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Abstract—We study access games within a large popu- studied delay effect under various models of evolutionary
lation of mobiles that interfere with each other through game dynamics with asymmetric delay based on the
many local interactions. Each local interaction involves a theoretic results on stability obtained in [6]. In [7], the
random number of mobiles. The games are not necessarily 5, ;thors extended this model by including a regret cost,
rgdprocalb‘f’}s the S%t.ﬁ?f TOb"e‘; Causmgf ir;:erferenfcfe 10 @incurred when no user transmits, and studied the impact

iven mobile may differ from the set of those sufferin . C .
?rom its interferer?ce. We model and study this using thg of th"_’lt (_:OSt on the proportion of mobiles that transmlt a
theory of evolutionary games which we extend to cover a equilibrium. In. th? last three papers,' '_[he delay is shown
random number of players. to have negative impact on the stability of the system.

Index Terms—multiple access game, evolutionary games,

node distribution. . .
IStribut In this paper, we extend the evolutionary game frame-

work to allow an arbitrary, possibly random, number of

I. INTRODUCTION players that are involved in a local interaction; we apply
his to the model of [7] which we extend to more than
wo interacting nodes. In the context of Medium Access
ame, we study the impact of the node distribution in
e game area on the equilibrium stable strategies of
e evolutionary game. The interaction between more
an two individuals in a population is a new concept in
O(?v’olutionary game theory and has a lot of application in
ultiple access game in wireless networks. Considering
is kind of games, we use the notion of expected utility
this game is not symmetric, indeed the number of

The evolutionary game framework models competﬁ
tion among large populations through many local ir{
teractions, each involving a small number of users.
introduces the concept of Evolutionary Stable Strate
(ESS), as well as the population dynamics that resul
from the interactions between the populations. The E
first defined in [4], is characterized by a property
robustness against invaders (mutations). More spec‘pI
cally, (i) if an ESS is reached, then the proportions (5

each population do not change in time (ii) at ESS, t : . . .
players with which a given one interacts may vary from

populations are immune from being invaded by oth ; ther and al i " v W
small populations. The ESS equilibrium concept is bett@f'© 10 @nofher, and aiso non-reciprocily property. e
%n3|der the following parameters in the multiple access

adapted to large populations of players as it describ® -t . t collisi ¢ and i "
robustness against deviations of a whole fraction of t gmﬁ. ransmlslsmn tc;]os , €O '?O? tchos an regr(ta cost.
population as opposed to the Nash equilibrium conc aly, we ahalyze e impact of these parameters on
that does not apply to deviations of more than a singﬁ e_pr_oba}blllty of successful transmission and give some
player. We refer the reader to [11], [2] for more detail§Ptimization issues.
on ESS and evolutionary game dynamics.

Several previous papers have already studied evolu- . , .
tionary games with pairwise local interactions in the con- The paper is structured as follows. We first provide

text of wireless networks. Bonneau et al. have introducgh the next section an evolutionary game model with

evolutionary games in the context of unslotted ALOH,&andom ngmber of qpponent. We then s_tudy In section Il
generalized multiple access game in the context of

in [1]. They have identified conditions for the existenct d ber of pl Wi te th .
of non trivial ESS and have computed them explicitly. lﬁanhorgél;r_n tir Ot p_ay(Iars. ¢ etcoArfr;putﬁ ¢ N exprelssmn
[5], the authors considered the multiple access game ana'© N this typica context. After that, we analyze

In section IV the probability of success transmission. Nu-
This work was partially supported by the ANR WINEM nomerical solutions of replicator dynamics are investigated

06TCOMOS. in section V.



Il. EVOLUTIONARY GAMES WITH LOCAL suffers interference from a single other source, but except
INTERACTION AMONG RANDOM NUMBER OF PLAYERS for nodes B and D, the interference is not reciprocal.

