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Questions related to queueing:

m To Q or not to Q7 (
m When should we arrive at a Q7 (

m Where to Q7 (

to a Q7 ( )

m Case of elastic demand: how much should we send

)
)
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To Q or not to Q|

Should we @ to receive a service from a shared service
provider or use a dedicated one that does not require

PC

queueing?
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When to Q7]

Examples:

m When to arrive to the bank? A bank opens between
9h00 to 12h00. When should one come so as to min-
imize the expected wainting time?

m When to retry to make a phone call?
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Where to Q7]

Examples:

m Which path to take in a network?

Figure 1: Competitive Routing
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m The gaz station problem: a car arrives at a gaz sta-
tion and observes a line of waiting cars. Should the
car wait as well or should it continue to the next gaz
station?
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‘

o ISP,
(o

Figure 2: Competitive Routing
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How much to Q7]

Example: Flow-control]

There are two main approaches to flow control in com-
munications networks:

The sources receive acknowledgements from the desti-
nation on well-received packets.

A window is the number of packets that can be sent
and not yet acknowledged.

The larger the window, the larger the throughput.
Ex: Internet (ftp, email etc).

The source control its transmission rates.

[t may receive information from the network on conges-
tion.

Ex: ATM technology.
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m Typical objectives: Minimize losses, maximize
throughputs, minimize delays.

m The Internet is typically non-cooperative. The con-
trol is done at the end points by the users.

m Flow control in ATM networks can often be modeled
as a team problem. The control is done within the
network.
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When to arrive to the bank?

Ref: A. Glazer and R. Hassin, "?/M/1: On the equilib-
rium distribution of customer arrivals", European J. of
OR, 13 (1983), 146-150.

m A bank opens between 9h00 to 12h00. All customers
that arrive before 12h00 are served that day.

m A random number X of customers wish to get a
service.

m The service time are i.i.d. with exponential distrib-
ution.

m The order of service is FCFS (First Come First
Served).

m Each customer wishes to minimize the waiting time
in the bank.
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m There exists a symmetric equilibrium distribution F
of the arrival time with support [Ty, 12h00] for all
players, with Ty < 9h00, such that if all customers
follow F', our optimal policy is to use F.

m Note: if we eliminate the FCFS regime among those
who arrive before the bank opens, then Ty = 9h00.
This can reduce average waiting time!
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When to retry to phone?|

Ref:

m R. Hassin and M. Haviv, "On optimal and equilib-

rium retrial rates in a busy system", Prob. in the Eng.
and Informational Sciences, Vol. 10, 223-227. 1996.

m A. Elcan, "Optimal customer return rate for an
M/M/1 queueing system with retrials", Probability in
the Engineering and Informational Sciences, 8 (1994),
521-539.

The model
m At congestion times telephone calls might be blocked.

m A person whose call is blocked may typically retry
calling.

m Assume that each retrial costs ¢, and the waiting
time costs w per time unit.

m There is some equilibrium retrial rate that can be
computed.
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More precise model

m Call arrive according to a Poisson process with aver-
age rate .

m Service rates are 1.1.d. with mean 7 and finite vari-
ance 0. Let S? == 12+ 0% p = AT

m Between retrials calls are "in orbit". Times between
retrials of the ¢th call in orbit are exponentially dis-
tributed with expected value of 1/6;.
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Socially optimal solution|

m The expected time in orbit [Kulkarni, 1983] is
p (1 §°
W=——1|-4+_—
1—p (6’ i 27‘) ’

so the average cost per call is

(w+ )W =
p (5% w p (wS?
6+ — :
1—,0(27‘ i 9)+1—p( o +C)
This is minimized at

g+ _ J2wT /e

S

m THIS IS INDEPENDENT OF THE ARRIVAL
RATE!

m If 6" is used, the two terms that depend on 6 are
equal: the waiting cost and the retrial costs coincide.
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m [n the game case, one computes g(6,~) |Kulkarni,
83|, the expected waiting time of an individual who
retries at rate v while all the others use retrial rate 6.

m This allows us to obtain the equilibrium rate:
~wp +Jw?p? + 16wTe(l — p)(2 — p)/S?
N 4c(1 = p) |

m . monotone increases to infinity as A increases (to

1/o).

m Thus, the ratio between the equilibrium and the glob-
ally optimal cost tends to infinity.

