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Abstract. We consider in this paper a continuous time stochastic hybrid control system with
finite time horizon. The objective is to minimize a nonlinear function of the state trajectory. The
state evolves according to a nonlinear dynamics. The parameters of the dynamics of the system
may change at discrete times lε, l = 0, 1, ..., according to a controlled Markov chain which has finite
state and action spaces. Under the assumption that ε is a small parameter, we justify an averaging
procedure allowing us to establish that our problem can be approximated by the solution of some
deterministic optimal control problem.
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1. Introduction and statement of the problem. Consider the following hy-
brid stochastic control system. The state Zt ∈ Rn evolves according to the following
dynamics:

d

dt
Zt = f(Zt, Yt), t ∈ [0, 1], Z0 = z,(1)

where Yt ∈ Rk is the “control” to be specified later and z is the initial state. f is
assumed to be linear in the second argument (for each value of the first argument),
i.e.,

f(z, y) = f1(z) + f2(z)y,(2)

where f1 is an n-dimensional vector and f2 is an n × k matrix; f2(z)y is the multi-
plication between the matrix f2(z) and the vector y. The functions f1(z) and f2(z)
are supposed to be bounded and to satisfy the Lipschitz condition∣∣∣∣f i(z) − f i(z′)

∣∣∣∣
1 ≤ C1 ||z − z′||1 ∀z, z′,(3) ∣∣∣∣f i(z)

∣∣∣∣
1 ≤ C2,(4)

where z, z′ are from a sufficiently large domain which contains all possible trajecto-
ries of (1), C1 and C2 are constants, and ||·||1 stands for the L1 norm in the finite-
dimensional space. That is, ||q||1 = maxi=1,...,k |qi| for the vector q = {qi}, i = 1, ..., k,
and ||A||1 = max||q||1=1 ||Aq||1 for the matrix A(n × k).

It is assumed in what follows that there exists a bounded domain containing all
the trajectories of (1), and, thus, (4), in fact, is implied by (3).
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ASYMPTOTIC OPTIMIZATION OF A HYBRID SYSTEM GOVERNED BY MDP 2071

Yt is not chosen directly by the controller but is obtained as a result of controlling
the following underlying stochastic discrete event system. Let ε be the basic time
unit. Time is discretized; i.e., transitions occur at times t = nε, n = 0, 1, 2, ..., bε−1c,
where bxc stands for the greatest integer which is smaller than or equal to x. There
is a finite state space X = {1, ..., N} and a finite action space A. If a state is v and
an action a is chosen, then the next state is w with the probability Pvaw. A policy
u = {u0, u1, ...} in the set of policies U is a sequence of probability measures on A; at
each time t = nε the controller chooses un based on the history of all previous states
and actions, as well as the present state. Thus, un is a function that maps histories
of the form hn = (x0, a0, x1, a1, ..., xn−1, an−1, xn) to probability measures on A.

We shall be especially interested in the following classes of policies:
• the Markov policies, denoted by M, i.e., policies for which ut depends only

on the current state and does not depend on previous states and actions.
• the stationary policies, denoted by S, i.e., policies for which ut depends only

on the current state and does not depend on previous states and actions nor
on the time.

The stochastic process {Xn, An} is known as a controlled Markov chain, or
Markov decision process (MDP); see Derman [11, pp. 2–4]. We assume through-
out the paper that under any stationary policy, the state space forms an aperiodic
Markov chain such that all states communicate (regular Markov chain). The results of
the paper hold, in fact, under weaker ergodicity assumptions; however, the restricted
assumption makes the presentation clearer.

Denote by H the set of all possible states and actions histories which can be
observed until time bε−1c:

H =
⋃

{h}, h =
{
(xn, an), n = 0, 1, ..., bε−1c

}
.

Let F be the σ-algebra of all subsets of H. Each policy u and initial state x determines
a probability measure on F , on which the stochastic state and action process H ={
Xn, An, n = 0, 1, ..., bε−1c

}
is defined. Denote by Pu

x and Eu
x the probability measure

and mathematical expectation that correspond to an initial state X0 = x and a policy
u. Sometimes we shall assume an initial distribution ξ on X0, instead of a fixed
initial state. In that case Pu

ξ , Eu
ξ denote the corresponding probability measure and

mathematical expectation.
Let y : X × A → Rk, j = 1, ..., k, be some given vector-valued function. Then Yt

in (1) is given by

Yt = y(Xbt/εc, Abt/εc).(5)

The system (1) with thus-defined Yt is called hybrid, first, because Yt changes
its values via some random jumps whereas Zt is a smooth (differentiable) function of
time and, second, because, as follows from the consideration below, Yt being controlled
“statistically” through controlling the transition probabilities plays by itself the role
of a “direct” control with respect to Zt.

Let g : Rn → R be some operating cost related to the process Zt. We assume
that it is Lipschitz continuous; i.e.,

||g(z) − g(z′)||1 ≤ C1 ||z − z′||1 .

