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Abstract: We consider the problem of control for continuous time stochastic hybrid systems in 
finite time horizon. The systems considered are nonlinear: the state evolution is a nonlinear func- 
tion of both the control and the state. The control parameters change at discrete times according 
to an underlying controlled Markov chain which has finite state and action spaces. The objective 
is to design a controller which would minimize an expected nonlinear cost of the state trajectory. 
We show using an averaging procedure, that the above minimization problem can be approxi- 
mated by the solution of some deterministic optimal control problem. This paper generalizes our 
previous results obtained for systems whose state evolution is linear in the control. 

Key Words: Hybrid stochastic systems, Markov decision processes, nonlinear systems. 

1 Introduction 

We cons ider  in this paper  a cont ro l led  hybr id  system: con t ro l  act ions are 

taken per iodica l ly  at discrete times, and they influence in some probabi l is t ic  

sense the paramete rs  of  a system that  evolves  in cont inuous  time. M o r e  pre- 

cisely, the state of  the con t inuous  par t  of  system is described by some non-  

l inear  differential equat ion;  its dynamics  is pa ramete r i zed  by some vec tor  

which may  take a finite n u m b e r  of different values. The  value  of these pa ram-  

1 This work is supported by the Australian Research Council. All correspondence should be 
directed to the first author. 
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eters are functions of a controlled Markov chain, that has jumps at some fixed 
moments of time. 

As an example for such a system, consider the admission control into a 
telecommunications network. The state of the continuous time system may 
be taken to be the amount  of workload (i.e. the transmission time required by 
the information packets) in the different nodes. The dynamics of this state is 
determined by the number, the routes and the type of sessions that are present 
in the network. These can be described by a Markov chain that takes a finite 
number of states. This Markov chain has transitions corresponding to the end 
of sessions, or to the beginning of new sessions. The latter, however, may be 
controlled by the network; the actions available are thus to accept or reject a 
new coming call, having some requirements for its routing, bandwidth, and 
duration. 

The objective is to minimize an expected nonlinear cost of the state tra- 
jectory over a finite horizon problem. We consider the behavior of the hybrid 
system when the time between transitions of the Markov chain is small. Using 
an averaging procedure, we show that the above minimization problem can 
be approximated by the solution of some deterministic optimal control prob- 
lem. This paper generalizes our previous results obtained for systems whose 
state evolution is linear in the control [2, 3]. 

Note that the problem we deal with here is closely related with singularly 
perturbed stochastic optimal control problems which were intensively studied 
in the literature, see, e.g. [4, 5, 6, 7, 9, 10, 19, 20, 21, 22]. Our result differs, 
however, from the ones obtained in the references above and it can be 
regarded as an extension of the averaging technique developed for determin- 
istic singularly perturbed optimal control problems (see, e.g. [16]). 

Nota t ion:  Throughout  this paper R n and R nxm denote, respectively, the n 
dimensional Euclidean space and the set of all n x m real matrices. P~ and E~ 
are, respectively, the probability measure and mathematical expectation cor- 
responding to an initial distribution x and a policy u (which will be specified 
later). I]" ]l will refer to the Lx norm in the finite dimensional space. That  is, 
for q ~ R k and A e R nxk, [[ql[ = maxi=l,Z,...,klqi[ and [JAil = maxllqlt=ll[Aq[ I. LxJ 
stands for the greatest integer which is smaller than or equal to x. To distin- 
guish the variables, we use capital letters for stochastic variables, i.e. Z and H, 
and small letters for deterministic variables, i.e. z and h. 

The remainder of this paper proceeds as follows: In Section 2, we describe 
the class of systems under consideration and formulate the problem. Also 
some preliminaries are recalled. Section 3 presents the main result about an 
approximation of the problem of optimal control of the hybrid stochastic sys- 
tem by a deterministic optimal control problem. Approaches that allow to 
characterize the solution of the deterministic optimal control problem and to 
use this solution to obtain an asymptotically optimal policy for the hybrid 
stochastic system are discussed. The fundamental lemmas which are used to 
achieve our main result are proved in Appendices. 
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2 Problem Formulat ion  and Prel iminaries  

291 

Consider the following hybrid stochastic control system 

Z(t) = f (Z ( t ) ,  Y(t)) , Z(O) = zo, t e [0, 1] , (2.1) 

where Z(t) is the state, z0 is the initial state, Y(t) is a control, f ( . ,  .) :--+ R n is a 
function. The controls Y(t) will be defined below as a piecewise constant 
function of time taking there values in a finite subset of R k. We shall denote 
this subset as D2. By D1 we shall denote a compact subset of R n which will be 
assumed to contain the solutions Z(t) of (2.1) obtained with the admissible 
controls. 