O

m The equilibrium retrial rate is larger than the optimal
retrial rate. They tend to coincide as p — 0.

m DBoth equilibrium and optimal retrial rates are
monotone decreasing in the variance of the service
times.
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To Q or not to Q: PC or MF

Ref: E. Altman and N. Shimkin, “Individual equilib-

rium and learning in processor sharing systems”, Oper-
ations Research, vol. 46, pp. 776-784, 1998.
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— Requests for processing jobs arrive to the system.

— Interarrival times are genereal i.i.d. with mean \™'.
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m Upon arrival of a request, the user connects to MF
and observes the load. Based on this information it
decides whether to (Q or not to ) there.

— MF shares its computing capacity between all
present users there. This is called Processor Sharing
discipline.

— The service at MF is exponentially distributed with
rate u(x). x := number of jobs queued there.

— Typically: p(x) = p and the service intensity per
customer is v(z)/x.

m A PC offers fixed expected service time of §71.
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m X (¢):= the number of customers at MF at time ¢.

m 7, k> 0:= arrival time of job C}, where 0 = Tj <
Ty < Ty, < ...(t =0 is the arrival time of the first
customer).

m The queue-length process X (¢) is defined to be left-
continuous (thus X (7T}) is the queue length just prior
to the possible admission of customer Cj to MF).

m (), must decide at T}, which queue to join, after ob-
serving X (T%,).

m uj;:.= strategy for (Y, is the probability of joining MF
m U:= the class of such maps, and

7 = (ug,u1,...) denotes a multi-strategy of all cus-
tomers.
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Performance measurel

m w;:.— service duration of customer CY,

m W (x,m):= expected service time of C, given that
x customers are present at MF at his arrival.

m Vi(z,m):= expected service duration of C} at MF
under the same conditions.

Then
Wiz, 7) = up(x)Vi(z, m) + (1 — up(x))07,

m Observe that V}, depends on 7 through {w;, | > k},
the decision rules of subsequent customers.

m [ach customer wishes to minimize her own service
time.

m To this end, she should evaluate her expected service
time at the two queues, namely V,(x, 7) and 671, and
choose the lower one.

KApp]ications of Dynamic Games in Queues Eitan Altman/




/18 L I

Threshold Policies|

For any 0 < ¢ < 1 and integer L > 0, the decision rule
u is an |L, q]-threshold rule if

1 if z<L
u(z)=4q if x=1L (1)
0 if 2> 1L

m A customer which employs this rule joins MF' if the
queue length x is smaller than L, while if x = L she
does so with probability g. Otherwise she joins PC.

m An [L, g] threshold rule will be denoted by [g] where
g = L+q. Note that [L, 1] and [L+1, 0] are identical.
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Theorem 1
(1) For any equilibrium policy ©* = (ug,u1,...), each
decision rule ug 18 a threshold rule.

(i) A symmetric equilibrium policy ™ = (u*,u*,...)
exists, 18 unique, and u* s a threshold rule.
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Basic steps of proof:

v

g1 g2 qJ

m (i) For every policy m and k > 0, Vi(z, ) is strictly
Increasing in .

m (ii) Assume that all jobs other than C} use a thresh-
old policy [g]. Then Vi(z, [g]*) is:

(i) strictly increasing in g, and

(ii) continuous in g.
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Numerical Examples

m Consider B = 00,6 = 10, u = 100.

