Applications of Dynamic Games in Queues

Eitan Altman

INRIA Sophia-Antipolis 2004 route des Lucioles, BP 93 06902 Sophia-Antipolis Cedex

E-mail: altman@sophia.inria.fr

DEC. 2000, Adelaide

OUTLINE

- $I.\ \mbox{To Q}$ or not to Q
- II. When to Q?
- III. Where to Q?
- IV. Where to Q: the Gaz station problem
 - ${f V}.$ Where to Q: queues with priority
- ${f VI.}$ S-modular games, FTC, ATC
- VII. Flow Control Models

1

Questions related to queueing:

- To Q or not to Q? (Admission-control)
- When should we arrive at a Q? (Scheduling)
- Where to Q? (Routing, Traffic-Assignment)
- Case of elastic demand: how much should we send to a Q? (Flow-control)

To Q or not to Q

Should we Q to receive a service from a shared service provider or use a dedicated one that does not require queueing?

Applications of Dynamic Games in Queues

Eitan Altman

When to Q?

Examples:

- When to arrive to the bank? A bank opens between 9h00 to 12h00. When should one come so as to minimize the expected wainting time?
- When to retry to make a phone call?

4 III.

Where to Q?

Examples:

■ Which path to take in a network?

Figure 1: Competitive Routing

Applications of Dynamic Games in Queues

Eitan Altman

■ The gaz station problem: a car arrives at a gaz station and observes a line of waiting cars. Should the car wait as well or should it continue to the next gaz station?

Figure 2: Competitive Routing

How much to Q?

Example: Flow-control

There are two main approaches to flow control in communications networks:

■ Window-based flow control:

The sources receive acknowledgements from the destination on well-received packets.

A <u>window</u> is the number of packets that can be sent and not yet acknowledged.

The larger the window, the larger the throughput.

Ex: Internet (ftp, email etc).

■ Rate-based flow control:

The source control its transmission rates.

It may receive information from the network on congestion.

Ex: ATM technology.

Applications of Dynamic Games in Queues

Eitan Altman

7 III.

- Typical objectives: Minimize losses, maximize throughputs, minimize delays.
- The Internet is typically non-cooperative. The control is done at the end points by the users.
- Flow control in ATM networks can often be modeled as a team problem. The control is done within the network.

When to arrive to the bank?

Ref: A. Glazer and R. Hassin, "?/M/1: On the equilibrium distribution of customer arrivals", European J. of OR, 13 (1983), 146-150.

- A bank opens between 9h00 to 12h00. All customers that arrive before 12h00 are served that day.
- lacktriangle A random number X of customers wish to get a service.
- The service time are i.i.d. with exponential distribution.
- The order of service is FCFS (First Come First Served).
- Each customer wishes to minimize the waiting time in the bank.

9 III.

- There exists a symmetric equilibrium distribution F of the arrival time with support $[T_0, 12h00]$ for all players, with $T_0 < 9h00$, such that if all customers follow F, our optimal policy is to use F.
- Note: if we eliminate the FCFS regime among those who arrive before the bank opens, then $T_0 = 9h00$. This can reduce average waiting time!

When to retry to phone?

Ref:

- R. Hassin and M. Haviv, "On optimal and equilibrium retrial rates in a busy system", *Prob. in the Eng. and Informational Sciences*, Vol. 10, 223-227. 1996.
- A. Elcan, "Optimal customer return rate for an M/M/1 queueing system with retrials", *Probability in the Engineering and Informational Sciences*, 8 (1994), 521-539.

The model

- At congestion times telephone calls might be blocked.
- A person whose call is blocked may typically retry calling.
- Assume that each retrial costs c, and the waiting time costs w per time unit.
- There is some equilibrium retrial rate that can be computed.

11 III.

More precise model

- Call arrive according to a Poisson process with average rate λ .
- Service rates are i.i.d. with mean τ and finite variance σ^2 . Let $S^2 := \tau^2 + \sigma^2$. $\rho := \lambda \tau$.
- Between retrials calls are "in orbit". Times between retrials of the *i*th call in orbit are exponentially distributed with expected value of $1/\theta_i$.