Y(t) is not chosen directly by the controller, but is obtained as a result 
of controlling the following underlying stochastic discrete event system. Let 
e be the basic time unit. Time is discretized, i.e. transitions occur at times 
t = ne, n = 0, 1 , . . . ,  [e-iJ. There is a finite state space X = {1, 2 , . . . ,  N} and a 
finite action space A. If a state is v and an action a is chosen then the next 
state is w with the probability P~aw. A policy u = {uo, u t , . . . }  in the set of 
policy U is a sequence of probability measures on A; at each time t = ne the 
controller chooses u~ based on the history of all previous states and actions, 
as well as the present state. In this paper, our attention is concentrated on the 
following classes of policies: 

�9 Markov policies, denoted by ~ ,  i.e. policies for which un depends only on 
the current state, and does not depend on previous states and actions. 

�9 Stationary policies, denoted by 5 p, i.e. policies for which un depends only on 
the current state, and does not depend on previous states and actions nor 
on the time. 

The stochastic process {Xn, An} is known as a controlled Markov chain, or 
Markov decision process (MDP), and well studied by researchers in the past 
three decades, see, e.g. [13] and the references therein. We assume throughout 
the paper that under any stationary policy, the state space forms an aperiodic 
Markov chain such that all states communicate (regular Markov chain). The 
results of the paper hold in fact under weaker ergodicity assumptions, how- 
ever the restricted assumption makes the presentation clearer. 

We make the following assumption on the nonlinear function f (Z( t ) ,  Y(t)). 

Assumption 2.1: 7here exist positive numbers C and M such that 

H f ( z l , y ) - f ( zE ,  y)[[<C[lZl-Z2]t , VziEDI, i = I , 2 ; y ~ D 2  

Hf(z,y)ll < M ,  V(z,y) ~D1 x D2 
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For convenience, we denote by H the set of all possible states-actions histories 
which can be observed till time [e-l J: 

H = U { h } ,  h = { ( X n , a n ) , n = O ,  1 , . . . , L e - l J } .  

Let ~- be the o--algebra of all subsets of H. Each policy u and initial state x 
determine a probability measure on ~-, on which the stochastic state and 
action process H = {X,, An, n = 0, 1 , . . . ,  Le-lJ} is defined. 

Let g : X x A --+ R k, be some given vector-valued function. Then, Y(t) in 
(2.1) is given by 

Y(t) = g(XLt/~j, Ait/d ) . (2.2) 

The set D2 is defined as the set of all possible values of 9 on X • A. The sys- 
tem (2.1) with Y(t) defined in (2.2) is a hybrid system. First, Y(t) changes its 
values via some random jumps whereas Z(t) is smooth (differentiable) func- 
tion of time. Secondly, Y(t) being controlled "stochastically" through con- 
trolling the transition probabilities plays by itself the role of a "direct" control 
with respect to Z(t). 

Remark 2.1: It should be noted that the system (2.1) can be used to represent 
many important physical systems. It is natural in the control of inventories or of 
production, where we deal with material whose quantity may "slowly" change in 
a continuous way. Breakdowns, repairs and other control decisions yield the 
underlying MDP. Our model may also be used in the control of highly loaded 
queuing networks for which the fluid approximation holds, see, e.g. [18]. The 
slow variables Zt may then represent the number of customers in the different 
queues whereas the underlying MDP may correspond to routing, or admission 
of some calls. [] 

For  fixed e and X0 -- x, the control problem considered in this paper is as 
follows: find a policy u that achieves 

Q~: Fx(zo ) = inf EU~G(Z1) 
uEU 

(2.3) 

where Zi is the solution of (2.1), and the cost function G: R" ~ R, satisfies the 
following assumption: 
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Assumption 2.2: There exists a positive number C6 such that 

293 

IIa(zl)  - a(z2)ll C [[Zl - z=ll 

.for any zt and Z 2 E D1. 

Our objective is to construct a policy u~ which is asymptotically optimal for 
Q~. More precisely, the difference between the cost under this policy and 
F~(zo) converges to zero as e --+ 0. 

In the reminder of this section, we recall a general result on MDPs  that 
establishes the uniform convergence of the state-action frequencies to their 
limits. 

Let m and K be arbitrary integer numbers and 

h = {Xm+l~ a m + l ~ . . .  ~ Xm+K~ am+K} 

be a state-action trajectory of the length K. Let 

0 ~ ( h ; w , a ) = ~  Z A  1 m+K 

n=m+l 
l{xn = w, an = a } ,  ~k~(h) = {~bk(h; w, a )} ,  

where l{xn = w, Xn = a} is the indicator function (that is, it is equal to one 
when xn = w, an = a, and it is equal to zero otherwise). 

If H is a random realization of h, then we denote 

~kKm(W,a) t( = V'm (n ;  w, a) 

i/i K A { ~ I K ( w  ' a)}w,a " 

Let ~/(u) = {r/(u; w, a)} be the vector of steady state probabilities of state- 
action, (w, a), pairs obtained when using a stationary policy u, i.e. 

u 
~/(u; w, a) = lim P x ( X ,  = w, A ,  = a) . 

n - - +  O0 
(2.4) 

Notice that due to the ergodicity assumption on our model, q(u; w, a) does not 
depend on the initial distribution. 
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def  U {r/( )} W =  u 
u6S 

(2.5) 

and denote 

dlK = dist{r K, W} = i n f  I[r - ~/}. 

