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Abstract

Consider an uplink cellular network shared by a finite nurdfenobile users with limited batteries. Whenever
the battery drains out, the user pays a fixed price to rechhwgdattery. Users, assumed to have always traffic
to send, control their transmission power in a noncooparatiay. The novelty of our model is in considering the
dynamic game in which the transmission power of a player nepedd on the amount of energy left in its battery.
We consider various models and various types of constramdsderive for each one the structure of the equilibrium.
A particular interesting structure is obtained when theeeanstraints on the maximum transmission power which
become tighter as the battery drains out. Using Schur catyvasd majorization, we identify an equilibrium where
each mobile distributes the power of each battery along Hitety's lifetime in a way equivalent to a max-min
assignment.

Index Terms

Dynamic power control; Nash equilibrium; Battery lifetipfgchur convexity and Majorization, Max-min fairness.

. INTRODUCTION

We examine how mobiles, aware of their remaining energyisadheir individual power discipline. The per-
formance of each mobile in multi-user wireless networksignificantly affected by the actions taken by other
mobiles. It is well known, for example, that a station thansmits at high power prevents the signal of other
stations from being identified at the base station. In regeats it has been advocated that for scalability reasons,
mobiles should have the freedom to distributively adjusirthransmission parameters (such as the transmission
power) for optimizing their own performance. Much resedral therefore been devoted over the last decade for the
study of wireless networks through game-theoretic toaispdrticular, several papers (e.g., [1]-[4]) have studied
the equilibrium properties of power allocation games. Theva papers consider a static setup, where mobiles
adjust their power based on average network conditionssé&prently, an equilibrium is characterized by fixed
transmission powers of all users. Recently, [5], [6] coasithe power allocation game under time-varying channel
qualities, which require users to adjust their transmisgiower as a function of the channel state. These games
result in stationary transmission strategies that arentisflg a mapping between the possible channel states and
the set of power levels. In some of the above references ikean upper bound constraint on the average power
investment of the users. To the best of our knowledge, hoéwe power-control game literature lacks the explicit
incorporation of the dynamic affect of transmissions on lifedime of the battery.

In this work we initiate the study of the consequences of yradic change in battery-energy on the transmission
strategies and throughput of wireless nodes. Our networttetnoonsists of a finite number of mobile users who
transmit to a common base station. Every time that the enefghe battery drains out, the user pays a fixed
price for recharging the battery. Users, assumed to havayslwaffic to send, control their transmission power in
order to maximize their individual net payoff, which corisief the average throughput (or its utility) minus the
recharge costs. We study here the existence, uniquenesgrantlire of the equilibrium. To that end, we consider
a variety of possible network configurations, including thrmmous or slotted time models, continuous or discrete
power levels, and more.

Contribution and Organization. The main results of this work are summarized below.

« We introduce a novel distributed power control problem, kghgsers base their transmission decisions on the
amount of energy remaining in their battery.



« We prove the existence of an equilibrium point for severaivoek models. In particular, there always exists
a special equilibrium point where users emptegular transmission strategies. Roughly, regular strategies are
such that the variance of the transmission-power sequeriat minimal. In some cases, the regular strategy
equilibrium reduces to fixed transmission powers for all itesh

« We introduce and study a novel framework for power controtases that battery-dependent constraints are
imposed on the transmission power.

« We show that the equilibrium is in general not unique. Thisdstrast to most power control games we are
aware of in the literature, where uniqueness holds (e.§.[21, [5]).

Besides the analytical results, we introduce some novds tfuw the analysis of power-control dynamic games.
In particular, we apply the theory of majorization and Schanvexity (see Section VI) for deriving the mobile
optimal transmission strategies and proving the existeficn equilibrium.

The organization of the paper is as follows. We present thevark model in Section I, addressing both
continuous and discrete time settings. In Section Ill weaskome basic properties that are common to both time
models. Sections IV and V focus on the existence of an eajiuifib point under continuous time and discrete time,
respectively. In Section VI we consider the case where mdit constraints are imposed on the power selection.
Section VII discusses other user utilities in the contexbwf model. In Section VIl we show that other equilibria,
besides the regular one, may exist. Conclusions and furésearch directions are drawn in Section IX.