Figure 3: V(z,[15,1]) as a function of = for various \’s
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Figure 4: V(3,[L,1]) as a function of L for various \’s
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Figure 5: g* = L* + ¢* as a function of A
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Where to Q: the Gaz station problem|

m R. Hassin. On the advantage of being the first server.
Management Science, 2000.

m E. Altman, T. Jimenez, R. Nunez-Queija and U.
Yechiali, Queueing analysis for optimal routing with
partial information, 2000.
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Figure 6: Competitive Routing
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m We analyze the dynamic routing choices between two
paths.

m When a routing decision is made, the decision maker
knows the congestion state of only one of the routes;
the congestion state in the second route is unknown
to the decision maker.

m Applications in telecommunication networks: the
state in a down stream node may become available
after a considerable delay, which makes that informa-
tion irrelevant when taking the routing decisions.

m Although the precise congestion state of the second
route is unknown, its probability distribution, which
depends on the routing policy, can be computed by
the router.

m To obtain an equilibrium, we need to compute the
joint distribution of the congestion state in both
routes as a function of the routing policy.
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m We restrict to random threshold policies (n,7):

— if the the number of packets in the first path is less
than or equal to n — 1 at the instance of an arrival,
the arriving packet is sent to path 1.

— If the number is n then it is routed to path 1 with
probability r.

— If the number of packets is greater than n then it is

routed to path 2.

m The delay in each path is modeled by a state depen-
dent M/M/1 queue:

— Service time at queue ¢ is exponentially distributed
with parameter pu;

— Global interarrival times are exponential i.i.d. with
parameter A.
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m When all arrivals use policy (n,r), the steady state
distribution is obtained by solving the steady state
probabilities of the continuous time Markov chain:

A1 —r)
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Figure 7: Transition diagram
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m If an arrival finds ¢ customers at queue 1, it computes
Ei| X5 = E [ X5| X1 =1
and takes a routing decision according to whether

i+ 1 -, E X5+ 1

P 2

" (3,1) = =:T""(1,2).
m To compute it, the arrival should know the policy
(n,7) used by all previous arrivals.

m [f the decisions of the arrival as a function of 7 coin-
cide with (n,7) then (n,r) is a Nash equilibrium.

m The optimal response against |g] = (n,r) is
monotone decreasing in g. This is the Avoid The
Crowd behavior.
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m Computing the conditional distributions, one can
show that there are parameters (ui, po, A, n,r) for
which the optimal response to (n,r) is indeed thresh-
old policy.

m Denote
A M2
= —, S = —
M1 231
There are other parameters for which the optimal re-
sponse to (n,r) is a two-threshold policy character-

ized by t~(n, p,s) and t*(n, p, s) as follows.

p:

It Is optimal to route a packet to queue
queue 2 if t7(n,p,s) < X; <t*(n,p,s) and to
queue 1 otherwise.

At the boundaries t~ and ¢* routing to queue 1 or ran-
domizing is also optimal if

17 (i, 1) =T (i,2)
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Example
m Consider
A
n=3 r=1, p=—=1 and 5:&20.56
M1 H1

We plot T7%/(¢,1) and T7'7(4,2) for i = 0,1,...,4.

2
X[1]

Figure 8: T/ (4,1) and T,%/ (3, 2)

Conclusions: for some parameters there
may be no (n,r) equilibrial
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Where to Q: queues with priority]

m [. Adiri and U. Yechiali, "Optimal priority purchasing
and pricing decisions in nonmonopoly and monopoly
queues", Operations Research, 1974

m R. Hassin and M. Haviv, "Equilibrium thrshold
strategies: the case of queues with priorities".

@@GGG

Figure 9: Competitive Routing
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m 2 queues, single server.

m Poisson arrival process, rate \.

Exponentially distributed service time, parameter u;
p=Ap.

m Decisions: upon arrival, a customer observes the two
queues and may purchase priority for a payment of
an amount 6.

m The state: (i, 5).
.= number of high priority.