It follows from [12] and [1] that for any policy u and initial distribution 4, 

lim d I = 0 P~a.s. 
K---* o~ 

This implies by the bounded convergence theorem that 

lim u 1 K - ~  E4dK = 0 . 

For  any policy u for which the limit 

exists P~ - a.s. (in particular, for any policy u ~ S, the above limit exists and 
Oo(W, a) = t/(u; w, a) independently on the initial distribution ~,  define 

= It ,0 -  011. 

Lemma 2.1: [3] The following holds 

lim sup sup u 1 Ecd K = 0 
K~ov  ~ uEU 

u 2 lim sup sup E~d K = 0 
K~oo ~ uES 

Before ending this section, we recall an inequality which will be used in the 
proof  of our main results. 
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Lemma 2.2: [16] Let N(e) be a function of e with its values bein9 natural num- 
bers tendin9 to infinity as e tends to zero. Then, if there exist a scalar L > 0 and 
a function of e, qk(e)>_ O, such that the nonnegative numbers At satisfy the 
inequality 

A t+I<A1+LN(e) - IAI+~b(e )N(e )  -1 , A 0 = 0 , 1 = 0 , 1 , . . . , k < N ( e )  

dl also satisfy the inequality 

Al <_ r  L l =  1, k +  1 

3 Main Results 

Let us define the point-to-set mapping V(z) : Da ~ 2 R" 

V(z) = U Z t/(u; w, a)f(z ,  g(w, a)) 
ueS (w,a) 

= U Z r/(w,a)f(z,g(w,a)). 
flEW w,a 

(3.1) 

Notice that V(z) is compact and convex (and even polyhedral) since W has all 
these properties (see [12]). 

Consider the differential inclusion 

~ ( t ) ~ V ( z ( t ) ) ,  z ( O ) = z o .  (3.2) 

Lemma 3.1: Corresponding to any solution ~(t) of (3.2), there exists a Markov 
policy u~(e) such that the random trajectory Z(t)  of (2.1) obtained with this 
policy u~(~) satisfies the inequality 

max E~ u'(~) NZ(t) - e(t) ll ~ 7(0, (3.3) 
te [0,~] 

where 7(e) satisfies l im~0 7(e) = O. 

Proof." See Appendix A. �9 
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Lemma 3.1 shows that the solutions of differential inclusion (3.2) are approxi- 
mated by random trajectories of (2.1). 

Lemma 3.2: There exists a function ~e(t, h) such that 

i) for a fixed h ~ H, it is a solution of(3.2); 
ii) for any policy u, ~(t)  = ~(t ,  H) satisfies 

m a x  e ~ l l Z ( t )  - ~(t)ll ~ ~(~), 
t~[o,l] 

(3.4) 

where Z(t) is the solution of(2.1) and 7(e) is as in Lemma 3.1. 

Proof'. See Appendix B. �9 

Remark 3.1." When f ( z , y )  in (2.1) is linear in the second argument (for each 
value of the first argument), i.e. f ( z , y ) = f l ( z )  +f2(z)y, lemmas 3.1 and 3.2 
reduce to the corresponding results in [3]. [] 

Now we are ready to present our main result in this paper. 

Define the "deterministic" optimal control problem Q0 as follows: 
Q0: Find a solution z(t) of (3.2) which minimizes the cost function 

FO(zo) A inf G(z(1)) (3.5) 
g 

over the trajectories z of system (3.2). 
The following theorem about an approximation of Q, by Q0 can be easily 

established on the basis of lemmas 3.1 and 3.2. 

Theorem 3.1: The values F~(zo) of the original problem Q~ converge to the 
value F~ of the problem Q0, as e ~ O. More precisely, 

IF~(zo ) o - Fx(zo)t <_ C67(e) , 

where 7(e) is as in Lemmas 3.1 and 3.2 and C6 is a constant from Assumption 
2.2. I f  z* is the solution of (3.2) such that (3.5) is minimized, then the Markov 
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policy ue(z*) mentioned in Lemma 3.1 satisfies 

IE~'(Z*)G(Z(1))- F~(zo)l _< CG~'(e) . 

That is, ue(z*) is asymptotically optimal for Qe. 
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Proof: Let u be an arbitrary policy, Z(t) be the solution of (2.1) and ~e(t) be a 
solution of (3.2) satisfying (3.4). Then, by Assumption 2.2 and Lemma 3.2, 

IE~G(Z(1)) -E~G(~(1))]  ~ CGE~IIZ(1) -~ (1 ) l l  ~ CGT(e). (3.6) 

Note that 

G(U(1)) > F~ , 

which implies 

E~G(~(1)) _> F~ 

for any policy u. Combining the above inequality with (3.6), it can be shown 
that 

EuG(Z(1)) > F~ - C67(e). 

