11.28)

Eu
βc′(Xt, At) = Eu

βc′(Xt, At)1{T > t} (11.29)

+
∑

z∈M

t∑
s=1

Eu
β [c′(Xt, At)1{T [s] > t}1{Xs = z}].

Taking the time average until t of the first term on the right-hand side of
(11.29), we get

〈f t
ea(β, u), c′〉 ≤ 1

t
〈ftc(β, u), c′〉.
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Next we consider the time average of the second term in (11.29). For any
Markov policy u, define θsu to be that policy, shifted by s steps, i.e.,
[θsu]t (· | x) = ut+s(· | x).

1
r

r∑
t=1

t∑
s=1

Eu
β [c′(Xt, At)1{T [s] > t}1{Xs = z}]

=
1
r

r∑
s=1

r∑
t=s

Eu
β [c′(Xt, At)1{T [s] > t}1{Xs = z}]

≤ 1
r

r∑
s=1

∞∑
t=s

Eu
β [c′(Xt, At)1{T [s] > t}1{Xs = z}]

≤ 1
r

r∑
s=1

〈ftc(z, θsu), c′〉.

We conclude that

〈f t
ea(β, u), c′〉 ≤ 1

t
〈ftc(β, u), c′〉+

∑

z∈M

1
r

r∑
s=1

〈ftc(z, θsu), c′〉. (11.30)

ftc(β, u) are integrable w.r.t. c′, uniformly in u ∈ UM ; this follows from
Lemma 17.4 in the appendix, since M̂(β, u) = 〈ftc(β, u), c′〉 are continuous
in u (relation M1 ⇔M5 in Theorem 7.3). Thus, the first term on the right-
hand side of (11.30) is uniformly integrable w.r.t. c′. Similarly, ftc(z, θsu)
are integrable w.r.t. c′ uniformly over UM and s ∈ IN. It then follows that
r−1

∑r
s=1 〈ftc(z, θsu), c′〉 are also integrable w.r.t. c′ uniformly over UM

and s ∈ IN. Since all terms on the right-hand side of (11.30) are integrable
w.r.t. c′ uniformly over UM and s ∈ IN, then so is their sum, and this implies
(see Remark 17.1) that 〈f t

ea(β, u), c′〉 are integrable w.r.t. c′ uniformly over
UM and t.

Next we establish the converse:

Theorem 11.14 (Relation between (B2), (B3) and uniform Lyapunov func-
tions)
Assume that conditions (B2) and (B3) hold. Then the MDP has a uniform
Lyapunov function where M = {0}, where 0 is any arbitrary state and
where ν(x, a) def= |c(x, a)|+ ∑K

i=1 |dk(x, a)|.
Proof. Choose some arbitrary state 0. It follows from Assumption (B2)
that the steady-state πx(u), x ∈ X probabilities are continuous over US

(Theorem 11.2). Since the total expected time M(0, u) def= Eu
0 T{0} between

two visits of state 0 is given by M(0, u) = [πx(u)]−1, and since πx(u) > 0
for all x and u ∈ US due to the unichain assumption, it follows that M(0, u)
is continuous over US .

Consider the expected average cost and total expected cost corresponding
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to the immediate costs |c| instead of c, and denote these by Cea(β, u) and
Ctc(β, u).

Assumptions (B2) and (B3) imply that Cea(β, u) is continuous over US

(Theorem 11.3).
For any u ∈ US , we have

Cea(0, u) =
Ctc(0, u)
Eu

0 T{0}
.

From the continuity of Eu
0 T{0} and Cea(0, u) it then follows that Ctc(0, u)

is continuous over US .
Defining Dtc(0, u), we obtain the continuity of Dtc(0, u) over US . For any

sequence u(n) ∈ US converging to some u ∈ US ,

lim
n→∞

M̂(0, u(n)) = lim
n→∞

E
u(n)
0

∞∑
n=1

[1 + ν(Xn, An)]1{T > n}

= lim
n→∞

E
u(n)
0

∞∑
n=1

[1 + |c(Xn, An)|+
K∑

i=1

|dk(Xn, An)|]1{T > n}

= lim
n→∞

[M(0, u(n)) + Ctc(0, u(n)) +
K∑

i=1

D
K

tc(0, u(n))]

= M(0, u) + Ctc(0, u) +
K∑

i=1

D
K

tc(0, u)

= M̂(0, u).

(Changing the order of summation is possible as the summands are all non-
negative.) We conclude that Assumption N3 (in Section 7.5) holds. Due to
the unichain assumption, this implies property M1, i.e., the existence of a
uniform Lyapunov function, see Corollary 7.1.





CHAPTER 12

Expected average cost: Dynamic
Programming and LP

We present in this chapter dynamic programming, similar to that in Chap-
ter 9, for the unconstrained control problem, and then, using Lagrangian
and duality methods, derive the linear program DP3(β), which is the dual
of that obtained in the previous chapter. We show again that there is no
duality gap both for the case of the uniform Lyapunov function, as well as
the case of costs bounded below. As in Chapter 9, we conclude by present-
ing a different LP approach for computing the optimal values and optimal
mixed strategies.

The uniform Lyapunov function that we consider will be with respect to
a set M = {0} where 0 is some arbitrary state. We recall from Theorem
11.13 that the uniform Lyapunov conditions imply the conditions (B2) and
(B3) of Chapter 11.

12.1 The non-constrained case: optimality inequality

Introduce the (expected) Average Cost Optimality Inequality (ACOI):

ACOI : φ(x) + ψ ≥ min
a∈A(x)


c(x, a) +

∑

y∈X

Pxayφ(y)


 , (12.1)

where ψ is some constant, and φ : X → IR. This type of equation is closely
related to the optimal value and the computation of optimal policies, as
will be established in details in the following two sections. Before going
into details, we motivate the above optimality inequality in the following
lemmas that hold under general cost and ergodic structure. They provide in
particular lower and upper bounds for the expected average cost. The ideas
below can be found in Yushkevich (1973), Dynkin and Yushkevich (1979),
Hernández-Lerma and Lasserre (1995) and Arapostathis et al. (1993) and
references therein.

Lemma 12.1 (Upper bound on the value)
Let (ψ, φ) be a solution of (12.1) and let w be a stationary policy that chooses
at state x an action that achieves the inf of [c(x, a) +

∑
y∈X Pxayφ(y)] up



166 EXPECTED AVERAGE COST: DYNAMIC PROGRAMMING AND LP

to ε ≥ 0, i.e.,

c(x, w) +
∑

y∈X

Pxwyφ(y) ≤ c(x, a) +
∑

y∈X

Pxayφ(y) + ε, ∀a ∈ A(x).

Assume that φ satisfies

lim
n→∞

Ew
x φ(Xn)

n
≥ 0. (12.2)

Then ψ ≥ Cea(x,w)− ε, and hence ψ ≥ Cea(x)− ε.

Proof. We iterate (12.1) and obtain:

φ(x) ≥ −ψ − ε + c(x, w) +
∑

y∈X

Pxwyφ(y)

= −ψ − ε + c(x, w) + Ew
x φ(X2)

≥ −2ψ − 2ε + c(x, w) + Ew
x

[
c(X2, A2) + Ew

X2
φ(X3)

]

= −2ψ − 2ε + c(x, w) + Ew
x c(X2, A2) + Ew

x φ(X3)

≥ . . . ≥ −n(ψ + ε) +
n∑

t=1

Ew
x c(Xt, At) + Ew

x φ(Xn+1). (12.3)

Dividing by n in (12.3) and going to the limit as n tends to infinity, we
conclude that ψ ≥ Cea(x,w)− ε ≥ Cea(x)− ε.

Remark 12.1 Clearly, a sufficient condition for (12.2) to hold is that φ is
bounded from below.

Definition 12.1 (Superharmonic pair)
A pair (ψ, φ) (where ψ is a constant and φ : X → IR) is called superhar-
monic (for the expected average cost criterion) if it satisfies for all x ∈ X
and a ∈ A(x):

φ(x) + ψ ≤ c(x, a) +
∑

y∈X

Pxayφ(y). (12.4)

Lemma 12.2 (Lower bound on the value)
Assume that there exists some superharmonic pair (ψ, φ) such that

lim
n→∞

Eu
xφ(Xn)

n
≤ 0 (12.5)

for some Markov policy u. Then ψ ≤ Cea(x, u).

Proof. Iterating (12.5), we get

φ(x) ≤ c(x, u1)− ψ +
∑

y∈X

Pxu1yφ(y) = c(x, u1)− ψ + Eu
xφ(X2)

≤ c(x, u1)− 2ψ + Eu
x

[
c(X2, A2) + Eu

X2
(φ(X3))

]

= c(x, u1)− 2ψ + Eu
xc(X2, A2) + Eu

x (φ(X3))
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≤ . . . ≤
n∑

t=1

Eu
xc(Xt, At)− nψ + Eu

xφ(Xn+1).

The lemma follows by dividing by n and taking the limsup as n tends to
infinity.

Next we consider the case where the optimality inequality (12.1) holds
in fact with equality. Consider the (expected) Average Cost Optimality
Equation (ACOE):

ACOE : φ(x) + ψ = min
a∈A(x)


c(x, a) +

∑

y∈X

Pxayφ(y)


 , (12.6)

where ψ is some constant, and φ : X → IR. We note that if ACOE holds,
then the pair (ψ, φ) is superharmonic. This allows us to combine both
Lemmas 12.1 and 12.2 to get the following optimality results:

Lemma 12.3 (Characterization of optimal value and policy)
Assume that there exists a pair (ψ, φ) satisfying the ACOE (12.6), and
that (12.5) holds for any Markov policy u. Let w be the stationary policy
that chooses at state x an action that achieves the minimum of [c(x, a) +∑

y∈X Pxayφ(y)]. Assume that

lim
n→∞

Ew
x φ(Xn)

n
= 0.

Then (i) ψ is the optimal value and w an optimal stationary policy, i.e.,
ψ = Cea(x,w) = Cea(x).
(ii) Cea is the largest constant for which there exists a function φ′ such
that (ii.1) the pair (Cea, φ′) is superharmonic and for which (ii.2) for any
Markov policy u, (12.5) holds.

The following converse can be found in Arapostathis et al. (1993):

Lemma 12.4 (The converse)
Assume that there exists a pair (ψ, φ) satisfying the ACOE (12.6), and that

lim
n→∞

Eu
xφ(Xn)

n
= 0

for all u ∈ US. Then any optimal stationary policy g for which the state is
irreducible and positive recurrent satisfies

c(x, g) +
∑

y∈X

Pxgyφ(y) = min
a∈A(x)


c(x, a) +

∑

y∈X

Pxayφ(y)


 . (12.7)

Proof. Let g ∈ US be optimal and assume that the state is irreducible and
positive recurrent and that (12.7) does not hold. Then there exists some
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state x0 and action a0 ∈ A(x0) such that

c(x0, g) +
∑

y∈X

Px0gyφ(y) = min
a∈A(x0)


c(x0, a) +

∑

y∈X

Px0ayφ(y)


 + δ

> c(x0, a0) +
∑

y∈X

Px0a0yφ(y)

for some δ > 0. Let g′ ∈ US be the policy given by

g′(x) =
{

g(x) if x 6= x0

a0 if x = x0.

Using the ACOE, it follows from the irreducibility and positive recurrence
that Cea(x0, g

′) < Cea(x, g), which contradicts the fact that g is optimal.

We now introduce candidates to serve as the pair (ψ, φ) in ACOI or
ACOE, and candidates for the optimal value and optimal stationary poli-
cies. In the following sections we shall establish for either the bounded
cost assumptions or the Lyapunov assumptions, that these candidates are
indeed an appropriate choice.

Assume that for any α in a neighborhood of 1, there exists an optimal
stationary policy g(α) for the α-discount problem. Let αn be some arbitrary
sequence of discount factors converging to 1, along which the following
limits exist:

g∗ def= lim
n→∞

g(αn) (12.8)

h(x) = lim
n→∞

hαn(x) where hα(x) def=
Cα(x)− Cα(0)

1− α
, ∀x (12.9)

ψ∗ def= lim
n→∞

Cαn(0), (12.10)

where 0 is some state. The pair (ψ∗, h) is the candidate for the functions
that will satisfy the ACOI and ACOE, ψ∗ is the candidate for the optimal
value, and g∗ for an optimal policy. We shall need some properties of hα.
Assume that c ≥ 0. Let

T
def= inf

t>1
{Xt = 0}, Wα :=

T−1∑
t=1

αt−1c(Xt, At). (12.11)

Then Cα(x) can be written as

Cα(x) = min
u∈UM

[
(1− α)Eu

xWα + Eu
xαT−1Cα(0)

]
. (12.12)

Let Ctc(x, u) be the total expected cost until hitting the set M = {0}. It
follows from (12.12) that Cα(0) ≤ Ctc(0, u). If Ctc(x, u) < ∞ for all x ∈ X,
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then it follows from (12.12) that

Cα(x) ≤ (1− α)Ctc(x, u) + αCtc(0, u) < ∞,

and then

hα(x) = min
u∈UM

[
Eu

xWα − 1− Eu
xαT−1

1− α
Cα(0)

]

= min
u∈UM

[
Eu

xWα − Eu
x

T−1∑
s=1

αt−1Cα(0)

]
. (12.13)

Thus for any α,

hα(x) ≤ min
u∈UM

Eu
xWα ≤ min

u∈UM

Ctc(x, u). (12.14)

Hence, if there exists some policy u for which Ctc(x, u) is finite for all x,
then for each x, hα(x) is uniformly bounded over α ∈ (0, 1).

12.2 Non-constrained control: cost bounded below

We assume that (11.1) holds, i.e., that the costs are bounded below. With-
out loss of generality, we shall assume that the costs are non-negative (since
the optimality of a policy for the expected average cost is not affected by
adding constants to the costs and to the corresponding bounds V ).

Following Sennott (1989), we present below conditions for optimality of
some stationary policies, and relate the values to the dynamic programming
equation (12.1). We then present some sufficient conditions that are simpler
to verify. The approach that we pursue is based on relating the expected
average cost to the limit of discounted cost control problems.

Introduce some assumptions on the model:

• S1: For every state x ∈ X, and discount factor α, the value Cα(x) of
the non-constrained MDP is finite.

• S2: There exists a non-negative constant h such that

−h ≤ hα(x) :=
Cα(x)− Cα(0)

1− α

for all x ∈ X and discount factors α, and for some state 0 ∈ X.

• S3: There exists some non-negative m(x) such that hα(x) ≤ m(x) for
every x and α; moreover, for every x, there exists an action a(x) such
that ∑

y∈X

Pxa(x)ym(y) < ∞.

• S3∗: There exists some non-negative m(x) such that hα(x) ≤ m(x) for
every x and α, and, for every x and a ∈ A(x),

∑
y∈X Pxaym(y) < ∞.



170 EXPECTED AVERAGE COST: DYNAMIC PROGRAMMING AND LP

Remark 12.2 (Sufficient conditions for S1-S3)
If there exists a g ∈ UD under which the process is ergodic and irreducible
with an invariant probability measure π(g), and

∑
x∈X c(x, g)π(g) < ∞,

then Assumptions S1 and S3 hold. If X is fully ordered and Cα(x) is
increasing in x, then Assumption S2 holds. (See Arapostathis et al., 1993,
and Cavazos-Cadena and Sennott, 1992, for these results and for references
to other sufficient conditions).

As is seen at the end of Section 12.2, if there exists some policy u for
which Ctc(x, u) is finite for all x, then for each x, the first part of S3 holds,
and one can choose m(x) = infu Ctc(x, u). Moreover, it is easily seen from
(12.13) that if the growth condition (11.20) holds, then S2 is satisfied.