The classical evolutionary game formalism is a central
mathematical tool developed by biologists for predicting D
population dynamics in the context of interaction be-
tween populations. In order to make use of the wealth O
of tools and theory developed in the biology literature, /
many works in the area of computer networks [6] ignore
cases where local interactions between populations in- n n n
volve more than two individuals. This restriction limits /( /( \\
the modeling power of evolutionary games which are not
useful in a network operating at heavy load, such as ad- o o o
hoc networks with high density (see section V). This A B
motivated us in this paper to consider a random number
of users interacting locally. Fig. 1. Non-reciprocal pairwise interactions
Consider a large population of players. Each individ- D
ual needs occasionally to take some action. When doing o
so, it interacts with the actions of som¥d (possibly
random number of) other individuals. \

A'S try and Reciprocit a .
. Symmetry and Reciprocity p 4 P A

We shall consider throughout the paper a symmetric o o
game in the sense that any individual faces the same type o
of game. All players have the same actions available, and A B C

sameexpectedutility. We note however that the actual
realizations need not be symmetric. In particular, (i) the  Fig. 2. Non-reciprocal interactions between groups
number of players with which a given player interacts ~ ree players
may vary from one player to another. (ii) We do not D
even need the reciprocity property: if player A interacts
with player B, we do not require the converse to hold. O
We provide some examples of multiple access games to \
illustrate this non-reciprocity.
For example, we consider local interactions between n n n
transmitters; for each transmitter there corresponds a / / \
receiver. We shall say that a transmitter A is subject to
an interaction (interference) from transmitter B if the (o) (o) (o)
transmission from B overlaps that from A, and provided A
that the receiver of the transmission from A is within
interference range of transmitter. B Fig. 3. Interactions between a random number of
Example 1 Consider the example depicted at Figure  Players
1. It contains 4 sources (circles) and 3 destinations
(squares). A transmission of a soutceithin a distance  Example 2.In Figure 2 there are four sources and only
r of the receiverR, causes interference to a transmissiamwo destinations. Node A does not cause any interference
from a sourcej # i to receiverR. We see that Sourceto the other nodes but suffers interference from nodes B
A and Source C cause no interference to any otha&nd D. Nodes B, C, D interfere with each other. This is a
transmission but the transmission from A suffers fromituation in which each mobile is involved in interference
interference from source B, and the one from C suffefiiom two other mobiles but again the interference is not
from the transmission of the top most source (calledciprocal.
D). Source B and D interfere with each other at their Example 3.In this example the number of interfering
common destination. Thus each of the four sourcesdes is not fixed. A suffers interference from 2 nodes,

C



B and D suffer interference from a single other node and
C does not suffer (and does not cause) interference.

All examples exhibit asymmetric realizations and non-
reciprocity. We next show how such a situation can still
be considered as symmetric (due to the fact that we
consider distributions of nodes rather than realizations)
Assume that the location of the transmitters follow a
Poisson distribution with parametex over the two
dimensional plane. Consider an arbitrary user A. Let
r be the interference range. Then the numbérof
transmitters within the interference range of the receiver
of A has a Poisson distribution with parameferr? /2.
Since this holds for any node, the game is considered to
be symmetric. The reason that the distribution is taken
into account rather than the realization is that we shall
assume that the actions of players will be taken before
knowing the realization.

is given by

max

Z]P’

j=1,..., N whereuy is the payoff function given
that the number of opponents is Although the
payoffs are symmetric, the actual interference or
interactions between two players that use the same
strategy need not be the same, allowing for non-
reciprocal behavior. The reason is that the latter is
a property of the random realization whereas the
actual payoff already averages over the randomness
related to the interactions, the number of interfering
players, the topology etc.

'U,k j7 ) "7x)7

C. Evolutionary Stable Strategies: ESS

Suppose that, initially, the population profileiiss M.
The average payoff is

B. Model

We describe in this part notations of our model.

N
r) =Y w;fi(x) (1)
j=1

« There is one population of users. The number &fow suppose that a small group of mutants enters

users is large.

o We assume that there are pure strategies. Eacht € M. If we call e € (0,

the population playing according to a different profile

1) the size of the

member of the population chooses from the sansébpopulation of mutants after normalization, then the

set of strategiesA = {1, 2,.
o Let M {(.Z'l, ..

N}
xNHxJEO Zg 1% =

N strategies.M can be interpreted as the set of
mixed strategies. It is also interpreted as the set
of distributions of strategies among the population,
wherex; represents of proportion of users choosi
the strategyj. A distribution = is sometime called
the "state” or "profile” of the game.