7:= number of low priority.
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m Monotonicity: If for some strategy adopted by every-
body, it is optimal for an individual to purchase pri-
ority at (7, 7), then he must purchase priority at (r, 7)
for r > 5.

m [Lower dimensional state space: It follows that start-
ing at (0,0) and playing optimally, there is some n
such that the only reachable states are

(0,7), 7 <mn, and (¢,n), ¢ > 1.
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m [ndeed, due to monotonicity, if at some state (0, m)
it is optimal not to purchase priority, it is also optimal
at states (0,1), for ¢ < m.

m Let n — 1 be the largest such state.

m Then starting from (0,0) we go through states (0, %),
i < m, until (0,n — 1) is reached.

m At (0,n) it is optimal to purchase priority. We then
move to state (1,n).

m The low priority queue does not decrease as long as
there are high-priority customers.

m Due to monotonicity, it also does not increase as long
as there are high-priority customers since at (i,n),
v > 1 arrivals purchase priority! Therefore we remain
at (i,m), as long as i > 1.
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The Equilibrium|

m Suppose that the customers in the population, except
for a given individual, adopt a common threshold pol-

icy |g]. Then the optimal threshold for the individual
is non-decreasing in g.

"Follow The Crowd" Behavior]|

m This implies Existence of an equilibrium

m No uniqueness! There may be up to
1

1—p
pure threshold Nash equilibria, as well as other mixed
equilibria!

m Examples of multiple equilibria can be found at Has-
sin and Haviv’s paper.
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S-modular games, FTC, ATC]|

m D. Topkis, "Equilibrium points in nonzero-sum n-

person submodular games”, SIAM J. Contr. Optim.,
17 (1979) 773-787.

m David D. Yao, "S-modular games with queueing ap-
plications”, Queueing Systems 21 (1995) 449-475.

m Assume that the strategy space S; of player ¢ is a
compact sublattice of R.

m Definition: The utility f; for player ¢ is supermodular
iff

file Ny) + file Vy) = filz) + fi(y).

m [f f; is twice differentiable then supermodularity is
equivalent to

83318332

> 0.
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Monotonicity of maximiers

m Let f be a supermodular function. Then the maxi-
mizer with respect to z; is increasing in z;, j # 1.

m More preciesly, define

r(x2) = argmax,, f(z1, x2).

Then xo < zf, implies x7(x2) < x7(x5).
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Monotonicity of the policy sets|

m Consider 2 players. We allow S; to depend on z;
m Monotonicity of sublattices A < B if for any a € A
and b € B,
aNbe A and aVbeB.

m Monotonicity of policy sets We assume

This is called the Ascending Property. We define sim-
ilarly the Descending Property.

m Lower semi continuity 2} — % and 3 € So(z?)

implies the existence of {x4} st. af € Sy(z¥) for
each k, and af§ — x3.
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Existence of Equilibria and Round Robin
algorithms

Assume lower semi-continuity and compactness of the
strategy sets.

m Supermodularity implies monotone convergence of
the payoffs to an equilibrium. The monotonicity is
in the same direction for all players. (We need the
ascending property).

m Similarly with submodularity (for 2 players), but the
monotonicity is in opposite directions. (We need the
desceding property).

m In both cases, there need not be a unique equilibrium.

m Extensions to costs that are submodular in some
components and supermodular in others. Extensions
to vector policies.
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Example of supermodularity: Qs in
tandem

m A set of queues in tandem. Each queue has a server
whose speed is controlled.

m The utility of each server rewards the througput and
penalizes the delay.

m The players then have compatible incentives: if one
speeds up, the other also want to speed up.
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m Consider two queues in tandem with 1.i.d. exponen-
tially distributed service times with parameters p;,
1 = 1,2. Let pu; < u for some constant w.

m Server one has an infinite source of input jobs

m There is an infinite buffer between server 1 and 2.

m The throughput is given by p; A po.

m The expected number of jobs in the buffer is given

by
231

M2 — M1
when @1 < o, and is otherwize infinite.
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m et

— pi(p1 A po) be the profit of server i,
— ¢i(u;) be the operating cost,
— ¢g(-) be the inventory cost.

m The utilities of the players are

Filws p2) = pi(pn A p2) = er(pn) — g (M2M—1M1)

f2(ﬂla M2) = P2(M1 A ,u2) — 02(,LL2) —4g (,uglu—l,ul) .