The following well-known Tauberian Theorem will turn to be very useful.
For its proof, we refer e.g., to Sznadjer and Filar (1992).
Lemma 12.5 (Tauberian Theorem)
Let {an} be a sequence of non-negative real numbers. Then

lim
n→∞

1
n

n−1∑
t=0

at ≤ lim
α→1

(1−α)
∞∑

t=0

αtat ≤ lim
α→1

(1−α)
∞∑

t=0

αtat ≤ lim
n→∞

1
n

n−1∑
t=0

at.

The following is due to Sennott (1989):
Theorem 12.1 (Existence of optimal values and stationary policies)
Assume S1-S3, and consider non-negative immediate cost. Then
(i) The value of the expected average control problem does not depend on
the initial state x and is given as the limit of the discounted value

Cea = lim
α→1

Cα(x)

(this limit is independent of the sequence αn in (12.8)).
(ii) Any stationary policy g∗ that is obtained as the limit of α-discount
optimal policies g(αn) (as in (12.8)) is optimal.
(iii) The pair (ψ∗, h) given in (12.9)− (12.10) satisfies the ACOI (12.1). If
moreover, S3∗ holds, then it satisfies the ACOE (12.6).
Proof. For each αn, the following holds for any fixed x ∈ X:

Cαn
(x) = (1− αn)c(x, g(αn)) + αn

∑

y∈X

Pxg(αn)yCαn
(y).

By subtracting Cαn(0) from both sides and dividing by 1− αn, we get

Cαn(0) + hαn(x) = c(x, g(αn)) +
∑

y∈X

Pxg(αn)yhαn(y). (12.15)

We now take the liminf in both sides and apply Fatou’s Lemma (as hαn

are bounded below by Assumption S2), and obtain

ψ∗ + h(x) ≥ c(x, g∗) +
∑

y∈X

Pxg∗yh(y),
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so that

ψ∗ + h(x) ≥ min
a∈A(x)


c(x, a) +

∑

y∈X

Pxayh(y)


 .

This concludes the first part of (iii). The second part of (iii) follows by
applying the dominated convergence theorem.

It follows from S1 that for all x and a ∈ A(x),

Cαn
(0) + hαn

(x) ≤ c(x, a) +
∑

y∈X

Pxayhαn
(y). (12.16)

Thus, we get using S3 and applying the dominated convergence theorem,

Cαn(0) + h(x) ≤ c(x, a) +
∑

y∈X

Pxayh(y). (12.17)

We conclude that g∗ minimizes the right-hand side of ACOI (12.1); so by
Lemma 12.1, g∗ satisfies Cea(x, g∗) ≤ ψ∗. On the other hand, it follows
from Lemma 12.5 that for any policy u,

Cea(x, u) ≥ lim
αn→1

Cαn
(x, u) ≥ lim

αn→1
Cαn

(x) = ψ∗. (12.18)

We thus conclude that (i) and (ii) hold.

12.3 Dynamic programming and uniform Lyapunov function

Next, we consider MDPs with uniform Lyapunov function with ν-bounded
costs. We consider in their definition the set M = {0} where 0 is some
arbitrary state. Let T = T0 be the time to hit state 0 (see definition in
(6.3)). In order to evaluate Cα(0) and hα, we note that the discounted cost
satisfies the following for u ∈ US :

Cα(x, u) = (1− α)Eu
x

T−1∑
t=1

αt−1c(Xt, At) + Eu
xαT−1Cα(0, u).

Hence,

Cα(0, u) =
(1− α)Eu

0

∑T−1
t=1 αt−1c(Xt, At)

1− Eu
βαT−1

=
Eu

0

∑T−1
t=1 αt−1c(Xt, At)

Eu
0

∑T−1
t=1 αt−1

. (12.19)

This implies

Cα(x, u)− Cα(0, u)
1− α

= Eu
x

T−1∑
t=1

αt−1c(Xt, At) +
Eu

xαT−1 − 1
1− α

Cα(0, u)
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= Eu
x

T−1∑
t=1

αt−1c(Xt, At)− Cα(0, u)Eu
x

T−1∑
t=1

αt−1

= Eu
x

T−1∑
t=1

αt−1c(Xt, At)− Eu
0

T−1∑
t=1

αt−1c(Xt, At).

Hence,

|hα(x, u)| def=
∣∣∣∣
Cα(x, u)− Cα(0, u)

1− α

∣∣∣∣

≤ Eu
x

T−1∑
t=1

αt−1ν(Xt, At) + Eu
0

T−1∑
t=1

αt−1ν(Xt, At)

≤ M̂(x) + M̂(0) ≤ µ(x) + µ(0)

(the last inequality follows from Lemma 7.5 (ii)). Since we know that there
exists a uniformly optimal stationary policy uα for the discounted cost, the
above implies that

|hα(x)| ≤ M̂(x) + M̂(0) ≤ µ(x) + µ(0). (12.20)

Theorem 12.2 (Existence of optimal values and stationary policies)
Consider an MDP with a uniform Lyapunov function and ν-bounded im-
mediate costs. Then
(i) The value of the expected average control problem does not depend on the
initial distribution β and is given as the limit of the value of the discounted
problem

Cea(β) = lim
α→1

Cα(β)

(this limit is independent of the sequence αn in (12.8)).
(ii) Any stationary policy g∗ that is obtained as limit of α-discount optimal
policies g(αn) (as in (12.8)) is optimal.
(iii) The pair (ψ∗, h) given in (12.9)− (12.10) satisfies the ACOE (12.6).

Proof. We begin with (iii). For each αn, the following holds for any fixed
x ∈ X:

Cαn(0) + hαn(x) = c(x, g(αn)) +
∑

y∈X

Pxy(g(αn))hαn(y)

= c(x, g(αn)) +
∑

y∈X

0Pxy(g(αn))hαn(y) (12.21)

(see (12.15)). hα are µ-bounded, uniformly in α (this follows from (12.20));
there exists some constant m such that

|hα(x)| ≤ mµ(x),

for all α smaller than 1.
Since P (u)µ is continuous over UD (property M1(ii) in the definition of
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the uniform Lyapunov function), we may take the liminf in both sides of
(12.21) and apply a dominated convergence theorem, to obtain

ψ∗ + h(x) = c(x, g∗) +
∑

y∈X

Pxg∗yh(y).

This establishes (iii). Since h(x) ≤ µ(x) + µ(0), it follows by property M6
(and Lemma 7.5 (i)) that

lim
n→∞

Eu
xh(Xn)

n
= 0 (12.22)

for all policies u and states x. Lemma 12.3(i) now implies that ψ∗ is the
optimal value, from which statement (i) follows, and also implies statement
(ii).

An alternative way to show part (i) of the theorem is by establishing that
Cα(β, u) converges to Cea(β, u) uniformly over u ∈ US . Since stationary
policies are dominant for both the discounted and the expected average
cost, this implies the convergence of the values. (All details of the above
statements are presented in the proof of Lemma 14.1.)

12.4 Superharmonic functions and linear programming

Fix an initial distribution β.

Theorem 12.3 (The value and superharmonic functions: MDPs with uni-
form Lyapunov function)
Consider an MDP with a uniform Lyapunov function and ν-bounded im-
mediate costs. Then
(i) The pair (Cea(β), h) is superharmonic, and h is µ-bounded (h is as in
(12.9)).
(ii) For any other superharmonic pair (ψ, φ) for which φ : X → IR is µ-
bounded, we have Cea(β) ≥ ψ.
(In other words, consider the class of superharmonic pairs (ψ, φ) for which
φ : X → IR are µ-bounded. The value Cea(β) is the largest constant for
which there exists a µ-bounded function φ : X → IR such that (Cea(β), φ)
is within the above class.)

Proof. (i) follows from Theorem 12.2 (i) and (iii).
(ii) follows from Lemma 12.3(ii), since for any µ-bounded φ,

lim
n→∞

Eu
xφ(Xn)

n
= 0

by the same arguments as in the proof of Theorem 12.2, and hence (12.5)
holds.

Motivated by Theorem 12.3, we introduce the following infinite Linear
Program with decision variables ψ ∈ IR and φ(y), y ∈ X, which may be
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used to obtain the optimal expected average value of COP.

DP(β) : Find Θ∗ := supψ,φ ψ subject to

φ(x) + ψ ≤ c(x, a) +
∑

y∈X

Pxayφ(y) ∀x ∈ X, a ∈ A(x), ψ ∈ IR .

Theorem 12.3 implies the following:

Theorem 12.4 (The dual linear program, uniform Lyapunov function)
Consider an MDP with a uniform Lyapunov function and ν-bounded im-
mediate costs. Consider the dual program DP(β), where φ is restricted to
the linear space Fµ. Then DP(β) is feasible; its value equals Cea(β), and
(Cea(β), φ), with φ = h, is an optimal solution.

We now obtain a similar statement for the case of non-negative costs,
when restricting to bounded functions (for which (12.5) clearly holds under
any policy). The fact that we restrict to the subclass of functions satisfying
the conditions of Lemma 12.3(ii) might lead to a value which is only a lower
bound on the original value (without the restriction). However, it will turn
out that the family of bounded functions φ is rich enough to yield the same
value as the one obtained by the richer class of policies satisfying (12.5).

Theorem 12.5 (The dual linear program, non-negative immediate costs)
Assume that the immediate costs are non-negative, and the standard mo-
ment condition (11.21) holds. Assume further that there exists a policy for
which the total expected cost from any state to state 0 is finite. Consider
DP(β) where the decision variables φ are bounded functions. Then for any
initial distribution β, DP(β) is feasible and its value equals Cea(β).

Proof. Denote by C1(β) the value of DP(β) restricted to bounded φ. Since
for any bounded function φ eq. (12.5) holds for all policies, we have by
Lemma 12.2

C1(β) ≤ Cea(β). (12.23)

Consider a set of approximating COPs with an immediate cost cn(x, a) =
min{n, c(x, a)}; denote by Cn

α(x, u) the corresponding infinite horizon ex-
pected discounted cost. Denote by Cn

tc(β, u) the corresponding total ex-
pected cost until state 0 is reached. Denote

hn
α(x) :=

Cn
α(x)− Cn

α(0)
1− αn

.

The pair (Cn
α(0), hn

α) is superharmonic, since, by the same arguments as
those that yield (12.15),

Cn
α(0) + hn

α(x) ≤ cn(x, a) +
∑

y∈X

Pxg(α)yhn
α(y)

≤ c(x, a) +
∑

y∈X

Pxg(α)yhn
α(y), (12.24)
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where g(α) is an optimal stationary policy for the α-discounted MDP. Con-
sider an arbitrary sequence αn converging to 1, along which the following
limits exist:

C∗ = lim
n→∞

Cn
αn

(0), h∗(x) = lim
n→∞

hn
αn

(x), ∀x, g∗ = lim
n→∞

g∗(n),

where g∗(n) is an optimal stationary policy for the αn-discounted MDP.
Since cn are bounded by n, we have Cn

α(x) ≤ n/(1 − α). Hence hn
α(x) are

bounded (in x) by n/(1−α). Since, for any fixed α ∈ (0, 1) and n, the pair
(Cn

α(0), hn
α) is feasible for DP(β), and since hn

α are bounded in x, we have

C∗ ≤ C1(β). (12.25)

For any α and n, we have (as follows from (12.14))

hn
α(x) ≤ inf

u
Cn

tc(x, u) ≤ inf
u

Ctc(x, u),

and thus, in particular, h∗(x) ≤ infu Ctc(x, u) is finite. For each x ∈ X and
n, we have

Cn
αn

(0) + hn
αn

(x) = cn(x, g(n)) +
∑

y∈X

Pxg(n)yhn
αn

(y),

as in (12.15).
One may verify from the growth condition (11.21) and from (12.13) that

hn
α(x) are uniformly bounded from below by some constant independent of

α and n (which implies in particular condition S2). Taking the limit as n
tends to infinity, we get, by Fatou’s Lemma,

C∗ + h∗(x) ≥ c(x, g∗) +
∑

y∈X

Pxg∗yh∗(y).

We conclude that (C∗, h∗) satisfy ACOI. Since h∗ is bounded below, it
satisfies (12.2), so by Lemma 12.1, Cea(β) ≤ C∗. This, together with (12.23)
and (12.25), establishes the proof.

Remark 12.3 (Non-negativity of the immediate cost)
It is in (12.24) that we made use of the non-negativity of the immediate
cost. One can relax the non-negativity assumption by assuming that the
immediate costs are bounded below, since the optimal value and optimal
policies can always be computed by shifting all costs by some constant, so
that they can be non-negative.

Remark 12.4 (Relaxing the growth condition)
In the above theorem, the growth condition was only needed in order to
ensure that Condition S2 holds in a slightly stronger version: hn

α(x) should
be bounded below, uniformly in n and α. It can thus be relaxed by other
weaker sufficient conditions.
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Remark 12.5 (On the methodology of approximation)
The method used to establish the convergence of the approximation scheme
in the proof of Theorem 12.5 is similar in spirit to the method used by
Sennott (1995) to obtain finite state approximation.

Remark 12.6 (Initial distributions and infinite costs)
Note that we allowed for arbitrary β. It may happen, however, that Cea(x)
is finite for all x, but β is chosen such that Cea(β) is infinite.

12.5 Set of achievable costs

Define for any subset U of policies the set of achievable vector performance
measures:

Mea
U

(β) = ∪u∈U{(Cea(β, u), Dk
ea(β, u), k = 1, . . . ,K)}, (12.26)

and set Mea(β) := Mea
U (β) ∪Mea

M(UM )
(β). Define also

Vea(β) :=
⋃

ρ∈ Qea(β)
{(〈ρ, c〉, 〈ρ, d1〉, 〈ρ, d2〉, . . . , 〈ρ, dK〉)}, (12.27)

where Qea(β) is given in (11.5).
The next characterization of achievable costs follows by combining The-

orems 11.3, 11.4, 11.7 and 11.9.

Theorem 12.6 (Characterization of the sets of achievable costs)
(i) Assume that the immediate cost is bounded below (11.1) and satisfies
the growth condition (11.20) or (11.22). Then
Mea

US
(β) and Mea(β) are convex, and

Vea(β) = Mea
US

(β) ≺ Mea
UM

(β) = Mea(β)

(≺ is defined in Section 8.1).
(ii) In the case of uniform Lyapunov function and ν-bounded immediate
costs, Mea

US
(β) is convex and compact, and satisfies

Mea
U (β) = Mea

US
(β) = coMea

UD
(β) ≺ Mea(β) = Vea(β).

12.6 Constrained control: Lagrangian approach

By the same arguments as the ones used to establish Theorems 9.9 and
9.10, we now obtain:

Theorem 12.7 (The Lagrangian)
Consider either (1) the immediate cost bounded below (11.1) and satisfying
the growth condition (11.20) or (11.22), or (2) the MDP has a uniform
Lyapunov function and ν-bounded immediate costs.
(i) Let U be any class of policies containing Us. Then the value function
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satisfies
Cea(β) = inf

u∈U
sup
λ≥0

Jλ
ea(β, u), (12.28)

where

Jλ
ea(β, u) := Cea(β, u) + 〈λ, Dea(β, u)− V 〉. (12.29)

(ii) A policy u∗ is optimal for COP if and only if Cea(β) = supλ≥0 Jλ
ea(β, u∗).

(iii) For any class U containing UD, the value function satisfies

Cea(β) = sup
λ≥0

min
u∈M(US)

Jλ
ea(β, u) = sup

λ≥0
min
u∈U

Jλ
ea(β, u). (12.30)

Moreover, there exist some u∗ ∈ U such that

Cea(β) = inf
u∈U

sup
λ≥0

Jλ
ea(β, u) = sup

λ≥0
Jλ

ea(β, u∗), (12.31)

and u∗ is optimal for COP.