We consider the following control problem with ε and x fixed.
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2072 EITAN ALTMAN AND VLADIMIR GAITSGORY

Qε : find a policy u that achieves F ε(z, x) = infu∈U Eu
xg(Z1), where Z1 is obtained

through (1).
Our model is characterized by the fact that ε is supposed to be a small parameter

and our objective is to construct a policy (depending, in general, on ε) which is
asymptotically optimal for Qε. That is, the difference between the cost under this
policy and F ε(z, x) converges to zero as ε → 0.

The type of model which we introduce is natural in the control of inventories
or of production, where we deal with material whose quantity may “slowly” change
in a continuous (linear) way. Breakdowns, repairs, and other control decisions yield
the underlying MDP. Our model may also be used in the control of highly loaded
queueing networks for which the fluid approximation holds (see Kleinrock [20, p. 56]).
The slow variables Zt may then represent the number of customers in the different
queues, whereas the underlying MDP may correspond to routing, or flow control of,
say, some long on/off traffic.

The fact that ε is chosen to be small means that the variables Yt along with the
MDP Xt can be considered to be fast with respect to the time scale t in which Zt

evolves. Indeed, Yt and Xt may have large jumps between t = mε and t = (m + 1)ε,
whereas the corresponding change in Zt in that period is of order ε. The problem
is, thus, close in nature to stochastic singular perturbed control problems intensively
studied in the literature (see, for example, [1], [5], [6], [7], [9], [10], [21], [23], [24], [25]
and references therein). A common approach to this kind of problem is an application
of singular perturbations or averaging techniques to the Hamilton–Jacobi–Bellman
(HJB) equation for problems in continuous time (as in [5], [6], [21]) or to the dynamic
programming equation for singularly perturbed MDPs [1], [7], [9], [10], [24], [25]. In
contrast to this approach, we, as in [23], apply an averaging method directly to the
“slow” stochastic equation. Our model differs, however, from the ones in [23] in many
respects—mainly in the type of fast motions involved, which implies the differences
in both the technique used and the results obtained.

In our previous paper [2], we considered the problem similar to Qε for the case
of linear dynamics f and cost g and showed that an asymptotically optimal policy
can be constructed via maximization of the Hamiltonian of some linear deterministic
system. The technique we used was, however, strongly related to the linearity of the
model, and it is not applicable to the case when the dynamics and/or the cost are
nonlinear. As opposed to the linear case, the consideration for the nonlinear case is
much more involved and based on an ergodicity-type result for MDPs obtained in this
paper (see Theorem 4.1 below). Using this result we establish that the trajectories of
stochastic hybrid system (1) are approximated by the trajectories of some nonlinear
deterministic control system, and the problem Qε is approximated by the correspond-
ing deterministic optimal control problem allowing us, in particular, to construct an
asymptotically optimal policy for Qε . Notice that this result can be viewed as an
extension of the averaging technique for deterministic singularly perturbed control
systems (see, e.g., [15]) to the stochastic case under consideration. On the other
hand, it can be viewed as an extention of results on uncontrolled motions establishing
that the solution of the original stochastic system is approximated by the solution of
some deterministic system obtained via averaging over the fast random dynamics [16],
[19], [22] to the case when this random dynamics is defined by the controlled Markov
chain.

The paper consists of four sections. Section 1 is this introduction; section 2
describes the main results about the approximation of the problem of optimal control
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ASYMPTOTIC OPTIMIZATION OF A HYBRID SYSTEM GOVERNED BY MDP 2073

of the hybrid system by a deterministic optimal control problem. In section 3 we
discuss ways that the solution of the deterministic optimal control problem can be
characterized and how it can be used to obtain an asymptotically optimal policy.
Section 4 contains the above-mentioned Theorem 4.1, as well as the proofs of some
basic lemmas used in section 2.

2. Description of main results. Let

Y(m, x) def=
⋃

u∈U

{
(m + 1)−1

m∑
t=0

Eu
xYt

}
,

where the union is taken over all policies. As follows from Theorem 3 in [2], the set
Y(m, x) converges in the Haussdorff metric to a set Y defined below:

lim
m→∞

Y(m, x) = Y def=
⋃
u∈S

{∑
v,a

η(u; v, a)y(v, a)

}
,(6)

where the union is taken over all stationary policies, and η(u) = {η(u; v, a)} is the vec-
tor of steady state probabilities of state-action pairs obtained when using a stationary
policy u. That is,

η(u; v, a) = lim
n→∞

Pu
x (Xn = v, An = a).(7)

Notice that due to the ergodicity assumption on our model, η(u; v, a) does not depend
on the initial distribution. Notice also that, since the set

W
def=

⋃
u∈S

{η(u)}(8)

is a polyhedron (see, for example, [11, pp. 93–95]), the set Y is a polyhedron as well.
Define now the averaged deterministic control system as

d

dt
zt = f(zt, yt), z0 = z,(9)

where yt is a measurable function of t taking values in Y. The set of such functions

y : [0, 1] → Y

will be called the set of admissible controls.
Our claim is that the set of all random trajectories of (1) is approximated by

the set of solutions of (9) obtained with all admissible controls. More specifically, we
establish that there exists a function γ(ε) satisfying

lim
ε→0

γ(ε) = 0

such that the following holds.
LEMMA 2.1. Corresponding to any admissible control y = {yt, t ∈ [0, 1]}, there

exists a Markov policy uε(y) such that the random trajectory Zt of (1), obtained with
this policy uε(y), and the deterministic solution zy

t of (9), obtained with y, satisfy the
inequality

max
t∈[0,1]