m The strategy spaces are
S1(p2) = {p1: 0 < p1 < po},
Solpn) = {p2 - pn < po < uj

m If g is convex increasing then f; are supermodular.
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Example of submodularity: Flow Control

m There is a single queueing centre

m The rates of two input streams to the queueing centre
are controlled by 2 players.

m Similar utilities as before.
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More detailed example:

m Consider two input streams with Poisson arrivals
with rates A1 and A\s.

m The queueing center consists of ¢ servers and no
buffers. Each server has one unit of service rate.

m When all servers are occupied, an arrival is blcoked
and lost.

m The blocking probability is given by the Erlang loss
formula:

where A = A\ + \o.

m Suppose user ¢ maximimizes
¢; 1s assumed to be convex increasing.

AB()) is the total loss rate.

Then f; are submodular.
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VI.

Strategies: \; < A.

~

m Alternatively: A < A. Then S; satisfy the descending

property.
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Rate-based flow control: A Linear
Quadratic Model

Ref: E. Altman and T. Bagar, “Multi-user rate-based

flow control”, IEEE Trans. on Communications, pp.
940-949, 1998.
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° v ()
°

M

m M Users

m A single bottleneck queue
m Output rate: s(t)

m Controlled input rates: r,,(t)

m Queue length: ¢g(¢). The target: Q. = :=q — Q.
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m Available bandwidth for user m is a,, s(t),

m Define u,,(t) == rp(t) — ans(t).

The idealized dynamics:

dx M M
=)= L ()

Policies and information:

um(t) — Mm(ta xt)a t € [07 OO) .

b 1S plecewise continuous in its first argument, piece-
wise Lipschitz continuous in its second argument. The
class of all such policies for user m is U,,.
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Objectives]

— N1: the individual cost to be minimized by user m

(me M={1,...,M}) is

0 1
M) = 2 (le®F + lun(®)F)dt. ()
— N2: the individual cost to be minimized by con-
troller m (m € M) is

TN w) = (4P + - fun(®F ) de. ()

In case N2 the “effort” for keeping the deviations of

the queue length from the desired value is split equally
between the users.
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Nash equilibria

We seek a multi-policy p* := (i, ..., 3s) such that no
user has an incentive to deviate from, i.e.

N * : N *
I = i TN (i) 5)
where [p,|p*,,] is the policy obtained when for each
j # m, player j uses policy 7, and player m uses fi,.

Similarly with Js.
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Main results]

For case Ni (i = 1,2), there exists an equilibrium
given by

,u}(v,&-’m(:l?) = —ﬂfr\fix, m=1,..., M,

where 3% is given by

ﬁNl _ B(Nl) B JB(NUQ .

where 6 ) def oM N1 i = 1,2, are the unique solu-

=1
> "

tions of

B(N 1) _
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N2:

where 6 ) def M BN2 i =1,2, are the unique solu-
tions of

_ 1 M | Cm
ﬁ(NQ) _ le(ﬁ(NQ))Q . _

(N1)

Q)

Moreoevr,

Bt = BV M.

For each case, this is the unique equilibrium among
stationary policies and is time-consistent.
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The value

The costs accruing to user m, under the two Nash equi-
libria above, are given by

and
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The Symmetric case

Cm = cj =:ctorall m,j € M:

N1 __ C
B _JZM—l’

and

N2 _ ¢ .
B _JM(ZM—I)’ Vm € M;
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The case of M =2

General ¢,,’s. we have form = 1,2, 7 # m,

o 2 __ 2]
_203 Cm 2\/01 C1C2 + C5

N1
B = 3 3

ﬂNl
N2  Mm

I[f moreover, ¢y = ¢ = ¢ then

ﬁrjr\bfl: 6/37
N2 — \Je/6.