Il. THE MODEL

Basic Definitions.We consider a finite set aV terminalsj = {1,..., N} controlling their transmission power.
Each terminalj has an amount of energy/ when its battery is new (e.g., at time 0). The terminal is as=ilito
have always packets to transmit. Each terminal implemeptager control policy where the transmission power is
allowed to depend on the energy level of its battery. We dtmikider a dynamic power control problem assuming
that the time between two successive replacements of ieattey terminalj is at least some constast and at
most a constans’. We assume that a battery is replaced only when it is coniplet@mpty. When terminalj
replaces a battery then it receives a new battery with theesamargy of€’ for a cost ofC7 units. A terminal thus
controls both the power as well as the time at which the bateare changed.

The basic quantity that determines the instantaneous ghput of each terminal is the signal to interference
plus noise ratio (SINR) at the base station. Bétdenote the transmission power of termiiat time¢. The SINR
at timet is given by '
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where L7 is the gain between transmitt¢rand the common base station, aNg is the ambient noise power. We
shall assume that’ are constant in time. We shall further assume that playdwes not observe the battery state
of other users nor their transmission powers.

For each terminal, let 4/ () be a continuous, concave increasing function represetitsngenefit for transmitting
with an SINR of~. For example, the special case/éf(y) = log(1 + «) corresponds to the throughput obtained
under a Gaussian channel, assuming capacity achieving ctde shall assume in this paper that each terminal
wishes to maximize a time average valuerdfy) minus the recharge costs of the battery. Using game-theoret
terminology, we shall refer to this measure as the termioaluger)utility. In order to formalize the user utility
we require the following notations.

. Cg — the number of times that thgh terminal has changed battery by time

« 1, — the time when the battery of terminglis changed for thenth time.

« 77, — the total lifetime of thenth battery of terminal;.

We shall consider in this paper both continuous and disdiete models, as outlined below.
Continuous Time Model. Maobiles are allowed to adjust their power at any titndhe terminal selection of powers
over time would be often referred to as the terminal’s styat@r policy). We denote by’ the strategy of mobile
4, and byu = (u',...,u") the vector of strategies. Then the additive utility desadiitabove is given by
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We may reformulate an equivalent utility, embedded at timeshich the battery is changed.

Let Hj, = ["™+ hJ(SINR{)dt. Due to the finite bound on the battery lifetime, the utility 2) is equivalent to
nrn
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Discrete Time Model. Time is divided to integer slots:= {1,2,... }. At time ¢ each terminalj chooses a power
of P/ for transmission, which is kept constant until the next.sks a result, the remaining energy in the battery
decreases by’/. Note that a feasible strategy should use power levels that do not exceed the current patter
energy. The corresponding utility for playgris

®3)
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Equation (3) holds in the discrete setting as well, howevin W, = Z"m“ hJ(SINR’)
Nash Equilibrium. As the SINR of each mobile depends on the power aeC|S|onshefaJ|nob|Ies we formulate the
distributed decision problem (under both continuous aisdrdie time models) as a non-cooperative game between

the N mobiles.
Definition 2.1: We say thatu is a Nash equilibrium [7] if

J(u) > J (@, u?), je{l,...,N} (5)

for any strategyii/, whereu ™’ stands for the vector of strategies of all users but;theone.

User Actions. For the analysis of the noncooperative game defined aboigesdmetimes convenient to construct
a decision model for each terminglembedded at the moments when its battery is changed. Amaetia A’
for terminal j is defined as a vectar’ = (v(j), P/, V0 < t < v(j)), wherev(j) denotes the time till the battery
is changed next (taking values in the interjal, S7]), and P] is the power used by terminglwhen the battery
has aget. We use the same notatie for both time models, yet recall that the transmission poinediscrete
time cannot exceed the total energy remaining in the bat#¥eydenote byA4’(s) the set of actions among’ for
which v(j) = s.