« The number of opponent®” of a user is a random
variable in the finite set{0,1,..., kmax}. Kmax

population profile after mutation will be mut+(1—¢)z.
After mutation, the average payoff of non-mutants will
1} the set of probablllty distributions over thebe given byef(z, mut) + (1 —€) f(x,

x) where

ijf] mut).

w mut

n
gnalogously the average payoff of a mutant is

(1 =€) f(mut,x) + ef (mut, mut).

Definition 1: A strategyz € M is an ESS if for any

is the maximum number of opponents interactingut # =, there exists some,,,; € (0,1), which may
simultaneously with a user. We assume that we cégpend onnut, such that for alk € (0, €;u)

ignore cases of interaction with more th&p,..

players. This value depends on the node density and
the transmission range. When making a choice ofyghere A; := ef(z, mut)

strategy, a player knows the distribution &f but
not its realization.

A1 > A2
+ (1 - 6)f(.%'7

)
x), and Ay =

(1 —¢) f(mut, z) + ef (mut, mut).
That is, z is ESS if, after mutation, non-mutants are

« The payoff of all players functions (identical formore successful than mutants. In other words, mutants
each member of the population) of the playersannot invade the population and will eventually get
own behavior and opponents’ behavior. Each useestinct.

payoff depends on opponents’ behavior through Equation (2) may be rewritten as

the distribution of opponents’ choices and of their
number. The expected payoff of a user playing
strategy; when the state of the population is

€ (—f(mut,mut) + f(z, mut))
+(1 =€) (f(z,z) — f(mut,z)) > 0.

®3)



There is a close relation between ESS and nash equiliiansmission range of each other. Interference occurs as

rium of the following matrix-game in the ALOHA protocol: if more than one neighbors of a
receiver transmit a packet at the same time then there is a
=12, kmax}, A, () collision. The Multiple Access Game is a nonzero-sum
where r : Ak~ — R, r(ay,ag,...,a,,. ) = 9ame, the mobiles have to share a common resource,
Zf;“i” wlay,ag,. .., q)P(K =1). the wireless medium. In this game, the parameter
It is easy to see that inequality (3) is equivalent to tHe€Presents the probability that a mobile has its receiver
two following conditions: R(7) within its range. When a mobiletransmits toR (i),

all mobiles within a circle of radius centered at?(7)
cause interference to the noddor its transmission to
YV mut € M, f(mut,z) < f(z,z), (4) R(i). This means that more than one transmission within
a distancer of the receiver in the same slot cause a
collision and the loss of mobile’s packet atR (7).
if mut # x, and f(mut,z) = f(xz,z)  (5) Each of the mobiles has two possible strategies: either
then f(mut, mut) < f(z,mut). (6) to transmlt_(F_) or to stay qwet_S): If mobile i transmits
a packet, it incurs a transmission cost ©f> 0. The
) ) packet transmission is successful if the other users don't
D. Replicator dynamics transmit (stays quiet) in that given time slot, otherwise
Replicator dynamics is one of the most studied dynartiere is a collision and the corresponding coshis> 0.
ics in evolutionary game theory. The replicator dynamid&there is no collision, usef gets a reward of/ from
has been used for describing the evolution of road traftite successful packet transmission. We suppose that the
congestion in which the fitness is determined by threwardV is greater than the cost of transmissioiVhen
strategies chosen by all drivers [9]. It has also beafi users stay quiet, they have to pay a regret eodf
studied in the context of the association problem it = 0 the game is calledlegenerate multiple access
wireless networks in [10]. We introduce the replicatogame Figure 4 represents an example of interaction of
dynamics which describes the evolution in the populatiahree nodes. The ESS corresponding to any number of
of the various strategies. In the replicator dynamics, tmedes of this game is given in theorem 1.
share of a strategy in the population grows at a rate

« Nash equilibrium condition of the matrix-ganie

« Stability condition

proportional to the difference between the payoff of that node 2
strategy and the average payoff of the population. The T S
replicator dynamic equation is given by node 1T —By, —By,— By —By,0,—By
N S 0, —By, — By 0,0,V —9
() = p i (t) | fie(®) = D wwfelz®)| . (@) node 2
k=1 T S
wherep is some positive constant. The parameteran node 1L | =B, =550 V —6,0,0
0,V —4,0 —K,—kK,—kK

be used to tune the rate of convergence and it may be
interpreted as as the rate that a player of the populati'aﬁ- 4. Multiple access game with three nodes: node chooses,a
participates in a (local interaction) game. In biology°4¢ 2 choose a column and node 3 an array Wih= A + 0

it can represent the probability that an animal finds a
resource available.