Euε(y)
x ||Zt − zy

t ||1 ≤ γ(ε).(10)
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2074 EITAN ALTMAN AND VLADIMIR GAITSGORY

LEMMA 2.2. There exists a function ỹε
t(h),

ỹε : [0, 1] × H → Y,

such that (a) for each h ∈ H, ỹε
t(h) is a piecewise constant function of t and (b) for

any policy u,

max
t∈[0,1]

Eu
x ||Zt − z̃ε

t (H)||1 ≤ γ(ε),(11)

where Zt is the solution of (1), z̃ε
t (H) is the solution of (9) obtained with yt = ỹε

t(H),
and H is the random realization of the state-action trajectories.

Notice that the quantity under the expectation sign in (11) is a random variable
for any policy u since H is a finite set and F is the σ-algebra of all subsets of H.

Notice also that a construction of a policy uε(y) which allows an estimate (10)
in Lemma 2.1 is described below in section 3. This is just a stationary policy when
the deterministic control y is a constant function of time, and it consists of a finite
number of stationary policies (and thus is not stationary itself) when y is piecewise
constant.

Define the “deterministic” optimal control problem Q0 as follows.
Q0: Find an admissible control y which minimizes the cost function

F 0(z) def= inf
y

g(z1)

over the trajectories z of system (9). The following theorem about approximation of
Qε by Q0 is then easily established on the basis of Lemmas 2.1 and 2.2.

THEOREM 2.1. The values F ε(z, x) of the original problem Qε converge to the
value F 0(z) of the problem Q0, as ε → 0. More precisely,∣∣F ε(z, x) − F 0

x (z)
∣∣ ≤ C1γ(ε).

If y∗ is an optimal control for Q0, then the Markov policy uε(y∗) allowing estimate
(10) with y = y∗ satisfies the inequality∣∣∣Euε(y∗)

x g(Z1) − F ε(z, x)
∣∣∣ ≤ C1γ(ε).

That is, uε(y∗) is asymptotically optimal for Qε.
Remark 2.1. In the linear case studied in [2], γ can be chosen such that

lim
ε→0

ε−(1/2)γ(ε) = 0.

Hence, for the linear case, simple bounds on the rate of convergence are available for
Lemmas 2.1 and 2.2 as well as for Theorem 2.1.

Proof of Theorem 2.1. Let u be an arbitrary policy and ỹε(h) ∈ Y be the function
defined in Lemma 2.2. Then

|Eu
xg(Z1) − Eu

xg(z̃ε
1(H))| ≤ C1E

u
x ||Z1 − z̃ε

1(H)||1 ≤ C1γ(ε),(12)

where C1 is defined in (3). Being piecewise constant, the function ỹε is measurable in
t. Hence,

g(z̃ε
1(h)) ≥ F 0(z) ∀h ∈ H,
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ASYMPTOTIC OPTIMIZATION OF A HYBRID SYSTEM GOVERNED BY MDP 2075

which implies

Eu
xg(z̃ε

1(H)) ≥ F 0(z)

for any policy u. From the last inequality and (12), it follows that

Eu
xg(Z1) ≥ F 0(z) − C1γ(ε),

so that

F ε(z, x) = inf
u

Eu
xg(Z1) ≥ F 0(z) − C1γ(ε).(13)

Now let y∗ be an optimal control in Q0. By (10),∣∣∣Euε(y∗)
x g(Z1) − F 0(z)

∣∣∣ =
∣∣∣Euε(y∗)

x g(Z1) − g(zy∗

1 )
∣∣∣ ≤ C1E

uε(y)
x

∣∣∣∣∣∣Z1 − zy∗

1

∣∣∣∣∣∣
1

≤ C1γ(ε).

Hence

Euε(y∗)
x g(Z1) ≤ F 0(z) + C1γ(ε).(14)

Since E
uε(y∗)
x g(Z1) ≥ F ε(z, x), the inequalities (13) and (14) conclude the proof of

the theorem.

3. Construction of an asymptotically optimal policy. Let y be an arbi-
trary admissible control for Q0. We show below how to construct the policy uε(y)
(appearing in Lemmas 2.1 and 2.2 and in Theorem 2.1). Choose a function ∆ = ∆(ε)
in such a way that

lim
ε→0

∆(ε) = 0, lim
ε→0

∆(ε)
ε

= ∞,(15)

and set τl = τ(l, ε) := l∆(ε), l = 0, 1, 2, ..., `(ε), where `(ε) := b∆(ε)−1c. Let

rε
l (y) def= (∆(ε))−1

∫ τl+1

τl

ytdt, l = 0, 1, ..., `(ε) − 1.(16)

Since Y is a convex set, rε
l (y) ∈ Y. Hence there exists a stationary policy sε

l (y) such
that

rl(ε) =
∑
v,a

η(sε
l (y); v, a)y(v, a).(17)

Now construct uε(y) as the Markov policy obtained by applying sε
l (y) during n =

bτl/εc, bτl/εc + 1, ..., bτl+1/εc − 1, where l = 0, 1, ..., `(ε) − 1, and by applying an
arbitrary stationary policy during bτ`(ε)/εc, bτ`(ε)/εc + 1, ..., bε−1c. In the proof of
Lemma 2.1 it is established that the policy uε(y) thus constructed satisfies inequality
(10).