Socially optimal solution

■ The expected time in orbit [Kulkarni, 1983] is

$$W = \frac{\rho}{1 - \rho} \left(\frac{1}{\theta} + \frac{S^2}{2\tau} \right),$$

so the average cost per call is

$$(w + c\theta)W =$$

$$\frac{\rho}{1-\rho} \left(\frac{cS^2}{2\tau} \theta + \frac{w}{\theta} \right) + \frac{\rho}{1-\rho} \left(\frac{wS^2}{2\tau} + c \right).$$

This is minimized at

$$\theta^* = \frac{\sqrt{2w\tau/c}}{S}.$$

- THIS IS INDEPENDENT OF THE ARRIVAL RATE!
- If θ^* is used, the two terms that depend on θ are equal: the <u>waiting</u> cost and the <u>retrial</u> costs coincide.

- In the game case, one computes $g(\theta, \gamma)$ [Kulkarni, 83], the expected waiting time of an individual who retries at rate γ while all the others use retrial rate θ .
- This allows us to obtain the equilibrium rate:

$$\theta_e = \frac{w\rho + \sqrt{w^2\rho^2 + 16w\tau c(1-\rho)(2-\rho)/S^2}}{4c(1-\rho)}.$$

- \blacksquare θ_e monotone increases to infinity as λ increases (to $1/\sigma$).
- Thus, the ratio between the equilibrium and the globally optimal cost tends to infinity.
- The equilibrium retrial rate is larger than the optimal retrial rate. They tend to coincide as $\rho \to 0$.
- Both equilibrium and optimal retrial rates are monotone decreasing in the variance of the service times.

To Q or not to Q: PC or MF

Ref: E. Altman and N. Shimkin, "Individual equilibrium and learning in processor sharing systems", *Operations Research*, vol. 46, pp. 776–784, 1998.

- Requests for processing jobs arrive to the system.
- Interarrival times are general i.i.d. with mean λ^{-1} .

 $Applications\ of\ Dynamic\ Games\ in\ Queues$

Eitan Altman

■ Upon arrival of a request, the user connects to MF and observes the load. Based on this information it decides whether to Q or not to Q there.

- MF shares its computing capacity between all present users there. This is called Processor Sharing discipline.
- The service at MF is exponentially distributed with rate $\mu(x)$. x := number of jobs queued there.
- Typically: $\mu(x) = \mu$ and the service intensity per customer is $\nu(x)/x$.
- A PC offers fixed expected service time of θ^{-1} .

- X(t):= the number of customers at MF at time t.
- T_k , $k \ge 0$:= arrival time of job C_k , where $0 = T_0 < T_1 < T_2 < \dots$ (t = 0 is the arrival time of the first customer).
- The queue-length process X(t) is defined to be left-continuous (thus $X(T_k)$ is the queue length just *prior* to the possible admission of customer C_k to MF).
- C_k must decide at T_k which queue to join, after observing $X(T_k)$.
- u_k := strategy for C_k , is the probability of joining MF if $X(T_k) = x$.
- U:= the class of such maps, and $\pi := (u_0, u_1, \ldots)$ denotes a multi-strategy of all customers.

Performance measure

- lacksquare w_k := service duration of customer C_k ,
- $W_k(x,\pi)$:= expected service time of C_k , given that x customers are present at MF at his arrival.
- $V_k(x,\pi)$:= expected service duration of C_k at MF under the same conditions.

Then

$$W_k(x,\pi) = u_k(x)V_k(x,\pi) + (1 - u_k(x))\theta^{-1},$$

- Observe that V_k depends on π through $\{u_l, l > k\}$, the decision rules of subsequent customers.
- Each customer wishes to minimize her own service time.
- To this end, she should evaluate her expected service time at the two queues, namely $V_k(x, \pi)$ and θ^{-1} , and choose the lower one.