Hence 

F~(zo) = inuf E~G(z(a)) >_ F~ - CGT(e) . (3.7) 

Let now z* be a solution which minimizes Qo- We have that from Lemma 
3.1 

IE~,(Z*)G(Z(1)  ) - F ~  = IE~,(Z*)G( Z ( 1 )  ) - G(z*(1)) I 

<- CGE~(r)llZ(1) -z*(1)ll --- C G T ( 0  �9 
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Therefore 

Eu'(z*)G(Z(1)) < F~ + CGy(e) . (3.8) 

Since E~'(Z*)G(Z(1))> F~(zo), the inequalities (3.7) and (3.8) conclude the 
proof of the theorem. �9 

Remark 3.2: In [2], the linear case (where f ( . ,  .) appearing in (2.1) is linear) was 
analyzed. In that case, it follows from the analysis in [2] that 7 can be chosen 
such that 

e-(1/2)~l ,e) / \  = 0 . lim 
e--+O 

Hence, for the linear case, simple bounds on the rate of convergence are avail- 
able for Lemma 3.1 and 3.2 as well as for Theorem 3.1. [] 

4 Construction of an Asymptotically Optimal Policy 

Let ~(t) be an arbitrary solution for Q0- We show below how to construct the 
policy u,(~) (appearing in Lemma 3.1 and in Theorem 3.1). Choose a function 
A = A(e) in such a way that 

lim A(e) = 0 ,  lim A(e) = ~ (4.1) 
e---~0 e---~0 

and set 

zz = z(l,e) a 1A(e) , l =  0, 1 ,2 , . . . ,d(e)  , f(e) ~ LA(e)-lJ , ~(,)+1 = 1.  

(4.2) 

Let vl be the projection (see Appendix A) of the vector 

~'l+l 

I  (t)dt 

onto the set V(2(zt)), l = O, 1 , . . . ,  d(e) - 1. 
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By definition there exists a stationary policy sl such that 

v, = Z rt(sl; w, a)f(2(vl), 9(w, a)) . 
w~a 

Construct now u,(z) as the Markov policy obtained by applying sl during 
n = Lvt/eJ, [vl/e] + 1 , . . . ,  Lvl+l/eJ - 1, where l =  0, 1, . . . ,Y(e) - 1, and by 
applying an arbitrary stationary policy during [rr Lvr + 1 , . . . ,  
Le-lj. In the proof of Lemma 3.1 it is established that the policy u~(z) thus 
constructed satisfies inequality (3.3). 

By Theorem 3.1, the policy ue(z*) constructed on the basis of an optimal 
solution of the deterministic problem Q0 is asymptotically optimal for the 
problem Q~. Let us now consider some ways of characterization of the opti- 
mal trajectory z* (t) of Q0- 

4.1 Hamilton-Jacoby-Bellman (HJB) Equation for Qo 

One way of characterization of the optimal control in the problem Q0 is 
related to the HJB equation. Define the Hamiltonian of (3.2) as 

~ ( z ,  2) = max{2Wvl v ~ V(z)} . (4.3) 

As follows from (3.1), ~/f(z, 2) is equal to the optimal value of the following 
linear programming (LP) problem 

~r176 2) = rn~ax { ~ 2 T f (z' g(w' a) )q(w' a)l~l = {rl(w' a) } ~ W } (4.4) 

where the characterization of W as a set of linear constrains was given explic- 
itly in [11]. The HJB equation of Q0 is written in the form 

OBo(t, ) ( OBo(t,z)  
at ~- 3r176 z, ~z ] = 0 '  B0(1,z) = G(z) . (4.5) 

The HJB equation allows us to construct both necessary and sufficient con- 
ditions of optimality for Q0 and, in particular, to verify whether a given z(t), 
solution of (3.2), is optimal in Q0 (see details in [8]). On the other hand, the 
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viscosity solution of (4.5) (see e.g. [15]) defines the optimal value of the prob- 
lem Q0 on the interval Is, 1] subject to the initial condition Zs = z which pro- 
vides an approximation for the optimal value B~(s, z, x)  of the problem Q, on 
the same interval Is, 1] subject to the same initial condition zs = z and with 
the initial state of the MDP being x. More precisely, since, by definition, 
B~(0, z, x) = G~(z) and B0(0~ z) = Go(z),  from Theorem 3.1 it follows that 

lim Be(0, z, x) = Bo(0, z) . 
&--~0 

Similarly to this theorem, one can establish also that 

lim B~(s, z, x)  = Bo(s, z) 
~-~0 

with the convergence being uniform with respect to s e [0, 1], x e X and z e Z, 
where Z is a compact subset of R n. 

