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Abstract

We analyze in this paper the transient behavior of a simplified model for torrents in
P2P networks. We consider a large number of peers interested in a file which is initially
available at a small fraction of the population. Our model has as parameters the number
of interested peers, the rate of arrival of download request, the rate at which peers
propose files for upload, the degree of the free riding phenomenon etc. Our goal is to
predict the impact of measures against P2P networks on their performance. We provide
a Markov model that describes the detailed dynamics of the system. We analyze the
model first under the assumption of an infinite population—an approach based on a
branching process. This process is shown to provide a bound for the behavior of the
system with finite population. We obtain the extinction probabilities for this process as
well as approximations to the expected time till extinction. We then study the case of
a finite population for which we establish the mean field limit. We show that the limit
simplifies to a well studied epidemic model in case of no free riders. The fluid limit allows
us to evaluate the behavior of the expected duration of a torrent, the expected number
of nodes that eventually receive the file and the maximal availability along with the time
at which it is achieved. We finally use these results to evaluate the efficiency of measures
against unauthorized file sharing and their impact on file bundling.

Keywords:
Peer-to-peer, File availability, Markov branching process, Mean field approximation.

1. Introduction

Along with the worldwide penetration of the Internet, a huge demand has appeared to
copyrighted music and movies that have been accessible for free over the Internet. While
benefitting a very large internaut community as well as potentially providing higher
benefits for Internet access providers, it seems unclear whether the creators and the
copyright owners have gained anything from this unregulated access. Two main opposing
sets of approaches have been proposed to protect the copyright owners. The first consists
of fighting against the nonauthorized access whereas the second one, on the contrary, aims
at finding cooperative solutions that would benefit both the Internauts as well as all the
other economic actors. An example of a cooperative solution is a flat taxation that
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would allow Internauts to pursue downloading freely music and films, and that would
distribute the tax money between the copyright owners. This cooperative approach has
several difficulties in its implementation; a major one is how to distribute the tax income
fairly. A major drawback of the confrontation policy is the huge monitoring effort that
it requires and that seems not to provide credible evidence for unauthorized downloads
[17]. In order to assess the efficiency of non-cooperative measures against unauthorized
downloads, the authors of [23, 22] have analyzed the impact of the effort, of the authorities
or of content provider companies, invested in (i) reducing file uploading in P2P networks
and in (ii) reducing the demand for files, on the availability of files and, more generally,
on the operation of the P2P networks. The analysis there was based on a stationary
model.

In this paper we are interested in predicting the impact of measures, as described
in the previous paragraph, on the transient behavior of torrents. By how much should
the upload or download rate in a P2P network be reduced in order to have a significant
change in file availability? To do that, we consider in this paper a simplified model of a
torrent in a simplified P2P network. We consider a large number of peers interested in a
file which is initially available at a small fraction of the population. Our model accounts
for the standard epidemic type process of file dissemination. In addition it accounts for
the free riding phenomenon and for network characteristics.

We provide a Markov description of the system and then approximate its behavior
in two specific regimes. In the first, we consider a very large population that does
not yet have the file. The system is then well approximated by a branching process. We
compute for this regime the probability of extinction and provide upper and lower bounds
to the expected time until extinction. In the case that there is a positive probability
of not getting extinct, the system is shown to move with some non-zero probability
to a second regime in which, for the case of a sufficiently large population size, its
dynamics is close to the solution of a differential equation that is well known in the area
of propagation of epidemics [14]. The analysis allows us to compute approximations for
the expected duration of a torrent, the expected number of nodes that eventually receive
the file and the maximal availability along with the time at which it is achieved. Most
importantly, these two regimes are complimentary so as to characterize the file sharing
more comprehensively.

P2P protocols often try to provide incentives for sharing a file by making it available to
other peers, once it is downloaded by a peer. This is considered by the P2P community
to be a socially cooperative behavior whereas a peer leaving the system immediately
after receiving the file is considered to be a free rider. From the legal point of view,
making unauthorized copies of copyrighted files available to other users is a more severe
copyright infringement and is more severely punished than downloading unauthorized
copies. To understand the impact of measures against the cooperative sharing behavior,
we quantify the degree of free-riders in the system as well as the degree of cooperation
(the latter is based on the model proposed in [16]). Another interesting phenomenon in
P2P swarms is that files are usually bundled together for downloading. Our model can
also be extended to study the dynamic and deterministic behaviors of epidemic-like file
sharing with bundling.

The structure of the paper is as follows. In section 2 we model the P2P network
as a jump Markov process. We then provide two approximations of this model for the
case of a large number of peers. The first, in Section 3, is based on a branching process.

2



It is used for the case that the fraction of nodes with the file is close to zero. The
second, in Section 4, is based on an ordinary set of differential equations, used when
the fraction of nodes with the file is bounded away from zero. Section 5 studies the
phase transitions of P2P file sharing with a fixed request rate. We evaluate the impact
of measures against Internet piracy on the performance of P2P systems and discuss the
impact of coutnermeasures (bundling) in section 6. We end with a concluding section.

2. Model

2.1. Assumptions

Assume there is a population N of (possibly mobile) peers interested in a single file.
We denote by Y (t) the number of peers that possess the file at time t. A peer acquires the
file when it encounters another peer that has the file. We will consider two types of peers:
cooperative and non-cooperative peers. Once a cooperative peer has acquired the file it
stays in the network for a random time distributed according to an exponential rv with
parameter 1/µ ≥ 0 and then leaves the network. During the time a cooperative stays
in the network with the file it participates in the file dissemination. A non-cooperative
peer, also called a free-rider, leaves the network at once when it receives the file.

Let Y (t), Xc(t) and Xf(t) denote the number of cooperative peers with the file, the
number of cooperative peers without the file and the number of free-riders (necessarily
without the file) at time t, respectively. Let (y0, xc,0, xf,0) := (Y (0), Xc(0), Xf(0)) denote
the initial state of Y.

We assume that y0 + xc,0 + xf,0 = N and denote by xc,0 := Nc the number of
cooperative peers without the file at time t = 0. We further assume that y0 ∈ {1, . . . , N−
1} (y0 = 0 implies that Y (t) = 0 for all t and y0 = N implies that Xc(t) = Xf(t) = 0 for
all t, two cases which have no interest). Let r denote the ratio of cooperative peers that
has r = (y0 + xc,0)/N .