Let A := {T, S} be the set of strategies. An equivalent
interpretation of strategies is obtained by assuming that
individuals choose pure strategies and then the probabil-
ity distribution represents the fraction of individuals in

The static multiple access game considered heregig population that choose each strategy. We denote by
a generalization of theandom access gameonsidered ;. (resp.1 — z) the population share of stratedy (resp.
by Inaltekin and Wicker in [3]. Multiple Access Gameg),
introduces the problem of medium access. We assumerne payoff obtained by a node withopponents when

that mobiles are randomly placed over a plane. Al pjays 7 is up(T, z) = (=A = 6) (1 —mp,) + (V= 8)ms
mobiles use the same fixed transmission range.ofwherenk .= (1 — z)*, and the node-mutant receives

The channel is ideal for transmission and all errors are
due to collision. A mobile decides to transmit a packetithg gne-shot game with nodes hag” — 1 Nash equilibria and
or not to transmit to a receiver when they are withia unique ESS.

I11. M ULTIPLE ACCESS GAME



up(S, ) = —pr(l — x)F when it stays quiet. The ex- a) proof: A mixed equilibriumz is characterized
pected payoff of an anonymous transmitter node-mutdyt f(7,z) = f(S, ) i.e

is given ALs
F(Ta) = u S P(K = kyuy (T, ) 9@ = AT b

k>0 . . . . .
- The function ¢ is continuous and strictly decreasing

monotone on(0,1) with ¢g(1) = P(K = 0) and
g(0) = 1. Then the equation (11) has a unique solution
in (P(K =0),1). has, f(z, mut) — f(mut, mut) =
=—u(A+0) +u(V+A)GK(A—=s). 4V + A + k)(s — mut) (g(mut) — g(z)). Thus,
whereG[ is the generating function df. Analogously, f(z,mut) — f(mut,mut) > 0 (becausey is strictly

=p|-(A+)+V+A)) PK =k (1-a)
k>0

we have decreasing function) for allnut # x. This completes
the proof. [
F(S.) = 1> P(K = k)ug(S, z) 8 P
k>0 When a mobile is never alone in his interference area,
= _WZ (1-— x)k’ P(K = k). 9) i.e. P(K = 0) = 0; the conditiona: > 0 is satisfied.
k>0

From equation 1, the expected payoff of any individugy case 2: Aloha with sensing
in the population where: is the proportion of mobiles

which transmit, is given by: A mobile knows when it is the only transmitter at the

range of its receiver, and when it is it will thus transmit
flo,2) = 2f(T,2) + (1 - 2)f(5, 7). (10)  with probability one. We can say then that the action
We next introduce two alternative information scenariget is (1) whenever a user has opponents in a local
that have an impact on the decision making. In theteraction.
first case, a mobile does not know whether there areTheorem 2:An anonymous user without opponents
zero or more other mobiles in a given local interactioreceives the fitnesgy = V —o. If P(K = 0) < $+—+g,
game about to be played. In the second case the moltilen the game has a unique ESSgiven by
has this information, and consequently he transmits with
probability one in case no other potential interferers are a5 =g ! (A +0 4+ RP(K = O)>
present. In addition to studying these two cases we shall V+A+r
also consider a_third_case called the ”mqssively_ C_IenWF]ereg N EZ‘;‘E P(K = k) (1 — ).
aql—hoc network N which, yvhenever amobile partlc_lpates Proof: The proof is similar as in theorem 1. =
wishes to transmit, there is at least one other mobile that
is involved in the local interaction game.
We denotea := Vﬁ%in, which represents the ratioC. Case 3: Massively dense
between the collision costA — o (cost when there ;g case, we take into account only local in-

is a collision during a transmission) and the diﬁeren(i%ractions between users. Then, in this case, mobiles

betV\_/e_en global cost perceived by a mobilé — 4 ~ " are never alone to transmit during a slot and we have
(collision and regret) and the benéfit-6 (reward minus kaax P(K = k) = 1
k=1 =k)=1L

transmission cost). When the collision castbecomes Theorem 3:The game has always an unique

high, the valuex converges to one and when the rewargSS which is solution of the following equation
or regret cost becomes high, the vatués close to zero. S o P(K = k)(1—2)F = a
E>1 = - = &