The Hamiltonian ~(z~ 2) allows also the following representation. 
Let us introduce a pararneterized set L,r = {L(z,2)} of MDPs, (z, 2) 

IR n • IR n, all of which have X and A as state and action spaces, and ~ -- 
{Pvaw, V, W ~ X,  a ~ A} as transition probabilities. They differ by the immediate 
cost, which is given by 

r(z, 4; w, a) = a(w, a)) 

Consider the problem of maximization of the infinite horizon expected aver- 
age cost related to an initial distribution ~ over X 

~t~(z,  2) =A sup g ~ ( z ,  2; u) , 
u 

9eFt(z, 2; u) ~ lim 1 m - - , ~ m +  1 E~ r(z,  2 ; X j ,  Aj)  . 
j=o 

(4.6) 

This problem is welt known to be equivalent to the linear programming 
problem (4.4) (see, i.e. [12]). Namely: 

a) The optimal value of the above problem does not depend on the initial 
distribution ~ and it is equal to the optimal value of (4.4) 

4) =  e(z, 2) 
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b) There is a one-to-one correspondence between optimal stationary policies 
of L(z, 2) and the optimal solutions of (4.4). 

The approximate solution of Q, via Q0 has, thus, a decomposition structure. 
One fixes first the slow parameters z and 2 and finds optimal stationary policy 
for "fast" MDP (4.6) and then finds an optimal (or near optimal) regime of 
changing the slow parameters via solution of HJB (4.3). 

4.2 Reduction to Bolza Problem 

Another, in a sense dual decomposition procedure for an approximate solu- 
tion of Q~ can be constructed in case the objective function is given in the 
integral form. 

Assume that instead of (2.3), we consider the following objective function: 

1 
i n f E f  ~o(Z(t), Y(t) )dt , (4.7) 

0 

where ~0(., .) satisfies the same assumptions as f(.,  .). 
Define q~(z, v) to be the optimal value of the following linear programming 

problem 

r  v) _A inf[ w,, ~o(z, g(w, a))q(w,  a)l Zf(Z'w,a g(W, a))rl(W , a) = v ~ V(z) ,  t 1 ~ W . 

(4.8) 

For v r V(z), we take q~(z, v) to be equal to +oo. 
Similar to the proof of Theorem 1 in [17], it can be shown that Q0 is 

equivalent to the Bolza problem 

1 
inf f ~(z(t), ~(t))dt. (4.9) 

0 

Notice that the LP problem (4.8) is equivalent to the following MDP (see, e.g. 
[1]) restricted to stationary policies: 

(4.10) 
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subject to 

1 s Aj))=vlv~V(z)}. lim ~ j=0 
?71----+0(3 

The equivalence is understood in the sense that they have the same value, and 
that based on the solution of (4.8), one can construct an optimal policy for the 
MDP and vice versa. Thus again with fixed slow parameters (this time, z and 
v), one finds optimal stationary strategies for fast MDP with constraint (4.10) 
and then consider slow deterministic Bolza problem (4.9). 

5 Conclusion 

The system we dealt with in this paper includes parameters jumping at dis- 
crete times governed by a controlled Markov chain with finite state and 
action spaces. We considered the problem of optimal control of this nonlinear 
stochastic hybrid system under the condition that the intervals between the 
jumps are small. We showed that an asymptotically optimal policy for this 
problem can be found on the basis of solution of some specially constructed 
deterministic optimal control problem. 

Appendices 

A Proof of Lemma 3.1 

Proof." From (3.1), we have that by Assumption 2.1 

tmE0~l{ll.ll:. ~ v(4t))} _< M,  Vz(t), (A.t) 

and 

p(V(~a), v(z2)) ~ CflZl  - z211, V z ~ , z 2  , (A.2) 
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where p(., .) is the Hausdor f f  metric, which is defined as follows: 
for any two arbi t rary  bounded  sets B and D, 

( 
p(B, D) a= m a x ~ s u p  dist{~, D}, 

I,r 

and for any set V 

dist{~, V} a= inf II~ - vii . 
v ~ V  

~osup dist{~, B} } 

303 

Let  g(t) be an arbi t rary  solut ion to the differential inclusion (3.2) and let A(e) 
be as in (4.1). By (A.1), 

lie(t) - z(T/)II -< MA(e) , Vt ~ ['C/,'C/+l] , (A.3) 

where % l = 0, 1 , . . . ,  ~(e) - 1 are defined in (4.2). 
By virtue of (A.2) and (A.3), we have 

z(t)  e V(e ( t ) )  c V(e(~l) )  + c l l e ( t )  - e ( ~ ) l l ~  
(A.4) 

c v(~(~t) )  + CM~(~)~, 

where/~  is the closed ball in R n with the center in the origin and with the unit  
radius. 

F r o m  (A.4) and the fact that  V(z) is convex it follows 

"r 

A-l(e) f z(t)dt ~ V(e(zt)) + CMA(e)B 
Zl 

which implies that  

dist A-'(e) g(t)dt, V(~(zl)) < CMA(e) . (A.5) 

Define the vectors vt, l = 0, 1 , . . . ,  t~(e) - 1, as the project ions of the vectors 

TI+I 

A-l(e) f z(t)dt 
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onto the sets V(g(rt)), i.e. 
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Vl = argmin A - I ( 8 )  ~ ( t ) d t -  ~ V(z('Cl)) . 