Threshold Policies

For any $0 \le q \le 1$ and integer $L \ge 0$, the decision rule u is an [L,q]-threshold rule if

$$u(x) = \begin{cases} 1 & \text{if } x < L \\ q & \text{if } x = L \\ 0 & \text{if } x > L \end{cases}$$
 (1)

- A customer which employs this rule joins MF if the queue length x is smaller than L, while if x = L she does so with probability q. Otherwise she joins PC.
- \blacksquare An [L,q] threshold rule will be denoted by [g] where g = L + q. Note that [L, 1] and [L + 1, 0] are identical.

Theorem 1

- (i) For any equilibrium policy $\pi^* = (u_0, u_1, ...)$, each decision rule u_k is a threshold rule.
- (ii) A symmetric equilibrium policy $\pi^* = (u^*, u^*, \ldots)$ exists, is unique, and u^* is a threshold rule.

Basic steps of proof:

- (i) For every policy π and $k \geq 0$, $V_k(x, \pi)$ is strictly increasing in x.
- (ii) Assume that all jobs other than C_k use a threshold policy [g]. Then $V_k(x, [g]^{\infty})$ is:
- (i) strictly increasing in g, and
- (ii) continuous in g.

Numerical Examples

 \blacksquare Consider $B = \infty, \theta = 10, \mu = 100.$

Figure 3: V(x, [15, 1]) as a function of x for various λ 's

Figure 4: V(3,[L,1]) as a function of L for various λ 's

Figure 5: $g^* = L^* + q^*$ as a function of λ

Where to Q: the Gaz station problem

- R. Hassin. On the advantage of being the first server. Management Science, 2000.
- E. Altman, T. Jimenez, R. Nunez-Queija and U. Yechiali, Queueing analysis for optimal routing with partial information, 2000.

Figure 6: Competitive Routing

- We analyze the dynamic routing choices between two paths.
- When a routing decision is made, the decision maker knows the congestion state of only one of the routes; the congestion state in the second route is unknown to the decision maker.
- Applications in telecommunication networks: the state in a down stream node may become available after a considerable delay, which makes that information irrelevant when taking the routing decisions.
- Although the precise congestion state of the second route is unknown, its probability distribution, which depends on the routing policy, can be computed by the router.
- To obtain an equilibrium, we need to compute the joint distribution of the congestion state in both routes as a function of the routing policy.

- We restrict to random threshold policies (n, r):
 - if the number of packets in the first path is less than or equal to n-1 at the instance of an arrival, the arriving packet is sent to path 1.
 - If the number is n then it is routed to path 1 with probability r.
 - If the number of packets is greater than n then it is routed to path 2.
- The delay in each path is modeled by a state dependent M/M/1 queue:
 - Service time at queue i is exponentially distributed with parameter μ_i
 - Global interarrival times are exponential i.i.d. with parameter λ .

When all arrivals use policy (n, r), the steady state distribution is obtained by solving the steady state probabilities of the continuous time Markov chain:

Figure 7: Transition diagram

 \blacksquare If an arrival finds *i* customers at queue 1, it computes

$$E_i[X_2] = E[X_2|X_1 = i]$$

and takes a routing decision according to whether

$$T^{n,r}(i,1) := \frac{i+1}{\mu_1} \le_? \frac{E_i[X_2]+1}{\mu_2} =: T^{n,r}(i,2).$$

- To compute it, the arrival should know the policy (n,r) used by all previous arrivals.
- \blacksquare If the decisions of the arrival as a function of i coincide with (n,r) then (n,r) is a Nash equilibrium.
- The optimal response against [g] = (n,r) is monotone decreasing in g. This is the Avoid The Crowd behavior.