I1l. BASIC STRUCTURAL RESULTS FORBOTH TIME MODELS

We focus in this section on several special cases for whigkexistence of a Nash equilibrium (5) can be obtained
quite immediately, for both continuous and discrete time tiat end, we introduce the following assumptions:
« Assumption Q1(j): The periods for changing the batteries for termipare fixed. In other wordss’ = 7.
« Assumption Q2(j): All terminals butj use constant powers, i.e., for al}¢ j there are constanf’ such that
P} = Pt for all t.
Lemma 3.1:Assume QZ2(j) for somg. Then terminalj has a best response strategy (i.e., one that maximizes
J7) that uses a constant power at any time.
Proof: For any fixed sequenovf;1 the utility for terminalj is maximized by maX|m|zmgH] (in the enumerator
of the utility function corresponding to the embedded peabl(3)) for eachn. Let © be uniformly distributed on
[nm,nm +1)- Denote byE), the expectation Wlth respect to this distribution, andefgtdenote the total energy that
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terminalj uses in periodn. Note thatly [ P3| = y . Now, H3,, can be written a#/;, = TmEg [h (W)] .

Applying Jensen’s inequality, we geH?, < 7,k ( [%D = b (%) We conclude

that H?, is maximized by choosing equal transmission powers dutiegifetime of themth battery. They should
be chosen so as to sum&é. It remains to determine),. The utility (3) is clearly maximized by choosing, € R

for all m whereR := argmax, ey . HEINRT)-C " and whereH? (SINR/™) = rhi NOJFLEL]/’" Since the
set of possible lifetimes is compact (in both continuous disdrete time), there is indeed a best response that uses
a constant power of’/R for someR € R. O

The next corollaries follow directly from the above lemma.
Corollary 3.2: Assume that Q1(j) holds for ali. Then there exists an equilibrium in which for each terminal
j, P! do not depend om and are given by’//R’.



Proof: Immediate from Lemma 3.1 and (5). O
Corollary 3.3: Assume thatC’/ = 0 for all j. Then there exists an equilibrium in which for each termipaf/
do not depend om and are given by’ /s/.

Proof: Assume that all players other thgnuse transmission powers that are constant.iConsider the
embedded model with additive utility. Then Lemma 3.1 implteat the optimal response policy for playehas
the formad, = [R7,E7/R7,...,E7/R7]. Hence the best response for playés a fixed power. Among all strategies
u? for which the power is constant in time, the utility of playgis obviously maximized with?’ = s;, since
the SINR is maximal with no battery costs involved. Henceatildorium we haveR’ = s’ for every j, and the
transmission power is constant, given &Y/ 7. O

V. EQUILIBRIUM FOR THE CONTINUOUS-TIME MODEL

In this section we prove the existence of an equilibrium péi for the continuous time model. Specifically,
we show that there always exists an equilibrium point whdlréeaminals use constant transmission powers. We
then show that this particular equilibrium is unique for ex@l utilities that are often used in the literature. The
main result of this section is summarized below.

Theorem 4.1:There exists an equilibrium point for the continuous timedelo Specifically, there exists an
equilibrium in which P/ do not depend orn for every terminalj, and are given by’ /R’, where R/ is some
constant satisfying’ < R/ < §7.

Proof: Assume that each termingluses a constant peria®#’ and a constant power & /R/.
In other words’/ = [R?,&7 /R, ..., E7/R7]. Then the utility of terminalj is given by
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Consider now the (static) gam@py in which player;j choosesR’ ¢ [s7,S57] so as to maximize//(R’). Let
Y7 := 1/R’; it follows by the continuity and concavity of’ that J7 is concave inY’/ and continuous irY? for
i # j. FurthermoreY? is chosen from a convex and compact EetS7,1/s’]. It then follows by Theorem 1 in
Rosen [8] that an equilibrium exists f@ . Noting that every equilibrium oz i is an equilibrium point in our
original game (by Lemma 3.1) concludes the proof. O
We next show that the constant-power equilibrium descréigalve is unique in some cases of interest.
Theorem 4.2:Assume that (i)’ is the identity function for every termingl or (ii) 7 (z) = log(1+x) for every
terminal j. Then in either case there exists a unique equilibrium antbage that have the structure described in
Theorem 4.1 (i.e., the transmission power is constant ie)tim
Proof: As in the proof of Theorem 4.1, we consider the static g&iewhere each terminal utility is given
by (6). We then apply known uniqueness results for f8at. In particular, case (i) follows directly from [2] and
case (ii) from [9], [10]. O

(6)

