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ABSTRACT
We study the effect of the time delays on the convergence of
replicator dynamics to the evolutionary stable strategies in
a symmetric evolutionary game in which each pure strategy
is associated with its own delay. We compare the stability
region to that obtained when all strategies have the same
delay. Multiple Access Game and Hawk and Dove Game
are studied.

Keywords
hawk and dove game, multiple access game, evolutionary
stable strategy, delay differential equation, replicator dy-
namics.

1. INTRODUCTION
Evolutionary game theory is developed by biologists for

predicting population dynamics in interaction. It differs
from classical game theory by (i) its focusing on the evolu-
tion dynamics of the fraction of members of the population
that use a given strategy, and (2) in the notion of Evolution-
ary Stable Strategy (ESS, [27]) which includes robustness
against a deviation of a whole (possibly small) fraction of
the population who may wish to deviate (This is in contrast
with the standard Nash equilibrium that only incorporates
robustness against deviation of a single user).

Recently, however, evolutionary game theory has become
of increased interest to social scientists [13]. In computer
science, evolutionary game theory is appearing, some exam-
ples of applications can be found in multiple access protocols
[6], multihoming[26] and resources competition in the Inter-
net[35].

We assume there is a time delay between the moment that
a strategy is used till the player feels the impact of its action
(i.e. till it receives the corresponding fitness ). Time delay
can represent a time scale much slower than the physical
delays[18, 3]. In a computer network, the evolution time
scale could be of the order of months or years and could
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apply to the evolution of services or of protocols, whereas
the physical delays can be of the order of a second [18] or
less.

Related work. Delay and its impact on system stabil-
ity have been studied in many engineering contexts. Much
recent work can be found in the area of flow and congestion
control [2, 22, 18]. Several studies have considered delays
in evolutionary games. Tao and Wang[34] studied the effect
of a (symmetric) time delay on the stability of interior sta-
tionary points of replicator dynamics[31]. They considered a
two-player game (i.e the interactions between populations of
strategies occur between many encounters of pairs of play-
ers) with two strategies and a unique asymptotically stable
interior stationary point and they showed that the mixed
ESS can be an unstable equilibrium state of the population
if the delay is large. A similar result is proved by Alboszta
and Miȩkisz [1] in the discrete replicator dynamics of the
social model.

Our goal is to study the effect of time delays in evolution-
ary games with one population of users and two strategies.
We assume as usual that the interactions between the strate-
gies are manifested through many local interactions between
pairs of players. We shall use the standard representations
of these as a two players matrix game, each player with two
strategies; the expected fitness of a player is computed by
using as strategy for the other player the fraction of the
population that uses each pure strategy.

We study in particular the case where the delays corre-
sponding to different strategies are not the same. We study
the stability as a function of delays. We derive new stability
conditions for the replicator dynamics with non-symmetric
delays and apply it to the Hawk and Dove game and the
Multiple Access Game.

The paper is structured as follows. We first provide in the
next section the needed background on delayed evolutionary
games. We then study the stability of ESS for the case
of two strategies. Next, we investigate the impact of the
choice of some parameters in the replicator dynamics on the
stability of the system in Section 4 and apply the results
to the Multiple Access Game and Hawk and Dove Game.
Finally we give some stability condition in games with delay
with any integer number n of strategies we discuss how to
use Nyquist stability criterion with the replicator equation.

2. EVOLUTIONARY GAMES WITH DELAYED
DYNAMICS

We consider a large population of players. We assume that



there are n pure strategies. A strategy of an individual is a
probability distribution over the pure strategies. An equiv-
alent interpretation of strategies is obtained by assuming
that individuals choose pure strategies and then the prob-
ability distribution represents the fraction of individuals in
the population that choose each strategy.

We denote by A = (Kaij)i,j=1,...,n the payoff matrix where

K is a positive parameter (this parameter doesn’t change the
equilibrium set). The individuals compete through a large
number of random pairwise interactions. If an individual
uses at time t a strategy k then it receives an expected pay-
off (fitness) at time t + τk where τk is the time delay of the
strategy k.

