Game theory

Wireless Networking

Eitan Altman Projet MAESTRO, INRIA Sophia Antipolis, France altman@sophia.inria.fr

February 2007

OBJECTIVES

- networking: •Introduce non-cooperative game notions that are potentially useful in wireless
- 1. Non-atomic games
- 2. Wardrop equilibrium,
- 3. Potential games for infinite player set
- 4. Replicator dynamics
- 5. Discrete Potential games, Convergence
- 6. Constrained games
- 7. Correlated equilibrium
- 8. S-modular games

1 Non-atomic games

1.1 Network exampe

Network: a graph $G=(V,\mathcal{C})$ where

ullet V is a set of nodes

ullet L a class of directed links

K classes of traffic.

ulletClass i has a set $\mathbf{P_i}$ of paths, and traffic demand of $oldsymbol{\phi}^{(i)}.$

ulletLink cost: $f_l(y_l)$, strictly monotone increasing in the link flow y_l

Definitions

ulletStrategies: the amount $x_p^{(i)}$ of traffic of class i is sent over path p.

•Link traffic: $y_l = \sum_{p,i} \delta_{lp} x_p^{(i)}$ where $\delta_{lp} = 1$ if l is on the path p.

ullet Flow constraints: for each class i, $\sum_{p\in\mathbf{P}(i)}x_p^{(i)}=oldsymbol{\phi}^{(i)}.$

•Let $\gamma_p^{i,i'}=1$ if $p\in \mathbf{P}(i')$ and i=i', and 0 otherwize.

•Matrix form of flow constraints $\Gamma^T \mathbf{x} = \phi$.

 Γ^T has K rows and π columns, where $\pi = \sum_i |P(i)|.$

the pathrs of class 1, etc. x is a column vector (size π). The first P(1) elements correspond to the flow over

ഗ

1.2 Global optimization

Objective:

$$\min_x \Delta(x)$$
 where $\Delta(x) := rac{1}{D} \sum_l y_l f_l(y_l)$ $D := \mathsf{total}$ demand.

s.t. (i) flow conservation, (ii) non-negative flows, (iii)
$$y$$
 in terms of x .
 •Define $t_p^{(k)} = \partial (\Phi \Delta)/\partial x_p^{(k)}$, i.e., class k marginal cost of $p,\ p \in H^{(k)}$.

$$ullet$$
t $=[t_1^{(1)},t_2^{(1)},\ldots,t_1^{(2)},t_2^{(2)},\ldots]^{\mathrm{T}}$ is the gradient vector of the function $\Phi\Delta.$

x optimal iff there exist K Lagrange multipliers lpha such that Characterization of optimal solution through complementarity:

 $[\mathsf{t}(\mathsf{x}) - \Gamma lpha] \cdot \mathsf{x}$

$$\mathbf{t}(\mathbf{x}) - \mathbf{\Gamma} \boldsymbol{\alpha} \geq 0,$$

(2)

Alternative characterisation: Variational inequalities

 $\bar{\mathbf{x}}$ is an optimal solution iff

$$\mathbf{t}(\bar{\mathbf{x}}) \cdot (\mathbf{x} - \bar{\mathbf{x}}) \geq 0$$
, for all \mathbf{x}

6

such that
$$\mathbf{\Gamma}^{\mathrm{T}} \mathbf{x} = \boldsymbol{\phi}$$
 and $\mathbf{x} \geq 0$.

1.3 Wardrop equilibrium

- Non-atomic setting: large number of non-cooperative players
- Each player has a negligible influence on others performances
- $T_p^{(k)}(\mathbf{x}) := \mathsf{cost}$ of path p for class k user. Equals sum of link costs along p. x is a Wardrop equilibrium if each player uses a least costly
- ulletA type k user chooses a path \hat{p} that satisfies

$$T_{\hat{p}}^{(k)}(\mathbf{x}) = \min_{p \in H^{(k)}} T_p^{(k)}(\mathbf{x}) =: A^{(k)}$$

Thus ${f x}$ is a Wardrop equilibrium if

$$T_p^{(k)}(\mathbf{x}) \ge A^{(k)}, \quad x_p^{(k)} = 0,$$
 (8)

$$T_p^{(k)}(\mathbf{x}) = A^{(k)}, \quad x_p^{(k)} > 0,$$
 (9)

and the flow constraintns hold (conservation, nonnegativity). Matrix notation:

$$[\mathbf{T}(\mathbf{x}) - \mathbf{\Gamma} \mathbf{A}] \cdot \mathbf{x} = 0, \tag{10}$$