V. EQUILIBRIUM FOR THE DISCRETETIME MODEL

Mixed Actions. In the discrete case, the action space is not convex sincénties at which the battery can be
changed can only take finitely possible values. Thus, a pguodilerium will not exist in general in the discrete
setting. We therefore consider a larger class of mixed (aranflomized) actions and do so in the context of the
embedded model. However, we wish to avoid working with ranidation over the infinite class of policied’.
Accordingly, we shall establish the existence of an equilin in which each terminal randomizes between a finite
number of actions in4’. _

Introduce the following clasf\} of randomized actions. Any element of this class is a vecfothe form
(B;{qn}, k = s7,...,57), where3 is a probability distribution over the finite sét’,..., S’} andq, € A’/(k). A
randomized action of terminal thus consists of a randomized choikeof the time interval till the battery is
changed next (the choice is done with probabilit{x)) and of the vectolwy; of powers that the terminal uses
during that interval. A policyu’ for player; is a sequencéul,u2, .), where for eachn, u, is a randomized
action. We are particularly interested in the class of redustationary policies for each playgrdenoted byAZ;

a policy belongs to this class if it uses at any timthe same mixed action’, wherevi € AJ.



We assume that each mobjledoes not to observe the actions of (nor the total interfexdramm) other mobiles.
Each mobile is assumed however to know the statistics of dted interference from other mobiles, so that the
utility of the jth mobile (4) becomes

T
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where E* is the expectation operator with respect to the vector aftetiiesu = (u!,..., u").
Existence and Structure of the Equilibrium. We note that if mixed strategies are used by every mobile ¢zt
mobile is not faced anymore with fixed powers sent by otherileebso we cannot apply directly our previous
results. However, by allowing mixed actions and consedye@aplacing utilities by their expectations, we shall be
able to prove the existence of an equilibrium point, by apysimilar steps as in the continuous-time case. To
that end, it is required that the distribution of the integfece for each terminal would be time invariant. We thus
introduce the following assumption that will play the roleassumption Q2(j):
« Assumption Q3: Each playey uses a policy under WhiC{']Ptj} is a stationary process. Moreover, the processes
{P}} are independent from one player to another.
Lemma 5.1:Assume Q3. Then every terminglhas an optimal response strategy for which the power process
{P’} is stationary and independent of the procesgas for i # j.
Proof: Fix a strategy vector = (u/,u™7) satisfying@3, wherew’ is a strategy for playej andu™/ is the

vector of strategies for the other players. Due to the inddpace of the processé®;} corresponding to different
playersi, (7) can be written similarly to (3), namely
= lim
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their marginal distribution, and there is no dependenceoint gistribution between the processes corresponding
to playersi and j. Hence, for any best response of a player, the correspormbiager process will indeed be
independent of those of the other players (which is condistéth assumption Q3). _ o
As in the proof of Lemma 3.1, the utility for terminalis maximized by maximizings®’ [H%I(u‘j)]n%%,nfnﬂ]

for eachm. We shall write the latter a8 [H}, (u™7)|nh, 1, 1] = E™ [Zﬁiﬁ_l ¢ (P, u‘j)' M, nﬂbﬂ] , where
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We note thatp’ is a concave function (sinde is). Proceeding exactly as in the proof of Lemma 3.1, we aatel
that the constant power allocatid?f = 5 maximizesE" [HJ, (u~ ])|77m777m+1] for eachm.

It remains to derive the sequenp#,l} and to show that this can be done in a way that the resultlrrgpps@PJ} is
stationary. A sufficient condition for optimality is tha,iI € R, whereR = argmax,.c(g gi| {gb? (5— U j) CJ}

Leta’(r) € A’(r) be the action in the embedded model that chooses a batteriirie of - and uses at each
time unit the powe€’ /r. Let u’(¢q) € A7 be a randomized action that chooses at each time the battehanged
between one of the action# (r) with probability ¢/ (r). Then if u’(q) is such thay’(r) > 0 if and only if r € R,
it follows thatu’(g) is a best response. Since the choices afe performed independently of each other, the whole
process{ P/ } is stationary ergodic. O

In the proof above, we have identified the best-responseoraizeéd actiormj(q), which chooses at each time
the battery is replaced a periedand a corresponding optimal power per slotéfr) with probability ¢/ (r). We
proceed to characterize the structureytfr). For a positive real numbe¥, definep’ to be the action that chooses

wheré?, (u=9) = E*~’ ”j“ hi(SINRZ)|. We note that the/7(u) depends o{ P} (i # j) only through
=, t