Let x be the n dimensional vector whose i−th element
xi is the population share of strategy i. Let fi(x) be the
expected payoff value of the strategy i when the composition
of population is x. The payoff of the individual using the
strategy i is Fi(x) := R + fi(x) where R is the individual’s
payoff when there is no game (at the initial time). The
payoff function f = (fi)i=1,...,n is given by

fi(x) = eiAx

where ei i−th element of the canonical basis of R
n. Note

that F is affine in x. Equivalently, Fi(x) can be interpreted
as the payoff of a player in the matrix-game using strategy
i when it encounters a player with mixed strategy x.

ESS
A state x∗ is an ESS, if for all x 6= x∗, there exists some
ǫx > 0 such that

x∗A(ǫx + (1 − ǫ)x∗) > xA(ǫx + (1 − ǫ)x∗)

for all ǫ ∈ (0, ǫx). That is, x∗ is ESS if, after mutation, non-
mutants are more successful than mutants, in which case
mutants cannot invade and will eventually get extinct. The
number ǫx is called invasion barrier [33]. It is the maximum
rate of mutants against which x∗ is resistant. The conditions
to be an ESS can be related to and interpreted in terms of
Nash equilibrium in a matrix game. If x∗ is an ESS then
x∗ is a Nash equilibrium. Equivalently, x∗ is an ESS if and
only if it meets the best reply conditions:

xAx∗ ≤ x∗Ax∗, ∀ x, and

xAx∗ = x∗Ax∗ ⇒ xAx < x∗Ax, ∀ x 6= x∗.

Replicator Dynamics
We introduce here the replicator dynamics which describe
the evolution in the population of the various strategies.
In the replicator dynamics, the share of a strategy in the
population grows at a rate proportional to the difference
between the delayed payoff of that strategy and the average
delayed payoff of the population. More precisely, consider n
strategies. Let x(t) be the n dimensional vector whose ith
element xi(t) is the population share of strategy i at time t.
Thus we have

Pn
i=1 xi(t) = 1 and xi(t) ≥ 0. The vector x

represents a state of the population.
In the classical replicator dynamics, the payoff of strategy

i at time t has an instantaneous impact on the rate of growth
of the population size that uses it. An alternative more re-
alistic model for replicator dynamic would have some delay:
the payoff acquired at time t will impact the rate of growth
τi time later.

Suppose that each individual of the population only uses
a pure strategy i = 1, . . . , n.

Then, the fitness of an individual using the strategy i at
time t when the state of the population is x(t) at time t is
Fi(x(t−τi)) and the replicator dynamics of xi(t) is given by

ẋi(t) = xi(t)
ˆ

Fi(x(t − τi)) − F̄ (x(t))
˜

, i = 1, . . . , n (1)

where F̄ (x(t)) =
P

k xk(t)Fk(x(t − τk)) is the expected fit-
ness of the population. The strategies with larger fitness are
expected to propagate faster in a population.

There is a close relation between the rest points of the
replicator equation and the Nash equilibria given by the
(symmetric) finite game called as the folk theorem of evolu-
tionary game theory [8].

We see that the fitness for a player at a given time is de-
termined by the action i taken by the player at that time,
as well as by the actions of the population it interacts with,
that was taken τi units ago. Thus the action of a player
at time t determines the delay of the interference from the
rest of the population. The following example in the con-
text of wireless communications illustrates this. Consider
a transmitter A and a very close receiver B. Transmitter A
can decide whether to transmit with frequency f1 or f2. If it
transmits with frequency fi then its signal receives interfer-
enece at receiver B from transmitters that are located at a
distance of Di from the receiver, which translates to a time
delay of τi (where i = 1, 2). Thus indeed, the action of a
player determines the delay it will take for actions of other
players to be effective.

Convergence to the ESS
We define the notion of evolutionary stable state in presence
of delay in this section. We refer the reader to [24, 34, 5,
16] for these notions without delays. We denote by τ the
maximum of the delays τj , j = 1, . . . , n.

Definitions 1. 1. The state x∗ is stationary state (or
rest point, see [14]) of the differential equation (1) if it
is a critical point i.e the right side of (1) is zero at x∗.
This condition becomes ∀i, x∗

i = 0 or
Pn

j=1 aijx
∗
j =

P

k

P

l aklx
∗
kx∗

l

2. x∗ is stable if it is a stationary point with the prop-
erty that for every neighborhood V of x∗, there exists a
neighborhood U ⊂ V with the property that if x(t) ∈ U
for t ∈ (−τ, 0) then x(t) ∈ U for all t > 0.