A. Case 1 : Aloha without sensing Proposition 1: The ESSs given in theorems 1,2,3 is

. . asymptotically stable in the replicator dynamics without
A transmitter does not know if there are other tran&~>> "'P y P y
. . ) . delays.
mitters at the range of its receiver. Then, even when it'is : L
b) proof: The replicator dynamics is given by

the only transmitter, it has to decide to transmit or not.

Theorem L:If P(K = 0) < 4% =: a, then the b= (V+A+r)z—2)g) —a).
game has a unique ES§ given by
. . A4S The functiong is decreasing or0, 1) implies that the
=49 (—V T A+ ,{) derivative of the functiom:(1 — z)(g(z) — «) at the ESS

whereg : z — Eﬁibx P(K = k) (1 — x)k' is negative. Hence, the ESS is asymptotically stalue.



IV. ESSAND NODES DISTRIBUTION equation depending on the scenario. In the case 1 we

In this section, we consider different nodes distrib12V€:
tions. We study the existence and the uniqueness of ES$, | (o, ) = pt 222‘6’” KP(K = k)(1 — at)*
in the different nodes distribution. First, one, we assume A ok
that all mobiles have the same number of neighbors = i oty kT (1 - o)
n—1,ie,P(K = j) = é,_1(j) and seconde one, we ~ pri(l —ap)rria,
assume that nodes are randomly distributed on a plar]n the case 2, we haveP..(d,)) ~ uzi(l —
following a Poisson point process with denskyDue to w3 A2 ’ 2

AT
the page limit, we describe only the poisson distribution. Proposition 2: The maximum total throughput under

The interested reader is referred to [8] for the dir"’}?oisson distribution is attained when= ¢">") in the
distribution.

case 1 (respa = ¢"*7) in the case 2) wheré is one
of the two functions defined by

A. Poisson distribution ) —(1+ 227r2) £ /1 + 4(\r2)2
We consider that nodes are distributed over a plan(A’T) €cR} = 2 :

following a Poisson distribution with densitx. The
probability that a node hasneighbors is given by the
following distribution.

In the case 3, we have:

Cases 1 and 2: Pauee(, ) = pay gy kP(K = k)(1 — a3)F
P =k = O sy = paf iz KO (1= )"
k! ~ poxi(1+ Arr?(1 — 3)).
Case 3: - Proposition 3: There exists a unique} in which the
P(K =k) = % AT > tgoi\t/aelnﬂ;r;ughput is maximum whes = aj. Theaj is
Considering those node distributions and from previous aj = (1—z)e e

theorems, the unique ESS for all cases, is solution of

_ : wherez is the unique solution if0, 1] of the following
the following equation :

equation :
—Amriz,
_Mrfx 1%(1{:0) for case 1 14— 2(2 457 +72) + 22(4y + 29%) — 7223 = 0
‘ N a+2 viaT. lorcase2 c) proof: The derivative of the functiond :=
(1 —xz3)e”"" % =q  for case 3 P, ' :

OPsuee :
Fsuee s given by

Thus we obtain the following equilibria in the different
scenario: J¢d H(s) = (1+7—5(2457+77)+5> (47+27%) —s*4%)e 7.