It is assumed that it takes an exponential time with rate λ > 0 for a peer without a file
to encounter a cooperative peer with the file. When two such peers meet, the cooperative
peer transmits the file to the other peer. The transmission of the file is always supposed
to be successful. We assume that the file transmission time is neglectible compared to
the time it takes for two peers to meet and therefore this time is taken to be zero.

All the rvs introduced so far are assumed to be mutually independent. As a con-
sequence, if Y (t) = k then any peer without the file will meet a cooperative peer with
the file after a time that is distributed according to the minimum of k independent and
exponential rvs with rate λ, that is after a time distributed according to an exponential
rv with rate λk. Let ρ := λNc/µ.

Measures of the authorities or of content provider companies against file sharing
systems may have an impact on the decrease in the population N interested in the file
and an increase in the fraction of free riders among the population interested in the file.
It can however have an impact also on the behavior of cooperative peers that would leave
the system sooner (i.e. µ is expected to increase). Our model combines an epidemic type
propagation of the file together with a description of the free riding behavior.

We first consider (Section 2.2) the case where all peers are fully cooperative in the
sense that µ = 0 and Xf (0) = 0 (no free riders). µ = 0 implies that cooperative peers do
not leave the network after receiving the file. We then move to the general case where
µ > 0 and Xf(0) ≥ 0 (Section 2.3).
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2.2. Fully cooperative network

When all peers are fully cooperative (i.e. µ = 0 and Xf(0) = 0) the population of
peers remains constant and equal to N , that is, Y (t) +Xc(t) = N at any time t. The
network dynamics can be represented by the process Y = {Y (t), t ≥ 0}.

This is a finite-state continuous-time Markov process with non-zero transitions given
by

Y (t) → Y (t) + 1 with rate λY (t)(N − Y (t)). (1)

In other words the processY is a pure birth Markov process on the state-space {y0, . . . , N}
with N an absorbing state which is reached when all peers have the file.

This model may have various interpretations. Two of them are given below:

• Delay Tolerant Network: each peer corresponds to a mobile terminal. Every two
nodes are within transmission range of each other at time epochs that form a
Poisson process with parameter λ. It is assumed that the file is short so that
the transmission of the file occurs instantaneously when two mobiles are within
transmission range and only one has the file. See e.g. [7, 19, 24] for related work.

• Parallel transmission over a lossy network: each node with the file transmits it
periodically to all those that do not have the file. The network is assumed to be
subject to large error rates or erasures, so that when transmitting the file from node
i to node j, the probability to receive it correctly is small. Erasures are assumed
to be independent and the channels are assumed to be memoryless in the following
sense: failure or success in a given transmission of the file from i to j at a given
time is independent of the events of the history of failures and successes of files
sent previous to that one.

Definem(t) := E[Y (t)], the expected number of peers with the file at time t. Standard
algebra shows that

dm(t)

dt
= λE[Y (t)(N − Y (t))], t > 0. (2)

Unfortunately, the right-hand side of (2) does not express as a function of m(t), thereby
ruling out the possibility of finding m(t) in closed-form as the solution of an ODE.

Assume that λ is written as λ = β/N and that limN→∞ N−1Y (0) = y∗ ∈ (0, 1). For
instance one can take Y (0) = Ny∗. Then, for large N , m(t) is well-approximated by
Ny(t) where y(t) is obtained as the unique solution of the ODE [2, Thm 3.1]

dy(t)

dt
= f(y(t)), t > 0, (3)

where f(u) := βu(1− u) and y(0) = y∗ ∈ (0, 1]. It is found that

y(t) =
y∗

(y∗ + (1− y∗) exp(−βt))
, t ≥ 0. (4)

This is a well-known instance (see e.g. [24]) of what is known as mean-field approxi-
mation, a theory that focuses on the solution of ODEs obtained as limits of jump Markov
processes [11]. The ODE (3) has been extensively used in epimediology studies, where
y(t) represents the fraction of infected patients at time t when the entire population is
of size N .
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We show below that the mean-field approximation is an upper bound for E[Y (t)]. To
the best of our knowledge this result is new.

Proposition 1. E[Y (t)] ≤ Ny∗/(y∗ + (1− y∗)e−βt) for any t ≥ 0.

Proof: Throughout the proof t > 0 is fixed. By Jensen’s inequality, E[Y (t)(N−Y (t))] ≤
E[Y (t)](N − E[Y (t)]) so that from (2)

dz(t)

dt
≤ f(z(t))) (5)

where z(t) := E[Y (t)]/N ∈ (0, 1].
From (5) there exists a function ω(t), 0 ≤ ω(t) ≤ 1, such that

dz(t)

dt
= ω(t)f(z(t)). (6)

Rewritting (3) and (6) as

dy(t)

f(y(t))
= dt and

dz(t)

f(z(t))
= ω(t)dt

and integrating both sides of these equations yields (with y(0) = z(0) := a ∈ (0, 1))

∫ z(t)

a

du

f(u)
=

∫ t

0

ω(t) and

∫ y(t)

a

du

f(u)
= t. (7)

Integrals in (7) are well defined as long as f(y(u)) and f(z(u)) do not vanish for a ≤ u ≤ t.
Let show that this is true.

First, note that f(u) vanishes only if u = 0 or if u = 1. We have assumed that
0 < a = y(0) < 1 so that f(a) > 0. Next, we see from (4) that y(u) < 1 for any u > 0.
Last, z(u) = 1 for some u = u∗ would imply that Y (u∗) = N a.s. for any u ≥ u∗ which
is clearly not true. This shows that the integrals in (7) are well defined

Eqns in (7) and 0 ≤ ω(t) ≤ 1 imply

0 ≤

∫ z(t)

a

du

f(u)
≤

∫ y(t)

a

du

f(u)

which in turn implies that z(t) ≤ y(t) or, equivalently, E[Y (t)] ≤ Ny∗/(y∗+(1−y∗)e−βt)
by using (4) and the definition of z(t).