Proof. For the proof, we make use of the fact that the stationary policies
are dominant (see Theorems 11.6, 11.7 and 11.9). The proof of (i) and (ii)
is exactly the same as the proof of the similar results in Theorem 12.7. The
proof of (iii) is the same, except that M(US) replaces M(UM ).

Remark 12.7 (Comparing Theorem 9.9 and Theorem 12.7)
In the above proof, we used from the beginning the fact that the station-
ary policies are dominant. Hence, the proof makes heavy use of the results
obtained in the last chapter, concerning the properties of occupation mea-
sures achieved by stationary policies. This was not necessary for the proof
in the analogous Theorem 9.9 for the case of total expected cost. There
we could work directly with the policies UM and M(UM ), since the La-
grangian, for the total expected cost, is lower semi-continuous in UM (and
hence in M(UM )). For the expected average case, this is generally not true.

By the same type of arguments as in the proof of Corollary 9.1, we obtain
from (12.31) the following:
Corollary 12.1 (Dominance of U)
Let the immediate costs be bounded below (11.1) and satisfy the growth
condition (11.20) or (11.22). Then U is a dominating class of policies.

Corollary 12.2 (Saddle point)
Consider either the case of immediate cost bounded below (11.1) and sat-
isfying the growth condition (11.20) or (11.22), or the case of a uniform
Lyapunov function with ν-bounded immediate costs. Then for any class of
policies U that contains either US or U , we have

Cea(β) = sup
λ≥0

min
u∈U

Jλ
ea(β, u) = min

u∈U
sup
λ≥0

Jλ
ea(β, u) = sup

λ≥0
Jλ

ea(β, u∗)

for some u∗ ∈ U .
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The existence of minimizing Lagrange multipliers is summarized in the
following theorem, whose proof follows the same lines as the proof of The-
orem 9.10.
Theorem 12.8 (The Lagrangian: Slater condition)
Under the conditions of Corollary 12.2, if there exists some policy u for
which Dea(β, u) < V , then there exist non-negative Lagrange multipliers
λ∗ = {λ∗1, . . . , λ∗K} such that

Cea(β) = min
u∈U

Jλ∗
ea (β, u) = min

u∈UD

Jλ∗
ea (β, u).

Moreover, any optimal policy u∗ satisfies the Kuhn-Tucker conditions:

λ∗k(Dk
ea(β, u∗)− Vk) = 0, k = 1, . . . , K.

12.7 The dual LP

For any u ∈ US ,

Jλ
ea(β, u) = lim

t→∞
1
t

t∑
s=1

Eu
β jλ(Xs, As)

where
jλ(x, a) := c(x, a) + 〈λ, d(x, a)〉.

This, together with the results of Section 12.4, suggests that the follow-
ing LP can be used to compute the optimal value of COP, with decision
variables ψ ∈ IR, φ ∈ X → IR and λ ∈ IRK

+ .

DP3(β): Find Θ∗(β) := supψ,φ,λ ψ − 〈λ, V 〉 subject to

φ(x) + ψ ≤ c(x, a) + 〈λ, d(x, a)〉+
∑

y∈X

Pxayφ(y), x ∈ X, a ∈ A(x).

Combining Theorem 12.7 with the results of Section 12.4, we get:
Theorem 12.9 (The dual LP, the case of a uniform Lyapunov function)
Consider the case of a uniform Lyapunov functions and ν-bounded costs.
Consider the dual program DP(β), where φ is restricted to the linear space
Fµ. Then DP3(β) is feasible if and only if COP is feasible. The value of
DP3(β) equals Cea(β) and φ(x) = h(x), x ∈ X (where h is given in (12.9))
is an optimal solution.

Theorem 12.10 (The dual LP, cost bounded below)
Assume that for each one of the immediate cost functions c(·, ·), and dk(·, ·),
k = 1, . . . ,K, the following hold:
• The immediate costs are non-negative.
• The standard moment condition (11.21) holds.
• Conditions S1 and S3 hold for the (non-constrained) MDP with the

corresponding immediate cost.
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• There exists some policy for which the total corresponding expected cost
from any state to state 0 is finite.

Consider DP3(β) where the decision variables φ are bounded functions.
Then for any initial state β, DP(β) is feasible and its value equals Cea(β).

DP3(β) is the dual LP to LP3(β). By comparing Theorems 11.10 to
12.9 and 12.10, we see that there is no duality gap between LP3(β) and
DP3(β).

12.8 A second LP approach for optimal mixed policies

In this section we present an alternative LP formulation for COP. The
decision variables will correspond to the probability measures over the space
of all stationary deterministic policies.

If the immediate cost is bounded below and satisfies the growth condition
(11.20) or (11.22), or if the MDP has a uniform Lyapunov function with ν-
bounded immediate cost, then we know by Corollary 12.1 and by Theorem
11.7 (i) that Cea(β) is equal to the value of COP restricted to U :

min
u∈U

Cea(β, u) subject to Dea(β, u) ≤ V.

This can be rewritten as a Linear Program:

LP4(β): min
γ∈M1(UD)

∫
Cea(β, u)γ(du)

subject to
∫

Dk
ea(β, u)γ(du) ≤ V k, k = 1, . . . , K. (12.32)

This yields the following:
Theorem 12.11 (Relation between COP and LP4(β))
Consider either the case of immediate cost bounded below and satisfying
the growth condition (11.20) or (11.22), or the case of a uniform Lyapunov
function with ν-bounded immediate costs. Then
(i) COP is feasible if and only if LP4(β) is feasible (i.e., the set satisfying
(12.32) is non-empty) If LP4(β) is feasible, then there exists an optimal
policy in U for COP.
(ii) The values of COP and of LP4(β) are equal.
(iii) If γ is a solution of LP4(β), then the policy γ̂ ∈ U is optimal for
COP.





PART III
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CHAPTER 13

Sensitivity analysis

13.1 Introduction

We consider in this chapter a sequence COPn, n = 1, 2, . . . of CMDPs and
a ‘limit’ CMDP, denoted by COP∞, or simply by COP. COP is assumed
to be feasible, and therefore, under the standard conditions developed in the
previous chapters, to have an optimal solution. However, for any given n,
COPn need not be feasible, and even if it is, it need not possess an optimal
solution (i.e., it may only have ε-optimal solutions). We are interested in
the following questions:
• (i) Do the values of COPn converge to the value of COP? If so, then

at what rate?

• (ii) Do optimal (or almost optimal) policies converge in some sense?

• (iii) Given an (almost) optimal policy for COPn, will it be an almost
optimal policy for COP if n is sufficiently large?

• (iv) Conversely, given an optimal policy for COP, will it be an almost
optimal policy for COPn for all n sufficiently large?

We shall proceed as follows. We first introduce a general framework for
approximations that will provide sufficient conditions for obtaining conver-
gence in the sense of (i) and (ii) above, and will provide also the rate of
convergence. It turns out that the answers to (iii) and to (iv) are in gen-
eral negative, unlike the unconstrained case. The reason is that an optimal
policy for COPn may be infeasible for COP, and vice versa. We shall, how-
ever, establish sufficient conditions for the following slightly weaker version
of (iii) and (iv):
• (iii′) Given an optimal policy for COPn, can we perturb it ‘slightly’ so

that it becomes almost optimal for COP if n is sufficiently large?

• (iv′) Given an optimal policy for COP, can we perturb it ‘slightly’ so
that it becomes almost optimal for COPn for all n sufficiently large?
As applications of the general framework, we shall examine in the next

chapters the convergence of values and policies in the discount factor, in-
cluding the case when it converges to one and the convergence in the horizon
as it tends to infinity. In Chapter 16 we further use the results below to
obtain algorithms based on finite-state truncation, for computing optimal
policies and values of MDPs with a countable state space.
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To illustrate the usefulness of the results for approximations, we note that
finite horizon CMDPs have, in general, Markov optimal policies, and their
computation is very costly for large horizon. Infinite horizon CMDPs, on
the other hand, have optimal stationary (or mixed stationary) policies, and
their computation is much less costly. A constructive answer to question
(iv′) will thus provide us with an efficient method for obtaining almost
optimal stationary policies for CMDPs with finite (but large) horizon.

Another application of the approximation results is adaptive CMDPs. It
is assumed that the transition probabilities are unknown to the controller.
The controller thus has to design a policy whose role combines estima-
tion and control. Under suitable conditions, an efficient estimation can be
guaranteed, i.e., the estimated transition probabilities converge to the true
value almost surely. The controls are updated according to the ‘Certainty
Equivalence’ rule: at any given time, the policy that is used imitates the
one that would be optimal for a CMDP whose transition probabilities are
those given by the current estimations. The asymptotic results of the cur-
rent chapter can be used to prove the optimality of that policy for the
countable state space. For the precise formulation and solution of adaptive
control of CMDPs in the finite state and action spaces, see Altman and
Shwartz (1991a, 1991b).

We briefly mention some related work on the continuity and sensitivity
analysis of mathematical programs, and of control problems. Many papers
and books are devoted to the continuity of mathematical programs in the
case of the finite-dimensional state, e.g., Dantzig et al. (1967), Pervozvanskii
and Gaitsgory (1986, 1988). Several special issues of scientific journals have
focused on such questions, as well as other related sensitivity, stability
and parametric analysis: Mathematical Programming 21, 1984, Annals of
Operations Research 27, 1990. Similar questions to those addressed in this
chapter were studied in Fiacco (1974) and in Schochetman (1990), and
some of the results there are close to those in the first part of the chapter.
Some other related references are Birge and Wets (1996), Kanniappan and
Sastry (1974), Lignotat and Morgan (1992), Lucchetti and Wets (1993),
Schochetman (1990), and Schochetman and Smith (1991).

Convergence results for constrained dynamic control problems have been
obtained by Altman and Shwartz (1991b, 1991c), Altman and Gaitsgory
(1993), Altman (1993, 1994), and Tidball and Altman (1995). Conditions
were obtained there for the convergence in the transition probabilities, in
the horizon and in the immediate cost. Conditions for the non-continuity,
and the analysis of the limiting behavior for these cases have been obtained
by Altman and Gaitsgory (1993).

Our approach below to obtain convergence conditions is based on La-
grangian techniques, and they are related to the techniques in Rockafel-
lar (1989).
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We begin by developing Key Theorems for approximating a COP by a
sequence COPn. COP is called the limit problem, and will stand for either
the finite horizon problem, or the infinite horizon discounted problem, total
cost problem, or the infinite horizon expected average problem. In fact, the
results of this section hold for any constrained optimization problem where
some costs are defined over some topological space (of policies) U ⊂ U :
C(·) : U → IR, D(·) : U → IRK . These costs may stand for the finite
horizon, infinite horizon discounted costs, total cost, or expected average
cost. We consider COP(U):

inf
u∈U

C(u) subject to D(u) ≤ V.

Denote by CU the value of COP(U). Assume that

|C(u)| < B (13.1)

for all u ∈ U . We shall use below e to denote a K-dimensional vector whose
components are all 1.

We consider next a sequence COPn(U), also called the approximating
problems, defined as follows. Consider a sequence of cost functions Cn :
U → IR, Dn : U → IRK , n = 1, 2, . . .; COPn(U) is defined by:

inf
u∈U

Cn(u) subject to Dn(u) ≤ V.

Denote by CU
n the value of COPn(U).

Remark 13.1 (Set of policies that depend on n)
The sets of policies in the above setting do not depend on n. There are cases,
however, where it is desirable to allow such a dependence. An example is
the finite approximation scheme III in Section 16.4. All the results we
present here generalize to this case, using the same types of arguments,
see Tidball and Altman (1995). However, for simplicity of presentation we
restrict ourselves to the simpler model.

We introduce the following assumptions.
• (S1): Slater-type condition:

∃v ∈ U such that D(v) < V. (13.2)

• (S2): Saddle-point condition: For any value of right-hand side constraints
V for which (S1) holds, there exists u∗ ∈ U and λ∗ ∈ RK with λ∗ ≥ 0,
(which depend on V ) such that

CU = C(u∗) = min
u∈U

max
λ≥0

[C(u) + 〈λ,D(u)− V 〉]

= max
λ≥0

min
u∈U

[C(u) + 〈λ,D(u)− V 〉]

= max
λ≥0

[C(u∗) + 〈λ,D(u∗)− V 〉]
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= min
u∈U

[C(u) + 〈λ∗, D(u)− V 〉] .

We shall sometimes use the notation u∗V and λ∗V to express the depen-
dence on V .

• (S3): Cn(u) and Dn(u) converge to C(u) and D(u) uniformly over u ∈ U ,
i.e., there exists some sequence ε1(n) ∈ IR, n = 1, 2, . . . such that for all
u ∈ U ,

lim
n→∞

ε1(n) = 0,

and for all n ∈ IN,

|Cn(u)− C(u)| < ε1(n), |Dk
n(u)−Dk(u)| < ε1(n), k = 1, . . . , K.

Remark 13.2 (The unconstrained case)
Our results will be applicable even for unconstrained MDPs. In that case,
(S1) and (S2) hold trivially.

13.2 Approximation of the values

The following theorem establishes the convergence of the values, and the
rate of convergence.

Theorem 13.1 (Convergence of the values)
Denote η(V ) := mink=1,...,K [Vk − Dk(v)]. Assume (S1) − (S3). Then the
values converge, i.e.,

lim
n→∞

CU
n = CU .

Moreover, for all n large enough, |CU − CU
n | is of the order of ε1(n), i.e.,

lim
n→∞

|CU − CU
n |

ε1(n)
≤

(
1 +

2B

η(V )

)
. (13.3)

In order to establish the theorem, we need the following lemmas.

Lemma 13.1 (Bound on the sum of Lagrange multipliers)
Assume (S2) and (S1). Then

〈λ∗, e〉 ≤ 2B

η(V )
. (13.4)

Proof.

−B ≤ CU

= min
u∈U

[C(u) + 〈λ∗, D(u)− V 〉]

≤ C(v) + 〈λ∗, D(v)− V 〉
≤ B + 〈λ∗, D(v)− V 〉.
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Hence,
〈λ∗, V −D(v)〉 ≤ 2B. (13.5)

We then obtain (13.4) by noting that η(V )〈λ∗, e〉 ≤ 〈λ∗, V −D(v)〉.
The following lemma shows that a property similar to (S2) holds also for

COPn(U), for n large enough.

Lemma 13.2 (Asymptotic properties of the approximating problems)
Assume (S1)− (S3). Fix some δ0 with 0 < δ0 < η(V ), and denote

k1 = 1 +
2B

η(V )− δ0
.

For all n large enough, COPn(U) is feasible, and

CU
n = inf

u∈U
sup
λ≥0

[Cn(u) + 〈λ,Dn(u)− V 〉] (13.6)

≤ sup
λ≥0

inf
u∈U

[Cn(u) + 〈λ,Dn(u)− V 〉] + 2ε1(n)k1.

Moreover, there exists u∗n ∈ U and λ∗n ∈ RK with λ∗n ≥ 0, and

〈λ∗n, e〉 ≤ 2B

η(V )− δ0
(13.7)

such that

inf
u∈U

sup
λ≥0

[Cn(u) + 〈λ,Dn(u)− V 〉] (13.8)

≤ inf
u∈U

[Cn(u) + 〈λ∗n, Dn(u)− V 〉] + 2ε1(n)k1

and

sup
λ≥0

inf
u∈U

[Cn(u) + 〈λ,Dn(u)− V 〉] (13.9)

≥ sup
λ≥0

[Cn(u∗n) + 〈λ,Dn(u∗n)− V 〉]− 2ε1(n)k1.

Proof. The upper bound of λ∗n follows by applying Lemma 13.1 to COP(U)
with V − ε1(n)e replacing V .