- Computing the conditional distributions, one can show that there are parameters $(\mu_1, \mu_2, \lambda, n, r)$ for which the optimal response to (n, r) is indeed threshold policy.
- Denote

$$\rho := \frac{\lambda}{\mu_1}, \qquad s := \frac{\mu_2}{\mu_1}$$

There are other parameters for which the optimal response to (n, r) is a <u>two-threshold policy</u> characterized by $t^-(n, \rho, s)$ and $t^+(n, \rho, s)$ as follows.

It is optimal to route a packet to queue queue 2 if $t^-(n,\rho,s) \leq X_1 \leq t^+(n,\rho,s)$ and to queue 1 otherwise.

At the boundaries t^- and t^+ routing to queue 1 or randomizing is also optimal if

$$T_{\rho,s}^n(i,1) = T_{\rho,s}^n(i,2)$$

Example

Consider

$$n = 3, \quad r = 1, \quad \rho = \frac{\lambda}{\mu_1} = 1 \quad \text{and} \quad s = \frac{\mu_2}{\mu_1} = 0.56$$

We plot $T_{\rho,s}^{n,r}(i,1)$ and $T_{\rho,s}^{n,r}(i,2)$ for $i = 0, 1, \dots, 4$.

Figure 8: $T_{\rho,s}^{n,r}(i,1)$ and $T_{\rho,s}^{n,r}(i,2)$

Conclusions: for some parameters there may be no (n, r) equilibria!

Where to Q: queues with priority

- I. Adiri and U. Yechiali, "Optimal priority purchasing and pricing decisions in nonmonopoly and monopoly queues", Operations Research, 1974
- R. Hassin and M. Haviv, "Equilibrium thrshold strategies: the case of queues with priorities".

Figure 9: Competitive Routing

- 2 queues, single server.
- Poisson arrival process, rate λ .

Exponentially distributed service time, parameter μ ; $\rho := \lambda/\mu$.

- <u>Decisions:</u> upon arrival, a customer observes the two queues and may purchase priority for a payment of an amount θ .
- The state: (i, j).

i:= number of high priority.

j:= number of low priority.

- Monotonicity: If for some strategy adopted by everybody, it is optimal for an individual to purchase priority at (i, j), then he must purchase priority at (r, j) for r > j.
- Lower dimensional state space: It follows that starting at (0,0) and playing optimally, there is some n such that the only reachable states are

$$(0,j), j \le n, \text{ and } (i,n), i \ge 1.$$

- Indeed, due to monotonicity, if at some state (0, m) it is optimal not to purchase priority, it is also optimal at states (0, i), for $i \leq m$.
- Let n-1 be the largest such state.
- Then starting from (0,0) we go through states (0,i), i < n, until (0, n-1) is reached.
- At (0, n) it is optimal to purchase priority. We then move to state (1, n).
- The low priority queue does not decrease as long as there are high-priority customers.
- Due to monotonicity, it also does not increase as long as there are high-priority customers since at (i, n), $i \ge 1$ arrivals purchase priority! Therefore we remain at (i, n), as long as $i \ge 1$.

The Equilibrium

■ Suppose that the customers in the population, except for a given individual, adopt a common threshold policy [g]. Then the optimal threshold for the individual is non-decreasing in g.

"Follow The Crowd" Behavior

- This implies Existence of an equilibrium
- No uniqueness! There may be up to

$$\left| \frac{1}{1-\rho} \right|$$

pure threshold Nash equilibria, as well as other mixed equilibria!

Examples of multiple equilibria can be found at Hassin and Haviv's paper.

S-modular games, FTC, ATC

- D. Topkis, "Equilibrium points in nonzero-sum n-person submodular games", SIAM J. Contr. Optim., 17 (1979) 773-787.
- David D. Yao, "S-modular games with queueing applications", Queueing Systems 21 (1995) 449-475.
- Assume that the strategy space S_i of player i is a compact sublattice of R.
- Definition: The utility f_i for player i is supermodular iff

$$f_i(x \wedge y) + f_i(x \vee y) \ge f_i(x) + f_i(y).$$

■ If f_i is twice differentiable then supermodularity is equivalent to

$$\frac{\partial^2 f_i(x)}{\partial x_1 \partial x_2} \ge 0.$$

Monotonicity of maximiers

- Let f be a supermodular function. Then the maximizer with respect to x_i is increasing in $x_j, j \neq i$.
- More preciesly, define

$$x_1^*(x_2) = argmax_{x_1}f(x_1, x_2).$$

Then $x_2 \le x_2'$ implies $x_1^*(x_2) \le x_1^*(x_2')$.