As noticed in Section 4, there exists a policy st such that 

Vl = Z q(Sl, W, a ) f ( z ( ' c l ) ,  g (w ,  a ) ) .  (A.6)  
v~:a 

Define a Markov policy ue(~) as indicated in Section 4. That is, define it as 

one following the stationary policy sl during n =  [~J [ ~ +  l J, [rt+l xJ 
I T - -  " 

Let us define the sequence of the vectors ~l as the solution to the equation 

~/+1 = ~l + A(e)Vl , l = O, 1 , . . . ,  f ( e )  -- 1 ; GO = zo �9 (A.7) 

Since 

'~/+1 

~(~I+i) = e(rl) + I z( t ldt  (A.8) 

by virtue of (A.5), subtracting (A.7) from (A.8), we have that 

n t- Z~(g) A - l ( 8 )  vt+l v l IIZ('C/+I) -- ~/+1 II ~ Ile(~Z) -- ~tll f z(t)dt - 
"C 1 

which implies (see (4.2)) that 

I1~(~) - ~tll ~ E(e)CMA2(e) < CMA(e)  , 1 = 0, 1 , . . . ,  E(e) . (A.9) 

Now let us define a sequence of random vectors Zl, l = 0, 1, . . .  ,Y(e) accord- 
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ing to the following relations 

~'l+l 

Z l + l = Z l +  f f(Zl, Y(t))dt, Zo=zo,  (A.IO) 

where Y(t) is defined by (2.2) with the policy u,(g). 
Subtracting (A.10) from (A.7), one obtains 

E~ ~(~) I1~l+1 - Zl+l II 

A(E)E~,(~) 1 1I+1 1)] .[ f(Zl, Y(t))dt- 

-< ~(~)11r - z ,  II + A(~)E~ ~(~) 

I 1 ~flf(Zl, Y(t))dt- f f(~,(q), Y(t))dt 

1 ~,flf(~(~D,v(t))dt_vz[). (A.11) 

By Assumption 2.1, we have that from (A.9) 

~'+' r(t))dt 1 ~+, r(t))dt-  1 

~I+I 

1 ~I§ 
_ ~ f c ( l l z t -  r + I1r 2(~I)11) dt 

ate) ;i 

C ( l l Z ~  - ~11 + IIC~ - e(v~) l l )  

<- C I I Z l  - r + C2MA@) �9 (A.12) 
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Now, substitute (A.12) into (A.11), and take into account (A.6), we have 

e~ "~(~) IlCt+~ - zz+~ I[ 

< E~'(~)[[r Zlll + Cz(~)E~(~)llzt- C~ll + C2MA2(e) 

+ A(e)E ud~) ~ ~'+' a)f(g(zl), y(w, a)) f f(e(v/), Y(t))dt- ~ rl(Sl, w, 
vt (w,a) 

(A.13) 

Consider the state-action frequencies ff~ corresponding to the realization H. 
It follows from Lemma 2.1 that there exists some/~: N --* R with 

lim /t(K) = 0 
K---~ ~ 

such that for any stationary policy s applied during n = m + 1 , . . . , m  + K, 
and any distribution 8 over Xm 

( ~ a x  ,%~ (w, a) - ~/(s, w, ~)1) - ~(K)-  (A.1 E~ 4) 

Denote 

g(~ )  = t=0,tm!n(~)_l(Lvl+l/eJ - L~I/~J 

and notice that 

2 > [Zt+l/eJ - [~ff~J - K(e) > 0 ,  K(e) ---A(e) l e  < 1 

I 1 e e2 ( 1 )_) (A.15) 
I((~) A(~) <- ~-r(g 1 -  ~/z(~ �9 

From (A.15) it follows that there exist positive constants L1 and L2 such that 

LzffeJ+K(e) I L 1 "Q+I ~ ~-a f(z.('R), y(Xn, An)) < 1 ~(8) 

(A.16) 
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L.cdeJ+K(e) 

A(e) Z f ( g ( ' c t ) , y ( X n ,  A n ) ) - - -  
n= ['cl/EJ +1 

1 L~deJ+K(e) An)) 
K(e) Z f(e(Zl),y(X~, 

n = Lr~/~] + 1 

g 

_< L2 3 ()'d " (A.17) 

Since 

1 [vdeJ+K(e) 
K(e) ~_~ f(z.(~t), y(X,, An)) = Z'I"K(E) (H; W, a)f(g(zt), y(w, a)) 

~" L~d~J 
n= L'rl/,q + 1 w,a 

it is easy to show that using (A.14), (A.16)-(A.17) 

E~.(~) 1 *'f ~ a) ) f(~('cl), Y(t))dt - Z q(sl; w, a)f(~,(zl), y(w, 
zt w,a 

_< (L1 + L 2 ) ~  + Ex u~(~) 
za/e) 