We shall prove the lemma by using for u∗n, λ∗n the pair
(u∗V−ε1(n)e, λ

∗
V−ε1(n)e) defined in (S2) (corresponding to COP(U) with the

right-hand side constraint V replaced by V −ε1(n)e). Consider n sufficiently
large so that ε1(n) < δ0.

inf
u∈U

sup
λ≥0

[Cn(u) + 〈λ,Dn(u)− V 〉]

≤ sup
λ≥0

[
Cn(u∗V−ε1(n)e) + 〈λ,Dn(u∗V−ε1(n)e)− V 〉

]
(13.10)

≤ sup
λ≥0

[
C(u∗V−ε1(n)e) + ε1(n) + 〈λ,D(u∗V−ε1(n)e)− (V − ε1(n))〉

]
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= inf
u∈U

[
C(u) + 〈λ∗V−ε1(n)e, D(u)− (V − ε1(n))〉

]
+ ε1(n) (13.11)

≤ inf
u∈U

[
C(u) + 〈λ∗V−ε1(n)e, D(u)− V 〉

]
+ ε1(n)k1 (13.12)

and from (13.11) we have

inf
u∈U

sup
λ≥0

[Cn(u) + 〈λ,Dn(u)− V 〉]

≤ inf
u∈U

[
C(u) + 〈λ∗V−ε1(n)e, D(u)− V 〉

]
+ ε1(n)k1 (13.13)

≤ inf
u∈U

[
Cn(u) + ε1(n) + 〈λ∗V−ε1(n)e, Dn(u) + ε1(n)− V 〉

]
+ ε1(n)k1

≤ inf
u∈U

[
Cn(u) + 〈λ∗V−ε1(n)e, Dn(u)− V 〉

]
+ 2ε1(n)k1

≤ sup
λ≥0

inf
u∈U

[Cn(u) + 〈λ,Dn(u)− V 〉] + 2ε1(n)k1. (13.14)

(13.14) implies (13.6). The feasibility of COPn(U) follows from the fact
that (13.11) is finite for all n large, as the first term in (13.11) equals the
value of COP(U) with V − ε1(n)e replacing V ; the latter is bounded by
B since (S1) implies that for all n large enough, COP(U) with V − ε1(n)e
replacing V is feasible.

The other assertions of the lemma follow from the above inequalities. In
particular, (13.8) follows from (13.11), where

λ∗n
def= λ∗V−ε(n)e. (13.15)

(13.9) follows from (13.10), where u∗n
def= u∗V−ε(n)e, since

(13.10) ≤ (13.12) = (13.13) ≤ (13.14).

Proof of Theorem 13.1: Choose some small δ0 > 0 as in Lemma 13.2. Recall
the definition of λ∗n in (13.8) and (13.15). It follows from Lemma 13.2, the
bound (13.7) and (13.13), that for all n large enough,

CU
n − CU = sup

λ≥0
inf
u∈U

[Cn(u) + 〈λ,Dn(u)− V 〉]

−max
λ≥0

min
u∈U

[C(u) + 〈λ, D(u)− V 〉]

≤ Cn(u∗) + 〈λ∗n, Dn(u∗)− V 〉+ ε1(n)k1

− [C(u∗) + 〈λ∗n, D(u∗)− V 〉]
≤ ε1(n)k1 + ε1(n)(1 + 〈λ∗n, e〉)
≤ 2ε1(n)k1.

We obtain similarly by the same kind of arguments, for all n large enough,

CU − CU
n ≤ 2ε1(n)k1,
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which concludes the proof.

There are cases where one knows a priori that there exists an opti-
mal policy for COP within some U , but COPn has optimal policies only
within some larger class of policies, say U

′
. This is the case, for example,

when COP corresponds to the expected average cost problem, for which
we showed that under fairly general assumptions, there exist optimal sta-
tionary policies; if COPn corresponds to the problem with finite horizon
(of length n, say), then one has to consider the larger class UM in order
to obtain an optimal policy for COPn. If we chose for both the finite and
infinite horizon U = UM , then condition (S3) would typically not hold. If
we chose U = US , then we would only get a statement of the type

lim
n→∞

CU
n = Cea(β),

whereas we wish to obtain

lim
n→∞

Cn = Cea(β).

To handle these cases, the following will be useful:

Theorem 13.2 (Convergence of values, extensions)
Assume (S1)− (S3) (restricted to the class of policies U). Assume that for
any ε > 0 and λ ≥ 0, there exist an ε-optimal policy uε within the subclass
U ⊂ U

′
, and some integer N0 (both may depend on λ and ε) for the problem

of minimizing over u ∈ U
′
the Lagrangian

Cn(u) + 〈λ,Dn(u)〉, ∀n ≥ N0.

Then limn→∞ CU
′

n = CU .

Proof. According to Theorem 13.1 we have limn→∞ CU
n = CU . Since CU

n ≥
CU

′
n , we conclude that that

lim
n→∞

CU
′

n ≤ CU .

We shall show that
lim

n→∞
CU

′

n ≥ CU ,

which will establish the convergence of the values. Fix some 0 < δ0 < η(V ),
and consider n sufficiently large so that ε1(n) < δ0, where ε1(n) is defined
in (S3). It follows that

CU
′

n − CU = inf
u∈U

′
sup
λ≥0

[Cn(u) + 〈λ,Dn(u)− V 〉]

−min
u∈U

[C(u) + 〈λ∗, D(u)− V 〉]

≥ [Cn(uε) + 〈λ∗, Dn(uε)− V 〉]− ε
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−[C(uε) + 〈λ∗, D(uε)− V 〉]
≥ −ε1(n)k1 − ε

(where k1 is defined in Lemma 13.2).

13.3 Approximation and robustness of the policies

Next, we establish the convergence of optimal policies.
Theorem 13.3 (Convergence of the policies)
Assume that the values of COPn(U) converge to the value of COP(U),
i.e., limn→∞ CU

n = CU . Assume that there is some topology on U such that

(S4): C(·) and Dk(·), k = 1, . . . ,K are lower semi-continuous on U .

Consider an increasing sequence of integers m(n), n = 1, 2, . . . and a se-
quence ε2(n) decreasing to zero. Assume that COPm(n) are feasible, and
let u∗n ∈ U be some ε2(n)-optimal policies for COPm(n), n = 1, 2, . . .. As-
sume that u∗n have some accumulation point u∗ ∈ U . Then u∗ is optimal
for COP.

Proof. From the lower semi-continuity of D(·) and from (S3), it follows
that

Dk(u∗) ≤ lim
n→∞

Dk(u∗n)

≤ lim
n→∞

[Dk
m(n)(u

∗
n) + ε1(n)]

≤ lim
n→∞

[Vk − ε1(n)] = Vk.

Hence, u∗ is feasible. On the other hand, from the lower semi-continuity of
C(·), from (S3), and since, by assumption, limn→∞ CU

n = CU , it follows
that

C(u∗) ≤ lim
n→∞

C(u∗n)

≤ lim
n→∞

[Cm(n)(u∗n) + ε1(n)]

≤ lim
n→∞

[CU
m(n) + ε2(n) + ε1(n)] = CU .

Consequently, C(u∗) = CU and u∗ is optimal, which establishes the proof.

Finally, we consider the construction of almost optimal policies. We need
the following convexity assumption:

• (S5): For any p, 0 < p < 1 and any policies u1 ∈ U, u2 ∈ U , there is a
policy up ∈ U such that

D(up) ≤ pD(u1) + (1− p)D(u2),
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C(up) ≤ pC(u1) + (1− p)C(u2).

Theorem 13.4 (Robustness of the policies)
Assume (S1)− (S3) and (S5).
(i) Let u1 = v, u2 = u∗, where u∗ is optimal for COP(U) (see (S2)) and
v is given in (S1). Then for any ε4 > 0, there exists some p such that
the policy up defined in (S5) is ε4-optimal for COPn(U), for all n large
enough.
(ii) Consider some sequence ε3(n), n = 1, 2, . . . converging to zero. Let
u1 = v, and consider the sequence of policies u2

n ∈ U such that u2
n is ε3(n)-

optimal for COPn(U). Then for any ε4 > 0, there exists some p such that
the policies up(n) defined in (S5) when considering the pairs (u1, u2

n) are
ε4-optimal for COP(U), for all n large enough.

Proof. We first show that for any p > 0, up is feasible for all n large enough.

Dn(up) ≤ D(up) + ε1(n)e
≤ pD(v) + (1− p)D(u∗) + ε1(n)e
≤ V − p[V −D(v)] + ε1(n)e.

So, for all n for which p[V −D(v)] + ε1(n)e ≤ 0, up is feasible. Similarly,

Cn(up) ≤ C(up) + ε1(n)

≤ pC(v) + (1− p)CU + ε1(n)

≤ 2pB + CU + ε1(n)

≤ CU
n + 2pB + [CU − CU

n ] + ε1(n).

(i) now follows since CU −CU
n + ε1(n) tends to zero (by Theorem 13.1 and

by (S3)).
(ii) is obtained similarly. For any n,

D(up(n)) ≤ pD(v) + (1− p)D(u2
n)

≤ pD(v) + (1− p)Dn(u2
n) + ε1(n)e

≤ V − p[V −D(v)] + ε1(n)e

and hence for any p, up(n) are feasible for all large enough n.

C(up(n)) ≤ pC(v) + (1− p)C(u2
n)

≤ 2pB + Cn(u2
n) + ε1(n)

≤ 2pB + CU
n + ε3(n) + ε1(n).

(ii) now follows since CU
n + ε3(n) + ε1(n) tends to CU (by Theorem 13.1

and by definition of ε1(n) and ε3(n)).

Remark 13.3 (Relaxing some assumptions)
The results of Theorem 13.4 (i) clearly extend to the setting of Theorem



192 SENSITIVITY ANALYSIS

13.2. This follows from the fact that up is ε4-optimal for COPn(U), for all n

large enough, and since the class U has an ε-optimal policy for COPn(U
′
),

for all n large enough.



CHAPTER 14

Convergence of discounted
constrained MDPs

We apply below the results of Chapter 13, to the convergence of CMDPs
in the discount factor.

14.1 Convergence in the discount factor

We first consider the four types of convergence described in Chapter 13,
where the limit COP is the one with infinite horizon discounted cost,
with discount factor α < 1, and where COPn are with infinite horizon
discounted cost with discount factor αn converging to α. The transition
probabilities and immediate costs are the same. The convergence results
were already obtained in Altman (1993) using other general convergence
theorems (that did not provide the estimation of the error in approximation,
as we have here).

We make a weak contracting assumption: the immediate costs are µ-
bounded by b, the transition probabilities are µ-continuous, the initial dis-
tribution satisfies 〈β, µ〉 < ∞, and

α
∑

y/∈Mα

Pxayµ(y) ≤ ξµ(x), ξ ∈ [0, 1). (14.1)

It follows then by Theorem 8.4 (iii) and the end of Chapter 10 that one
may restrict oneself without loss of optimality to stationary policies, since
they are sufficient for both the limiting and the approximating problems.
Hence we may consider U in the key theorems of Chapter 13 to be the
stationary policies.

We assume that the Slater condition holds, i.e., Dα(β, u) < V for some
policy u, which implies condition (S1).

We check all conditions (S2)-(S5). (S2) is established in Corollary 9.2
and Theorem 9.10; Lemma 8.5 (ii) implies (S4). (S5) follows from Theorem
9.8 (ii). For any discount factor α1 such that α1 < α/ξ (where ξ is defined
in (14.1),

||Cα1(•, u)− Cα(•, u)||µ
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=

∣∣∣∣∣∣

∣∣∣∣∣∣

∞∑

j=0

[
(1− α1)α

j
1 − (1− α)αj

]
P j(u)c(u)

∣∣∣∣∣∣

∣∣∣∣∣∣
µ

≤
∞∑

j=0

∣∣∣(1− α1)α
j
1 − (1− α)αj

∣∣∣
(

ξ

α

)j

b

≤ b

∞∑

j=0

∣∣∣αj
1 − αj

∣∣∣
(

ξ

α

)j

= b

∣∣∣∣
1

1− ξ
− 1

1− ξα−1α1

∣∣∣∣ =: ε1(α1, α)

(b is defined in (7.36), P j(u) is the j-step transition probability matrix
under the stationary policy u, and c(u) is the vector whose components
are c(x, u).) This converges to 0 as α1 converges to α, uniformly in the
policies. This establishes (S3) (from Chapter 13). Using Theorem 13.1, we
have that the difference between Cα1(β) and Cα(β) is of order ε1(α1, α).

Remark 14.1 (Alternative conditions)
If the immediate costs are bounded, or if the following holds:

sup
u∈US

sup
j∈IN

|βP j(u)c(u)| ≤ b̃ < ∞, (14.2)

then (S3) is even simpler to establish. Indeed, we have

Cα1(β, u)− Cα(β, u)

≤ b̃

∞∑

j=0

∣∣∣(1− α)αj − (1− α1)α
j
1

∣∣∣

≤ b̃

∞∑

j=0

∣∣∣αj − αj
1

∣∣∣ = b̃

∣∣∣∣
1

1− α
− 1

1− α1

∣∣∣∣ .

(Note, however, that (14.2) does not imply our Assumption (14.1).)

14.2 Convergence to the expected average cost

We consider the four types of convergence where the limit COP is the
one with infinite horizon expected average cost, and where COPn are with
infinite horizon discounted cost with discount factor αn converging to 1.
The transition probabilities and immediate costs are the same.

We consider again the contracting framework; we assume in particular
that the MDP is uniform µ-geometric recurrent (Definition 11.5). Finally,
we make the unichain assumption (11.2) (from Chapter 11).

It follows then by Theorem 8.4 (iii) and 11.6 that one may restrict oneself
without loss of optimality to stationary policies, since they are sufficient for
both the limiting and the approximating problems. Hence we may consider
U in the key theorems of Chapter 13 to be the stationary policies.
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(S1) holds when assuming the standard Slater condition. (S2) is estab-
lished in Corollary 12.2 and Theorem 12.8; Lemma 11.3 (ii) implies (S4).
(S5) follows from Theorem 12.6 (ii). It remains to establish (S3). We prove
it for Cea; the same proof holds for Dk

ea. Fix an arbitrary stationary policy
u, and let Π(u) denote the matrix whose rows are all equal to the steady-
state probability distribution π(u). Recall that our uniformly µ-geometric
recurrence assumption implies uniform µ-ergodicity (Theorem 11.11), i.e.,
there exist constants σ > 0 and ξ̃ < 1 such that for all u ∈ US ,

{ ||Pn(u)−Π(u)||µ ≤ σξ̃n, ∀n ∈ IN,

||P (u)||µ ≤ σ.

Hence

||Cα(•, u)− Cea(•, u)||µ

=

∣∣∣∣∣∣

∣∣∣∣∣∣



∞∑

j=0

(1− α)αjP j(u)−Π(u)


 c(u)

∣∣∣∣∣∣

∣∣∣∣∣∣
µ

=

∣∣∣∣∣∣

∣∣∣∣∣∣

∞∑

j=0

(1− α)αj
[
P j(u)−Π(u)

]
c(u)

∣∣∣∣∣∣

∣∣∣∣∣∣
µ

≤ σ

∞∑

j=0

(1− α)αjbξ̃j =
σb(1− α)
1− αξ̃

=: ε1(α).

Using Theorem 13.1, we have that the difference between Cα(β) and Cea(β)
is of order ε1(α).
Remark 14.2 (The multi-chain case)
It is possible to obtain similar results for the general multi-chain case under
appropriate conditions. This was done for the finite state and actions case
in Tidball and Altman (1995). The class of policies U they consider is
U , which is a dominating class for the multi-chain case. It used the fact
that the optimal policies and values of COP are obtained by LP4(β)(see
Feinberg, 1995) even in the multi-chain case.