¢ (z,u™) = B’

(8)




a period ofr = |p| with probability p — | p| and a period of p| + 1 otherwise. Note thap € [s/, S7]. Denote by
A the set of actiong’. We then have the following lemma.
Lemma 5.2:Assume Q3. Then every terminglhas an optimal response strategyAin
Proof: Follows directly from Lemma 5.1 and from the concavity innerof 1/ of

o . (&I _ J
JJ(UJ(Q)>U_]) = qu(r) |:¢] <57>u_]> - C7:| : (9)
O
We next show that there always exists an equilibrium, whexeéhderminalj uses as stationary transmission
strategy which alternates between at most two differenbgstr-.
Theorem 5.3:There is an equilibrium point among the g€t x A2-.. x AN,
Proof: Assume that each terminglis limited to use a strategy in’. Note that.J7(p’, p=7) is concave iny’
(being a piecewise-linear concave function); it can be shtwbe continuous ip’ for i # j. Sincep’ is chosen
from a convex and compact sgt, S7], there exists an equilibrium point in! x A%... x AN (by Theorem 1 in

[8]). Using Lemma 5.2 this equilibrium remains so within tlaeger set of strategies = (u',...,u"). Indeed,
since a best response always exists amahgno player can profit from a deviation to a strategy not in téss,
and hence this is an equilibrium within the class of all sig#s. O

VI. CONSTRAINED POWER STRATEGIES

In the previous sections we obtained optimal or equilibristnategies that allocate the available battery energy
uniformly in time. There may be cases, however, in which astamt power assignment is not possible. Some
examples are:

« Assume that the maximum powér(&) that can be used decreases (in a continuous way) to zero as the
amount of energy¥ remaining in the battery decreases to zero (this could bealaa increase in the internal
resistance of the battery as it becomes old).

« Power levels may be discrete. This is the case, for examplhei UMTS standard for cellular telephony in
Europe. If we want the battery to last tin¥e then the optimal power level obtained by dividing the total
battery energy by need not coincide with one of the available levels.

It turns out that some weaker notions of regularity of powansmission policies could still be useful, and will
allow us to obtain optimal or equilibrium strategies whemstant powers cannot be implemented. To that end, we
introduce the majorization order and the class of Schur aeméunctions. We provide below the basic definitions
and theory that are required for our analysis.

Definition 6.1: (Majorization and Schur-Concave Function [11])

Consider twon-dimensional vectorg(1), d(2). d(2) majorizesd(1), which we denote byi(1) < d(2), if

k k n n
Y dy() <) dig(2), k=1,..,n—1, and> dy(1) = dy(2),
i=1 i=1 =1 i=1

whered; (m) is a permutation ofl;(m) satisfyingd;)(m) > djy(m) > ... > dj(m), m = 1,2.

A function f : R™ — R is Schur concave ifl(1) < d(2) implies f(d(1)) > f(d(2)).

Lemma 6.2: [11, Proposition C.1 on p. 64] Assume that a functipn R — R can be written as the sum
g(d) =>"" 1 ¥(d;) wherey is a concave function fronk to R. Theng is Schur concave.
A General Framework for Adding Constraints. Assume that the set of actions available to each terminal is
restricted through constraints, which may reflect techgiokl limitations as exemplified above. Our goal is to
identify best response policies for a playein the embedded decision model withix. This new class need not
contain policies that split the battery energy evenly altrgbattery’s lifetime. We show below how Majorization
allows to obtain alternative structure for best respongkfan equilibrium policies.

We focus throughout this section on the discrete-timersgtthssume that Q3 holds. A best response for mobile
j is obtained as in the proof of Lemma 5.1 in two steps: (i) Foivargsequencéri, }, compute an optimal power
sequence to be used during the lifetime of thth battery; and (ii) Obtain an optimal sequengg, }.