[rd~K(e)~b~}~j(H;w,a)f($(zt),Y(w,a)) ~ rl(St;w,a)f(z'(Zl),y(w,a)) • 

n= ['rl/~J +1 w,a 

<-- (L1 + L2) A(e) 

+ EU,(~) fE ~' ~,~ } ~ xt'~m ~_,([O~(]~](H;w, a) -rl(s';w,a)[ []f(~(T,),y(w,a)ll) 

g 

< (L1 + L2) A--~+ L31t(K(e)) , 

where 

L3- -  max IIf(z,Y)ll. 
(z,y) u D  1 x D  2 

Now, substitute (A.18) into (A.13), we have that 

E~X~/IIGt - z ,+ l  II 

E u~c~) IIG - Z ,  ll + CA(~)E~; ~) IIZ, - ~,11 + C2MA2(~) (A.19) 

+ (Lt + L2)e + L3A(e)It(K(e)) . 
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Applying Lemma 2.2 to (A.19), we have 

EU'(~)lllt - Z~l[ _< v ( 8 ) ,  

where v(e) --+ 0 as e --+ 0. 
On the other hand, we know that 
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(A.20) 

72/+1 
Z(~-/+l) = Z('~l) + f f ( Z ( t ) ,  Y ( t ) ) d t  . 

721 
(A.21) 

Subtract (A.21) from (A.10) we have 

zlll 
L 

TI+I tl 
+ f c l lz( t )  - Zd[d 

721 
(A.22) 

Note that 

E~ "(~) ItZ(t) - Z(v~)ll ~< M Z  (~) .  

Substituting (A.23) into (A.22), we have that 

(A.23) 

E~ '(~> [IZ(~1+a) - Zl+a II 

721+1 1 + J" C][Z(rl ) - Zl]ldt + CMAZ(e) 
721 

= EU'(~)llz(v~) - z~ll + C A ( e ) E U ' ( ~ ) f I Z ( v t )  - Z~II + CMz~2(8) 

which implies by Lemma 2.2 that 

E ue(~')]]z('/T/) - Zll [ < C1A@) , (A.24) 

where Ca is a positive constant. 
Finally, combining (A.9), (A.20) and (A.24), we conclude that there exists a 
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positive constant C2 such that 

--- E2(~){lle(~t) - r § IlCz - zzll + IlZz - z(~z)ll)  

_< v(O + c 2 A ( ~ ) ,  s = o , 1 , . . . , : ( O ,  
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where C2 = C M +  Ct. This together with (A.23) and (A.3) complete our 
proof. �9 

B P r o o f  o f  L e m m a  3 .2  

Proof" Let h = {x0, a0 , . . . ,  XLE-1 j, %-~]} e H be some state-action trajectory 
and 

y(t, h) A= g(XLt#3 ' aLt/EA ) , (B.1) 

where g(-, .) is defined in (2.2). 
Denote by az(h) the projection of ~}~/ (h)  on W, i.e. at(h):= {al(h; w,a)}~,,~ 

is the solution of 

�9 K(~) 
mln{ll~bLTff~j (h) -- r/tll t/6: W } .  

It follows from Lemma 2.1 that there exists a function v(K) 

lim v(K) = 0 
K--~ oo 

such that for any policy u, 

E~dist{~k~(H), W}  <_ v(K) . 
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Hence,  

u K(e) E x (  m a x l ,  L~,#j (H;w,a)-61(H;w,a) ,  } _< v(K(~)) . 
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(B2) 

Let  

vo(h) = ~ _ e o ( h ; w , a ) f ( z o ,  y(w,a)) 
w}a 

( l (h)  = z o + ~ ( e ) v o ( h ) .  

Now, we can define the vectors vt(h), v~(h) , . . . ,  v t (h) ,~t (h) ,&(h) , . . .  ,~t+t(h), 
as follows: 

vl(h) = ~ o'l(h;w,a)f(~l(h),y(w,a)) , l = O, 1 , . . . , d ( e )  - 1 ,  
w}a 

(B.3) 

and 

(l+l(h) = (l(h) + A(e)vl(h) , l = O, 1 , . . . , [ ( e )  - 1,Co(h) = zo.  (B.4) 

By definition, it is easy to see that  

vl(h) e V(~l(h)) , VI=O, 1 , . . . , E ( e ) -  I . 

Following the procedure  in the p roof  of L e m m a  3.1 from (A.15) to (A.18), it 
can be shown that  there exists a function vl (e) which tends to zero as e tends 
to zero such that  

"g+l �9 l 
E2 ~ ~ f(~l(H),y(t~H))dt-vt(n) <_ vl(e) . 