As follows from Theorem 2.1, the described procedure for obtaining the policy
uε(y∗), on the basis of a control y∗

t which is optimal for the deterministic problem
Q0, yields an asymptotically optimal policy for problems Qε. The optimal control y∗

t

can by itself be characterized by necessary and sufficient optimality conditions. To
formulate these, let us consider a parametrized set L = {L(z, λ)} of MDPs, (z, λ) ∈
Rn ×Rn, all of which have X and A as state and action spaces, and P = {Pvaw, v, w ∈
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2076 EITAN ALTMAN AND VLADIMIR GAITSGORY

X, a ∈ A} as transition probabilities. They differ by the immediate cost, which is
given by

r(z, λ; v, a) = λT f(z, y(v, a)) = λT f1(z) + λT f2(z)y(v, a).

Consider the problem of minimization of the infinite horizon expected average cost
related to an initial distribution ξ over X:

(18)

Jξ(z, λ) def= inf
u

Jξ(z, λ;u), Jξ(z, λ;u) def= lim
m→∞

1
m + 1

Eu
ξ

m∑
j=0

r(z, λ;Xj , Aj).

It is well known (see Derman [11, section 6]) that
a) The optimal value of the above problem does not depend on the initial dis-

tribution ξ, and it is equal to the optimal value of the following linear programming
problem:

Jξ(z, λ) = J(z, λ) def= min
η

{∑
v,a

r(z, λ; v, a)η(v, a)|η = {η(v, a)} ∈ W

}
(19)

= λT f1(z) + min
η

{
λT f2(z)

∑
v,a

y(v, a)η(v, a)|η = {η(v, a)} ∈ W

}
.

b) There is a one-to-one correspondence between optimal stationary policies of
L(z, λ) and the optimal solutions of (19).

The following statement describes necessary optimality conditions for Q0.
THEOREM 3.1. Let y∗

t be an optimal control in Q0 and let z∗
t be the solution of

(9) obtained with y∗. That is,

d

dt
z∗
t = f(z∗

t , y∗
t ), z0 = z.(20)

Then, for almost all t ∈ [0, 1],

y∗
t =

∑
v,a

η(z∗
t , λt; v, a)y(v, a),

where η(z, λ) = {η(z, λ; v, a}v,a stands for a solution of (19) and λt is the solution of
the conjugate system

d

dt
λt = −fz(z∗

t , y∗
t )λt, λ1 = gz(1);(21)

fz and gz are n×n and n×1 matrices of the partial derivatives of f and g, respectively,
over the components of z.

Proof. The proof follows from a direct application of the Pontryagin maximum
principle [8, 13] to problem Q0.

Notice that if the solution of (19) with z = z∗
t and λ = λt is unique for all t ∈ [0, 1]

except for a finite number of switching points and, thus, for all these t ∈ [0, 1], the
corresponding stationary policy u(z∗

t , λt) achieving inf in (18) with z = z∗
t and λ = λt

is unique, then an asymptotically optimal policy for Qε can be defined by simply
applying u(z∗

τl
, λτl

) during bτl/εc, bτl/εc + 1, bτl+1/εc − 1, where l = 0, 1, ..., `(ε) − 1.
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ASYMPTOTIC OPTIMIZATION OF A HYBRID SYSTEM GOVERNED BY MDP 2077

Another way to characterize the optimal control in the problem Q0 is related to
the HJB equation written for this problem in the form

B0
t (z, t) + min

y∈Y
{(B0

z (z, t))T f(z, y)} = 0, B0(z, 1) = g(z),(22)

where B0
t (z, t), B0

z (z, t) stand for the partial derivatives of B0(z, t) over t and com-
ponents of z, respectively. By (2), (6), (8), for any z and λ,

min
y∈Y

λT f(z, y) = λT f1(z) + min
y

{λT f2(z)y|y ∈ Y} = λT f1(z)

+ min
η

{∑
v,a

λT f2(z)y(v, a)η(v, a)|η = {η(v, a)} ∈ W

}
= J(z, λ),

where J(z, λ) is the optimal value of (19). Hence, HJB equation (22) can be rewritten
in the form

B0
t (z, t) + J(z, B0

z (z, t)) = 0, B0(z, 1) = g(z).(23)

This equation allows us to construct both necessary and sufficient conditions of opti-
mality for Q0 and, in particular, to verify whether a given admissible control yt and
the corresponding solution zt of (9) are optimal in Q0 (see details in [8]). On the
other hand, the viscosity solution of (23) (see, e.g., [14]) defines the optimal value of
the problem Q0 on the interval [s, 1] subject to the initial condition zs = z, which
provides an approximation for the optimal value Bε(z, x, s) of the problem Qε on the
same interval [s, 1] subject to the same initial condition zs = z and with the initial
state of the MDP being x. More precisely, since, by definition, Bε(z, x, 0) = F ε(z, x)
and B0(z, 0) = F 0(z), from Theorem 2.1 it follows that

lim
ε→0

Bε(z, x, 0) = B0(z, 0).