2.3. General network

We consider the general network defined in Section 2.1.
Define the vector X(t) =

(Xc(t)
Xf (t)

)

, where we recall that Xc(t) is the number of coop-

erative nodes in the system who do not have the file at time t and Xf(t) is the number
of free-riders in the system at time t (by definition, none of these have the file at time
t). Let ec = (1, 0) and ef = (0, 1). Under the statistical assumptions made in Section
2.1 it is seen that the process Y := {(Y (t), X(t)), t ≥ 0} is a finite-state Markov process
whose non-zero transitions are given by

(

Y (t)
X(t)

)

→

(

Y (t) + 1
X(t)− ec

)

with rate λY (t)Xc(t), (8)
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(

Y (t)
X(t)

)

→

(

Y (t)− 1
X(t)

)

with rate µY (t), (9)

(

Y (t)
X(t)

)

→

(

Y (t)
X(t)− ef

)

with rate λY (t)Xf (t). (10)

The process Y takes its values in the set E := {(i, j, j), 0 ≤ i ≤ y0 +Nc, 0 ≤ j ≤ Nc, 0 ≤
j + k ≤ N − y0}. Furthermore, all states in E of the form (0, j, k) are absorbing states
since there are no more transitions when the file has disappeared.

Note that the process Z := {(Y (t), Xc(t)), t ≥ 0} is also an absorbing finite-state
Markov process whose non-zero transitions are given in (8)-(9).

An explicit characterization of the transient behavior of the absorbing Markov pro-
cess Y is a very difficult task due to the presence of non-linear and non-homogeneous
transition rates in the state variables and to the dimension of Y. The same is true for
Z.

If N is not too large, a numerical approach is possible. We refer the interested reader
to [8] where this approach was used in a related context.

In this paper we will instead develop two approximations/bounds of the process Y.
The first one will consist in replacing Xc(t) by Nc = Xc(0) in the transition rate (8),
which will introduce a birth and death Markov branching process. Clearly, this (so-called)
branching approximation will loose its accuracy as the ratio Xc(t)/Nc changes.

The second approximation will use an asymptotic argument as N → ∞ based on a
mean-field approximation of the process Y. Such an approximation is accurate only if
Y (0) = y0 is of the order of N .

Both approaches will allow us to approximate some key quantitive characteristics of
the process Y such as the probability of disappearance of the file, the time before all files
disappear, the maximum number of cooperative peers in the network, the percentage of
peers that eventually receive the file, etc.

Remark 1. Our general model is inspired by the one in [16]. Let us briefly point out
some differences between our model and the one in [16].

• The model of [16] assumes that cooperative users remain only a finite time in the
system as a free-riding phenomenon and thus calls µ a measure for free-riding.
Our model has in addition the parameter η := Nc/(N − y0) that quantifies free
riding. This motivated us to define η as a free riding measure and µ as a measure
of cooperation.

• The model for interaction between nodes is different. This results in a different rate
of increase of the number of nodes with the file.

• In [16] there are some seeders that always remain in the system. Therefore unlike
our case, in [16] all peers eventually receive the file.

3. Branching approximation

Let Yb = {Yb(t), t ≥ 0} be a Markov process on IN := {0, 1, . . .} (the subscript b
refers to “branching”) with non-zero transition rates given by

Yb(t) → Yb(t) + 1 with rate λYb(t)Nc (11)

Yb(t) → Yb(t)− 1 with rate µYb(t) (12)
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where we recall that Nc is the number of cooperative peers without the file at time t = 0.
Since Xc(t), the number of cooperative peers without the file at time t, is non-

increasing in t, a quick comparison between (8)-(10) and (11)-(12) indicates that the
process Yb should dominate the process Y. This bounding result is formalized and
proved in the proposition below.

A word on the notation: a real-valued rv Z1 is stochastically smaller than another
real-valued rv Z2, denoted as Z1 ≤st Z2, if P (Z1 > x) ≤ P (Z2 > x) for all x.

Proposition 2. If Y (0) ≤ Yb(0) then Y (t) ≤st Yb(t) for any t > 0.

Proof. The proof relies on a classical coupling argument. On a common probability space
we recursively construct two Markov processes U = {U(t) = (U1(t), U2(t)), t ≥ 0} and
V = {V (t), t ≥ 0}, U1(t), U2(t), V (t) ∈ IN, by generating transitions as follows: assume
that a transition has occured in at least one system at time t and let U(t+) (resp. V (t+))
be the state ofU (resp. V) just after this transition. Let τ be an exponentially distributed
rv with rate r := λV (t+)Nc+µV (t+) so that, conditioned on V (t+), it is independent of
the history of processesU and V up to time t. If V (t+) = 0 no more transition will occur
in both systems after time t+. If V (t+) > 0, the next transition will occur at time t+ τ :
with probability λU1(t+)/r, U1(t+) = U1(t)+1, U2(t+) = U2(t)−1 and V (t+) = V (t)+1,
with probability λ(V (t+) − U1(t+))/r, U(t+) = U(t) and V (t+) = V (t) + 1, with
probability µU1(t+)/r, U1(t+) = U1(t)− 1, U2(t+) = U2(t), V (t+) = V (t)− 1, and with
probability µ(V (t+)−U1(t+))/r, U(t+) = U(t) and V (t+) = V (t)−1. This construction
holds as long as U1(t) ≤ V (t) for all t ≥ 0.

Assume that U1(0) ≤ V (0). We readily deduce from the above construction that
U1(t) ≤ V (t) for all t > 0, from which we conclude from the coupling theorem [9] that
U1(t) ≤st V (t). The proof is concluded by noting that the process U (resp. V) is
statistically identical to the process Z (resp. Yb).

The Markov process Yb is an absorbing continuous-time birth and death process on
IN with absorbing state 0. Because its transition rates are linear functions of the system
state, this is also a continuous-time Markov branching process [6], namely, a process in
which at any time t each member of Yb(t) evolves independently of each other.

The next section specializes known results of the theory of branching processes to the
process Yb.