1/2
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Proof for (N1)]

Choose a candidate solution

u, () = —Bpx, m=1,..., M, where

—  [z2
ﬁm — 6 - ﬁ — Cm
where (3 def »M_ B, are the unique solution of
_ 1 M [
ﬁ_M—lmzzjl ﬁ — o
Fix u; for 7 # m. Player m is faced with a L(Q) optimal
control problem with the dynamics

dﬂ?/dtzum—ﬂ—m:ﬁa /6_m: ; 63
JFEm

and cost JN1(u) that is strictly convex in u,,. His op-
timal response:

Um — _Cmpmx’

where P, is the unique positive solution of the Riccati
equation
—28_mP,, — Pic,, +1=0. (6)
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Denoting 8/, = ¢, Py, we obtain from (6)

Bl = fn(Bom) & =B + B2, + Cm.

w is in equilibrium iff 3’ = 3, or

ﬁm:B_V32_Cm-

Summing over m € M we obtain

of = 1 M [
Ad:fﬁ_M—lmzﬂ B —en=0

Uniqueness follows since

Hence

m /A is strictly decreasing in (3 over the interval

(max,, 1/Cm, 00),
m it is positive at 8 = max,, /¢, and

m it tendsto —oo as B — 0.
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Greedy decentralized algorithms|

Problem: Nash requires coordination, knowledge of in-
dividual utilities (c;,).

Solution: Try decentralized “best response” algorithms.

A greedy “best response” algorithm is defined by the
following four conditions |[Bagar and Olsder, 1995|

— (i) Each user updates from time to time its policy
by computing the best response against the most
recently announced policies of the other users.

— (ii) The time between updates is sufficiently large,
so that the control problem faced by a user when
it updates its policy is well approximated by the
original infinite horizon problem.

— (iii) The order of updates is arbitrary, but each user
performs updates infinitely often.

— (iv) When the nth update occurs, a subset K, C
{1,..., M} of users simultaneously update their
policies.
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Proposed algorithms

— Parallel update algorithm (PUA): K, =
{1,..., M} for all n.

— Round robin algorithm (RRA): K, is a sin-
gleton for all n and equals (n+ k)modM + 1, where
k is an arbitrary integer.

— Asynchronous algorithm (AA): K, is a sin-
gleton for all n and is chosen at random.
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The initial policy used by each user is linear.
B = value corresponding to the end of the nth itera-

tion.
The optimal response at each step n:

.87 ifme K,
B = (8)

\ @(,?_1) otherwise |
where
fm(ﬁ—m) déf _B—m + \/ﬁ%m + Cm- (9)
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Convergence results|

Consider PUA.
(i.a) Let 5,5}) = () for all k. Then

: ﬂ,f”) monotonically decrease in n and

ﬁngn—l—l)

monotonically increase in n,
for every player k, and thus, the following limits exist:

Bk def lim ﬂIE:Zn), Nk def lim ﬂ]?n—i—l).

n—00 n—0o0

(ib) Assume that 3; = (i (defined as above, with
ﬂ;gl) = 0 for all k).
Consider now a different initial condition satisfying ei-
ther

B < B, for all k,

(where B is the unique Nash) or

B > 3, for all k.

Then for all &,
lim, 8" = By.
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Global convergence

If
— (il.a) M = 2, and either

s Y < B, for all k, or

m ﬂ,f}) > (3. for all k;

or if
— (ii.b) 5,21) and ¢ % ¢;, are the same for all k,

then 3™ converges to the unique equilibrium 5*.
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Local convergence

unique equilibrium £* such that

rium 5.

For arbitrary ¢, there exists some neighborhood V' of

if ﬁ,ﬁ” € V then 8™ converges to the unique equilib-
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Numerical examples

1l
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Figure 10: PUA versus RRA for M =10
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Figure 11: PUA versus RRA for M =4

I \’/ M T T T T T T T T

1

'
1

|
\

|
\

'
\

|

0.8 | 'AAD e
| e 'A4.3
06 ” ‘\\ ’A4.4’ .

|
R /. Y
0.4 R 20 e neREEER BB RS

e
0.2
0

0 5101520253035404550
cycle number

Figure 12: AA for M =4
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Figure 13: AA for M =10
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