As in this theorem, one can also establish that

lim
ε→0

Bε(z, x, s) = B0(z, s),

with the convergence being uniform with respect to s ∈ [0, 1], x ∈ X, and z ∈ Z,
where Z is a compact subset of Rn.

Notice that the described approach has a decomposition structure. It consists of
two phases. First is the optimization of the fast motions which is achieved via the
solution of (18) with fixed “slow variables” z and λ. Second is the “slow optimization”
achieved via the solution of HJB (23). Notice also that in a general case the solution
of equation (23) can be quite complicated. If, however,

f(z, y) = Az + By, g(z) = cT z,(24)

where A(n×n), B(n×k), and c(n×1) are matrices (that is, if as in [2], Q0 is a linear
optimal control problem), then the solution of (23) is obvious:

B0(z, s) = λT
s z +

∫ 1

s

J(λ(t))dt,

where J(λ) def= J(z, λ) − λT Az and λt is the solution of (21) under assumption (24).
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2078 EITAN ALTMAN AND VLADIMIR GAITSGORY

4. Proof of Lemmas 2.1 and 2.2.
LEMMA 4.1. Let yi

t(h), i = 1, 2, be functions of time t and state-action histories
h. Let zi

t(h) be the solution of (9) obtained with yi
t(h) (h is fixed), i = 1, 2. Then

there exists a constant L such that for any policy u and any initial state x,

max
t∈[0,1]

Eu
x

∣∣∣∣z1
t (H) − z2

t (H)
∣∣∣∣

1

≤ L

(
∆(ε) + (∆(ε))−1 max

l=0,...,`(ε)−1
Eu

x

∣∣∣∣∣∣∣∣∫ τl+1

τl

[y1
t (H) − y2

t (H)]dt

∣∣∣∣∣∣∣∣
1

)
,

(25)

where H is the random realization of the state-action trajectories.
Proof. For the sake of brevity, we omit H from the notation below and write ∆

and ` instead of ∆(ε) and `(ε). By definition,

zi
τl+1

= zi
τl

+
∫ τl+1

τl

f(zi
t, y

i
t)dt.

Hence, denoting

δl := Eu
x

∣∣∣∣z1
τl

− z2
τl

∣∣∣∣
1

and taking into account (2), one can write

δl+1 ≤ δl +
∫ τl+1

τl

Eu
x

∣∣∣∣f(z1
t , y1

t ) − f(z1
τl

, y1
t )

∣∣∣∣
1 dt

+ Eu
x

∣∣∣∣∣∣∣∣∫ τl+1

τl

[
f(z1

τl
, y1

t ) − f(z1
τl

, y2
t )

]
dt

∣∣∣∣∣∣∣∣
1

+
∫ τl+1

τl

Eu
x

∣∣∣∣f(z1
τl

, y2
t ) − f(z2

τl
, y2

t )
∣∣∣∣

1 dt +
∫ τl+1

τl

Eu
x

∣∣∣∣f(z2
τl

, y2
t ) − f(z2

t , y2
t )

∣∣∣∣
1 dt

≤ δl + L1∆Eu
x

∣∣∣∣∣∣∣∣ 1
∆

∫ τl+1

τl

(y1
t − y2

t )dt

∣∣∣∣∣∣∣∣
1

+L3∆δl + L1∆2,

where Li are constants defined by C1 and C2 in (3) and (4) (and thus do not depend
on H). Applying now Proposition 5.1 of Gaitsgory [15], one obtains that for any
K = 0, 1, ..., `,

δK ≤ L̃

(
∆ + max

l=0,...,`−1
Eu

x

∣∣∣∣∣∣∣∣ 1
∆

∫ τl+1

τl

(y1
t − y2

t )dt

∣∣∣∣∣∣∣∣
1

)
,(26)

where L̃ is a constant. Since∣∣∣∣zi
t − zi

τl

∣∣∣∣
1 ≤ L4∆ ∀t ∈ [τl, τl+1]

for some constant L4, (26) implies (25) with L = L̃ + 2L4.
We need another general result on MDPs that establishes the uniform convergence

of the state-action frequencies to their limits. More precisely, consider arbitrary inte-
gers m and K, and define the random variables

ψK
m(v, a) = ψK

m(H; v, a) :=
1
K

m+K∑
n=m+1

1{Xn = v, An = a}.
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ASYMPTOTIC OPTIMIZATION OF A HYBRID SYSTEM GOVERNED BY MDP 2079

Let ψK
m := {ψK

m(v, a)}v,a denote the vector of state-action frequencies. Denote

d1
K = dist{ψK

0 , W} = inf
η∈W

∣∣∣∣ψK
0 − η

∣∣∣∣
1 .