3. x∗ is asymptotically stable if it is stable and there exists
a neighborhood W of x∗ such that x(t) ∈ W for all
t ∈ (−τ, 0) implies limt→+∞ x(t) = x∗

4. x∗ is exponentially stable if it is stable and there exists
t0, L, η > 0 such that ∀ t ≥ t0, |x(t)−x∗| ≤ Le−η(t−t0).

Note that exponential stability implies asymptotic stabil-
ity which implies (local) stability.

3. TWO STRATEGIES: TWO-BY-TWO GAMES
Suppose that each individual of the population only uses

a pure strategy. Denotes ξ(t) = x1(t) the proportion of
individuals in the population using the first strategy at time



t, the replicator dynamic of ξ(t) is given by

ξ̇(t) = −K · δξ(t)(1− ξ(t))× (2)
»

(a12 − a11)

δ
ξ(t − τ1) +

(a21 − a22)

δ
ξ(t − τ2) − ξ∗

–

where δ = (a21 − a11) + (a12 − a22), ξ∗ = a12−a22

δ
. As in

[34], if the payoff matrix A satisfies

“

a12 > a22, a21 > a11

”

or
“

a12 < a22, a21 < a11

”

then 0 < ξ∗ < 1 and ξ∗ is a unique interior stationary point
so called fixed point, rest point or equilibrium point in [17,
33, 24].

4. STABILITY ANALYSIS
We study the stability (2) at the interior equilibrium ξ∗.

Linearization around the interior stationary point.
Let z(t) = ξ(t) − ξ∗ then taking only the terms that are

linear in z, equation (2) can be rewritten as

ż(t) = −γ [αz(t − τ1) + βz(t − τ2)] (3)

where γ = Kξ∗(1 − ξ∗), α = a12 − a11, β = a21 − a22. It
is known ([4, pp.336],[15, pp.188]) that the steady state ξ∗

is asymptotically stable for (2) if the trivial solution of the
linearized version (3) is asymptotically stable.

Laplace transformation - Characteristic equation.
Taking the Laplace transform of (3), we obtain the fol-

lowing characteristic equation

s + γ
ˆ

αe−τ1s + βe−τ2s˜ = 0 (4)

Stability condition.
If all solutions of the characteristic equation (4) have a

negative real part then the stationary point z = 0 of (3) is
(asymptotically) stable. Hence, the stationary point ξ∗ is
asymptotically stable (2) . Conversely, if there is a solution
s of (4) with ℜ(s) > 0 then trivial solution is not stable for
(3).

If s = u + iv then equation (4) can be written as the
system



u + αγe−τ1u cos(τ1v) + βγe−τ2u cos(τ2v) = 0
v − γαe−τ1u sin(τ1v) − βγe−τ2u sin(τ2v) = 0

4.1 Symmetric delay
Consider the following linear delay differential equation

z(t) = −az(t − τ ) (5)

with τ, a > 0 and its characteristic equation

λ + ae−λτ = 0 (6)

Necessary and sufficient condition of asymptotic stability as
a function of the delay is given by the following lemma. A
proof can be found in [15, proposition 1.2.8]

Lemma 1. A necessary and sufficient condition for all roots
of (6) to have negative real parts is 2aτ < π

When τ1 = τ2 = τ , the trivial solution of (3) is asymptot-
ically stable if

Kτ <
δπ

2δ1δ2
(7)

and unstable if Kτ > δπ
2δ1δ2

where δ1 = a21 − a11, δ2 =
a12 − a22 and δ = α + β = δ1 + δ2.

The case Kτ = δπ
2δ1δ2

is called bifurcation point. By using

lemma 1, we conclude that the dynamic (2) is asymptotically
stable at the stationary point ξ∗ = δ2

δ
if K and τ satisfies

(7).

4.2 One strategy is not delayed
If one of the strategies has no delay, the characteristic

equation has the form

φ(s) = s + a + be−sτ = 0 (8)

If s = u + iv then (8) is equivalent to



u + a = −be−τu cos(τv)
v = be−τu sin(τv)

(9)

Remark 1. If (u, v) is a solution of (9) then

• (u,−v) is also a solution of the system (9).