3.1. Extinction probability

As previously observed the process Yb is a birth and death branching process [6,
Chapter]. Each object (peer) of this process has a probability of change in the interval
(t, t+ h) given by bh+ o(h) with θ = λNc + µ; with probability p0 = µ/θ an object dies
(a peer leaves) and with probability p2 = λNc/θ an object is replaced by two objects (a
peer receives the file).

Given Yb(0) = k the extinction time Tk is defined by

Tb(k) = min{t > 0 : Yb(t) = 0} (13)

and the extinction probability by

qk = P (Tb(k) < ∞). (14)
7



In our context Tb(k) is the first time where the file disappears given that there are k
copies of the file a time t = 0.

Let F (s, t) :=
∑

i≥0 P (Yb(t) = i)si be the generating function of the process Yb.

Define W (s) := θ(f(s)− s) = λNcs
2 − (λNc + µ)s+ µ, h(s) =: p0 + p2s

2.
If Y (0) = 1, we know from [6, Thm 10.1] that F (s, t) satifies

∂F (s, t)

∂
= W (F (s, t)) (15)

and that the probability of extinction, q1, is the smallest nonnegative root of the equation
s = h(s). We find

q1 = min{1, 1/ρ} (16)

where we recall that ρ = λNc/µ. More generally

qk = (min{1, 1/ρ})k = min{1, (1/ρ)k}, k ≥ 1 (17)

since the objects behave independently of each other.
The extinction will be certain iff ρ ≤ 1 or equivalently iff λNc ≤ µ. Whenever

ρ < 1 (resp. ρ = 1, ρ > 1) a branching process is said to be subcritical (resp. critical,
supercritical).

3.2. Time to extinction

When the extinction is certain it is interesting to characterize some statistical prop-
erties of the extinction time Tb(·). Let D denote the event Yb(t) = 0 for some t > 0 and
let q = P (D). We know that q = qk given in (17) if Yb(0) = k.

The following is shown in [15]:

Proposition 3. If Yb(0) = 1, the conditional expectation and variance of the extinction
time are expressed by

E[Tb(1)|D] =

∫ q1

0

q1 − s

q1W (s)
ds (18)

and

V (Tb(1)|D) = 2

∫ q1

0

1

W (s)

∫ q1

s

q1 − r

q1W (r)
drds − (E[Tb(1)|D])2 (19)

provided these expectations exist.

Because the file will disappear with probability one in the original process Y, we are
motived by considering the approximated process Yb when its extinction is also certain
(q1 =) and the process is subcritical (i.e. ρ < 1). In this case, by Proposition 3

E[Tb(1)] = −
1

λNc
log(1− ρ). (20)

Next, we look at the scenario where k peers have the file at time 0, namely, Yb(0) = k.
If we define T i

b (k) to be the extinction time of all offsprings of file i = 1, . . . , k, then

P (Tb(k) ≤ t) = P

(

max
1≤i≤k

{T i
b(k)} ≤ t

)

= P (Tb(1) ≤ t)k (21)
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since in a branching process all objects behave independently of each other.
Combining the identity F (0, t) = P (Tb(1) ≤ t) and (21) gives

E[Tb(k)] =

∫ ∞

0

(1 − F (0, t)k)dt =

∫ 1

0

1− uk

W (u)
du (22)

in the subcritical case. The latter equality is obtained by using the change of variable
u = F (0, t) together with the relation (cf. (15)) dt = dF (0, t)/W (F (0, t)) = du/W (u).

Let us now come back to the original process Y.
Define T (y0) := inf{t : Y (t) = 0}, the first time when the file has disappeared from

the network given that Y (0) = y0. When Y (0) = Yb(0) = y0, Proposition 2 implies that

P (T (y0) > t) = P (Y (t) > 0) ≤ P (Yb(t) > 0) = P (Tb(y0) > t)

from which we deduce that

E[T (y0)] ≤ E[Tb(y0)] =

∫ 1

0

1− uy0

W (u)
du

when ρ < 1. In particular, E[T (1)] ≤ − 1
λNc

log(1− ρ) from (20).

4. Mean-field approximation

In this section we investigate the behavior of the process Y defined in Section 2.3 as
N , the number of peers, gets large. We first show that this behavior (to be made more
precise) is well approximated by a deterministic limit solution of an ODE, an approach
known as mean-field approximation. See [11] for the theory and [3, 12, 24] for recent
applications in the area of file sharing systems.

Like in Section 2.2 we assume that the pairwise contact rate, λ, is of the form λ = β/N
with β > 0. We also assume that the initial state of Y is given by

Y (0) = Ny∗, Xc(0) = Nx∗
c , Xf (0) = Nx∗

f (23)

with y∗, x∗
c and x∗

f arbitrary nonnegative constants such that y∗ + x∗
c + x∗

f = 1. [The

analysis below holds under the weaker condition limN→∞ N−1(Y (0), Xc(0), Xf (0)) =
(y∗, x∗

c , x
∗
f ).]

Let v1 = (1,−1, 0), v2 = (−1, 0, 0) and v3 = (0, 0, 1). Denote by g(Y, Y + vi),
i = 1, 2, 3, the non-zero transition rates of the process Markov process Y out of state
Y = (Y1, Y2, Y3). We have (cf. (8)-(10))

g(Y, Y + v1) =
β

N
Y1Y2, g(Y, Y + v2) = µY1, g(Y, Y + v3) =

β

N
Y1Y3

which can be rewritten as

g(Y, Y + vi) = Nf

(

Y

N
, vi

)

, i = 1, 2, 3 (24)

where f(u, v1) = βu1u2, f(u, v2) = µu1 and f(u, v3) = βu1u3 for u = (u1, u2, u3).
9



We may therefore use Theorem 3.1 in [11] to obtain that the rescaled process N−1Y

converges in probability as N → ∞, uniformly on all finite intervals [0, T ], to the solution
of the system of ODEs

d

dt





y
xc

xf



 =





y(βxc − µ)
−βyxc

−βyxf



 (25)

with the initial conditions y(0) = y∗, xc(0) = x∗
c , xf (0) = x∗

f .
In other words, the solution y(t), xc(t), xf (t) of (25) will give an approximation of

the fraction of peers with the file at time t, of the number of cooperative peers without
the file at time t and of the number of free-riders at time t, respectively. The accuracy
of this approximation will increase with N , the total number of peers.