Monotonicity of the policy sets

 \blacksquare Consider 2 players. We allow S_i to depend on x_j

$$S_i = S_i(x_j), \quad i, j = 1, 2, \quad i \neq j.$$

■ Monotonicity of sublattices $A \prec B$ if for any $a \in A$ and $b \in B$,

$$a \wedge b \in A$$
 and $a \vee b \in B$.

■ Monotonicity of policy sets We assume

$$x_j \le x_j' \Longrightarrow S_i(x_j) \prec S_i(x_j').$$

This is called the Ascending Property. We define similarly the Descending Property.

■ Lower semi continuity $x_1^k \to x_1^*$ and $x_2^* \in S_2(x_1^*)$ implies the existence of $\{x_2^k\}$ s.t. $x_2^k \in S_2(x_1^k)$ for each k, and $x_2^k \to x_2^*$.

Existence of Equilibria and Round Robin algorithms

Assume lower semi-continuity and compactness of the strategy sets.

- Supermodularity implies monotone convergence of the payoffs to an equilibrium. The monotonicity is in the same direction for all players. (We need the ascending property).
- Similarly with submodularity (for 2 players), but the monotonicity is in opposite directions. (We need the desceding property).
- In both cases, there need not be a unique equilibrium.
- Extensions to costs that are submodular in some components and supermodular in others. Extensions to vector policies.

Example of supermodularity: Qs in tandem

- A set of queues in tandem. Each queue has a server whose speed is controlled.
- The utility of each server rewards the throughut and penalizes the delay.
- The players then have compatible incentives: if one speeds up, the other also want to speed up.

- Consider two queues in tandem with i.i.d. exponentially distributed service times with parameters μ_i , i = 1, 2. Let $\mu_i \leq u$ for some constant u.
- Server one has an infinite source of input jobs
- There is an infinite buffer between server 1 and 2.
- The throughput is given by $\mu_1 \wedge \mu_2$.
- The expected number of jobs in the buffer is given by

$$\frac{\mu_1}{\mu_2 - \mu_1}$$

when $\mu_1 < \mu_2$, and is otherwize infinite.

■ Let

- $-p_i(\mu_1 \wedge \mu_2)$ be the profit of server i,
- $-c_i(\mu_i)$ be the operating cost,
- $-g(\cdot)$ be the inventory cost.
- The utilities of the players are

$$f_1(\mu_1, \mu_2) := p_1(\mu_1 \wedge \mu_2) - c_1(\mu_1) - g\left(\frac{\mu_1}{\mu_2 - \mu_1}\right)$$
$$f_2(\mu_1, \mu_2) := p_2(\mu_1 \wedge \mu_2) - c_2(\mu_2) - g\left(\frac{\mu_1}{\mu_2 - \mu_1}\right).$$

■ The strategy spaces are

$$S_1(\mu_2) = \{ \mu_1 : 0 \le \mu_1 \le \mu_2 \},$$

$$S_2(\mu_1) = \{ \mu_2 : \mu_1 \le \mu_2 \le u \}.$$

■ If g is convex increasing then f_i are supermodular.

l	3	1/T
t	J	V I

Example of submodularity: Flow Control

- There is a single queueing centre
- The rates of two input streams to the queueing centre are controlled by 2 players.
- Similar utilities as before.