We mainly consider here the first step. L%t(m) be the set of available power sequences of Iené;rhTerminaI
j then seeks for a sequenceSi(m) that maximizes the expression

77m+1

Z ¢ (P, u) (10)
t= nm

where¢’(z,u~7), given in Eq. (8), is concave. According to Lemma 6.2, thereggion in (10) is Schur concave.
Therefore any element &7 (m) that majorizes all others is optimal. We next show how theomi#jng sequence
can be efficiently obtained for the case where the transomgsdwer in each slot is bounded as a function of the
remaining energy.
An Example: Energy Dependent Constraints on the Maximum Powr. Consider the case where the maximal
transmission power that can be used in a given slot is a fumct the remaining battery. As mentioned above, we
are interested in optimizing performance for a given bwttdetime, says. Accordingly, the relevant time under
consideration ig = 1,...,s. Denote byP(e) the maximal power bound, where the energy.id\le assume that
P(e) decreases ir. We further assume the following:

« Assumption Q4: For any playerj, if a power assignmerﬁ){ is feasible, so is the assignmeﬁi = Q{ﬂ

In other words, if assignmer@{ is feasible then so is the permutation of that assignmentdecieasing order.
Theorem 6.3:Assume Q4. Let’ be the total energy of the battery. Consider sequences gfhien wheres

is assumed to be such that all the energy of the battery can dea during this period by some choice of a

transmission policy. The optimal action for a sequence ngtle s is given by the following procedure. Initiate

k:=s, e,:=&. Whilek>0: P,g':P(ek/k) Ch_1 1= €} — Plg, k:=Fk—1.

Proof Due to assumption Q4, it suffices to restrict attention to-imameasing sequences. We shall thus show
that P is majorized by any other non-increasing assignment,(¢aioting that the minimal power per slot is at
most &7 /s, it follows by Assumption Q4 that '

Pz Q- (11)
Next we show that
PI+ P >@QI+@_,, implying thatPJ] + PJ = Q[ + QS - (12)

Assume the contrary?’ + P] 1 < QL+ Qi .- Let R be an a33|gnment given by

' Q{? ' o fork=1,2,...,5-2
Ri=4q Qi+Q., - P! fork=s—1
P! for k = s.
Note that _ _ _
w12 R > Py, (13)
implying that R?_| = Rfs_l]. Then sinceP is lexicographic maximizer, and since/ = P[JS] = R, = Rfs], it
satisfies ' '
Pl 2R, (14)

It follows from the above inequality thak satisfies the power constraints at step 1: it clearly satisfies them
for t < s — 1 since@ does, and it satisfies them at timesince P does. The inequalities (13) and (14) obviously
contradict each other, thus (12) holds. Proceeding that wayestablish thaP is majorized by any other policy
that satisfies the constraints. O
The procedure suggested above relies on realizing thatdhenission-bottleneck occurs at the last time slot.
If it is impossible to assign equal powers to all slots then eursion starts by assigning the largest value to the
most constrained one. This assignment is also known as thkemimafair assignment.
Existence of Equilibrium. Equilibria policies are obtained by following similar argents as in the previous
section, except for one additional step. There is a pogdgiltilat we did not have before to obtain periodicity. If
a policy v’/ is periodic then it need not be stationary. For example, afypt j uses only one value for aft,,
a periodic sequenc@PJ} can be generated. This can be avoided by shifting the policw Iphase uniformly
distributed overo, .., 7, — 1}.



VIlI. ADDITIONAL USERUTILITIES

In this section we consider other user utilities, besidesatditive utility (2). Our main focus here is on the
Bit-per-Joule utility, which has been widely used as a pennce criterion in shared wireless networks (see [12]
and references therein). We next consider this utility uride continuous time model, given by

~ 1 T o .
F(u) = limg_——. / 19 (SINRY )t (15)
Ei¢ Ji=o
As in previous sections, assume that all users butjtheone transmit with constant powers. Further assume that
userj uses a periodic strategy (there is obviously no advantageouifying the transmission strategy for different
batteries). Then (15) is equivalent to