4.1. A change of time

The system of ODEs in (25) has a unique solution [2]. Unfortunately, this unique
solution cannot be obtained in closed-form due to the presence of non-linear terms in the
r.h.s. of (25).

By using an implicit change of time similar to that in [10], we transform (25) into a
linear system of ODEs, from which we will be able to derive some interesting properties
related to the behavior of the P2P network. As a starting point, observe that since
y(0) = y0/N > 0, y(t) cannot be equal to zero for some finite t (Hint: y(t) ≥ y(0)e−µt

by integrating the first equation in (25)). For any finite t, we may therefore define

s(t) =

∫ t

0

1

y(s(r))
dr . (26)

This is a differential equation for s (note that it appears in the argument of y), which
has a unique solution since y is Lipschitz continuous and y(t) > 0 [2]. The function s
is increasing, and we shall use it to define a time change. Define v̄(t) = v(s(t)) with a
similar convention for the components of v. Then v̄(0) = v(0) and by the chain rule,

dv̄(s(t))

dt
=

dv̄(s(t))

ds
·
ds(t)

dt
=

dv̄(s(t))

ds
·

1

y(s(t))
. (27)

But dv/ds is exactly the expression on the right of (25) except that the time is now s(t).
Thus the equation for s in (26), the chain rule in (27) and (25) give





˙̄y(t)
˙̄xc(t)
˙̄xf (t)



 =





βx̄c(t)− µ
−βx̄c

−βx̄f



 (28)

with (ȳ(0), x̄c(0), x̄f (0)) = (y(0), xc(0), xf (0)).
This is a linear equation which can be solved explicitly.

4.2. Peers that never receive the file: a phase transition

The fraction of cooperative peers xc and free-riders xf that do not have the file
monotonely decreases (this is true also for the original system) to some limit values.
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They can continue decreasing until there are no copies of the file in the system, namely
until y = 0.

The first question we wish to ask is whether these limits are close to 0 or are large.
In other words, we wish to know whether all (or almost all) peers interested in the file
are able to obtain it or not. If the answer is no, then we shall be interested in computing
the fraction of those that will never receive the file.

From the second equation in the system (28) we obtain x̄c as

x̄c(t) = x∗
c e

−βt (29)

so that from the first equation we find

ȳ(t) = y∗ + x∗
c

(

1− e−βt
)

− µt . (30)

Define θ = β/µ and H = y∗ + x∗
c .

It is easily seen that the r.h.s. of (30) has a unique zero in (0,∞). This zero, denoted
by t0, is given by

t0 =
1

β

[

θH + LambertW
(

−βx∗
c e

−βH
)]

, (31)

where the Lambert W-function is the inverse function of f(w) = wew (see e.g. [4]).
We note that our time change transforms the infinite time interval (y does not reach

0 in finite time) into the finite interval [0, t0).
Since s(t) maps the interval [0, t0) onto the interval [0,∞) we conclude from (29) that

xmin
c , defined as the smallest value of xc(t), is obtained at t = t0, and is given by

xmin
c = x∗

c exp(−βt0). (32)

Similarly, xmin
f , the smallest value of xf (t), is obtained at t = 0, and given by (Hint:

solve the third equation in (28))

xmin
f = x∗

f exp(−βt0). (33)

It is worth noting (see (31)) that both xmin
c and xmin

f are only function of the parameter
θ.

By using the Taylor series expansion LambertW(x) = x− x2 + o(x2) [4] we get from
(31)

t0 ≈
θy(0)

β
(34)

as θ is small, so that from (32) and (33)

xmin
c ≈ x∗

c e
−θy∗

and xmin
f ≈ x∗

f e
−θy∗

(35)

as θ is small.

The constants xmin
c and xmin

f are nothing but the limits of xc(t) and xf (t) as t → ∞,
respectively. This raises the issue of the validity of the mean-field approximation at
t = ∞ since, as recalled earlier, Theorem 3.1 in [11] only holds for finite-time intervals.
The result in [26, Sec. 5.2] shows that N−1YN (∞) indeed converges in probability to

11



(0, xc(∞), xf (∞)) as N → ∞, which will thereby justify to approximate the fraction of
cooperative peers (resp. free-riders) that will never receive the file by xmin

f ) (resp. xmin
f ).

Figure 1 (left) displays the mapping θ → xmin
c for x∗

c ∈ {0.01, 0.1, 0.3, 0.5, 0.9}. The
curves for xmin

c are monotone decreasing in x∗
c (the curve that intersects the vertical axis

close to 1 is the one corresponding to xc(0) = 0.01, and so on.). The right part of figure
1 is the same as the left one except that it uses a logarithmic scale for the horizontal
axis: the horizontal axis is given by log10 θ instead of θ.
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Figure 1: The ratio of cooperative peers that never receive a copy the file (vertical axis) as a function of
θ = β/µ (left figure) and of log10 θ (right)

We see from Fig. 1 (right) a clear phase transition that occurs at θ = 1 (i.e. when
β = µ). xmin

c converges to x∗
c (see (35)) that depends on the initial condition) as θ

decreases to zero, and approaches zero as θ increases beyond 1 (or equivalently as λ
increases beyond µ).

4.3. Maximum file availability

From (30) we see that ȳ, and therefore y, reaches its maximum at t = tm with

tm = (1/β) log(θx∗
c ) (36)

provided that θ−1 < x∗
c (i.e. ȳ is increasing at time t = 0).

Let us determine the ymax := y(tm). The first two equations in (25) give

dy

dxc
=

dy/dt

dxc/dt
=

1

θxc
− 1

so that
y(xc) = θ−1 log(xc/x

∗
c)− xc + x∗

c + y∗ (37)

with the initial condition y(x∗
c) = y∗.

On the other hand, we see from the first equation in (25) that if xc(0) > θ−1 then y
reaches its maximum at xc = θ−1. Introducing this value in (37) shows that ymax, the
maximum value of y, is given by

ymax = −θ−1 (1 + log(θx∗
c )) + x∗

c + y∗ (38)

when θ−1 < x∗
c .