• One has (u + a)2 + v2 = b2e−2τu.

Theorem 1 (see [11]). • If |a| 6= |b|. Then all roots λ
of the characteristic equation (8) have real part strictly
negative if and only if

|b| < |a| or (10)

|b| > |a| and τ ≤
arcsin( 1

|b|

√
b2 − a2)

√
b2 − a2

(11)

• If a = b > 0 then characteristic equation has no roots
with strictly positive real part.

Corollary 1. If the strategy 1 has no delay then

• When |β| < |α|, increasing τ2 does not change the sta-
bility of the dynamical system (3). Thus the equation
(2) is stable for any τ2 ≥ 0.

• When |β| > |α|, the equation (2) is stable if Kτ2 < τ̄2

and unstable if Kτ2 > τ̄2 where

τ̄2 :=
arcsin

“

1
|β|

p

β2 − α2
”

ξ∗(1 − ξ∗)
p

β2 − α2

When the strategy 2 has no delay then

• When |β| > |α|, increasing τ1 does not change the sta-
bility of the dynamical system (3). Thus the equation
(2) is stable for any τ1 ≥ 0.

• When |β| < |α|, the equation (2) is stable if Kτ1 < τ̄1

and unstable if Kτ1 > τ̄1 where

τ̄1 :=
arcsin

“

1
|α|

p

α2 − β2
”

ξ∗(1 − ξ∗)
p

α2 − β2



Comparison between asymmetric/symmetric delay bound

Let φ = arccos(−a/b)√
b2−a2

, b > |a| and Θ = π/2
a+b

.

Case 1: a > 0. Let c = a/b. One has arccos(−c)√
1−c2

≥ π/2
1+c

.

So, φ is greater than Θ. Note that Θ is greater than the
sufficient bound given in theorem 3.

Case 2: a < 0. So, c < 0 and φ is lower than Θ.

4.3 Others dynamics
There are evolutionary scenarios which may not involve

pairwise encounters between members of different popula-
tions. Fitness can be meaningful in determining the evo-
lution of populations in context of genetic algorithms that
involve interactions of a large number individuals. The repli-
cator dynamics has been used for describing the evolution
of road traffic congestion in which the fitness is determined
by the strategies chosen by all drivers [25]. It has also been
studied in the context of the association problem in wireless
networks in [26].

On the other hand, there is a large number of population
dynamics other than the replicator dynamics which have
been used in the context of non-cooperative games. Exam-
ples are the Brown – von Neumann – Nash [7] dynamics,
the fictitious play dynamics and gradient methods [23].

4.4 Evolutionary Multiple Access Game
We consider a large population of players playing the Mul-

tiple Access Game introduced in [12]. Multiple Access Game
introduces the problem of medium access. The Multiple Ac-
cess Game is a symmetric nonzero-sum game, but the play-
ers have to share a common resource, the wireless medium,
instead of providing it. Assume that the players use pure
strategies. Consider two players Player I and Player II who
want to send some packets to their receivers R1 and R2 using
a shared medium. We assume that the players have a packet
to send in each time slot and they can decide to transmit
it or not. Suppose furthermore that Player I, Player II, R1
and R2 are in the power range of each other, hence their
transmissions mutually interfere (see figure 1). Each of the
players has two possible strategies: either transmit (T ) or
to stay quiet (S). If Player I transmits his packet, it in-
curs a transmission cost of ∆ ∈ (0, 1) after a delay τT . The
packet transmission is successful if Player II does not trans-
mit (stays quiet) in that given time slot, otherwise there is
a collision. If there is no collision, Player I gets a reward
of 1 from the successful packet transmission after the delay
τT . We assume that the strategy stay quiet has no delay
(τS = 0).

The interaction is represented in figure 2.
This matrix game has two pure Nash equilibria (T, S) and

(S, T ) a unique mixed Nash equilibrium (NE) given by (1−
∆, ∆). We shall show that this NE corresponds to an ESS
in the evolutionary game.

Note that the pure strategies (T, S) and (S, T ) are also
optimal in Pareto1 sense and non-symmetric. The scalar
1 − ∆ (resp. ∆) represents proportion of individuals which
transmit (resp. stay quiet). When the two subpopulation
use this strategy, they obtain the same fitness equal to zero.