R :
o R pi(SINRL)AY
JI(R?) := lim " Jyo I (SINR;)
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(16)

where R/ is the period used by usérandt’ € [0, R’] is the time index within a period. We can now use the same
argument as in Lemma 3.1, to conclude that there exists arégsdnse of user which consists of constant-power
transmission. Consequently, after some simple algebf), dan be written asg/’(R/) = RIh’(1/R7), whereh’
is a concave function, derived from the origintal, which incorporates the use of constant powers by all users.
Differentiation of the last equation with respect to theipérz’ yields 8‘]8]1(51) = hi(1/R7) — (1/RI)W' (1/RY).
ReplacingY”’ = (1/R’) and noting thaf:’ (0) = 0, we use the gradient inequality [13] for the above deriativ
conclude thata‘ggfj) > 0. This inequality is strict ifh/ is strictly concave. Our analysis therefore suggests that
when mobiles adopt (15) as their utility, there is an eqtillim point where all users transmit at constant, low
powers, which correspond to the upper bound on their periBds= % If there is no effective upper bound on the
period, users are better off transmitting at a power of z&éhe above discussion indicates that the use of the bit
per joule as a performance criterion, may lead to ineffiglenanetwork utilization under a distributed framework.
We note that if a Sigmoid function of the SINR is used instehd aoncave function (see [12]), other equilibria
are possible. We are currently investigating this extensio

One natural extension to the user model and to the utilitieslved is to consider utilities which are a function
not only of the SINR but also of the remaining battery. Forregke, a mobile user may consider its data rate more
valuable when the battery is about to drain out. This extangicorporates novel theoretic challenges and is an
interesting subject for future research.

VIII. A SYMMETRIC STRATEGIES

The equilibria we have identified so far have consisted ofila@goower transmission strategies. In the continuous
time model they were in fact constant in time. We have alsavshihat the equilibrium among those strategies can
be unique. We next show that the equilibrium is not unique énegal; other equilibria that are not constant nor
regular may exist.

To illustrate this, assume that we hayeterminals each witl€; energy units available for transmission during
a period of durations’ = S’/ = s. Define the following policies.

« TDMA policy Divide s into J disjoint time slots with durationg™, 7%, ..., 77 with Y, T7 = s. Let player

4 transmit during slotj all its energy&”. (slot durations need not be equal; the transmission powengl a
slot need not be identical to all users).

« Randomizede-impulse policiesEach terminalj chooses independently of other terminals a random time

For some smalk, it transmits all its energy during the time interval, t/ + ].

Consider the special case whéreis the identity function (which means that terminals seekntximize their
SINRS). It can be easily shown that the TDMA policy is both gaiébrium policy as well as an overall optimal one.
We note however that TDMA requires a synchronization or adioation mechanism in order to avoid overlaps in
the choices of slots. The equilibrium in presence of suchadioation is the well known correlated equilibrium.
In the absence of a coordination mechanism, one can use tidoRézede-impulse policy. Ase tends to the limit
zero, the policy converges to an equilibrium one.

Consider also the TDMA policy for the case whergz) = log(1 + z) for every terminalj. Assume that the
terminals are symmetric with respect to both their eneiy=f £), channel gains and transmission periods. For



simplicity, let L7 = 1, Ny = 1 andT7 = 1 for every userj. We next show that TDMA is an equilibrium policy in
this case as well. To that end, we ignore the recharge cofitcaa not be optimized due to the fixed period. The
utility per-period under TDMA idog(1 + £). If TDMA is not an equilibrium, then some user can shift poveér

0 < 6 < & to some other slot and improve its utility. This action wébkult in a utility Oflog(l—l—E—d)—i—log(l—i—p%).
However, noting that

§ . (1+E+6HA+E-0)\ o
log(1+¢& 5)+10g(1+1+5)—10g< s =log(1+¢& s <log(1+¢&),

we conclude that the utility can not be improved, hence thé/Apolicy is an equilibrium one.

IX. CONCLUSION

We have investigated the interaction between self-intedewireless users, each wishing to maximize its through-
put utility with minimal battery-recharge costs. We stubieoth continuous and discrete time models. We obtained
interesting structure of equilibrium policies, and in partar, in case where the transmission power may depend
on the remaining battery energy.

We have shown that time-sharing equilibria may exist fotaierutility functions. An interesting research direction
is to examine whether additional asymmetric equilibria ®iste One may consider other reception models beyond
the CDMA-based network studied here. In particular, captaodels, which sometimes better represent Wireless
LAN systems are of great interest. In these models, the basiers can properly receive the signal of a single
station at a time. Consequently, the use of constant poweadl berminals, is inherently not an equilibrium point.
Hence, new solution approaches would have to be obtained.
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