12



The second and third equation in (25) give

dxf

dxc
=

xf

xc

which implies that
xf (xc) = xc + x∗

f − x∗
c

with the initial condition xf (x
∗
c) = x∗

f . In particular, when y(xc) reaches its maximum

(at point xc = θ−1 as shown above) then xf = θ−1 + x∗
f − x∗

c .
In conclusion, for large N , the time before the file disappears from the network can be

approximated by t0 in (31), the number of cooperative peers (resp. free-riders) that will
never receive the file can be approximated by Nx∗

c exp(−βt0) (resp. Nx∗
f exp(−βt0))

or equivalently (see (23)) by Y (0) exp(−βt0) (resp. Xc(0) exp(−βt0)), the maximum
number of files in the network (file availability) can be approximated by ymax in (38),
the time at which this maximum is reached can be approximated by tm in (36), and the
number of cooperative peers (resp. free-riders) in the network when the file availability
is the largest can be approximated by θ−1 (resp. θ−1 + x∗

f − x∗
c).

5. P2P with a fixed request or transmission rate per node

5.1. Model

We consider here the P2P model described by the following non-zero transitions
(

Y (t)
X(t)

)

→

(

Y (t) + 1
X(t)− 1

)

with rate λY (t)Xc(t)
Y (t)+Xc(t)

,

(

Y (t)
X(t)

)

→

(

Y (t)− 1
X(t)

)

with rate µY (t).

(39)
It is further assumed that there is a permanent seed node (“publisher”) that always has
a copy of the file. (While the impact of a permanent seed on the mean field limit while
vanish, its presence implies that there is no extinction at the early phase of the epidemics,
in contrast with the situation in Section 3.)

This model was recently introduced and studied in [16] (free riders are not considered
here so we shall omit the index c or f from X). This differs from our previous model
by normalizing the rate of increase in the number of peers with a copy of the file
by the sum Y (t) +X(t). The interpretation in [16] is that of a P2P network in which a
peer without a file sends a request at a fixed rate λ to a randomly selected peer. The
probability that the peer who receives the request has the file is X(t)/[Y (t) + X(t)].
Thus the total rate at which requests for a file are received is λY (t)X(t)/[Y (t) +X(t)].
When a request is received, the file is sent to the source of the request instantaneously.
More generally, the normalization of the rates can be used to model slow uplink or slow
downlink speeds of peers.

The corresponding ODE is given by

dy(t)

dt
= −µy(t) +

λx(t)y(t)

x(t) + y(t)
,

dx(t)

dt
= −

λx(t)y(t)

x(t) + y(t)
. (40)

The justification for this model via Kurtz theorem [11] continues to hold. Taking the
sum ẋ+ ẏ and dividing by ẋ, we obtain [16, Equation (10)]

y(x) = −x+ c∗xµ/λ, (41)
13



where the constant c∗ is taken to be 1. Let the initial condition of the ODEs be y(0) = y∗

and x(0) = x∗ with 0 ≤ x∗, y∗ ≤ 1 and x∗ + y∗ = 1. To make the solution of the ODEs
an approximation of the Markov process, the initial state of (X(0), Y (0)) is supposed to
be (Nx∗, Ny∗).

5.2. Phase transitions

The authors of [16] consider y∗ = 0, x∗ = 1 as initial condition. Substituting in (41)
this gives the solution c∗ = 1. We shall consider in contrast an arbitrary initial state.

We note that y∗ = 0 is an equilibrium point of (40) for any x∗ > 0. We shall show
however that this is not the only equilibrium of (40). We shall derive a second equilibrium
and will identify to which of the equilibria will the system converge, as a function of µ
and λ. Let x∗ ∈ (0, 1) and consequently by (41) c∗ = (x∗)−µ/λ ∈ (1,∞). But then

y(x) = −x+
( x

x∗

)µ/λ

(42)

and if we look for y∗ = 0 we obtain

x = (x∗)µ/(µ−λ) (43)

We thus obtained a second equilibrium. We can observe two phase transitions:

• Phase transition around λ = µ: The second equilibrium describes the behavior of
the system (in case of nonzero initial y) only if µ > λ. Indeed, if µ < λ, (43) gives
x > 1 and it is obtained at negative time. It is thus not related to our problem (in
which x ≤ 1 and only t ≥ 0 is considered). We show that there is in fact a sharp
phase transition that occurs between the two regions µ > λ and µ < λ.

• We note from (40) that x is strictly decreasing (as a function of time) as long as
it as well as y are positive, and that there is not limit (at positive time) for the
equations unless y converges to 0. Now

dy(t)

dt
=

dy

dx

dx

dt
. (44)

So y is unimodular if and only if dy/dx < 0 at x = 0. Now

∂y

∂x
= −1 +

µ

x∗λ

( x

x∗

)
µ
λ
−1

(45)

is negative at t = 0 if and only if µ
x∗λ < 1 (since x(0) = x∗). This gives one a phase

transition (from monotonicity to unimodularity). As t increases x decreases and
so for t > 0 large enough y will start decreasing. On the other hand, y is always
monotone (is never unimodular) if µ > λ.

Computing the maximum torrent size.

We saw that y∗ is already the maximum if and only if µ/(λx∗) ≥ 1. So we consider the
unimodular case µ < λx∗ so that the maximum of y is obtained for t > 0, at a point
(x, y) where dy/dx = 0. This gives

( x

x∗

)µ/λ−1

=
x∗λ

µ
and thus x = x∗

(

x∗λ

µ

)λ/(µ−λ)
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ymax = −x∗

(

x∗λ

µ

)
λ

µ−λ

+

[

(

x∗λ

µ

)
λ

µ−λ

]

µ
λ

= (x∗)
µ

µ−λ

(

λ

µ

)
λ

µ−λ (λ

µ
− 1

)

(46)

(which is positive as λ > µ.)

Size of the Epidemy: do all receive the file?

If µ > λ then (43) shows that y approaches 0 (and as we know—monotonically) but x
approaches a finite limit 0 < x∞ < 1, which depends on µ, λ and on the initial conditions
as can be seen from the expression for ẏ in (40). The final value of the number of peers
who have not received the file satisfies, in this case, x ↓ 0 as µ ↓ λ.