14.3 The case of uniform Lyapunov function

Next, we relax the assumption on uniform µ-geometric recurrence, used
in the previous section, at the price of losing the explicit estimation on
the error in the approximation. We assume that the MDP has uniform
Lyapunov function (corresponding to the set M = {0}, where 0 is some
arbitrary state), and that the immediate costs are ν-bounded.

Since (B2) and (B3) are equivalent to the existence of a uniform Lya-
punov function (Section 11.9), then by Theorem 11.6, we may restrict our-
selves to stationary policies for the limit problem. The uniform Lyapunov
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condition implies that for each discount factor α, the weak contracting
condition (10.4) holds for the corresponding discounted cost problem (see
Section 10.4). Thus, we may restrict ourselves to stationary policies also
for the approximating problems (this is due to Theorem 8.4 (iii) and to the
fact that the discounted cost problem is equivalent to a contracting total
cost problem).

Condition (S1) (from Chapter 13) holds when assuming the standard
Slater condition. (S2) is established in Corollary 12.2 and Theorem 12.8.
Lemma 11.3 implies (S4). (S5) follows from Theorem 12.6 (ii). It remains
to establish (S3). We prove it in the next Lemma for Cea; the same proof
holds for Dk

ea.

Lemma 14.1 (Uniform convergence of the discounted cost to the expected
average cost)
Consider an MDP with a uniform Lyapunov function. Then Cα(β, u) con-
verges to Cea(β, u) uniformly over US.

Proof. Let T = T0 be the time to hit state 0 (see definition in (6.3)). The
discounted cost satisfies the following for u ∈ US :

Cα(β, u) = (1− α)Eu
β

T−1∑
t=1

αt−1c(Xt, At) + Eu
βαT−1Cα(0, u).

Moreover,

Cα(0, u) =
Eu

0

∑T−1
t=1 αt−1c(Xt, At)

Eu
0

∑T−1
t=1 αt−1

(see (12.19)). On the other hand,

Cea(β, u) =
Eu

0

∑T
t=1 c(Xt, At)
Eu

0 T
.

Hence

|Cea(β, u)− Cα(β, u)| ≤
∣∣∣∣∣(1− α)Eu

β

T−1∑
t=1

αt−1c(Xt, At)

∣∣∣∣∣ (14.3)

+

∣∣∣∣∣E
u
βαT−1 Eu

0

∑T−1
t=1 αt−1c(Xt, At)

Eu
0

∑T−1
t=1 αt−1

− Eu
0

∑T−1
t=1 c(Xt, At)
Eu

0 T − 1

∣∣∣∣∣ .

We shall show that this converges to 0 uniformly in US .
We note that∣∣∣∣∣E

u
β

T−1∑
t=1

αt−1c(Xt, At)

∣∣∣∣∣ ≤ Eu
β

T−1∑
t=1

ν(Xt, At) ≤ 〈β, µ〉 < ∞

(the second inequality follows from Lemma 7.5 (ii)). Hence the first term
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on the right-hand side of (14.3) converges to 0 as α → 1, uniformly over
US .

Now,

|1− Eu
βαT−1| = (1− α)Eu

β

T−1∑
t=1

αt−1 ≤ (1− α)Eu
βT − 1 < (1− α)〈β, u〉

(this too follows from Lemma 7.5 (ii)). This implies that Eu
βαT−1 converges

to 1 uniformly in u, as α → 1.
Next, we evaluate Eu

0

∑T−1
t=1 αt−1 − Eu

0 (T − 1). Fix some integer n.
∣∣∣∣∣E

u
0

T−1∑
t=1

αt−1 − Eu
0 (T − 1)

∣∣∣∣∣

≤ Eu
0

T−1∑
t=1

(1− αt−1)1{T ≤ n}+ 2Eu
0 1{T > n}

≤
n∑

t=1

(1− αt−1) + 2Eu
0 1{T > n}

The term Eu
0 1{T > n} can be made arbitrarily small uniformly over

u ∈ US , by choosing n sufficiently large. This is due to property M1′ (in
Section 7.4) and to Lemma 7.5 (i). For that n,

∑n
t=1(1−αt−1) can be made

arbitrarily small in a neighborhood [α(n), 1] by choosing α(n) sufficiently
close to 1. This implies the convergence of Eu

0

∑T−1
t=1 αt−1 to Eu

0 T − 1, uni-
formly in US .

By the same type of arguments, we show that Eu
0

∑T−1
t=1 αt−1c(Xt, At)

converges to Eu
0

∑T−1
t=1 c(Xt, At), uniformly in US . Indeed,

∣∣∣∣∣E
u
0

T−1∑
t=1

αt−1c(Xt, At)− Eu
0

T−1∑
t=1

c(Xt, At)

∣∣∣∣∣

≤ Eu
0

T−1∑
t=1

(1− αt−1)ν(Xs, As)1{T ≤ n}+ 2Eu
0 M̂(Xn)1{T > n}

≤ (1− αn−1)
T−1∑
t=1

ν(Xt, At) + 2Eu
0 M̂(Xn)1{T > n}

≤ (1− αn−1)µ(0) + 2Eu
0 M̂(Xn)1{T > n}.

By choosing n sufficiently large, the second term in the above expression can
be made arbitrarily small; this follows again from property M1′ (in Section
7.4) and from Lemma 7.5 (i). For that n, (1 − αn−1)µ(0) can be made
arbitrarily small in a neighborhood [α(n), 1] by choosing α(n) sufficiently
close to 1. We have thus shown that Eu

0

∑T−1
t=1 αt−1c(Xt, At) converges to

Eu
0

∑T−1
t=1 c(Xt, At), uniformly in US .
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The three last paragraphs now imply the convergence of the second term
on the right-hand side of (14.3) to 0, uniformly in u ∈ US . This concludes
the proof of the lemma.



CHAPTER 15

Convergence as the horizon tends to
infinity

We use below the tools developed in Chapter 13 to study the convergence
of finite horizon CMDPs to infinite horizon CMDPs.

15.1 The discounted cost

We consider all four types of convergence described in Chapter 13 where the
limit COP is the one with infinite horizon discounted cost, with discount
factor α < 1, and where COPn are with horizon of length n, and discounted
with the same discount factor α. The transition probabilities and immediate
costs are the same. We assume that the weak contracting framework (see
Section 10.4) holds, and in particular (10.4): there exists some scalar ξ ∈
[0, 1), a vector µ : Xα → [1,∞), and a finite set Mα, such that for all
x ∈ X, a ∈ A, α

∑
y/∈Mα

Pα
xayµ(y) ≤ ξµ(x), and the immediate costs are

µ-bounded by a constant b.
One may restrict oneself to Markov policies, since they are sufficient for

both the limiting and the approximating problems (see Theorem 6.1). In
order to apply below the key theorems, we shall thus consider U to be the
set of Markov policies.

Remark 15.1 (Almost optimal stationary policies)
Note that COP has optimal stationary policies (Theorem 8.4 (iii)). One
can then show by using Theorem 13.4 that for any ε > 0, there exists some
stationary up (which depends only on ε, not on n) that is ε-optimal for
COPn for all n large enough.

Conditions (S1),(S2),(S4) and (S5) from Chapter 13 were established in
Chapter 14. (S3) follows from Lemma 8.5 (i). We compute a bound on the
approximation error. We have for any Markov policy u,

∣∣∣∣CT
α (β, u)− Cα(β, u)

∣∣∣∣
µ

≤ (1− α)

∣∣∣∣∣

∣∣∣∣∣
∞∑

t=T

αtP (u1)P (u2) · · ·P (ut)

∣∣∣∣∣

∣∣∣∣∣
µ

b

≤ (1− α)ξT+1b

1− ξ
=: ε1(T ).
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Using Theorem 13.1, we have that the difference between CT
α (β) and Cα(β)

is of order ε1(T ).

15.2 The expected average cost: stationary policies

This problem is more involved than the previous ones; if we considered
the class of Markov policies as candidates for U , then property (S3) is
not satisfied. On the other hand, a smaller class of policies might not be
dominating for the finite horizon problem. We therefore use the approach
of Theorem 13.2 and Remark 13.3.

We consider the four types of convergence where the limit COP is the
one with infinite horizon expected average cost, and where COPn are with
finite horizon expected average cost. The transition probabilities and im-
mediate costs are the same.

We consider the case of uniform Lyapunov function (where M = {0},
and 0 is an arbitrary state).

It follows by Theorem 11.6 that one may restrict oneself to stationary
policies for the limiting case COP, and thus we take U = US . For the finite
horizon case COPn, we may choose U = UM .

We show first that the four types of convergence, given in Theorems 13.1,
13.3 and 13.4, hold when restricting ourselves to US . In other words, we
show that the optimal values Cn

ea
US converge to Cea(β), that is, the values

of the finite horizon problems restricted to the (non-dominating class of)
stationary policies converge to the optimal value of the infinite horizon
problem. (This does not mean a priori that the values converge without
the above restriction.) In particular, we can obtain an optimal policy for
the expected average cost as the appropriate limit of stationary policies
that are almost optimal for the (restricted) finite horizon case.

Conditions (S1),(S2),(S4) and (S5) of Chapter 13 were established in
Section 14.3. It remains to establish (S3). We shall prove it for Cea; the
same proof holds for Dk

ea.
Before presenting the proof, we illustrate that (S3) holds under the

stronger contracting framework: the cost is assumed to be µ-bounded (7.36),
the transition probabilities are µ-continuous (Assumption (7.35)), and the
initial distribution satisfies 〈β, µ〉 < ∞; the MDP is assumed to be uni-
formly µ-geometric ergodic (see Definition 11.5). Finally, we make the
unichain assumption (11.2) (from Chapter 11).

Fix an arbitrary stationary policy w, and let Π(w) denote the matrix
whose rows are all equal to π(w).

Cn
ea(x,w) =

∑

y∈X

1
n

n∑
t=1

[P t(w)]xyc(y, w),
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Cea(x,w) = 〈π(w), c(w)〉 =
∑

y∈X

n−1
n∑

t=1

πy(w)c(y, w)

so that

||Cn
ea(·, w)− Cea(·, w)||µ ≤ n−1

n∑
t=1

∣∣∣∣P t(w)−Π(w)
∣∣∣∣

µ
||c(u)||µ

≤ σb
∑n

t=1 ξ̃t

n
≤ σb

n(1− ξ̃)
.

(σ and ξ̃ ∈ [0, 1) are given in the Definition 11.5.) This establishes (S3) for
the more restrictive contracting framework. (S3) also holds for the more
general case of uniform Lyapunov function. We omit the proof, which can
be found in Theorem 4.2 in Cavazos-Cadena (1992).

We thus established the convergence of the finite horizon CMDP re-
stricted to stationary policies, to the infinite horizon one. Moreover, it
follows from Theorem 13.1 that the rate of convergence of the values is of
the order of n−1.

15.3 The expected average cost: general policies

Next, we consider the problem of the convergence of COPn to COP, as
in the previous section, but without the restriction to stationary policies.
The proof of the theorem below is based on an extension of Lemma 1 in
Altman and Gaitsgory (1995).

Theorem 15.1 (Convergence of the finite horizon problem to the infinite
horizon)
Consider an MDP with a uniform Lyapunov function. Assume that the
Slater condition holds, i.e., for some stationary policy, Dea(β, u) < V .
Then
(i) The value of the finite horizon problem converges to the value of the
infinite horizon one.
(ii) There exists a stationary policy uε which is ε-optimal for the finite
horizon constrained MDP, for all horizons n sufficiently large.

Proof. We shall use Theorem 13.2. We need to show that for any non-
negative λ and ε, there exists an ε-optimal stationary policy w (that may
depend on λ and ε) for the Lagrangian

Jλ,n
ea (β, u) := Cn

ea(β, u) + 〈λ,Dn
ea(β, u)〉 =

1
n

n∑
t=1

Eu
β jλ(Xt, At),

for all n sufficiently large, where

jλ(·, ·) := c(·, ·) + 〈λ, d(·, ·)〉.
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(We thus set U = US and U
′
= UM in Theorem 13.2. The fact that UM

is a dominating class for the finite horizon problem follows from Theorem
6.1.) Denote the value of the above minimization by Jλ,n

ea (β), and let Jλ
ea be

the value corresponding to the expected average cost (with infinite horizon,
which thus does not depend on β). For simplicity, we shall omit λ from the
notation below.

Let j0 ∈ Fµ denote some terminal cost, and consider the problem of
minimizing the total expected cost during a horizon of n step:

Jn(β, u, j0) =
n∑

t=1

Eu
β j(Xt, At) + Eu

β j0(Xn+1). (15.1)

Denote the value of this problem by Jn(β, j0). We shall use the following
(see e.g., Puterman, 1994):
Lemma 15.1 (Computing the optimal value and policy for a finite horizon
problem)
(i) Jn(β, j0) is given by the recursive solution of

J0(x, j0) = j0(x),

J t+1(x, j0) = min
a∈A(x)



j(x, a) +

∑

y∈Y

PxayJ t(x, j0)



 (15.2)

for all x ∈ X (J t(β, j0) is then given by 〈β, J t(·, j0)〉).
(ii) Consider the Markov policy g = (gn, gn−1, . . . , g1), where gi attains the
minimum in (15.2) for t = i− 1. Then g is optimal.
(Note that any finite horizon problem can be transformed into an infinite
horizon problem by incorporating the time into the state space, see e.g.,
Tidball and Altman, 1995. One can then use Theorem 9.1 to show that the
recursive equations above indeed yield the optimal value.)

Let (J, h) be solutions of ACOE (12.6) where c is replaced by j, and
such that J and h ∈ Fµ are obtained as the limits (12.9)-(12.10) (the fact
that these limits are indeed solutions of ACOE was established in Theorem
12.2). Let g∗ be a stationary optimal policy achieving the min in ACOE.
Define

j0(x) := h(x).
It follows from (15.1) that

|Jn(x, 0)− Jn(x, j0)| ≤ |j0(x)|. (15.3)

We now compute Jn(β, j0). By (15.2), we have

J0(x, j0) = j0(x),

J1(x, j0) = min
a∈A(x)



j(x, a) +

∑

y∈Y

PxayJ0(x, j0)




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= min
a∈A(x)



j(x, a) +

∑

y∈Y

Pxayh(x)





= h(x) + Jea,

where the last equality follows from (12.6). Moreover, the Markov policy
g1 = g∗ is optimal. We may now continue recursively and obtain

Jn(x, j0) = h(x) + nJea;

moreover, the Markov policy g = (g∗, . . . , g∗) is optimal, i.e., for all n,

Jn(x, j0) = Jn(x, g∗, j0) = Jn(x, g∗, 0) + j0(x). (15.4)

Combining (15.3) with (15.4) we get

|Jn
ea(β)− Jn

ea(β, g∗)|
n

≤ 〈β, h〉
n

.

(The latter indeed converges to 0 as n goes to infinity, since it follows from
(12.20) that h is µ bounded; thus 〈β, h〉 is finite.) Hence, the stationary
policy g∗ is ε optimal for the problem of minimizing Jn

ea(β, u) for all n

larger than ε|〈β, h〉−1|. This establishes the conditions of Theorem 13.2
from which statement (i) follows. Statement (ii) follows by combining (i)
with the first part of the section.

Theorem 13.2 can also be used in order to establish the convergence of
the horizon for the general multi-chain case, under suitable conditions. In
particular, for the case of finite states and actions, one may consider in
Theorem 13.2 U = U . Indeed, it is known that in this class (and in par-
ticular, within UD) there exist ε-optimal stationary policies for all horizon
n sufficiently large. Moreover, it can be shown that the approximation er-
ror is of the order of n−1. (This follows from Federgruen, 1979.) The fact
that (S3) holds follows since there is only a finite number of elements in
UD. (S2) follows since, when restricting ourselves to u ∈ U , the perfor-
mance measures are linear in u, and obtained as a finite linear program
(see Tidball and Altman, 1996).