It follows from Derman [11, Chapter 8, p. 98] (see also [3, section 3]) that for any
policy u and initial distribution ξ,

lim
K→∞

d1
K = 0, Pu

ξ a.s.(27)

This implies, by the bounded convergence theorem, that

lim
K→∞

Eu
ξ d1

K = 0.(28)

For any stationary policy u ∈ S the limit

ψ0 := lim
K→∞

ψK
0

exists (Pu
ξ a.s.), and it does not depend on the initial distribution ξ (in fact, ψ0(v, a) =

η(u; v, a)). Define

d2
K =

∣∣∣∣ψK
0 − ψ0

∣∣∣∣
1 .

THEOREM 4.1. The following holds:

lim
K→∞

sup
ξ

sup
u∈U

Eu
ξ d1

K = 0,(29)

lim
K→∞

sup
ξ

sup
u∈S

Eu
ξ d2

K = 0.(30)

Proof. In order to prove the theorem, we define some operations on policies. A
k-shift v = Θku of a policy u is defined to be a sequence v = {vk, vk+1, ...}, where

vn+k(x0, a0, x1, a1, ..., xn+k−1, an+k−1, xn+k)

= un(xk, ak, xk+1, ak+1, ..., xn+k−1, an+k−1, xn+k).

A policy w is defined to be a concatenation of u and v from time k if

wn =
{

un, n < k,
(Θkv)n, n ≥ k.

We then denote this policy by w = [u{k}v]. We similarly define a concatenation of a
sequence of policies ui with times ti, and denote it by [u1{t1}u2{t2}...] (where policy
ui is used for a duration of ti time units).

Assume (29) does not hold. Then there exist sequences of initial distribution over
the states ξ(i) = {ξ1(i), ..., ξN (i)}, of strictly increasing times t(i) and of policies u(i),
and a constant α1 > 0 such that for all i,

E
u(i)
ξ(i) d1

t(i) ≥ α1.(31)

It follows that there exist sequences of strictly increasing times t′(i) and of policies
u′(i), and a constant α2 > 0 such that for all i,

E
u′(i)
ξ′ d1

t′(i) ≥ α2(32)

D
ow

nl
oa

de
d 

06
/2

3/
14

 to
 1

95
.8

3.
21

2.
14

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



2080 EITAN ALTMAN AND VLADIMIR GAITSGORY

for any initial distribution ξ′. Indeed, fix t′(i) = t(i)+N, i = 1, 2, ... (N is the number
of states). Fix some stationary policy s and let u′(i) be the policy [s{N}ΘNu(i)],
i.e., the policy obtained by using s during the first N steps, and then using a shifted
policy ΘNu(i). Due to the unichain and aperiodicity assumption, the Markov chain
induced by the stationary policy s is regular, and it follows (see [18]) that there exists
some α3 > 0 such that P s

ξ′(XN = z) > α3 for any z and ξ′. (31) then implies that
(32) holds for all i sufficiently large and ξ′ with α2 = α1α3/2. Indeed, let i be such
that

t(i) ≥ 4N

α1α3
.

It then follows that

|d1
t(i) − d1

t′(i)| ≤ 2N/t(i) ≤ α1α3

2
.

This implies that

E
u′(i)
ξ′ d1

t′(i) =
∑

z

P
u′(i)
ξ′ (XN = z)

[
E

u′(i)
ξ′ d1

t′(i)

∣∣∣ XN = z
]

=
∑

z

P s
ξ′(XN = z)

[
E

u′(i)
ξ′ d1

t′(i)

∣∣∣ XN = z
]

≥
∑

z

P s
ξ′(XN = z)Eu(i)

z d1
t(i) − α1α3

2
≥ α3

∑
z

Eu(i)
z d1

t(i) − α1α3

2

≥ α3

∑
z

ξz(i)Eu(i)
z d1

t(i) − α1α3

2
= α3E

u(i)
ξ(i) d1

t(i) − α1α3

2
≥ α1α3

2
.(33)

Equation (33) is due to the following. Policy u′(i) behaves like the stationary policy s
during the first N steps. So, at time N , we reach state z with probability P s

ξ′(XN = z).
Then the behavior during the interval [N, t′(i)], according to policy u′(i), is that of
the policy u during the interval [0, t′(i) − N ] = [0, t(i)].

Consider now some subsequence t′(i) for which (32) holds and for which∑i
l=1 t′(l)

t′(i + 1)
≤ α2

4
.

Consider the concatenated policy ũ defined as ũ = [u′(1){t′(1)}u′(2){t′(2)}...]. (32)
implies that

lim
K→∞

Eũ
ξ′d1

K ≥ α2

2
> 0(34)

for any initial distribution ξ′. Indeed, choose any integer n and define K =
∑n

i=1 t′(i),
K ′ =

∑n+1
i=1 t′(i). Then

|Eū
ξ′ [d1

K′ |X(K) = z] − Eu′(i+1)
z d1

t′(i+1)| ≤ 2
∑i

l=1 t′(l)
t′(i + 1)

≤ α2

2
,

which implies that

Eũ
ξ′d1

K′ =
∑

z

P ũ
ξ′(X(K) = z)Eũ

ξ′ [d1
K′ |X(K) = z]

≥
∑

z

P ũ
ξ′(X(K) = z)Eu′(i+1)

z d1
t′(i+1) − α2

2
≥ α2

2
.(35)
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ASYMPTOTIC OPTIMIZATION OF A HYBRID SYSTEM GOVERNED BY MDP 2081

This, however, contradicts (28) for u = ũ. We thus conclude that the convergence in
(28) is uniformly in ξ and u ∈ U .