. SN, kP(K =0).__._\ We prove that the above function is strictly decreasing
) = log (Oé WZ) ;23 = log <(Oé YA ”"2> on [0, 1]. For that, it is sufficient to study the following
function
. LambertW (Anr2ae™”
where LambertW (z) is the Lambertw function which We haveagf) is given by
is the inverse function of (w) = we®. G (s
ag ) _ —(2+ 57 + %) + 2s(4y + 277) — 35242
V. OPTIMIZATION ISSUES AND NUMERICAL It is easy to show that the above function is always neg-
INVESTIGATION ative. SinceH(0) =1+~ >0andH(1) = -7 <0

We look for the probability of success that can bthen the functionH is positive fors € [0,5) and is
achieved in a local interaction depending on distributiamegative fors € (s,1] wheres is the solution of the
parameters and also cost parameters. We consider égeationG(s) = 0. Sinces* is decreasing function on
Poisson distribution with parameteksandr. a, we conclude that functioR,.. is positive ifs € [0, 5)

The probability to have a successful transmission inaad is negative € (s, 1]. Since the optimal of function
local interaction (total throughput) is given by differen,,.. is attained aty = (1 — 5)e=*™""* [



The probability of success at the ESS in poissdigure 7 we compare the evolution of the fraction of
distribution is represented in figures 5 and 6. We obsertransmitters varying the parameter of densitpetween
in particular case that when the number of interferésl and5 for the case 1, 2 and 3 respectively. We observe
increases, i.e. the rata in the case of the Poissonthat we have stability for all cases. In figure 8 represents

distribution, the total throughput increases.

0.25}

0.15}

case 1,2 probabilty of success
o
9

Fig. 5. Probability of success in poisson distribu-
tion(cases 1,2).
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Fig. 6. Probability of success in poisson distribu-
tion(case 3).
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Fig. 7. Evolution of the fraction of transmitters
varying the density parameter (without delays).

the impact of the parametgr on the velocity of the
system. We tool: between0.1 and0.5. without delay.

We observe that we have stability but the convergence
speed becomes slow whendecreases.

08

0.7

@ case 1: p=0.1
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time t

Fig. 8. Impact of the parameter on the velocity of
the replicator dynamics without delay.
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Fig. 9. Evolution of the fraction of transmitters
varying the density parameter

fraction of transmitters s(t)
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In the figures 7 and 8, we describe numerical ap- Fig. 10. Impact of the time delay on the stability of

plication of our evolutionary game model with Poisson

the replicator dynamics (case 1).

distribution of nodes under the replication dynamics. We

took n =4 = kypax, A =3 =0 =k,A=1andV = 1.

Now, we study the effect of the time delays on the

The initial condition in all these figures i&02. In the convergence of replicator dynamics to the evolutionary



stable strategies in which each pure strategy is associatagying the parameter of density between0.1 and 5

with its own delay. Letry (resp.7s) be the time delay for the case 1, 2 and 3 respectively. In this figure, the
of the strategy(T") (resp.(S)). The replicator dynamics time delays are respectively and 2. Note that in this
becomes figure the equilibrium point is decreasing function in

. the density parametek. Indeed, when the density of
#(t) = pa(t)(1=z(t)) [f (T, 2(t = 7r)) = F(S,2(t = 75))] hodes increases, the number of mobiles share a receiver

H - A A _Mgsz) increases. To avoid collision, the nodes decrease the
where f(T' z(t)) = “(;(sz §) +(V+A)e ) probability of transmission. We observe also that for
and f(S,z(t)) = —pre in the case 1.In order _ 5 e have stability but the convergence speed is

to study the asymptotically stability of the replicatog,\ than for\ = 0.1.
dynamics (12) around the unique ESS, we linearize
(12) atz* = «]. We obtain the following linear delay VI. CONCLUSION

differential equation In this paper we have adapted the theory of evolu-

§=—c1(V + Ay(t — 77) + ky(t — 5)) tionary games with a random number of players. This
adaptation is needed in order to apply this theory for
wherec; := pa*(1 — %) (1 4+ 2*(1 —2*)A7r?) , and  the study of access game and particularly in wireless
y(t) = z(t) — =*. The following theorem give sufficient networks. We have proposed different scenario based on

conditions of stability of (13) at zero. the level of information for each player. In all cases,
Theorem 4 (see [6]):Suppose at least one of the folwe have obtained the existence and uniqueness of the

lowing conditions holds ESS, we have proposed optimization issues for the
() (V+ A)rr + k75 < b, transmission probability of success and finally, we have
(i V+A>rkand (V+A)rr < %, studied the impact of delay in the convergence to the
(i) V+ A < k andrkrs < % where ESS of the replicator dynamics.
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