Finally, the expression for ẋ in (40) shows that x is strictly monotone decreasing, and
by [16, Eq. (11)] y is also monotone. The analysis holds for the starting position x = 1
only, and then it is monotone increasing. For other starting points y may be unimodular
decreasing and then increasing. When µ > λ it is actually monotone decreasing.

6. The impact of measures against P2P networks

In this section, we investigate the impact of measures against non-authorized up-
loading or downloading on file availability in P2P swarming systems. Our investigation
concerns the model of Section 2, although we present some general insight that holds
also for the model of Section 5.

We assume that such measures would aim at increasing the noncooperative degree µ
or the contact rate λ. A larger µ would imply a smaller lingering time for uploading. A
smaller λ can indicate a smaller interest in downloading.

Remark 2. Another possibility is that the measures affect the number N of those inter-
ested in the torrent. The impact of a change in N on the dynamics of the mean field
limit is the same as that obtained by varying λ. If the pairwise contact rate λ and the
ratio of cooperative peers r are fixed, the increase of N results in the increase of β and
ρ. Hence a multiplicative increase of N leads to a larger rate of growth in the number of
infected peer and the increase of file availability.

The main question is how does a decrease in one of these parameters affect measures
such as

• The size of the torrent: the fraction of those who are interested in the file and are
able to get a copy of it. This can be seen as a global availability measure.

• The extinction probability or the expected extinction time,

• The maximum availability: the maximum number of copies that can be found
simultaneously in the system. This can be viewed as an instantaneous availability
measure.

We identify cases in which a small decrease in the upload or download rate can have
a significant impact on the above measures, as well as cases in which even large decrease
in upload or download do not have an impact on these measures.
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6.1. Some insight

We have observed in previous sections that there are various “phase transitions” in
which the macroscopic behavior of the systems changes abruptly when moving from one
range of parameters to another one.With ρ = λNc/µ, we recall in particular, that:

• As ρ → 0, the fraction of peers that does not manage to get the file as the time
horizon goes to infinity, goes to a strictly positive constant, and as ρ → ∞, it
converges to zero. It was around ρ = 1 that the (quite abrupt) change occurred.

• We recall that if the system starts with a ”small” number of copies of the file then
it behaves for some time like a continuous time branching process. As such it can
get extinct at a very early stage; the extinction probabilities of a branching process
is 1 for ρ < 1 and are smaller than one, otherwise.

We can thus expect that if ρ is close to one, then a small effort in measures to decrease
the upload rate (by increasing µ) or the download rate (by decreasing λ) can result in
a large decrease in the torrent size, and in the availability. In contrast, we may expect
there to be little effect if the file is very popular so that ρ is much larger than 1. We
examine these points as well as other ones in the next subsections.

6.2. Counter measures: bundling

Assume that a set Si of peers is interested in the file i, i = 1, ..., I. Assume that all I
files are bundled together into one file which now interests the set Sb = ∪I

i=1Si. Let Nb

be the number of peers in this set. A file j that was of interest for Nj peers would thus
see its effective βj (see Remark 2) increase by a factor of Nb/Nj . In the supercritical
case with homogeneous arrival and departure rates, the extinction probability of file j in
the bundle is reduced by Nb/Nj times at the early stage.

We conclude that the same type of radical changes in performance measures as those
obtained by measures to reduce access to the file (mentioned in the previous part of this
Section) can be obtained by bundling. As we saw, this type of impact would be the
strongest if it is applied for files that have their ratio λNb/µ = ρ close to 1.

Bundling has already been proposed as a tools to increase availability of files in [25].

6.3. Impact of measures: a numerical analysis

In this subsection, we focus on the impact of the noncooperative degree µ and the
contact rate λ. Experimental results include the time to extinction and the number of
peers without a file. To facilitate the comparison, we fix one of the parameters when
tuning the others. There are 400 peers in this file sharing system. We fix the nonco-
operative degree µ to be 1 in order to study the impact of contact rate λ on the P2P
performance. Here, three sets of experiments are conducted, each of which is duplicated
200∼1000 times. We also take the ratio of cooperative peers and the initial state into
consideration.

We want to know the distribution of time that all the peers with the file disappear.
Note that the disappearance of the file has two modes, the “early extinction” and the
“late removal”. Intuitively, early extinction happens for small ρ while the “late removal”
is mainly caused by departures in the closed P2P system. Figure 2 and 3 show the
cumulative probability distribution of extinction time with λ = 0.002. Since ρ = 0.8 is
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less than 1, the peers with the file die out with probability 1 in the Markov branching
process. The experimental results of extinction time distribution are very close to the
branching process model, which means that the file disappears at the early stage of file
sharing. As illustrated in Figure 2 and 3, the presence of free riders reduces the extinction
time. A cross comparison of above figures shows that a larger Y (0) leads to an increase
of extinction time. Figure 4 and 5 illustrate the cumulative distribution of extinction
time for the case λ = 0.006. We have the following observations: i) the extinction time in
this P2P network is upper bounded by the Markov branching process; ii) the CDF curve
has a “step“ shape; iii) the presence of free riders prolongs the time of file existence in
the swarm. In this set of experiments, the ratio ρ is around 2.4 so that the file survives
with probability (1− 1/ρ) if there are no free riders. Let us focus on the extinction time
in Figure 4. The cumulative probability at point A is very close to that at B, while
TB is much larger than TA. This manifests that the extinction happens before TA is
mainly caused by the early extinction in the Markov branching process. There is almost
no extinction in the process of file sharing between TA and TB. After the number of
active peers in the system achieves it peak value, the arrival rate of new requests is less
than the death rate µ. The file begins to die and the extinction probability is 1 as t is
large enough. One can clearly see that the cumulative probability of extinction grows
rapidly from TB to TC . The CDF curve of r = 1 meets that of r = 0.6 at TD, and the
former is greater than the latter since then. Thus, the file lives longer in case r = 0.6
than in case r = 1.0 if it avoids the early extinction. Similar conclusions can be drawn
from the experimental results when Y (0) = 3. The difference lies in that the increase
of probability of “late removal” is steep with three initial seeds. We further evaluate
our observations by setting λ to be large enough. In figure 6 and 7, the slopes of CDF
increment are very steep with ρ = 8. Especially when there are three initial seeds, very
few early extinctions occur and all the peers with that file leave the system within 5 unit
time in the late removal phase.
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Figure 2: Single Source : Y (0) = 1 and λ = 0.002
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Figure 3: Three Sources : Y (0) = 3 and λ =
0.002

