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elntroduce non-cooperative game notions that are potentially useful in wireless
networking:

1. Non-atomic games
Wardrop equilibrium,

Potential games for infinite player set

> W N

Replicator dynamics
Discrete Potential games, Convergence
Constrained games

Correlated equilibrium

© N o O

S-modular games
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1 Non-atomic games

Network: a graph G = (V,C) where
el is a set of nodes

e/, a class of directed links

K classes of traffic.
eClass i has a set P; of paths, and traffic demand of &3.

eLink cost: f;(y;), strictly monotone increasing in the link flow y;
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eStrategies: the amount n&ms of traffic of class ¢ is sent over path p.

eLink traffic: y; = MU?& %%H%v where d;, = 1 if [ is on the path p.

eFlow constraints: for each class 1, MU@me u&m& = o,
olet 75" =1if pe P(i') and i = ', and 0 otherwize.

eMatrix form of flow constraints T'Tx = ¢.
I'"" has K rows and 7 columns, where 7 = > | P(4)].

x is a column vector (size 7). The first P(1) elements correspond to the flow over
the pathrs of class 1, etc.
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eObjective:

min A(x) where A(x) : =5 MU yrfi(y) D:= total demand. (1)

xT

s.t. (i) flow conservation, (ii) non-negative flows, (iii) ¥ in terms of z.
eDefine NAS = Q_@Dv\mﬁms_ i.e., class k marginal cost of p, p € IT(F).
=[tM e 2 4T is the gradient vector of the function $A.

eCharacterization of optimal solution through complementarity:
x optimal iff there exist K Lagrange multipliers a such that

[t(x) —Tal-x = 0, (2)
t(x) —Ta > 0, (3)
I'x—¢ = 0, (4)

x > 0. (5)
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eAlternative characterisation: Variational inequalities

X is an optimal solution iff

t(x)- (x—x) > 0, forallx
such that T'x = ¢ and x > 0.
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eNon-atomic setting: large number of non-cooperative players.
eEach player has a negligible influence on others performances.

ex is a Wardrop equilibrium if each player uses a least costly.
5%3?& := cost of path p for class k user. Equals sum of link costs along p.

oA type k user chooses a path p that satisfies

§I. Q&I.Q&
157 (x) = @Mwws T,7(x) =: A

Thus x is a Wardrop equilibrium if

k k k) _
ﬁm J(x) > AW ﬁm ) =0,
k _ k k
ﬁm J(x) = AW, M&m ) >0,

/m:a the flow constraintns hold (conservation, nonnegativity). Matrix notation:
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[T(x) —TA]-x = 0, (10)
T(x)—-TA > 0, (11)
I'x—¢ = 0, (12)

x > 0, (13)

where A = [A(D, A®R) AKNT

eDefine the potential G(x) = & >, [ fi(s)ds. Then

) 0
T{F) (x) = —7 (DG(x)).
oxyp

We get the same conditions for optimality of x in the global optimization problem
where link costs are replaced by their integral.

eConclusion: x is a Wardrop equilibrium if it solves a global optimization problem:

minimize G(x) s.t. (12)-(13).
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eAlternative characterisation: Variational inequalities

x is a Wardrop equilibrium if and only if it is feasible and

T(X)-(x—%) > 0, forallx

such that T''x = ¢ and x > 0.

eAgain the same form of the global optimization provided that T(X) is interpreted as
the gradient of a potential.
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oP. Gupta and P. R. Kumar propose a new routing algorithm for Adhoc networks in
IEEE CDC, 1997

eNo real players, no game.

e This is a shortest path (delay) protocole: each packet that arrives at a mobile is
forwarded so as to minimize its delay.

eReason: to decrease number of out-or-order packets and to minimize resequencing
delay

o k
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eLink correlations: The cost over link £ may depend on the flow over other links,

eRoad traffic Examples: (i) Two way traffic. Congestion in one direction could

eData network traffic: A congestion of TCP connections in one direction impacts

on the flow of ACKs in the opposite direction.

eWireless context: Links are radio channels. They can have mutual interference.

o

contribute to congestion in the other direction [Dafermos, Transportation Sc. 1971].

k
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(i) Link cost may depend on the flow of each user Q%J rather than on the
total link flow.

e(ii) Moreover, the link cost may differ from one class to another.