More detailed example:

- Consider two input streams with Poisson arrivals with rates λ_1 and λ_2 .
- \blacksquare The queueing center consists of c servers and no buffers. Each server has one unit of service rate.
- When all servers are occupied, an arrival is blcoked and lost.
- The blocking probability is given by the Erlang loss formula:

$$B(\lambda) = \frac{\lambda^c}{\lambda!} \left[\sum_{k=0}^c \frac{\lambda^k}{k!} \right]^{-1}$$

where $\lambda = \lambda_1 + \lambda_2$.

 \blacksquare Suppose user i maximimizes

$$f_i = r_i(\lambda_i) - c_i(\lambda B(\lambda)).$$

 c_i is assumed to be convex increasing.

 $\lambda B(\lambda)$ is the total loss rate.

Then f_i are submodular.

- Strategies: $\lambda_i \leq \overline{\lambda}$.
- Alternatively: $\lambda \leq \overline{\lambda}$. Then S_i satisfy the descending property.

Rate-based flow control: A Linear Quadratic Model

Ref: E. Altman and T. Başar, "Multi-user rate-based flow control", *IEEE Trans. on Communications*, pp. 940-949, 1998.

- M Users
- A single bottleneck queue
- \blacksquare Output rate: s(t)
- lacksquare Controlled input rates: $r_m(t)$
- lacksquare Queue length: q(t). The target: Q. x:=q-Q.

- Available bandwidth for user m is $a_m s(t)$, $\sum_{m} a_{m=1}^{M} = 1.$
- $\blacksquare \text{ Define } u_m(t) := r_m(t) a_m s(t).$

The idealized dynamics:

$$\frac{dx}{dt} = \sum_{m=1}^{M} (r_m - a_m s) = \sum_{m=1}^{M} u_m, \qquad (2)$$

Policies and information:

$$u_m(t) = \mu_m(t, x_t), \qquad t \in [0, \infty).$$

 μ_m is piecewise continuous in its first argument, piecewise Lipschitz continuous in its second argument. The class of all such policies for user m is \mathcal{U}_m .

Objectives

- N1: the individual cost to be minimized by user m $(m \in \mathcal{M} = \{1, ..., M\})$ is

$$J_m^{N1}(u) = \int_0^\infty \left(|x(t)|^2 + \frac{1}{c_m} |u_m(t)|^2 \right) dt.$$
 (3)

- N2: the individual cost to be minimized by controller $m \ (m \in \mathcal{M})$ is

$$J_m^{N2}(u) = \int_0^\infty \left(\frac{1}{M}|x(t)|^2 + \frac{1}{c_m}|u_m(t)|^2\right) dt.$$
 (4)

In case N2 the "effort" for keeping the deviations of the queue length from the desired value is split equally between the users.

50

Nash equilibria

We seek a multi-policy $\mu^* := (\mu_1^*, ..., \mu_M^*)$ such that no user has an incentive to deviate from, i.e.

$$J_m^{N1}(\mu^*) = \inf_{\mu_m \in \mathcal{U}_m} J_m^{N1}([\mu_m | \mu_{-m}^*])$$
 (5)

where $[\mu_m | \mu_{-m}^*]$ is the policy obtained when for each $j \neq m$, player j uses policy μ_j^* , and player m uses μ_m . Similarly with J_2 .

Main results

For case Ni (i = 1, 2), there exists an equilibrium given by

$$\mu_{Ni,m}^*(x) = -\beta_m^{Ni}x, \ m = 1, ..., M,$$

where β_m^{Ni} is given by

$$\beta_m^{N1} = \overline{\beta}^{(N1)} - \sqrt{\overline{\beta}^{(N1)^2} - c_m}$$

where $\overline{\beta}^{(N1)} \stackrel{\text{def}}{=} \Sigma_{m=1}^{M} \beta_m^{N1}$, i = 1, 2, are the unique solutions of

$$\overline{\beta}^{(N1)} = \frac{1}{M-1} \sum_{m=1}^{M} \sqrt{(\overline{\beta}^{(N1)})^2 - c_m}$$