Proposition 1. The strategy (1−∆, ∆) is the unique ESS

1An allocation of payoffs is said Pareto-optimal if the out-
come cannot be improved upon without hurting at least one
player.

S 1

R 1

R 2

S 2

Figure 1: Interaction between S1 and S2.

Player I receives

Player II’s decision
T S

T −∆ 1 − ∆
S 0 0

Figure 2: Multiple Access Game.

of the evolutionary multiple access game.

Proof. The strategy (1−∆,∆) is the unique symmetric
Nash equilibrium. Thus, it is the only candidate to be ESS.
Since, the strategies T and S have the same fitness when
population profile is (1 − ∆, ∆). We check the condition of
ESS given in definition 1. Let

A = K

„

−∆ 1 − ∆
0 0

«

Then ∀ ξ 6= 1 − ∆

(1 − ∆ − ξ, ξ − 1 + ∆)A

„

ξ
1 − ξ

«

= K(ξ − 1 + ∆)2 > 0

We conclude that (1 − ∆, ∆) is an ESS.

The following proposition gives the stability of the interior
equilibrium (1 − ∆, ∆) in the replicator dynamic (2).

Proposition 2. The mixed equilibrium (1−∆, ∆) is asymp-
totically stable if

2K∆(1 − ∆)τT < π

and not stable if 2K∆(1 − ∆)τT > π.

Proof. We denote by ξ(t) the proportion of individuals
using the the strategy T at time t. The replicator dynamic
equation with delays in the Multiple Access Game becomes

ξ̇(t) = −K · ξ(t)(1− ξ(t)) [ξ(t − τT ) − 1 + ∆] (12)

Taking linearized version of this equation and using lemma
1, we obtain the results.

4.5 Asymmetric positive delays
Let

ż(t) = −az(t − τ1) − bz(t − τ2) (13)

where a, b ∈ R and τ1, τ2 are positive. The characteristic
equation of 13 is given by

s = −ae−τ1s − be−τ2s (14)



Equation (14) can rewritten as

λ = −e−r1λ − Ae−r2λ (15)

where λ = s
a
, r1 = aτ1, r2 = aτ2.

Gopalsamy [15] proved that when a, b, τ1, τ2 are positive,
a sufficient condition for all roots of (14) to have negative
real parts is aτ1 + bτ2 < 1 and a necessary condition for the
same is aτ1 + bτ2 < π

2
. The following theorem give sufficient

conditions of stability of (13) at zero.

Theorem 2 (see [5, 19]). Suppose at least one of the fol-
lowing conditions holds

• a + b > 0, |a|τ1 + |b|τ2 < a+b
|a|+|b|

• a > 0, aτ1 < a−|b|
a+|b|

• b > 0, bτ2 < b−|a|
|a|+b

Then equation (13) is exponentially stable.

Theorem 3. Suppose that 0 < b < a and τ1 < 1
a+b

. Then

all roots of (14) have negative real parts (the equation (13)
is asymptotically stable).

Proof. By hypothesis, one has q := b
a
∈ (0, 1) and r1 <

1
1+q

. Since all roots of equation (15) have negative real parts
when r1 = 0, if the conclusion fails, then there must be some
r1 ∈ (0, 1

1+q
] such that equation (15) has purely imaginary

roots ±iy, y > 0 satisfying

cos(r1y) = −q cos(r2y)

y − sin(r1y) = q sin(r2y)

One has

q2 − 1 = y2 − 2y sin(r1y)

that is

f(y) :=
y2 + 1 − q2

2y
= sin(r1y) (16)

Since −1 ≤ sin(r1y) ≤ 1 ⇒ y ∈ (1 − q, 1 + q).

f(y) =
y

2

„

1 +
1 − q2

y2

«

≥ y

2

„

1 +
1 − q2

(1 + q)2

«

(17)

≥ y
1

1 + q
> r1y ≥ sin(r1y) (18)

a contradiction with (16).

Corollary 2. If one of the following conditions holds, then
ξ∗ is stable

• α + β = δ > 0, K (|α|τ1 + |β|τ2) < δ
ξ∗(1−ξ∗)(|α|+|β|)

• α > 0, Kτ1 < α−|β|
αξ∗(1−ξ∗)(α+|β|)

.