CHAPTER 16

State truncation and approximation

In this chapter we consider several schemes for replacing a problem involv-
ing an infinite state space with problems with finitely many states (Schemes
I and II), or with a problem in which decisions are taken only in finitely
many states (Scheme III). We are then interested in the convergence of
the optimal values and policies of the truncated problems to those of the
original one, as well as the robustness of optimal policies (or, as we already
know, of some modifications of optimal policies). The results of this chapter
are useful in two situations.

In the first, we might want to solve a constrained MDP with a countable
set of states. The way to do this is via an LP with an infinite set of decision
variables. The truncation techniques in this chapter will allow us to use a
finite state approximation of the original problem, which can be solved by
an LP with finitely many decision variables.

As a second application, consider constrained MDPs with a very large
state space, for which an LP solution may be too costly. In some special
cases one may extend in a natural way the finite problem to an infinite prob-
lem; the latter may possess some special structure, which enables us to solve
it with some simple techniques other than those involving infinite LPs. The
solution for the extended problem can then serve to approximate the origi-
nal finite one. Examples of this type are presented in Altman (1993, 1994).

We shall use throughout the chapter the contracting framework (see Def-
inition 7.9 for the total cost, and Definition 11.4 for the expected average
cost). (We have presented a different approach and results for the non-
contracting framework, for non-negative immediate cost, see Remark 9.4
for the non-constrained case, and Section 9.6 for the constrained case.)

The theory of state truncation (as well as other state approximation
schemes, such as discretization) in MDPs is a very active area of research,
even in the non-constrained case. Some of the important references in this
area are Whitt (1978), White (1980, 1982), Hernández-Lerma (1986, 1989),
Cavazos-Cadena (1986), Thomas and Stengos (1985) and Sennott (1997).
The case of more than one controller was investigated by Nowak (1985),
Whitt (1980), Tidball and Altman (1996a) and Tidball et al. (1997). Alt-
man (1993, 1994) presented state-truncation techniques for the constrained
MDPs, and the schemes presented in this chapter are extensions of those.
Our approach is based on the sensitivity analysis tools developed in Chap-
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ter 13, which allows us to obtain not only convergence results but also an
estimation of the approximation errors.

In the first two approximating schemes which we present, we modify the
‘limit’ CMDP in the following way. We consider an increasing set of states
X0,X1,X2, . . . converging to X or to a strict subset of X. The nth CMDP
(COPn) is restricted to the set Xn (states not in Xn will not be reachable
from states within Xn, and will thus be of no of interest). In COPn, we
modify the transition probabilities so as to eliminate all transitions outside
the set Xn. The two schemes will differ by the way that such transitions
will be replaced.

16.1 The approximating sets of states

The sets Xn may or may not be given a priori. In some problems, the
following ‘finite neighbors’ property may hold: from any x ∈ X, only finitely
many states are reachable in one step. In other words,

from any x ∈ X, {y : Pxay > 0 for some a} is finite. (16.1)

(This property holds in particular in many queueing applications.) When
it holds, we may construct the sets Xn as follows.
Definition 16.1 (n-step reachable sets)
Let X be a finite given set (in which we would like to approximate the
values and policies), and set Y(x) = {y : Pxay > 0 for some a}. Then we
define Xn as follows:

X0 = X , Xn+1 =
⋃

x∈Xn

Y(x)
⋃

Xn. (16.2)

Xn is the set of states reachable in n-steps from X .
The above construction may be useful especially when the set of neigh-

bors of a ‘typical’ state is not too large. When it is large, then the sets Xn

grow very rapidly, which suggests that obtaining good estimates of optimal
value and policies might require an unacceptably high complexity of com-
putations. We thus present an alternative, more general way of constructing
finite sets Xn (even when (16.1) does not hold).

We define a parameterized family {Xn(ε)}, where ε is a positive real
number, as follows.
Definition 16.2 (ε-neighboring sets)
Define X0(ε) = X where, again, X is a given set (in which we would like
to approximate the values and policies). {Xn(ε)} are then chosen to be
an arbitrary increasing sequence of finite sets of states that satisfies the
following. If for some l > 0, say l = l̂,

sup
x∈ Xl(ε)

sup
a∈A(x)

∑

y/∈ Xl(ε)
Pxay ≤ ε, (16.3)
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then Xn(ε) = Xl̂ for all n > l̂. Otherwise, Xl+1(ε) is chosen such that

sup
x∈ Xl(ε)

sup
a∈A(x)

∑

y/∈ Xl+1(ε)
Pxay ≤ ε. (16.4)

In other words, we replace neighboring sets in the previous scheme (16.2)
by some ‘ε-neighboring sets’; in (16.2), the probability under any policy to
go from a state in Xn to a state which is not in Xn+1 is zero. In (16.3) and
(16.4), it is less than ε instead. One could also consider weighted versions
of (16.3) and (16.4), where Pxay are replaced by Pxayµ(y).

Next, we consider the case where the sets Xn are given a priori. In that
case, we shall be interested in identifying an increasing sequence mn(ε),
such that the nth step of the approximation will yield an error of the order
of max(ε, ξn), provided that we solve the MDP on the truncated set Xmn(ε)

(ξ is the contraction factor defined in Definition 7.9).
To that end we begin by defining

δ(r, n) := sup
x∈ Xr

a ∈ A(x)

∑

y 6∈ Xn

Pxayµ(y).

δ(r, n) is a measure of the error that truncation of X to Xn induces in
states in Xr. We call it the induced error index.

Claim: Due to the contracting assumption (7.34), the following holds

lim
n→∞

δ(r, n) = 0, ∀r ∈ IN (16.5)

if Xn are finite sets for all n.
We leave the proof of the claim to the end of the section.
We use an idea introduced by Cavazos-Cadena (1986) and further devel-

oped by Tidball and Altman (1996a). Fix ε arbitrarily small, and define the
sequence gk in the following way. g0 = min {m : X ⊂ Xm} and recursively,

gk = g(ε, gk−1), where g(ε, r) = min {m : δ(r,m) ≤ ε} . (16.6)

Due to Assumption (16.5), this sequence is well defined, and for all k, gk is
finite. g(ε, r) can be interpreted as follows. If we truncate X to Xm, where
m ≥ g(ε, r), then the induced error index δ(r, n) for the set Xr is less than
ε. Thus the impact on the total approximation error is of the order of ε.
Still, we need to approximate the value of x inside Xg1 . This leads us to
consider the new set Xg2 , etc.

Note that g1 may be smaller than g0; moreover, we could even have Xg1 ⊂
X . For example, let X = IN, the set of natural numbers, Xn = {1, 2, . . . , n}
and X = {10}. Assume that Px,a,1 = 1, ∀a. Then g0 = 10 and g1 = 1. This
phenomenon motivates the definition

mk(ε) = max {gm, m = 0, 1, . . . , k} .
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In the special case that Xn are given by the µ-weighted versions of (16.3)
and (16.4), we get g0 = 0, gk = k and mk(ε) = gk = k for k ≤ l̂.

In the next sections, we shall include explicitly the set X in the notation
of the µ-norm:

||q||Xµ = sup
x∈X

q(x)
µ(x)

.

Our aim in the approximation schemes below is to obtain convergence of the
values and policies. Moreover, let X be a given finite subset of X. We wish
to obtain an estimate of the approximation errors for initial distributions
having their support in X .

We conclude the section with the proof of the Claim made earlier in this
section.
Proof of Claim: Assume that (16.5) does not hold. Then there exists some
b > 0 such that for some x,

lim
n→∞

max
a


∑

y∈X

Pxayµ(y)1{y /∈ Xn}

 = b. (16.7)

Let an be some actions achieving the max (the fact that the max is achieved
follows from the compactness of the action space and continuity assumption
(7.35)). Choose a subsequence n(`), ` = 1, 2, . . . along which the limsup is
obtained and along which an converges to some action a∗. Then Pxan(`),•
converges (pointwise) to the probability Pxa∗,• as ` → ∞. But then it
follows from a dominant convergence theorem (Royden, 1988, Chapter 11
Section 4) and from the fact that Xn increase to X, that

lim
`→∞

∑

y∈X

Pxan(`)yµ(y)1{y /∈ Xn(`)} =
∑

y∈X

Pxa∗yµ(y) · 0 = 0,

which contradicts (16.7). Hence (16.5) indeed holds.

16.2 Scheme I: the total cost

The set X may or may not containM (recall thatM is part of the definition
of the total expected cost criterion). We assume, however, that Xn includes
some state, called 0, which belongs to M.

In COPn, we modify the transition probabilities so as to eliminate all
transitions outside the set Xn; we replace transitions outside of Xn by
transitions to 0 ∈M. Hence, Pn

xay is defined by:

Pn
xay =




Pxa0 +

∑
z 6∈ Xn

Pxaz y = 0
Pxay y 6= 0, y ∈ Xn

0 y 6∈ Xn

(16.8)

Both COP and COPn have optimal stationary policies according to
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Theorem 8.4. We can therefore consider COP and COPn restricted to US .
When applying the results and checking the assumptions of Sections 13.2
and 13.3, we shall use U = US to conclude that the optimal values and
policies converge.

Let Cn
tc(β,w), Dk,n

tc (β, w), k = 1, . . . , K, be the costs under a policy w
corresponding to the nth approximation (i.e., to the transition probabilities
Pn). Let Cn

tc(β) denote the corresponding optimal value.
Fix an arbitrary stationary policy w. From Remark 9.2 it follows that

Ctc(·, w) and Cn
tc(·, w) are the unique solutions in Fµ of the fixed point

equations

φ(x,w) = c(x,w) +
∑

y∈X′
Pxwyφ(y, w), x ∈ X, (16.9)

φn(x,w) = c(x,w) +
∑

y∈X′
Pn

xwyφn(y, w), x ∈ Xn.

Theorem 16.1 (Convergence of values and policies)
Consider the contracting framework. Assume that there exists some policy
v satisfying the Slater condition

Dtc(β, v) < V. (16.10)

Under Scheme I,
(i) The values Cn

tc(β) of the truncated MDP converge to the value Ctc(β)
of the original one;
(ii) For any ε > 0, there exists a stationary policy w (characterized in
Theorem 13.4(i)) that is ε-optimal for COPn for all n sufficiently large;
(iii) Any policy w which is a limit of optimal stationary policies for COPn

(as n tends to ∞) is optimal for COP.

Proof. The proof is obtained by applying Theorems 13.1, 13.3 and 13.4.
We show that the assumptions there indeed hold.

(S1) holds by Assumption (16.10); (S2) is established in Corollary 9.2
and Theorem 9.10; Lemma 8.5 (ii) implies (S4). (S5) follows from Theorem
9.8 (ii). It remains to establish (S3). We prove it for Ctc; the same proof
holds for Dk

tc.
Fix a stationary policy w. We estimate ||Cn

tc(·, w)− Ctc(·, w)||Xµ . We first
present a simple proof for the special case where the finite neighbor As-
sumption (16.1) holds, and when Xn are defined in (16.2). In that case, for
x ∈ X , we have

1
µ(x)

|Cn
tc(x,w)− Ctc(x,w)|

≤ 1
µ(x)

∑

y∈Y(x)

Pxwyµ(y)
|Cn

tc(y, w)− Ctc(y, w)|
µ(y)
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≤ ξ ||Cn
tc(·, w)− Ctc(·, w)||X1

µ .

Continuing this way, we obtain

||Cn
tc(·, w)− Ctc(·, w)||Xµ ≤ ξn ||Cn

tc(·, w)− Ctc(·, w)||Xn
µ .

Since

||Cn
tc(·, w)− Ctc(·, w)||Xn

µ ≤ 2b

1− ξ
,

we finally get

||Cn
tc(·, w)− Ctc(·, w)||Xµ ≤ 2bξn

1− ξ
.

This establishes (S3) under the conditions (16.1) and when Xn are defined
in (16.2).

Next we consider the general case. Let n ≥ m`(ε), where ` is some given
integer. Clearly,

||Cn
tc(·, w)− Ctc(·, w)||Xµ ≤ ||Cn

tc(·, w)− Ctc(·, w)||Xg0
µ

since X ⊂ Xg0 . For x ∈ Xg0 ,

1
µ(x)

|Cn
tc(x,w)− Ctc(x,w)|

=
1

µ(x)

∣∣∣∣∣∣
∑

y/∈M
Pn

xwyCn
tc(y, w)− PxwyCtc(y, w)

∣∣∣∣∣∣

≤ 1
µ(x)

∑

y∈ Xg1 \M
Pn

xwy |Cn
tc(y, w)− PxwyCtc(y, w)|

+
1

µ(x)

∑

y/∈ Xg1

∣∣Pn
xwyCn

tc(y, w)
∣∣ + |PxwyCtc(y, w)|

≤
∑

y∈ Xg1 \M

Pxwyµ(y)
µ(x)

∣∣Pn
xwyCn

tc(y, w)−PxwyCtc(y, w)
∣∣

µ(y)

+
1

µ(x)

∑

y/∈ Xg1

Pxwyµ(y)
(∣∣∣∣

Cn
tc(y, w)
µ(y)

∣∣∣∣ +
∣∣∣∣
Ctc(y, w)

µ(y)

∣∣∣∣
)

.

In the last inequality, the first term is bounded by

ξ ‖ Cn
tc(·, w)− Ctc(·, w) ‖Xg1

µ

(because of Assumption (7.34)) and the second by 2bε/(1− ξ) (due to the
definition of the sequence Xgk

and by Theorem 8.3 (iii)). We obtain

‖ Cn
tc(·, w)− Ctc(·, w) ‖Xg0

µ ≤ ξ ‖ Cn
tc(·, w)− Ctc(·, w) ‖Xg1

µ +2
bε

1− ξ
.



SCHEME II: THE TOTAL COST 211

In the same way we get for gk ≤ m`(ε) ≤ n

‖ Cn
tc(·, w)− Ctc(·, w) ‖Xgk

µ ≤ ξ ‖ Cn
tc(·, w)− Ctc(·, w) ‖Xgk+1

µ +2
bε

1− ξ
.

Since

‖ Cn
tc(·, w)− Ctc(·, w) ‖Xgk

µ ≤ 2b

1− ξ
,

we get for any integer ` with n ≥ m`(ε),

‖ Cn
tc(·, w)− Ctc(·, w) ‖Xµ ≤ ξ` 2b

1− ξ
+

2bε

1− ξ

(
1− ξ`

1− ξ

)
=: ε1(n). (16.11)

Since ` can be chosen arbitrarily large, and ξ is strictly less than 1, this
bound can be as small as needed for n large enough. By applying the
same arguments again for for Dk

tc(x, u), k = 1, . . . , K, we finally establish
condition (S3).

Remark 16.1 Other results from Chapter 13 can be used to further char-
acterize the convergence of values and policies. In particular, one may use
Theorem 13.1 (ii) to further characterize the rate of convergence of Cn

tc(β)
to Ctc(β), based on the uniform bound (16.11). Moreover, a construction
of almost optimal policies for COP based on policies that are optimal for
COPn, or vice versa, can be carried out in a way similar to Theorem 13.4
(ii).

16.3 Scheme II: the total cost

In the previous scheme, we replaced transitions outside of Xn by transitions
to state 0. In some applications this may be undesirable; this is the case
when the MDPs with truncated space describe real problems that we wish
to approximate by some MDP with an infinite state space. To illustrate
this, consider a queue with a finite length L, and assume that the state is
the number of customers in the queue. Then typically, if a transition from
state L to state L+1 were possible in the case of infinite queue, then in the
problem with truncated state space, which corresponds to a finite queue, it
is replaced by a transition from L to L. In the previous scheme, it would be
replaced by a transition to state 0. This would be especially undesirable,
since in queueing problems, we usually have the property of transitions to
closest neighbors: from each state, only finitely many neighboring states
can be reached in one step. So, having a transition from state L to 0 does
not describe a realistic model of a finite queue.