$$\mathbf{T}(\mathbf{x}) - \mathbf{\Gamma} \mathbf{A} \geq 0, \tag{11}$$

$$\mathbf{\Gamma}^{\mathrm{T}} \mathbf{x} - \boldsymbol{\phi} = 0, \tag{12}$$

$$\mathbf{T}(\mathbf{x}) - \mathbf{\Gamma} \mathbf{A} \geq 0, \tag{1}$$

$$^{\mathsf{T}}\mathbf{x} - \boldsymbol{\phi} = 0,$$

(13)

where $\mathbf{A} = [A^{(1)}, A^{(2)}, \dots, A^{(K)}]^{\mathrm{T}}$

•Define the **potential** $G(\mathbf{x}) = \frac{1}{D} \sum_{l} \int_{0}^{y_{l}} f_{l}(s) ds$. Then

$$T_p^{(k)}(\mathbf{x}) = rac{\partial}{\partial x_p^{(k)}} (DG(\mathbf{x})).$$

where link costs are replaced by their integral. We get the same conditions for optimality of ${f x}$ in the global optimization problem

•Conclusion: x is a Wardrop equilibrium if it solves a global optimization problem:

minimize
$$G(\mathbf{x})$$
 s.t. (12)-(13).

• Alternative characterisation: Variational inequalities

 $\bar{\mathbf{x}}$ is a Wardrop equilibrium if and only if it is feasible and

$$\mathbf{T}(\bar{\mathbf{x}}) \cdot (\mathbf{x} - \bar{\mathbf{x}}) \geq 0$$
, for all \mathbf{x}

such that
$$\mathbf{\Gamma}^{\mathrm{T}} \mathbf{x} = \boldsymbol{\phi}$$
 and $\mathbf{x} \geq 0$.

the gradient of a potential. ullet Again the same form of the global optimization provided that $\mathbf{T}(ar{\mathbf{x}})$ is interpreted as

1.4 Applications to adhoc networks

- **IEEE CDC, 1997** •P. Gupta and P. R. Kumar propose a new routing algorithm for Adhoc networks in
- No real players, no game.
- forwarded so as to minimize its delay. This is a shortest path (delay) protocole: each packet that arrives at a mobile is
- delay Reason: to decrease number of out-or-order packets and to minimize resequencing

1.5 Limitations of the model (i)

•Link correlations: The cost over link ℓ may depend on the flow over other links,

contribute to congestion in the other direction [Dafermos, Transportation Sc. 1971]. •Road traffic Examples: (i) Two way traffic. Congestion in one direction could

on the flow of ACKs in the opposite direction. •Data network traffic: A congestion of TCP connections in one direction impacts

•Wireless context: Links are radio channels. They can have mutual interference.

Limitations of the model (ii): multiclass traffic

- total link flow ullet(i) Link cost may **depend on the flow of each user** $\{y_l^{(i)}\}$ rather than on the
- $ullet(ext{ii})$ Moreover, the link cost may differ from one class to another.
- assignment problem for multiclass-user transportation networks. Transp Sci 1972] congestion, and may experience congestion differently. [Dafermos, The traffic •Road traffic example: bicycles, cars and trucks contribute differently to
- congestion Data networks example: Packets of different size contribute differently to
- encounters less congestions, but is more expensive. **•Example:** Diffserv provides priority to some traffic over other. The priority traffic

Potential game with continuouos players set

differentiable function $G:\mathcal{X} \to R$ such that for all i and ℓ , The networking game is said to be a potential game if there is a continuously

$$\frac{\partial G(\mathbf{x})}{\partial x_{\ell}^{i}} = f_{\ell}^{i}(\mathbf{x})$$

•the Wardrop equilibrium is obtained by maximizing the potential

Conditions for existence of a Potential

Assume that the matrix

$$\left[\frac{\partial f_l^j(\mathbf{x})}{\partial x_k^i}\right]$$

is **symmetric** and **positive definite**. f_l^j is the cost of link l for class j.

users) of the line integral ullet A potential $G(\mathbf{x})$ exists, it is the sum (over the entries corresponding to links and

$$G(\mathbf{x}) = \sum_{l,j} \int_0^{\mathbf{x}} f_l^j(\mathbf{s}) d(\mathbf{s})$$

which is path independent.

ullet There is a "unique" Wardrop equilibrium (if the link costs are monotone).

•Major research problem: what to do when there is no potential.

Limitations of the model (iii): Non-additive costs.

Example: loss networks work with El-Aazouzi and Abramov.

 $ullet \mathcal{C}$ resources. Resource c has R_c capacity units (integer).

ullet There are N classes of calls $(\mathcal{N}=\{1,2,..,N\})$,

ullet Associated with class n are

Arrival rate λ_n , and an average holding time μ_n^{-1} ,

Bandwidth requirement, b_n integer units.

• Route $r_n \subseteq \mathcal{C}$.

Denote $\rho_n = \lambda_n/\mu_n$ the class n workload.