• β > 0, Kτ2 < β−|α|
βξ∗(1−ξ∗)(|α|+β)

.

• 0 < β < α, Kτ1 < 1
δξ∗(1−ξ∗)

5. THE HAWK AND DOVE GAME
We study in this section a very simple game known as

Hawks and Doves. consider the problem of the Hawk-Dove
game, analyzed by Smith and Price in [27]. In this game, two
individuals compete for a resource. In biological contexts,
the value of the resource corresponds to an increase in the
fitness of the individual who obtains the resource. Each
individual follows exactly one of two strategies described
below:

• The Hawk is very aggressive and always fights for some
resource. Fights between hawks are brutal and equal
in fighting ability. Each hawk has a 50% chance of
winning a Hawk–Hawk conflict.

• The Dove never fights for a resource – it displays in any
conflict and if it is attacked it immediately withdraws
before it gets injured.

These two simplified behavioral strategies employ very dif-
ferent means to obtain resources – fighting in Hawks and
display in Dove. These differences in behavior have marked
consequences on the chance of winning and of paying certain
types of costs. The cost of the conflict reduces individual
fitness by the value 2. When a Hawk meets a Dove, the
Dove immediately retreats and the Hawk obtains the re-
source value 1 and when two Doves meet, the resource is
shared equally between them 1

2
. The fitness for the Hawk-

Dove game can be summarized according to the figure 3.

Player I

Player II
H D

H (−1
2

, −1
2

) (1, 0)

D (0, 1) ( 1
2
, 1

2
)

Figure 3: Strategic form representation of Hawk and

Dove game. The numbers in parentheses represent

the fitness accrued by players I and II, respectively

for each possible strategy profile. The hawk is rep-

resented by H and the Dove by D.

The matrix game given in figure 3 has two pure Nash
equilibria (H,D) and (D, H) and a unique mixed Nash equi-
librium given by ( 1

2
, 1

2
). The pure strategies profiles (H,D)

and (D, H) are also Pareto optimal. The mixed Nash equi-
librium ( 1

2
, 1

2
) is an ESS but is not a Pareto optimal strategy.

The replicator dynamic equation is given by

ξ̇(t) = − K

2
ξ(t)(1 − ξ(t)) [3ξ(t − τH) − ξ(t − τD) − 1] (19)

ξ∗ = 1
2

is the unique interior stationary state of the equation
(19). The mixed strategy (ξ∗, 1−ξ∗) is asymptotically stable
in the replicator dynamic without delay. In the dynamic
(19),

• The strategy (ξ∗, 1−ξ∗) is stable if KτH < 4. In partic-
ular if the strategy hawk has no delay then the interior
stationary point is stable for any τD.

• If the strategy Dove has no delay then the interior sta-
tionary point is stable when KτH < 2

√
2 arccos (−1/3) ≈

5.4040 and unstable if KτH > 2
√

2 arccos (−1/3).



Numerical solutions.
The numerical solutions given figure 4 are obtained when

initial condition is 0.2 and delay τH between 0.2 and 7. For
the delay τH = 7 and τS = 0.02, (unstable situation) the
proportion of hawks in population is negligible between 25
and 35. In this interval, we can consider that the opponent
of the dove is also a dove. The hawks prefer to have today
the half of the payoff by changing their strategy to Dove
rather than to wait. The doves profit of these moments. We
constat that for a large enough τH the solutions oscillate
around the equilibrium point 1/2.
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τ= 7,0.02

Figure 4: Oscillation for τH = 7 and convergence to

the equilibrium point 1/2 for τH = 0.2

6. EVOLUTIONARY GAMES WITH DELAYED
REPLICATOR DYNAMICS: GENERAL CASE

In this section, we introduce replicator dynamics for a
population with n strategies and n asymmetric delays with
n > 2.


ẋi(t) = xi(t)
ˆ

eiAx(t− τi) −
P

k xk(t)ekAx(t − τk)
˜

i = 1, . . . , n.

Suppose that equation (6) has an interior stationary point
x∗. The linearized equation is given by

żi = x∗
i

"

eiAz(t − τi) −
X

k

x∗
kekAz(t − τk)

#

(20)

i = 1, . . . , n

where z(t) = x(t) − x∗. This equation can be written as

ż(t) = K

n
X

l=1

Blz(t − τl)

where z(t) = t(z1(t), . . . , zn(t)) and Bl =
`

bl
ik

´

∈ R
n×n,

bl
ik =



x∗
i (1 − x∗

i )aik if l = i
−x∗

i x
∗
l alk if l 6= i.