Define the piecewise linear function ~(t, h) according to the formula 

= ~ (l(h) + (t -- Zl)Vl(h), 

~(t,h) I.(r + (t -- zd(e)_l)Vr 

(B.5) 

t e  [l:t, ~rl+L], 1 = 0, 1 , . . . ,  d@) --2 

t e [ze(,/-l, 1] . 
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Along the same line as that in the proof of Lemma 3.1 and [16], we have the 
following inequalities 

dist(~(t, h), V(((t ,  h))) = dist(vl(h), V(((t ,  h))) 

<_ dist(vl(h), V(~(zl, h) ) ) + p( V(~(rl, h) ), V(~(t, h) ) ) 

<_ dist(vl(h), V(~l(h))) + MCd(e)  

: M C A ( 8 )  , V t e  ('Q, Z'/+I) , (B.6) 

where p(.,.) and dist(.,.) are defined as in Lemma 3.1. From Filippov 
Theorem [14] and (B.6), it follows that there exists a solution z(t, h) of the 
differential inclusion 

~(t,h) e V(z ( t ,h ) ) , z (O,h)  -~zo 

such that 

m a x  IIz(t, h) - ((t, h)ll ~ C2A(e), 
t~ [o,~] 

(B.7) 

where C2 is a positive number, which can be chosen to be the same for all 
h ~ H .  

Let ~(t, h) be the solution of the equation 

z(t,h) = f (~ ( t ,h ) , y ( t , h ) )  , ~(O,h) = z o .  

Notice that if u is a policy and H is a random realization of states-actions 
history, then 

~(t, H) = Z(t) . (B.8) 

By definition, we have 

TI+I 

~(Zl+l,h) = ~(zl, h) + f f (~( t ,h ) ,y ( t ,h ) )d t  , ~(O,h) = zo , (B.9) 
"r I 

where y(t, h) is defined by (B.1). 
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Let ~l(h), l = O, 1 , . . . ,  f(e) be the solution of the difference equation 

"el+ 1 
Z/+l(h) = ~t(h) + ~ f ( ~ l ( h ) , y ( t ,  h) )d t  , ~o(h) = zo , (B.IO) 

with z0 being the same as the initial condit ion in (2.1). 
Now, subtracting (B.10) from (B.9) we get 

I1~(~+1, h) - ~ ' l + 1  (h)II 

"gl+l 
-< II~(~, h) - ~t(h)ll + ~ Cll~(t ,h)  - ~l(h) l[dt .  (B.11) 

Note that  

[ l ~ ( t , h ) - ~ ( ~ t , h ) l l  ~ M A ( ~ ) ,  t E  [-g/,T/+I] . 

Substitute (B.12) into (B.11), we have that  

II~(~z+x, h) - Zl+l(h)II 

TI+I 
-< II~(~/, h) -- ~l(h)ll + J" CIl~(~z, h) - ~l(h)lldt + C M A 2 ( e )  

: I1~(~, h) - ~t(h)[I + CA(e)IIN(T/, h) - N/(h)l I + CMA2(e) . 

(B.12) 

By Lemma 2.2, the above inequality implies that  there exists a positive num- 
ber C1 such that  

I1~(~1, h) - ~t(h)[[ _< C1A(e) . (B.13) 

Let u be an arbitrary control policy and H a realization in H. Subtract (B.10) 
from (B.4) and take the mathematical  expectation, we have 

_< EUll~l(n) ffl(H)[I + 3( , )Ex ~ ~ 2-'f 1 - f ( ~ ( H ) ,  y( t ,  H ) ) d t  - v l ( n )  
~ k o /  

,z- I 
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-< E~il~t(n) - ~ z ( n ) ] l  

{ 1 m' 1 ~'~ 1 H))dt I f(~l(H), y(t, H))dt - ~(e) f (r  y(t, + ~(8)eu ~ ~ 

Vl+l / 
+ I f(Ct(H), y(t, H))dt - vt(H) �9 (B.14) 

By Assumption 2.1, we know that 

1 "Q+I 1 ~'+' y(t, H))dt f(~t(H), y(t, H))dt - ~(e) ~ f(~l(H)' 

CEUllN~(n) - ~l(H)I[ " (B.15) 

Substituting (B.15) and (B.5) into (B.14), we have 

Ex u [I Zlq-1 (H) - ~lq-i (H)II 

E~[I N~(H) - ~l(H) ll + CA (8) E~ll ~t (H) - ffl(H)[I + A (e) vt (8). (B.16) 

By Lemma 2.2, from (B.16) it follows that 

E U l l ~ t ( H )  - Ct(H)[I ~ v2(e)  , (B.17) 

where Y2(8 ) ~ 0 as 8 --* 0. 
Finally, taking into account (B.8), (B.12), (B.13), (B.17) and (B.7), we have 

E u ] ] Z ( t )  - z(t, H)[I 

= E U l l ~ ( t ,  H )  - z ( t ,  H ) l l  

< ExU]12(Zh H) - z(zt, H)ll + 2MA(e) 
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+ H)  - z(z-,, n ) l l ]  + 2MA( ) 

C1,4@) q-- V2(g) n t- C2z (g) -t- 2MA(E) , Vt [Z'l, z-/+l] �9 

The right hand side of last inequality tends to zero as e tends to zero, which 
establishes our desired result. �9 
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