Let {qn
xay, x, y ∈ X, a ∈ A(x)} be a sequence of measures such that for

all n, x ∈ Xn, a ∈ A(x),

qn
xay ≥ 0 for y ∈ Xn, qn

xay = 0 for y /∈ Xn,
∑

y∈ Xn

(Pxay+qn
xay) = 1.
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The transitions for the finite problems are then given by

Pn
xay =

{ Pxay + qn
xay x, y ∈ Xn

0 otherwise. (16.12)

It follows that ∀x ∈ Xn,
∑

y∈ Xn

qn
xay =

∑

y/∈ Xn

Pxay. (16.13)

We make the following assumption on µ and on Xn.

For any n > m and x ∈ Xn \Xm, µ(x) ≥ sup
y∈ Xm

µ(x) =: µm.

Theorem 16.2 (Convergence of the values and policies)
Consider the contracting framework. Assume that there exists some policy
v satisfying the Slater condition (16.10). Then under Scheme II, all the
statements of Theorem 16.1 hold.

Proof. The proof is obtained by applying again Theorems 13.1, 13.3 and
13.4. We have to check again assumption (S3); the other assumptions (S1),
(S2), (S4) and (S5) were established already in the beginning of the proof
of Theorem 16.1. For any stationary policy w, Ctc(·, w) and Cn

tc(·, w) are
again the unique solutions in Fµ of the fixed-point equations (16.9) (with
the new transition probabilities Pn).

We begin by obtaining a bound for Cn
tc(x,w), uniformly over n and w.

Cn
tc(x,w) = c(x,w) +

∑

y∈ Xn \M
Pn

xwyCn
tc(y)

= c(x,w) +
∑

y∈ Xn \M
PxwyCn

tc(y) +
∑

y∈ Xn \M
qn
xwyCn

tc(y)

≤ c(x,w) +
∑

y∈ Xn \M
PxwyCn

tc(y) +
∑

y∈ Xn \M
qn
xwyµn sup

y′∈ Xn

Cn
tc(y

′)
µ(y′)

≤ c(x,w) +
∑

y∈ Xn \M
Pxwyµ(y)

Cn
tc(y)
µ(y)

+
∑

y/∈ Xn

Pxayµ(y) sup
y′∈ Xn

Cn
tc(y′)
µ(y′)

We thus conclude that

||Cn
tc(·, w)||µ ≤ b + ξ ||Cn

tc(·, w)||µ
so that

||Cn
tc(·, w)||µ ≤

b

1− ξ
.
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Let n ≥ m`(ε), where ` is some given integer (hence, in particular, n ≥ g1).
For x ∈ Xg0 (and thus, in particular, for x ∈ X ),

1
µ(x)

|Cn
tc(x,w)− Ctc(x,w)|

=
1

µ(x)

∣∣∣∣∣∣
∑

y/∈M
Pn

xwyCn
tc(y, w)− PxwyCtc(y, w)

∣∣∣∣∣∣

≤ 1
µ(x)

∑

y∈ Xg1 \M
Pxwy|Cn

tc(y, w)− Ctc(y, w)|

+
1

µ(x)

∑

y∈ Xn \M
qn
xwy |Cn

tc(y, w)|

+
1

µ(x)

∑

y/∈ Xg1

Pxwy|Cn
tc(y, w)|+ Pxwy|Ctc(y, w)|

≤
∑

y∈ Xg1 \M

Pxwyµ(y)
µ(x)

∣∣Pn
xwyCn

tc(y, w)−PxwyCtc(y, w)
∣∣

µ(y)

+
1

µ(x)

∑

y∈ Xn \M
qn
xwyµ(y) sup

y′∈ Xn

|Cn
tc(y

′, w)|
µ(y′)

+
1

µ(x)

∑

y/∈ Xg1

Pxwyµ(y)
(∣∣∣∣

Cn
tc(y, w)
µ(y)

∣∣∣∣ +
∣∣∣∣
Ctc(y, w)

µ(y)

∣∣∣∣
)

≤ ξ ‖ Cn
tc(·, w)− Ctc(·, w) ‖Xg1

µ

+
1

µ(x)

∑

y/∈ Xg1

Pxwyµ(y) sup
y′∈ Xn

|Cn
tc(y′, w)|
µ(y′)

+
2bε

1− ξ

≤ ξ ‖ Cn
tc(·, w)− Ctc(·, w) ‖Xg1

µ +
3bε

1− ξ
.

Thus,

‖ Cn
tc(·, w)− Ctc(·, w) ‖Xg0

µ

≤ ξ ‖ Cn
tc(·, w)− Ctc(·, w) ‖Xg1

µ +3
bε

1− ξ
=: ε1(n).

As in (16.11), we get for any integer ` with n ≥ m`(ε),

‖ Cn
tc(·, w)− Ctc(·, w) ‖Xµ ≤ ξ` 2b

1− ξ
+

3bε

1− ξ

(
1− ξ`

1− ξ

)
. (16.14)

This establishes (S3).
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Again, one may use Theorem 13.1 (ii) to further characterize the rate of
convergence of Cn

tc(β) to Ctc(β); a construction of almost optimal policies
for COP based on policies that are optimal for COPn or vice versa can
be carried out as in Theorem 13.4 (ii).

16.4 Scheme III: the total cost

The basic idea of the approximation scheme is to fix some stationary policy
u ∈ US and use it in all states except for a subset Xn. The problem is
then of determining optimal strategies in the remaining set of states Xn.
We are interested in studying the asymptotic behavior of this approach as
Xn → X. We note that in this approach, the set of policies depends on n
(see Remark 13.1):

Un = {w ∈ US : wx = ux, ∀x /∈ Xn}.
To avoid this problem, we introduce the projection π : US → Un:

πn
x (w) =





w(x) if x ∈ Xn,

u(x) if x /∈ Xn.

We then define for any w ∈ US :

Cn
tc(β, w) := Ctc(β, πn(w)).

Using the same techniques as in the previous sections, one can show again
that the results of Theorem 16.1 hold also for Scheme III, see Tidball and
Altman (1996a, 1996b), Tidball et al. (1997).

16.5 The expected average cost

All the results of previous sections hold also for the expected average cost.
This is summarized in the following:

Theorem 16.3 (Convergence of values and policies)
Consider a uniform geometric recurrent MDP (Definition 11.4) with n0 =
1, and which is unichain. Assume that there exists some policy v satisfying
the Slater condition

Dea(β, v) < V. (16.15)

Under Scheme I, II or III,
(i) The values Cn

ea(β) of the truncated MDP converge to the value Cea(β)
of the original one.
(ii) For any ε > 0, there exists a stationary policy w (characterized in
Theorem 13.4(i)) that is ε-optimal for COPn for all n sufficiently large.
(iii) Any policy w which is a limit of optimal stationary policies for COPn

(as n tends to ∞) is optimal for COP.
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Proof. The proof is obtained by applying Theorems 13.1, 13.3 and 13.4. We
show that the assumptions there indeed hold. (S1) holds by Assumption
(16.10); (S2) is established in Corollary 12.2 and Theorem 12.8; Lemma
11.3 (ii) implies (S4). (S5) follows from Theorem 12.6 (ii). It remains to
establish (S3). We prove it for Cea; the same proof holds for Dk

ea.
By the definition of uniform geometric ergodicity (Definition 11.4), there

exists some finite set M and
∑

y/∈M
[Pn0(u)]xyµ(y) ≤ ξµ(x) (16.16)

(we assumed n0 = 1). It follows (see Spieksma, 1990) that one may choose
some state, say 0, with 0 ∈ M, some µ′ and ξ′ such that (16.16) holds for
M′ = {0} and µ′ and ξ′ (instead of M and µ and ξ). In other words, we
may assume, without loss of generality, that M contains a single state 0.
Define

T := inf
t>0
{Xt = 0}, Mw(0) := Ew

0 T.

For any stationary policy, say w, we have

Cea(x,w) =
Ctc(0, w)
Mw(0)

(see Chung 1967, p. 91-92), where by Ctc(0, w) we mean the standard total
costs until we hit the set M = {0}. Similarly, we have

Cn
ea(x,w) =

Cn
tc(0, w)
Mw(0)

, (16.17)

where both Cn
tc and Mw(0) are the corresponding total expected costs and

expected recurrence times corresponding to Scheme I, II, or III. It follows
as in the previous sections that Cn

tc(0, w) converges to Ctc(0, w) uniformly
in US . Similarly, one can show that Mw(0) converges to Mw(0) uniformly
in US (this is obtained by identifying Mw(0) as the total expected cost
until M = {0} is hit, for the immediate cost of c′(x, a) = 1). This, together
with (16.17), implies that Cn

ea(x, w) converges to Cea(x, w) uniformly in
w ∈ US , which establishes (S3).

16.6 Infinite MDPs: on the number of randomizations

We know that in CMDPs, optimal stationary policies exist under several
sets of conditions, and that they require randomization. A natural question
is how many randomizations are needed. For the case of finite-state and
action spaces, we have shown in Sections 3.5 and 4.4 that there exists an
optimal stationary policy that requires no more than K randomizations,
where K is the number of constraints.

More involved techniques have been used by Borkar (1990, 1994) to es-
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tablish the result for the case of a countable state space (see also Feinberg
and Shwartz, 1995, 1996).

An alternative simple approach to conclude that optimal stationary poli-
cies exist for infinite MDPs, which require at most K randomizations, is
to use finite state approximations. Indeed, assume that the number of ac-
tions available at each state is finite. We established the convergence of
stationary policies that are optimal for the truncated-state space to a sta-
tionary policy that is optimal for the original problem. Since for each of
the truncated problems we know that no more than K randomizations are
required, we conclude that there indeed exists an optimal stationary policy
for the original problem with that property.



CHAPTER 17

Appendix: Convergence of probability
measures

Definition 17.1 (Vague and weak convergence of measures)
A sequence of measures f t over a metric space K is said to
• Converge vaguely to f if and only if∫

g(ω)f t(dω) →
∫

g(ω)f(dω) (17.1)

for all g ∈ C0(K), the space of continuous functions that vanish at
infinity.

• It converges weakly to f if and only if (17.1) holds for all g ∈ Cb(K), the
space of bounded continuous functions.

Definition 17.2 (Tightness)
A set of probability measures {fn}n∈I (I is some set) over K is called tight
if for any ε > 0 there exists some compact set Kε ∈ IK such that

fn(Kε) > 1− ε, ∀n ∈ I.

Definition 17.3 (Uniform integrability of random variables)
A set {Rt}t∈I of random variables over some probability space (Ω,F , P )
is said to be uniformly integrable if for any ε > 0 there exists some integer
n such that

E|Rt|1{|Rt| > n} < ε

for all t.

Remark 17.1 It clearly follows from the definition that if Rt is uniformly
integrable w.r.t. some P , then so is any other sequence R′t for which |R′t| ≤
|Rt|; in fact, the whole set {R′t, Rt, t ∈ I} is uniformly integrable.

Definition 17.4 (Uniform integrability of non-negative measures)
A set of non-negative measures {f t}t∈I over a locally compact set K is said
to be uniformly integrable with respect to a function c : K → IR if for any
δ > 0, there exists some compact set K′ such that for all t ∈ I,∫

1{κ /∈ K′}f t(dκ)|c(κ)| < δ.

We have (Prohorov’s Theorem, see e.g., Billingsley, 1968, Theorems 6.1
and 6.2):
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Lemma 17.1 (Characterization of tightness)
A set of probability measures F over a separable metric space is tight if
and only if every sequence {f t}t∈IN in F has a subsequence {f tn}n∈IN that
weakly converges to some probability measure f (which need not be in F ).

Lemma 17.2 (Properties of vague convergence)
Let {fn}n∈IN be some non-negative measures over some Borel space B, with
fn converging vaguely to f . Then,
(i) For any non-negative continuous function g over B, we have

lim
n→∞

∫

B
g(ω)fn(dω) ≥

∫

B
g(ω)f(dω).

(ii) Let {fn}n∈IN be some probability measures over some Borel space B,
with fn converging vaguely to f . The following are equivalent:
a. fn is tight,
b. f is a probability measure,
c. fn converges weakly to f .

Proof. (i) Let Bn be a sequence of compact subsets of B that increases to
B. One can choose an increasing sequence of bounded continuous functions
gn that converges (pointwise) to g such that gn vanishes outside of Bn.

Since g ≥ 0, we have for any integer m,

lim
n→∞

∫

B
g(ω)fn(dω) ≥ lim

n→∞

∫

B
gm(ω)fn(dω)

=
∫

B
gm(ω)f(dω),

where the last equality follows from the definition of vague convergence,
and since the function gm(ω) ∈ C0(B). The lemma is now obtained by
applying the monotone convergence theorem (taking m →∞).

(ii) That (c) implies (b) follows from Portmanteau’s Theorem (Billings-
ley, 1968, p. 11).
The implication (c) to (a) follows from Prohorov’s Theorem (Lemma 17.1).
Let fn vaguely converge to f . We show that (a) implies (c). Choose any
subsequence ni of n. Lemma 17.1 implies the existence of a subsequence nij

of ni along which fn weakly converges to some f ′. Since weak convergence
implies vague convergence, this means that f ′ = f . Since this holds for
any sequence ni, we conclude that f is the weak limit of fn. Finally, we
show that (b) implies (c). Choose any continuous function g bounded by
some constant b. Then it follows from part (i) of the lemma applied to the
functions b + g and b− g, that

lim
n→∞

∫

B
g(ω)fn(dω) = −b + lim

n→∞

∫

B
[g(ω) + b]fn(dω)

≥ −b +
∫

B
[g(ω) + b]f(dω) =

∫

B
g(ω)f(dω),
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as well as

lim
n→∞

∫

B
g(ω)fn(dω) = b− lim

n→∞

∫

B
[b− g(ω)]fn(dω)

≤ b−
∫

B
[b− g(ω)]f(dω) =

∫

B
g(ω)f(dω),

which establishes the proof.

The following is proved, e.g., in Theorem 5.3 of Billingsley (1968):

Lemma 17.3 (Conditions for uniform integrability of RVs)
Let {Rt}t∈IN be a sequence of random variables converging in distribution
to a random variable R. Then (i) if Rt is uniformly integrable, then

lim
t→∞

ERt = ER.

(ii) If Rt are integrable and non-negative, then the converse also holds.

Next, we present the counterpart for the uniform integrability of proba-
bility measures.

Lemma 17.4 (Conditions for uniform integrability of non-negative mea-
sures)
Consider a sequence {f t}t∈IN of non-negative measures over some locally
compact space X, converging weakly to a measure f . Let µ : X → IR be
some given continuous function.
(i) If f t are uniformly integrable w.r.t. to µ, then

lim
t→∞

〈f t, µ〉 = 〈f, µ〉 < ∞. (17.2)

(ii) Assume that µ is strictly positive and f t are integrable with respect to
µ. Assume that (17.2) holds. Then f t are uniformly integrable w.r.t. to µ.

Proof. Assume that f t are uniformly integrable w.r.t. to µ. Let Xn be an in-
creasing sequence of compact sets converging to X. Choose some ε, and let
n be such that

∫
1{x /∈ Xn}|µ(x)|f t(dx) < ε for all t. |µ| is bounded on Xn

by some constant µn since it is continuous. Let µn(x) = min(|µ(x)|, µn(x)).
The weak convergence of f t implies that

lim
t→∞

∫
µn(x)f t(dx)−

∫
µn(x)f(dx) = 0.