The noncooperative degree µ decides the average lingering time of a cooperative peer
after finishing the downloading. To enable the comparisons, the contact rate λ is fixed
to be 0.0025. We mainly focus on the situations that ρ is less than 1 (i.e. µ < 1). Figure
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Figure 4: Single Source : Y (0) = 1 and λ = 0.006
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Figure 5: Three Sources : Y (0) = 3 and λ =
0.006
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Figure 6: Single Source : Y (0) = 1 and λ = 0.02
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Figure 7: Three Sources : Y (0) = 3 and λ = 0.02

8 and 9 depict the CDF curves with different parameter settings. As one can imagine,
the cumulative distributions of extinction time also exhibit the “step” behavior. When
µ is small, the file disappears either in the beginning or after many peers obtained it.

6.4. The accuracy of models

The goal of this subsection is to demonstrate how accurate our models match the
P2P file sharing system. We perform three set of experiments, the first is to evaluate the
time till extinction in the early stage, the second is to study how many peers obtain that
file and the last is to verify the deterministic model. To reduce the simulation burden,
we assume that there are 300 peers in the system.

The “early extinction” refers to the disappearance of the file before the number of
active peers with that file reaches a peak value. According to the mean field equation
in Eq.(25), an early extinction happens before xc(t) is less than min{1, µ/λ}. This
principle is adopted in our experiments to measure the extinction time in the early stage.
Figure 10 shows the extinction time for λ between 0.0001 and 0.003 with the initial
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Figure 8: Three Sources : Y (0) = 1 for Different
µ
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Figure 9: Three Sources : Y (0) = 3 for Different
µ

state Y (0) = 1. As λ grows, the contact rate becomes large so that the extinction
time increases correspondingly. One can see that branching process approximates the
swarming system well for small λ. This is because Nc does not change too much in
the branching approximation. For some large λ, it presents almost an upper bound of
extinction time because Xc(t) is quite different from Nc. In figure 11, we illustrate the
extinction time with three seeds at time 0. Compared with the case Y (0) = 1, the
extinction times of Y (0) = 3 have been greatly extended. Next, we set λ to be 0.03 and
increase µ from 0 to 15. Figure 12 shows the extinction time of the file with a single seed
at time 0. The simulation results coincide with the branching process for large departure
rate µ and small fraction of cooperative peers r. We measure the extinction time for the
case with three seeds in figure 13. More seeds can help to extend the lifetime of the P2P
swarming system for ρ < 1.
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Figure 10: Early extinction time versus λ with
Y (0) = 1
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Figure 11: Early extinction time versus λ with
Y (0) = 3

In the second set of experiments, we look into the impact of free riders on file avail-
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Figure 12: Early extinction time versus µ with
Y (0) = 1
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Figure 13: Early extinction time versus µ with
Y (0) = 3

ability based on the mean field approximation. The performance metric is the percentage
of peers that do not obtain the file. This metric of cooperative peers is the same as that
of free riders simply because their contact rates are homogeneous. We first evaluate the
accuracy of extinction time by varying contact rate λ. Figure 14 shows the relationship
between λ and the percentage of peers without the file. Note that ten cooperative peers
have the file at time 0 such that we can omit the extinction of very early stage. In
the first experiment, all the peers are assumed to be cooperative, while in the second
experiment half of the peers are free riders. As λ increases, more and more peers will
download the file. The numbers of peer without the file of the experiment r = 0.5 are
much larger than those in r = 1.0 for λ ≥ 0.004. Furthermore, one can observe that the
analytic model coincides with the experimental results. For the cooperative case, the gap
between the model and the simulation is less than 1%. When half of the peers are free
riders, the gap, though larger, is still less than 7%. Next, we investigate the impact of µ
over the number of peers that never receive the file. As shown in figure 15, the ratio of
peers without the file decreases if the noncooperative degree µ increases. When µ is less
than 1 or greater than 11, the difference in the percentage of peers without the file is
small. However, the case r = 1 has a much better file availability than the case r = 0.5
for µ in the range [1, 11]. Figure 15 also shows that the proposed model matches the
simulation well when λ is 0.03 and µ increases from 0 to 15. The average errors of the
percentages are less than 2% and the largest error is less than 6%.

Last, we exhibit the accuracy of the mean field approximation. Note that there are
five cooperative peers with the file initially. The contact rate λ is set to 0.01 and the
noncooperative degree µ varies. Figure 16 shows the dynamic growth of the average
number of peers having the file along with time. The proposed model is shown to be
a tight upper bound on Y (t) obtained from the experiments. Figure 17 illustrates the
active peers residing in the system. After the number of active copies reaches the peak
value, they leave the swarming system eventually.
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Figure 14: The percentage of remaining peers
w/o the file versus λ
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Figure 15: The percentage of peers w/o the file
versus µ
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Figure 16: The dynamic behavior of the number
of peers that receive that file
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Figure 17: The number of active peers in the
system that have the file

7. Conclusion

In this paper we have proposed the use of the theory of continuous branching process
as well as of the dynamics of epidemics in order to study the transient behavior of torrents
that occur in P2P systems. The use of these tools allowed us to compute the probability
of early extinction of the torrent as well as the expected time until that extinction, the
availability of a file in the system, the maximum availability and when it occurs, and
the size of the torrent (the fraction of nodes that are eventually infected). This was
used for analyzing the impact of measures to decrease non-authorized Internet access to
copyrighted files. We identified regimes in which the performance measures are quite
sensitive to such measures and others in which the measures have very limited impact.
In particular, we presented a numerical study of performance measures as a function
of the system parameters. Besides, our methodology can be extended to various P2P
applications, such as the content distribution networks with publishers and the P2P file
bundling.
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