Blocking probabilities

ullet Let \mathcal{N}_c the subset of classes that use resource c,

$$\mathcal{N}_c = \{ n \in \mathcal{N} : c \in r_n \}. \tag{14}$$

Let m_n the number of calls of class n in the system, and

$$\mathbf{m} = (m_1, m_2, ..., m_N).$$

- The state space is $\mathcal{X} = \left\{ \mathbf{m} : \sum_{n \in \mathcal{N}_c} b_n m_n \leq R_c, \ c \in \mathcal{C} \right\}$.
- Let \mathcal{X}_n the subset of states for which there is an available bandwidth for another arrival of a class-n call:

$$\mathcal{X}_n = \left\{ \mathbf{m} \in \mathcal{X} : \sum_{i \in \mathcal{N}_c} b_i m_i \le R_c - b_n, c \in r_n \right\}.$$
 (15)

The steady state distribution is

$$\mathbf{P}\{\mathbf{X} = \mathbf{m}\} = \frac{1}{G} \prod_{n=1}^{N} \frac{\rho_n^{m_n}}{m_n!}, \quad \mathbf{m} \in \mathcal{X},$$
 (16)

where

$$G = \sum_{\mathbf{m} \in \mathcal{X}} \prod_{n=1}^{N} \frac{\rho_n^{m_n}}{m_n!}.$$

The probability of blocking of a class-n call is

$$B_n = 1 - \frac{\sum_{\mathbf{m} \in \mathcal{X}_n} \prod_{i=1}^N \rho_i^{m_i} / m_i!}{\sum_{\mathbf{m} \in \mathcal{X}} \prod_{i=1}^N \rho_i^{m_i} / m_i!}.$$
 (18)

Group of users

- ullet Consider L groups which split their demands via the networks.
- Group l can use any one of subset $\mathcal{N}^l\subset\mathcal{N}$ of classes. The set \mathcal{N}^l is characterized by a common source and destination as well as a common parameters b_l , μ_l and λ_l .
- **Strategies:** Group l sends a fraction $p_{l,n}$ of its demand via the route r_n .

Non-uniqueness of Wardrop equilibrium

Consider the following example:

- There are two parallel links :
- The first one, a, has a capacity of 2 bandwidth units
- The second one , b, has a capacity of 3 bandwidth units

- There are 2 groups:
- The calls of group I require 1 bandwidth units.

 $\mathcal{N}^1 = \{(I, a), (I, b)\}, b_{(I, a)} = b_{(I, b)} = 1.$

The calls of group II require 2 bandwidth units.

 $\mathcal{N}^2 = \{(II, a), (II, b)\}, b_{(II, a)} = b_{(II, b)} = 2.$

Two groups can send traffic through both links.

We have then 4 classes with the same source and destination :

 $\mathcal{N} = \{ (I, a), (I, b), (II, a), (II, b) \},\$

where l=I,II is the group and j=a,b is the link.

Results

- •We obtained three different Wardrop equilibria.
- •In general, no potential

Parallel links with equal bandwidth requirements

The blocking probability over link i, is given by the Erlang loss formula:

$$B_i(\lambda(i)) = \frac{\lambda(i)^{R_i}/R_i!}{\sum_{j=0}^{R_i} \lambda(i)^j/j!}.$$
 (Erlang B formula)

Let $\Lambda = \sum_{l=1}^{L} \lambda_l$. The game has a potential:

$$G(\lambda):=\sum_{i\in\mathcal{N}}\int_0^{\lambda(i)}B_i(z)dz=-\sum_{i\in\mathcal{N}}\log g_{R_i}(\lambda(i)),\quad \text{ where }\quad g_r(x)=\sum_{i=0}^r x^i/i!$$
 where $\lambda=(\lambda(i),i\in\mathcal{N})$, by solving :

(19)

where $\lambda=(\lambda(i),i\in\mathcal{N})$, by solving :

$$\min G(\lambda) \quad s.t. \sum_{i \in \mathcal{N}} \lambda(i) = \Lambda, \ \lambda(i) \ge 0, \ \forall i = 1, ..., N.$$
 (20)

- Unique Wardrop equilibrium
- •We can interpret the Wardrop equilibrium as the proportional fair assignment

Convergence [A. Kumar, S. Shakkottai, E.A.]

- •For a strategy y_n of class n, Define $S_n(y)$ all the pure strategies in its support.
- Definition [Sandholm]: The dynamic

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}t} = \mathbf{V}(\mathbf{y})$$

is said to be PC (Positively Correlated) if

$$\sum_{n \in \mathcal{N}} \sum_{p \in \mathcal{S}_n(\mathbf{y})} T_p^i(\mathbf{y}) V_p^i > 0 \quad \text{ whenever } V(\mathbf{y}) \neq 0.$$

ullet If V satisfies PC then all Wardrop equilibria are stationary points.