Lemma 17.2 (i) implies that
∫

1{x /∈ Xn}|µ(x)|f(dx) ≤ sup
t

∫
1{x /∈ Xn}|µ(x)|f t(dx) ≤ ε.

We thus obtain

lim
t→∞

∣∣∣∣
∫

µ(x)f t(dx)−
∫

µ(x)f(dx)
∣∣∣∣
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≤ lim
t→∞

∣∣∣∣
∫

µn(x)f t(dx)−
∫

µn(x)f(dx)
∣∣∣∣

+ sup
t

∫
1{x /∈ Xn}|µ(x)|f t(dx) +

∫
1{x /∈ Xn}|µ(x)|f(dx) ≤ 2ε.

Since this holds for any ε (with the corresponding n), (i) follows.
(ii) Let Xn be, again, an increasing sequence of compact sets converging

to X. If f t are not uniformly integrable with respect to µ, then there exists
some ε > 0 and some strictly increasing sequence t(n) such that

∫
µ(y)1{y /∈ Xn}f t(n)(dy) ≥ ε.

(The fact that t(n) can be chosen to be strictly increasing follows from the
integrability of f t for all t.) Since µ is non-negative, this implies that for
any n,

lim
t→∞

∫
µ(y)1{y /∈ Xn}f t(dy) ≥ ε.

f is integrable w.r.t. µ (as 〈f, µ〉 ≤ limt→∞ 〈f t, µ〉). Let N be such that for
all n ≥ N , ∫

1{x /∈ Xn}µ(x)f(dx) < ε/2.

Define µn to be an upper bound on µ(x) over Xn, and µn = min(µ(x), µn(x)).
Then

〈f, µ〉 − 〈f t, µ〉
≤ lim

t→∞

(∫
µn(x)f(dx)−

∫
µn(x)f t(dx)

)

+ε/2−
∫

1{x /∈ Xn}µ(x)f t(dx)

≤ −ε/2.

This establishes (ii).
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CHAPTER 19

List of Symbols and Notation

1{condition}:= the indicator function which equals one if the condition
holds, and is zero otherwise.
〈q1, q2〉:= scalar product between two vectors.
q1 ≤ q2:= componentwise ordering between two vectors.
B1 ≺ B2:= an ordering between sets B1 and B2, Section 8.1.
B1 ∝ B2 := an ordering between sets B1 and B2, Section 11.1.
||·||µ:= norm, defined in Section 7.7.

a.s. – almost sure.

Ac := the complement of a set A.

a, At, A := actions, actions at time t, action space, Sections 2.1, 6.1.

B, B := a Borel set, set of Borel subsets, Section 6.1.

b, b, b := bounds on the costs, (11.1), (7.36), (16.7).

B := upper bound on C(x, u), see (13.1).

B1 – assumption on the ergodic structure, beginning of Chapter 11.

B2, B2(u), B2∗ – assumptions related to tightness of the occupation mea-
sures, end of Section 11.1.

B3, B3(u), B3∗ – assumptions related to uniform integrability of the occu-
pation measures, Section 11.3.

c := immediate cost, Section 2.1, 6.1.

co:= the closed convex hull of a set, Section 8.1.

Cn(β, u), Cn
α(β, u), Ctc(β, u), Cα(β, u), Cea(β, u):= finite horizon expected

cost, finite horizon discounted expected cost, total expected cost, total dis-
counted expected cost, expected average cost (Sections 2.2, 6.2).

C(ρ) := c · ρ - linear expressions in the primal LP.
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dk:= immediate costs, Sections 2.2, 6.2.

Dk,n(β, u), Dk,n
α (β, u), D(β, u), Dk

α(β, u), Dk
ea(β, u), Dk

av(β, u):= the other
costs (defined together with the corresponding C).

Dk(ρ) := dk · ρ, the linear expressions in the primal LP.

DPi a dual linear programs related to COP.

Eu
β := expectation related to initial distribution β and policy u.

ftc, fα, f t
ea := expected occupation measure for total expected cost, total

expected discounted cost, expected average costs until time t (Sections 8.1,
10.2 and 11.1).
Fea := limit set of occupation measures for the expected average cost.
Fµ, Fµ:= sets of µ-bounded functions (defined in Section 7.7).

g – stationary deterministic policy, Section 2.1.

G,G:= a set together with its σ-algebra, Section 6.1.

hα:= difference between some optimal discounted costs, Section 12.2.
h:= lower bound on hα (Section 12.2).
ht, Ht, Ht:= history until t, the space of histories, Sections 2.1, 6.1.

I, It:= used as extra randomizing mechanism for policies UR (Section 6.6).

Jλ, jλ:= the Lagrangian, corresponding to the immediate costs and to the
cost criterion, respectively (Sections 9.4, 12.6).

k, K:= indices (of constraints), number of constraints.
K, κ:= set of state action pairs, a generic element; Sections 2.1, 6.1.
IK:= Borel σ-algebra of K.

L,L,Lα:= set of occupation measures for total cost, see (8.1), expected
average cost, see (11.5), discounted cost, see (10.1). In particular, when
they have the subscripts M,S,D, they correspond to occupation measures
obtained by the Markov, stationary and stationary deterministic policies,
respectively.
LPi – Primal Linear Programs which are equivalent to COP.

min B:= the set of minimal elements in a set B, Section 8.1.
m(·):= upper bound on hα (Section 12.2).
M:= set of achievable costs for total cost, see (9.21), expected average

cost, see (12.26). In particular, when they have the subscripts M, S,D they
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correspond to costs obtained by the Markov, stationary and stationary de-
terministic policies, respectively.
M:= a set, used in the definition of the total expected cost, Section 6.1.

Mµ:= the set of measures q with Eqµ finite (Section 7.7).
Mµ:= defined in Section 7.7.
M1(G), M(G), M(G):= set of probability measures over a set G, the set

of measures over G. Mixed strategies over G ⊂ U .
Mu(x):= total expected hitting time under policy u from state x, defined
below (6.3).
M̂(β, u), M̂(β):= defined in (7.11) (see also (7.18)) and below (7.18), re-

spectively.
M1,M2, . . . , M9 – equivalent properties of uniform Lyapunov functions,

Section 7.4.

N1,N2, . . . , N6 – equivalent properties of uniform Lyapunov functions,
Section 7.5.

pu
β(t;X ) := Pu

β (Xt ∈ X , T > t) and pu
β(t;K) := Pu

β ((Xt, At) ∈ K, T > t),
Section 6.1.

MP := the Taboo matrix, see Section 6.2.

P, Pu
β := transition probabilities; probability generated by initial distribu-

tion β and policy u (6.6).

Qtc, Qea, Qα:= feasible sets for the primal LPs, see (8.2), (8.3), (11.5),
(10.2).
Q – matrix, Section 7.7, Definition 8.2.
q, q̂:= probability distribution; mixed policy with parameter q, Section 6.1.

S1-S3 – assumptions introduced in Section 12.2.

(S1)-(S5) – conditions defined in Section 13.2 for the convergence of values
and policies.

s, t, n:= generic notation for time or horizon length.

T, T , TM, T [s]:= hitting times, and expected hitting times, see (6.3), (12.11),
(11.28), Example 9.1, Section 16.5.

u, v, U,U , UM , US , UD, UR:= policies, set of behavioral policies, mixed statio-
nary-deterministic policies, Markov, stationary, stationary-deterministic po-
licies (Section 2.1), and policies with extra randomization (Section 6.6).
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Vtc, Vea:= sets of achievable costs, see (9.22), (12.27).
V = (V1, . . . , VK):= constants, appear in the constraints, Section 2.1.

w:= stationary (randomized) policy, Section 2.1.
Wα(u; x):= the total cost from x to y, see (12.11).
w.p.1 – with probability one.

x, y, z, Xt, X:= states, state at time t, state space, Section 2.1.

α:= discount factor.

β:= initial distribution.

γ:= used as a probability measure (often used as parameter for mixed
policies).
γ̂:= the mixed policy having parameter γ.

δ:= Dirac measure, Section 2.1.

λ:= Lagrange multiplier.

µ, ν, ξ, ξ̃, σ:= involved in the definition of MDPs with uniform Lyapunov
functions (Definitions 7.4 and 7.5), contracting MDPs, Section 7.7, and
Definitions 11.4 and 11.5 of uniform geometric recurrence and ergodicity.

σ:= a constant in the Definition 11.5 of uniform geometric ergodicity.

ρ:= decision variables in the primal LP; ρ corresponds to the occupation
measure (8.2) and Section 8.7, (11.5) and Section 11.5.

(φ, ψ):= decision variables in the dual LP. φ corresponds to the value for
the finite horizon case and ψ to the relative cost.

π(·):= steady-sate probabilities. π(g):= steady-state probabilities corre-
sponding to a stationary policy g.

∆f := a constant used for the decomposition of the occupation measures
corresponding to the expected average cost, see Section 11.1.

Θ:= value of the dual program.
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ε-optimal policies, 134
µ-continuity, 97, 159
µ-geometric ergodicity, 158
µ-geometric recurrence, 158
S1,S2,S3, 169

absorbing
MDPs, 75
policies, 75
sufficient conditions, 77

ACOE, 167
ACOI, 165
action space, 21, 59
adaptive control, 6
aggregation of states, 65
almost monotone cost, 156
applications, 1
approximation

finite state, 127, 205
of the policies, 190
of the value, 186, 189

assumption
S1,S2, 185
S3, 186
S4, 190
S5, 190
B1, 143
B2, 147
B3, 150

average cost, 143
completeness, 38
contracting MDPs, 158
dual LP, 42, 158, 174, 178
dynamic programming, 165, 167
Lagrangian, 176
LP for mixed policies, 179
occupation measure, 40, 143
optimality equation, 167

optimality inequality, 165
primal LP, 41, 157
sample-path, 5
sufficiency, 38
superharmonic functions, 166, 173
uniform Lyapunov function, 161

B1, 143
B2, 147

equivalent conditions, 158, 160, 161
B3, 150

equivalent conditions, 158, 160, 161

communicating MDPs, 76
completeness

average cost, 38, 144
counter-example, 103
discounted cost, 27
stationary policies, 27, 102, 147
total cost, 102

continuity
µ-continuity, 104
µ-continuity, total cost, 105
average cost, 146, 153
occupation measure, 146
of immediate costs, 59
of transition probabilities, 60
total cost, 105, 113

contracting MDPs, 96
convergence

discounted to average cost, 194
in discount factor, 193
in the horizon, 199
of the policies, 190
of the value, 186, 189
vague, 217
weak, 217

COP, 24, 61
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cost
achievable sets, 127, 176
average, 24, 143, 165
continuity, total cost, 113
criteria, 23, 61
discounted, 23, 27, 137
finite horizon, 23
lower semi-continuity, 113
quasi-Markov, 71
total, 61, 101, 117
variance penalized, 6

discounted cost, 27, 137
convergence in discount factor, 193
convergence to average cost, 194
dual LP, 32–34, 139
dynamic programming, 30
equivalence to total cost, 137
Lagrangian, 32, 139
occupation measure, 27, 138
primal LP, 29, 139
super-harmonic functions, 31
uniform Lyapunov function, 139

dominance, 25, 63, 114
Markov policies, 25, 65
mixed policies, 130, 177
quasi-Markov policies, 73
simple Markov policies, 66
simple policies, 68

dominating policies
average cost, 154, 177
total cost, 114, 130

dynamic programming, 13
average cost, 165, 167
cost bounded below, 170
discounted cost, 30
total cost, 118, 121
uniform Lyapunov function, 171

finite horizon
convergence, 199

finite state approximation, 205
average cost, 214
Scheme I, 208
Scheme II, 211
Scheme III, 214
total cost, 127, 132, 208, 211, 214

flow control, 45, 93, 140

geometric ergodicity, 158
geometric recurrence, 158
growth condition, 153, 156

history, 22, 60
hitting time, 61

immediate cost, 21, 59
initial distribution, 23, 60

Lagrangian, 11, 13, 47
approach, 4
average cost, 176
discounted cost, 32, 139
total cost, 128, 130

lower semi-continuity
average cost, 153
total cost, 104, 105, 113

LP
approach, 3, 4, 10
dual, average cost, 42, 158, 174, 178
dual, discounted cost, 32–34, 139
dual, total cost, 116, 123, 124, 126,

132
mixed policies, 11, 14
mixed policies, average cost, 179
mixed policies, total cost, 133
primal, average cost, 41, 157
primal, discounted cost, 29, 139
primal, total cost, 115
solvability, 126

MDPs
absorbing, 75, 77, 110
communicating, 76
contracting, average cost, 158
contracting, total cost, 110
decomposable, 66
definitions, 21
finite horizon, 199
transient, 75, 110
unichain, 76
uniform Lyapunov functions, 77, 84,

89, 93
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minmax Theorem, 129
mixed criteria, 5

notation, 24, 235
number of randomizations, 5, 53

average cost, 43
discounted cost, 34
infinite MDPs, 215

occupation measure, 13
µ-continuity, 159
average cost, 37, 40, 143
completeness, 102, 144
continuity, 105, 146
discounted cost, 27, 28, 138
lower semi-continuity, 105
non-continuity, 106, 108
relation with cost, 37, 112, 150
survey, 8
tightness, 145
total cost, 101, 110
weak completeness, 144

optimal policies, 24
optimal priority assignment, 94
optimality inequality

average cost, 165
total cost, 118

policies, 22
Y-embedded, 73
approximations, 190
dominance, 25, 65
dominant, 63
Markov, 22, 63, 65
mixed, 60, 62
optimal, 24
optimal, average cost, 157
optimal, total cost, 115, 121
projection, 47
quasi-Markov, 70
robustness, 191
simple, 66, 68
simple Markov, 66
stationary, 22
stationary deterministic, 23
strongly monotone, 47, 53

sufficiency, 63
topology, 62
uniformly optimal, 25, 118

positive dynamic programming, 135
probability

over trajectories, 23
Prohorov’s Theorem, 217

randomization
coordination, 54
extra, 68
independent, 54
jointly, 53
number, 34, 43, 53, 215

rate of convergence, 6
robustness

of the policies, 191
routing control, 96

saddle point
average cost, 177

saddle-point
condition, 185
total cost, 131

Sennott’s conditions, 169
sensitivity analysis, 183
service control, 45, 93, 140
splitting

average cost, 148
total cost, 109

state
aggregation, 65

state space, 21, 59
state truncation, 205

average cost, 214
Scheme I, 208
Scheme II, 211
Scheme III, 214
total cost, 127, 132

stationary policies
completeness, average cost, 38
completeness, total cost, 102
optimality, average cost, 170, 172
optimality, total cost, 114

stochastic games, 6
sufficiency

quasi-Markov policies, 71
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simple Markov policies, 66
super-harmonic functions, 10

discounted cost, 31
total cost, 122

superharmonic functions
average cost, 166, 173

Taboo matrix, 61
Tauberian Theorem, 170
tightness, 145, 147, 156, 159, 218

counter-example, 150
total cost, 101, 117

dual LP, 116, 123, 124, 126, 132
dynamic programming, 118, 121
Lagrangian, 128, 130
optimal policies, 118
optimal value, 118
primal LP, 115
super-harmonic functions, 122

transient
MDPs, 75
policies, 75

transition probabilities, 21, 59

unichain, 37, 76
uniform integrability, 159

of non-negative measures, 219
of random variables, 217, 219

uniform Lyapunov function
average cost, 161, 171
discounted cost, 139
equivalent conditions, 84
for total expected life-time, 77
total cost, 77, 93

uniformly optimal policies, 25

vague convergence, 217, 218

weak completeness, 156
weak convergence, 217