Next, assume that (30) does not hold. Below, if u is stationary, we understand
u(a|x) to be the probability of choosing action a when in state x. The class of
stationary policies is compact; i.e., for any sequence u(i) ∈ S, there exists a sub-
sequence u(ij) such that the policy u∗ = limj→∞ u(ij) (i.e., the policy for which
u∗(a|x) = limj→∞ u(ij)(a|x) for all a and x) is stationary.

It follows by arguments as in the first part of the proof that there exist sequences
of times t(i) and of stationary policies s(i), and a constant α4 > 0 such that for all i,

E
s(i)
ξ d2

t(i) ≥ α4(36)

for any initial distribution ξ. Moreover, due to the compactness of S, s(i) can be
chosen to be a convergent sequence, with s∗ its limit. It then follows that

lim
i→∞

η(s(i)) = η(s∗)(37)

(see [17, p. 82]).
Consider now the Markov policy s̃ that follows policy s(1) until time t(1), then

switches to s(2) and uses that policy until t(2), then switches to s(3) and uses it until
t(3), and so on. Since for any initial distribution ξ and for any stationary policy s(i),
we have

ψ0 = η(s(i)), P
s(i)
ξ a.s.,(38)

it follows by choosing the sequence of times t(i) so that the intervals t(i + 1) − t(i)
are sufficiently large, that (36) implies that

lim
i→∞

E s̃
ξ

∣∣∣∣∣∣ψt(i)
0 − η(s(i))

∣∣∣∣∣∣
1

> 0(39)

for any initial distribution ξ. It then follows from (37) and (39) that

lim
t→∞

E s̃
ξ

∣∣∣∣ψt
0 − η(s∗)

∣∣∣∣
1 > 0(40)

for any initial distribution ξ.
Since s(i) converges to s∗, it follows that s̃ is an asymptotically stationary policy

(see (1.2) in [3]), and therefore,

lim
K→∞

ψK
0 = η(s∗), P s̃

ξ a.s.

(see Lemma 6.3 in [3]; also see [4]). Hence

lim
K→∞

E s̃
ξ

∣∣∣∣ψK
0 − η(s∗)

∣∣∣∣
1 = 0(41)

for any initial distribution ξ. This contradicts (40), and thus (30) is established.
Proof of Lemma 2.1. Let yt be an admissible control for Q0 and let uε(y) be

constructed as indicated in the beginning of section 3. Consider the policy uε(y) and
a random realization of states and actions history H ∈ H. The solution Zt of (1) is
the solution of (9) obtained with the random control

yt(H) def= y(Xbt/εc, Abt/εc).
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2082 EITAN ALTMAN AND VLADIMIR GAITSGORY

By Lemma 4.1, the mathematical expectation of the norm of the difference between
Zt and the solution zy

t of (9) with the control yt is bounded by

Euε(y)
x ||Zt − zy

t ||1 ≤ L

(
∆ + max

l=0,...,`−1
Euε(y)

x

∣∣∣∣∣∣∣∣ 1
∆

∫ τl+1

τl

ys(H)ds − 1
∆

∫ τl+1

τl

ysds

∣∣∣∣∣∣∣∣
1

)
for any t ∈ [0, 1]. Hence, taking into account (16) and (17),

max
t∈[0,1]

Euε(y)
x ||Zt − zy

t ||1(42)

≤ L

∆ + max
l=0,...,`−1

Euε(y)
x

∣∣∣∣∣
∣∣∣∣∣ 1
∆

∫ τl+1

τl

ys(H)ds −
∑
v,a

η(sε
l (y); v, a)y(v, a)

∣∣∣∣∣
∣∣∣∣∣
1

 .

To bound the right-hand side in (42), consider the state-action frequencies ψK
m cor-

responding to the realization H. It follows from Theorem 4.1 that there exists some
µ : N → R with

lim
K→∞

µ(K) = 0(43)

such that for any stationary policy s applied during n = m + 1, ..., m + K, and any
probability distribution ζ over Xm,

Es
ζ

(
max
v,a

|ψK
m(v, a) − η(s; v, a)|

)
≤ µ(K).(44)

Denote

K(ε) def= min
l=0,1,...,`−1

(bτl+1/εc − bτl/εc) ,

and notice that

2 ≥ bτl+1/εc − bτl/εc − K(ε) ≥ 0,

∣∣∣∣K(ε) − ∆(ε)
ε

∣∣∣∣ ≤ 1

⇒
∣∣∣∣ 1
K(ε)

− ε

∆(ε)

∣∣∣∣ ≤ ε2

∆(ε)2

(
1

1 − ε/∆(ε)

)
.