N2:

$$\beta_m^{N2} = \overline{\beta}^{(N2)} - \sqrt{\overline{\beta}^{(N2)^2} - \frac{c_m}{M}},$$

where $\overline{\beta}^{(N2)} \stackrel{\text{def}}{=} \Sigma_{m=1}^M \beta_m^{N2}$, i = 1, 2, are the unique solutions of

$$\overline{\beta}^{(N2)} = \frac{1}{M-1} \sum_{m=1}^{M} \sqrt{(\overline{\beta}^{(N2)})^2 - \frac{c_m}{M}} = \frac{\overline{\beta}^{(N1)}}{\sqrt{M}}.$$

Moreoevr,

$$\beta_m^{N1} = \beta_m^{N2} \sqrt{M}.$$

For each case, this is the unique equilibrium among stationary policies and is time-consistent.

The value

The costs accruing to user m, under the two Nash equilibria above, are given by

$$J_m^{N1}(\mu_{N1}^*) = \frac{\beta_m^{N1}}{c_m} x^2$$

and

$$J_m^{N2}(\mu_{N2}^*) = \frac{\beta_m^{N2}}{c_m} x^2 = \frac{1}{\sqrt{M}} J_m^{N1}(u_{N1}^*).$$

54 VII.

The Symmetric case

$$c_m = c_j =: c \text{ for all } m, j \in \mathcal{M}$$
:

$$\beta_m^{N1} = \sqrt{\frac{c}{2M-1}},$$

and

$$\beta_m^{N2} = \sqrt{\frac{c}{M(2M-1)}}, \quad \forall m \in \mathcal{M};$$

The case of M=2

General c_m 's, we have for $m = 1, 2, j \neq m$,

$$\beta_m^{N1} = \left[-\frac{2c_j - c_m}{3} + 2\frac{\sqrt{c_1^2 - c_1c_2 + c_2^2}}{3} \right]^{1/2}$$

$$\beta_m^{N2} = \frac{\beta_m^{N1}}{\sqrt{2}}.$$

If moreover, $c_1 = c_2 = c$ then

$$\beta_m^{N1} = \sqrt{c/3},$$

$$\beta_m^{N2} = \sqrt{c/6}.$$

Proof for (N1)

Choose a candidate solution

$$u_m^*(x) = -\beta_m x, \ m = 1, ..., M, \text{ where}$$

$$\beta_m = \overline{\beta} - \sqrt{\overline{\beta}^2 - c_m}$$

where $\overline{\beta} \stackrel{\text{def}}{=} \Sigma_{m=1}^M \beta_m$, are the unique solution of

$$\overline{\beta} = \frac{1}{M-1} \sum_{m=1}^{M} \sqrt{\overline{\beta}^2 - c_m}.$$

Fix u_j for $j \neq m$. Player m is faced with a LQ optimal control problem with the dynamics

$$\frac{dx}{dt} = u_m - \beta_{-m}x, \ \beta_{-m} = \sum_{j \neq m} \beta_j$$

and cost $J_m^{N1}(u)$ that is strictly convex in u_m . His optimal response:

$$u_m = -c_m P_m x,$$

where P_m is the unique positive solution of the Riccati equation

$$-2\beta_{-m}P_m - P_m^2c_m + 1 = 0. (6)$$

Applications of Dynamic Games in Queues

Eitan Altman

Denoting $\beta'_m = c_m P_m$, we obtain from (6)

$$\beta'_{m} = f_{m}(\beta_{-m}) \stackrel{\text{def}}{=} -\beta_{-m} + \sqrt{\beta_{-m}^{2} + c_{m}}.$$

u is in equilibrium iff $\beta' = \beta$, or

$$\overline{\beta}^2 = \beta_{-m}^2 + c_m. \tag{7}$$

Hence

$$\beta_m = \overline{\beta} - \sqrt{\overline{\beta}^2 - c_m}.$$

Summing over $m \in \mathcal{M}$ we obtain

$$\Delta \stackrel{\text{def}}{=} \overline{\beta} - \frac{1}{M-1} \sum_{m=1}^{M} \sqrt{\overline{\beta}^2 - c_m} = 0$$

Uniqueness follows since

- Δ is strictly decreasing in $\overline{\beta}$ over the interval $[\max_m \sqrt{c_m}, \infty)$,
- \blacksquare it is positive at $\overline{\beta} = \max_m \sqrt{c_m}$ and
- \blacksquare it tends to $-\infty$ as $\beta \to \infty$.

