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Outline

☞ Congestion control modeling.

☞ Our model and its analysis.

☞ Numerical and experimental results.

☞ Concluding remarks.
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Congestion control in data networks

☞ Objective: Efficient use and fair sharing of network resources.

☞ Widely used algorithm:

☞ Probe the network by linearly increasing the transmission rate.

☞ Divide the transmission rate by a constant factor (typically 2) when the
     network becomes congested.

☞ Congestion is detected either by an explicit signal sent by the network, or
          by inferring mechanisms at the sources.

☞ Henceforth, consider as a reference the TCP protocol, widely used for
     congestion control in the Internet …
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TCP mechanisms
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☞ A window-based flow control protocol.
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Congestion control modeling
☞ Main objective: Calculation of the average transmission rate (the throughput).

☞ Useful for understanding the behavior of the congestion control and for the
     design of new applications and protocols (e.g., mechanisms for routers).

☞ Requirements:

☞ Model for the variation of the transmission rate between congestion events
     and during congestion.

☞ Model for the appearance of congestion events.

☞ Literature:

☞ General models for congestion events, but

☞ No exact expressions of the throughput when the rate is limited ...
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Limitation of the transmission rate
Caused by the receiver window in case of TCP ...
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Long-life TCP transfer
Receiver wnd = 32 Kbytes
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Our model for congestion control
☞A fluid model for the variation of TCP window:

W(t)

t

Linear increase at rate 
Congestion eventbRTT

1=α

☞Use the techniques in [Altman,Avrachenkov,Barakat,SIGCOMM’00] to
    account for timeouts and the discrete nature of TCP.
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Our model for congestion control (Ctd.)

☞At the n-th congestion event, Nn divisions of the window by a factor γ> 1

nN
n

n

TW
TW

γ
)(

)(
−=+

}{ nN form an i.i.d. sequence with,

∑
∞

=

==
1

}P{)(
k

n
k kNzzQ

☞Useful when the congestion lasts for multiple consecutive RTTs, or

☞For future versions of TCP that reduce the window as a function of the
    congestion level (e.g., number of packets dropped during congestion).

☞Congestion events (i.e., the instants {Tn}) occur according to a homogenous

    Poisson process of intensity λ.
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The analysis

☞ Theorem: The window of the TCP connection converges to the same
                       stationary regime for any initial state.

☞ Outputs of the analysis:

☞ F(x) = PDF of W(t) in the stationary regime.

☞ E[Wk(t)], k ≥ 1 = Moments of W(t) in the stationary regime.

☞ In particular:
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Dual M/G/1 queuing model *

☞ The problem of congestion control can be seen as a queuing model:

☞ The window corresponds to system workload (                                  ).

☞ Congestion events correspond to customer arrivals.

☞ Reduction of window corresponds to increase in workload.
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* [Misra, Gong, Towsley, 1999]
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Recursive equations for moments

☞ Steady state Kolmogorov equation: Relation between F(x+dx) and F(x)
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☞Applying Laplace Stieltjes Transform, then differentiating, we get
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which gives all the moments of W(t), as a function of  PM = P{W(t) = M} ...
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Window distribution

☞ F(x) is continuous on the interval ( 0 , M ) with a jump at M due to PM .

☞ From the Kolmogorov equation we can write:

∑
=

−

−

−

=−=≥







∈

k

i

x
k

iMkk

i

ecPxFxFk
MM

x
1

)(
1

1

)(1)(       ,1 ,,For 
γ

α
λ

γγ
with        some constants that can be recursively determined.

)(k
ic

First method to calculate PM : 0)(lim
0

=
→

xF
x

But, not efficient since the calculation of         for large k is not very accurate.
)(k

ic



13

Efficient method to calculate PM
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Efficient method to calculate PM (Ctd.)

☞ Derive an integral equation for  E[T(x)].

☞ Apply Laplace Transforms, solve the equation and invert back:
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where       are  constants that can be recursively determined.id

➘   The algorithm is efficient since the infinite series converge very fast.
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Extension to congestion limitation

☞ The model can be easily extended to the case when the window is reduced
     whenever it reaches M  (Congestion Limitation case).

☞ Example:   M   corresponds to the available bandwidth.
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Model validation: Throughput
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Congestion window (bytes)

Model validation: Distribution
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Model validation: Distribution (Ctd.)
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Conclusions and perspectives

☞ Results: Moments and distribution of transmission rate were obtained when
                    there is a maximum limit and when the process of congestion events is
                    close to Poisson.

     Approximations of the throughput exist in the literature (e.g., the fixed-point
     approach by [Padhye, Firoiu, Towsley, and Kurose, SIGCOMM’98] ).

☞ Future work:

☞ Consider more general processes for congestion events (e.g., MMPP).

☞ Validate the model on bursty paths where the congestion of the

      network lasts for multiple consecutive RTTs.

☞ Other rate increase policies (e.g., sub-linear increase).