eRoad traffic example: bicycles, cars and trucks contribute differently to
congestion, and may experience congestion differently. [Dafermos, The traffic
assignment problem for multiclass-user transportation networks. Transp Sci 1972]

eData networks example: Packets of different size contribute differently to

congestion.

eExample: Diffserv provides priority to some traffic over other. The priority traffic

encounters less congestions, but is more expensive.

o
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e The networking game is said to be a potential game if there is a continuously
differentiable function G : X — R such that for all 7 and /,

0G(x) i
— = fi(x)

0
ox ,

ethe Wardrop equilibrium is obtained by maximizing the potential

o
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eAssume that the matrix

of} (x)

i
Ox,

iIs symmetric and positive definite. ,\.m. is the cost of link [ for class .

oA potential G(x) exists, it is the sum (over the entries corresponding to links and
users) of the line integral

which is path independent.

eThere is a "unique” Wardrop equilibrium (if the link costs are monotone).

/o_/\_m_oﬂ research problem: what to do when there is no potential.
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eExample: loss networks work with El-Aazouzi and Abramov.
oC resources. Resource ¢ has R, capacity units (integer).
eThere are N classes of calls (M ={1,2,..,N}),

eAssociated with class n are

e Arrival rate )\, and an average holding time p_ 1,
e Bandwidth requirement, b,, integer units.

e Route r,, C C.

Denote p,, = A,/ tn the class n workload.

o
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o Let N, the subset of classes that use resource c,
Ne={neN:cer,}.
e Let m, the number of calls of class n in the system, and

m = (My, M2, ..., My ).

e The state space is X = AE_ : MU:mZO b,m, < R., cé€ QW.

(14)

o Let X, the subset of states for which there is an available bandwidth for another

arrival of a class-n call:

X, = TBm\a\” MU bm; < R.—b,,c€r,
ieN,

\
3 (15)
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The steady state distribution is

P{X=m}=— : L mEd, (16)
where
N Mo,
G=> 1> (17)
meX n=1 n:

The probability of blocking of a class-n call is

MUEmk: E&L p; " fm;!

B, =1-— : )
MUEmum E.@.IH bs “fmy!

(18)
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Group of users
e Consider L groups which split their demands via the networks.

e Group [ can use any one of subset AN C A of classes. The set A is
characterized by a common source and destination as well as a common

parameters b;, p; and ;.

e Strategies: Group [ sends a fraction p; ,, of its demand via the route 7,.

18
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\ , \ v 3 units of
~N

XX s bandwidth
2 units of ) \
bandwidth %

Common source

There are two parallel links :
— The first one, a, has a capacity of 2 bandwidth units

— The second one , b, has a capacity of 3 bandwidth units

19
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e There are 2 groups:

— The calls of group | require 1 bandwidth units.
.\/\\H — AAN“ @v“ AN“ @vw. @hﬁav = NRNVS = 1.

— The calls of group Il require 2 bandwidth units.

N? = AANNU @vu ANNU @iﬁ @QN“QV — @Qﬁ@v = 2.

e Two groups can send traffic through both links.
We have then 4 classes with the same source and destination

N ={(I,a),(I,b),(II,a),(II,b)},

where [ = I, [] is the group and j = a, b is the link.

20
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e\We obtained three different Wardrop equilibria.

eln general, no potential

21
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The blocking probability over link ¢, is given by the Erlang loss formula:

NRi /P
Bi(A(7)) = Ai)™ /Ry (Erlang B formula)

S A /5

o

Let A = MUN\UHH A;. The game has a potential:

A(4) "L
G(\) = MU \o Bi(2)dz = — MU log gy, (A(7)), where g,(x)= MU x' /i
i=0

i€EN ieEN
(19)
where A = (\(i),7 € \V), by solving :
minG(A) st Y A(i)=A, A(i) >0, Vi=1,..,N. (20)
ieN

eUnique Wardrop equilibrium

/o<<.w can interpret the Wardrop equilibrium as the proportional fair assignment. k
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eFor a strategy y,, of class n, Define S,,(y) all the pure strategies in its support.

eDefinition [Sandholm]: The dynamic

dy
Y _v
i~ vy

is said to be PC (Positively Correlated) if

MU MU T!(y)V; >0 whenever V(y) # 0.

neN peS, (y)

olf V satisfies PC then all Wardrop equilibria are stationary points.

o
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