Greedy decentralized algorithms

Problem: Nash requires coordination, knowledge of individual utilities (c_m) .

Solution: Try decentralized "best response" algorithms.

A greedy "best response" algorithm is defined by the following four conditions [Başar and Olsder, 1995]

- (i) Each user updates from time to time its policy by computing the best response against the most recently announced policies of the other users.
- (ii) The time between updates is sufficiently large, so that the control problem faced by a user when it updates its policy is well approximated by the original infinite horizon problem.
- (iii) The order of updates is arbitrary, but each user performs updates infinitely often.
- (iv) When the *n*th update occurs, a subset $K_n \subset \{1, \ldots, M\}$ of users simultaneously update their policies.

Proposed algorithms

- Parallel update algorithm (PUA): $K_n = \{1, ..., M\}$ for all n.
- Round robin algorithm (RRA): K_n is a singleton for all n and equals $(n+k) \mod M + 1$, where k is an arbitrary integer.
- Asynchronous algorithm (AA): K_n is a singleton for all n and is chosen at random.

The initial policy used by each user is linear. $\beta^{(n)}$:= value corresponding to the end of the nth iteration.

The optimal response at each step n:

$$\beta_m^{(n)} = \begin{cases} f_m(\beta_{-m}^{(n-1)}) & \text{if } m \in K_n \\ \beta_m^{(n-1)} & \text{otherwise} \end{cases}, \tag{8}$$

where

$$f_m(\beta_{-m}) \stackrel{\text{def}}{=} -\beta_{-m} + \sqrt{\beta_{-m}^2 + c_m}. \tag{9}$$

Convergence results

Consider PUA.

(i.a) Let $\beta_k^{(1)} = 0$ for all k. Then

- $\beta_k^{(2n)}$ monotonically decrease in n and $\beta_k^{(2n+1)}$ monotonically increase in n,

for every player k, and thus, the following limits exist:

$$\hat{\beta}_k \stackrel{\text{def}}{=} \lim_{n \to \infty} \beta_k^{(2n)}, \qquad \tilde{\beta}_k \stackrel{\text{def}}{=} \lim_{n \to \infty} \beta_k^{(2n+1)}.$$

(i.b) Assume that $\hat{\beta}_k = \tilde{\beta}_k$ (defined as above, with $\beta_k^{(1)} = 0 \text{ for all } k).$

Consider now a different initial condition satisfying either

$$\beta_k^{(1)} \le \beta_k \text{ for all } k,$$

(where β_k is the unique Nash) or

$$\beta_k^{(1)} \ge \beta_k$$
 for all k .

Then for all k,

$$\lim_{n\to\infty}\beta_k^{(n)}=\beta_k.$$

Global convergence

If

- (ii.a) M = 2, and either
- lacksquare $\beta_k^{(1)} \leq \beta_k$ for all k, or
- $\blacksquare \beta_k^{(1)} \ge \beta_k \text{ for all } k;$

or if

- (ii.b) $\beta_k^{(1)}$ and $c \stackrel{\text{def}}{=} c_k$ are the same for all k,

then $\beta^{(n)}$ converges to the unique equilibrium β^* .

Eitan Altman

Applications of Dynamic Games in Queues

Numerical examples

Figure 10: PUA versus RRA for M = 10

Figure 11: PUA versus RRA for M=4

Figure 12: AA for M=4

Figure 13: AA for M = 10