(45)

From (45) it follows that there exist constants L1 and L2 such that∣∣∣∣∣∣
∣∣∣∣∣∣ 1
∆(ε)

∫ τl+1

τl

yt(H)dt − ε

∆(ε)

bτl/εc+K(ε)∑
n=bτl/εc+1

y(Xn, An)

∣∣∣∣∣∣
∣∣∣∣∣∣
1

≤ L1
ε

∆(ε)
,(46)

∣∣∣∣∣∣
∣∣∣∣∣∣ ε

∆(ε)

bτl/εc+K(ε)∑
n=bτl/εc+1

y(Xn, An) − 1
K(ε)

bτl/εc+K(ε)∑
n=bτl/εc+1

y(Xn, An)

∣∣∣∣∣∣
∣∣∣∣∣∣
1

≤ L2
ε

∆(ε)
.(47)

Since

1
K(ε)

bτl/εc+K(ε)∑
n=bτl/εc+1

y(Xn, An) =
∑
v,a

ψ
K(ε)
bτl/εc(H; v, a)y(v, a),(48)
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one can obtain, using (44), (46), and (47),

Euε(y)
x

∣∣∣∣∣
∣∣∣∣∣ 1
∆(ε)

∫ τl+1

τl

yt(H)dt −
∑
v,a

η(sε
l (y); v, a)y(v, a)

∣∣∣∣∣
∣∣∣∣∣
1

≤ (L1 + L2)
ε

∆(ε)
+ Euε(y)

x

{
E

sε
l (y)

Xbτl/εc

∑
v,a

(∣∣∣ψK(ε)
bτl/εc(H; v, a) − η(sε

l (y); v, a)
∣∣∣ ||y(v, a)||1

)}
≤ (L1 + L2)

ε

∆(ε)
+ L3µ(K(ε)),

where

L3 =
∑
v,a

||y(v, a)||1 .

Substituting the last inequality in (42), one obtains

max
t∈[0,1]

Euε(y)
x ||Zt − zy

t ||1 ≤ L

[
∆(ε) + (L1 + L2)

ε

∆(ε)
+ L3µ(K(ε))

]
,

which, by (43), completes the proof of the lemma.
Proof of Lemma 2.2. Let h =

{
x0, a0, ..., xbε−1c, abε−1c

}
∈ H be some state-action

trajectory, and define

yt(h) def= y(xbt/εc, abt/εc).

As in (46)–(48), one obtains∣∣∣∣∣
∣∣∣∣∣ 1
∆(ε)

∫ τl+1

τl

yt(h)dt −
∑
v,a

ψ
K(ε)
bτl/εc(h; v, a)y(v, a)

∣∣∣∣∣
∣∣∣∣∣
1

≤ (L1 + L2)
ε

∆(ε)
.(49)

Denote by σl(H) the projection of ψ
K(ε)
bτl/εc(H) on W ; i.e., σl(H) := {σl(H; v, a)}v,a is

the solution of

min
η

{∣∣∣∣∣∣ψK(ε)
bτl/εc(H) − η

∣∣∣∣∣∣
1

∣∣∣ η ∈ W
}

.(50)

It follows from Theorem 4.1 that there exists a function ν(K),

lim
K→∞

ν(K) = 0,

such that for any policy u,

Eu
xdist

{
ψK

m(H), W
}

≤ ν(K)

where

dist
{
ψK

m(H), W
} def= min

η

{∣∣∣∣ψK
m(H) − η

∣∣∣∣
1

∣∣ η ∈ W
}

.

Hence,

Eu
x

{
max
v,a

∣∣∣ψK(ε)
bτl/εc(H; v, a) − σl(H; v, a)

∣∣∣} ≤ ν(K(ε)).(51)
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Define the vectors yl : H → R as

yl(h) =
∑
v,a

σl(h; v, a)y(v, a).(52)

Since, by definition, σl(h) ∈ W , then

yl(h) ∈ Y ∀l = 0, 1, ..., ` − 1.

Define now the piecewise constant function ỹε
t(h) as follows: for t ∈ [0, `∆), set

ỹε
t(h) := yl(h) for t ∈ [τl, τl+1), l = 0, 1, ..., ` − 1. For t ∈ [`∆, 1], set ỹε(h) = y where

y is an arbitrary element of Y. Let u be an arbitrary policy. Taking into account
(49), (51), and (52), one obtains

Eu
x

∣∣∣∣∣∣∣∣ 1
∆(ε)

∫ τl+1

τl

yt(H)dt − 1
∆(ε)

∫ τl+1

τl

ỹε
t(H)dt

∣∣∣∣∣∣∣∣
1

≤ (L1 + L2)
ε

∆(ε)
+ Eu

x max
v,a

∣∣∣ψK(ε)
bτl/εc(H; v, a) − σl(H; v, a)

∣∣∣ ∑
v,a

||y(v, a)||1

≤ (L1 + L2)
ε

∆(ε)
+ L3ν(K(ε)).

Applying (25) one obtains

max
t∈[0,1]

Eu
x ||Zt − z̃ε

t (H)||1 ≤ L

[
∆(ε) + (L1 + L2)

ε

∆(ε)
+ L3ν(K(ε))

]
,

which completes the proof.
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