Characteristic equation

det

 

λI − K

n
X

l=1

Ble−τlλ

!

= 0. (21)

A necessary and sufficient condition of stability of (20) is
that all roots of the equation (21) have negative real parts.

7. NYQUIST STABILITY CRITERION
We use Nyquist stability criterion to determine numeri-

cally the stability of the non-linear systems (2). Nyquist
plot is very used in automatic control for assessing the sta-
bility. It is represented by a graph in polar coordinates in
which the gain and phase of a frequency response are plot-
ted. This concept of plotting has been generalized to non-
linear systems by Desoer, Stevens and Mason in [9, 21, 29].
Some applications of this notion of stability can be found in
[32, 10, 30, 20].

Consider the complex equation (∗) : 1+ g(s) = 0 where g
is a meromorphic complex function. The Nyquist stability
criterion of (∗) states that the number of unstable poles of
(∗) is equal to the number of unstable poles of the function
g plus the number of encirclements of −1 of the Nyquist
plot of the complex function g. This can be easily justified
by applying Cauchy’s principle of argument to the function
g(s).

1

2iπ

I

C

g′(s)

g(s)
ds = Z − P

where C is simple closed contour, Z is the number of zeros
of g contained in C and P the number of poles of g inside
the contour C with g having no zeros or poles on C.

Characteristic equation: Nyquist plot approach.
Nyquist plot of the function

g : w 7−→ γαe−iτ1w + γβe−iτ2w

iw

on (0, +∞) determine the stability of the dynamical system
(3). For a population with n strategies, the function g is
given by

g : λ 7→ det

 

I − K

λ

n
X

l=1

Ble−τlλ

!

− 1

We keep the same parameters as in the Hawk and Dove
game given in section 5 and we discuss about stability by
varying delays in figure 5,7 and 6. In the figure 7, delays are
τH = 7, τD = 0.2, the graph encircles the point −1 + 0 × i
i.e the system (3) is not stable. In figure 5 and 6, delays
are respectively τH = τD = 0.2, and τH = 0.2, τD = 10
respectively and the system is stable. In all these figures,
K = 1. All turn out to confirm the stability condition that
we obtained in previous sections.

8. CONCLUSIONS
Delay is very important in evolutionary game dynamics.

In this paper, we considered evolutionary games with one
population of users and studied asymmetric delays impact
on convergence to ESS. We showed that the evolutionary
multiple access game has an unique ESS which can be un-
stable when the delay of transmission is large.
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http://yuba.stanford.edu/ñanditad/GroupMeetFeb04.pdf.

[11] H. I. Freedman and Y. Kuang, Stability Switches in
Linear Scalar Neutral Delay Equations, Funkcialaj
Ekvacioj, 34 (1991) 187-209.

[12] M. Felegyhazi and J.-P. Hubaux, Game Theory in
Wireless Networks: A Tutorial, EPFL technical report,
LCA-REPORT-2006-002, February,2006.

[13] Daniel Friedman, On economic applications of
evolutionary game theory, Journal of Evolutionary
Economics, 1998,8,1,15-43.

[14] H. Gintis, Game Theory Evolving, Princeton University
Press,2000.

[15] K. Gopalsamy, Stability and Oscillation in Delay
Differential Equations of Population Dynamics, Kluwer
Academic Publishers, London,1992.

[16] J. Hofbauer and K. Sigmund, Evolutionary game
dynamics, American Mathematical Society, Vol 40 No. 4,
pp. 479-519,2003.

[17] J. Hofbauer and K. Sigmund, Evolutionary Games and
Population Dynamics, Cambridge University Press,
Cambridge, UK, 1998.

[18] R. Johari and D. Tan,End-to-End Congestion Control for
the Internet: Delays and Stability, IEEE/ACM
Transactions on Networking,2001,9,6.

[19] X. Li and S. Ruin and J. Wei, Stability and bifurcation
in delay-differential equations with two delays, Journal of
math. analysis and applications, vol. 236, no2, pp.
254-280, 1999.
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