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Abstract—We develop in this paper a trend detection algo-
rithm, designed to find trendy topics being disseminated in a
social network. We assume that the broadcasts of messages in
the social network is governed by a self-exciting point process,
namely a Hawkes process, which takes into consideration the real
broadcasting times of messages and the interaction between users
and topics. We formally define trendiness and derive trend indices
for each topic being disseminated in the social network. These
indices take into consideration the time between the detection and
the message broadcasts, the distance between the real broadcast
intensity and the maximum expected broadcast intensity, and the
social network topology. The proposed trend detection algorithm
is simple and uses stochastic control techniques in order calculate
the trend indices. It is also fast and aggregates all the information
of the broadcasts into a simple one-dimensional process, thus
reducing its complexity and the quantity of necessary data to the
detection.

I. INTRODUCTION

This paper introduces a novel trend detection algorithm
which seeks to discover trendy topics being disseminated in a
social network.

Since we are dealing with social networks, we cannot use
classical trend detection algorithms [1], [2], as they simply use
text mining and queuing techniques and do not grasp the full
relationship between users and contents in the social network.
This idea of leveraging social and textual contents is quite
recent, with works as [3], [4] shedding some light into the
matter.

Thus, in order to fully exploit the social ties between users
and information in social networks, the proposed algorithm
bases itself on information diffusion models [5], [6], [7], [8],
or more specifically on a Hawkes-based model for information
diffusion in social networks [9], [10], [11], [12]. Being aware
that the adoption of a parametric Hawkes model for informa-
tion diffusion could theoretically restrict the usefulness of the
trend detection algorithm, we are persuaded that it remains
interesting for several reasons: 1) it allows leveraging on the
knowledge of the influences between users and contents, 2) it
allows fully exploring the real time of broadcasts, 3) it allows
leveraging on the knowledge of users intrinsic (or exogenous)
rates, 4) its intensity represents the propensity of users to
broadcasts topics at each time, thus serving as proxy for the
activity level of topics and users in the social network [13],
etc.

Such information diffusion frameworks were already
adopted under different scenarios, as did Kempe et al. in
their seminal paper [6] by developing a framework based
on submodular functions to detect the optimal seed group
in order to diffuse a content, using the so-called indepen-
dent cascade propagation model [5]. Other examples of such
methodology are [8], where Altshuler et al. derive a method
capable of predicting future trends based on the analysis of past
social interactions between community members of a scale-
free network; [14], where Cheng et al. propose a framework
for addressing cascade prediction problems, motivated by a
view of cascades as complex dynamic objects passing through
successive stages while growing; and [15], where Leskovec et
al. develop a scalable framework for tracking short, distinctive
phrases (so-called memes [16]) that travel relatively intact
through online text, providing a representation of the news
cycle.

As already mentioned, we adopt in the present work
an information diffusion approach and use specifically point
processes, namely Hawkes processes [17], [18], to track the
exact diffusion times of the information cascades in a social
network, taking into account the interaction between the topics,
the users and the underlying social network structure.

We assume that there exist different topics being dissemi-
nated in a social network and we employ the Hawkes process
to count the number of broadcasts of these topics by each of the
users in the social network. We say that a topic is trendy if it
has a rapid increase in its broadcasting Hawkes intensity. These
topic intensities are combinations of the users broadcasting
intensities, where each user contributes to the topic intensities
with a measure of his impact on the network, proportional to
his network outgoing eigenvector centrality [19].

A trendy topic has then a burst in its broadcasting in the
network, which corresponds to an increase in its broadcasting
intensity, or a peak. Our algorithm thus seeks the ”peaks” in
the intensity of the underlying Hawkes process in order to
determine the topics that are likely to be trendy in the future.

In order to search these ”peaks” in the Hawkes intensity,
we use scaling techniques [20] on the Hawkes intensity to
transform it into a Brownian diffusion, which allows the use
of the well known machinery of stochastic control [21] to
implement our trend detection algorithm.



Contributions

The contributions of this paper are the following:

• To the best of our knowledge, this is the first trend
detection algorithm that uses point processes and
stochastic control techniques. These techniques are
successfully used in many other fields, and are com-
plementary tools to machine learning and text mining
techniques, hence providing more diversified treat-
ments for this kind of problem.

• The difference between the proposed trend detection
algorithm and one that looks solely at the topics
with the largest number of broadcasts is that we
aim to detect those topics that are trendy but do not
necessarily with large number of broadcasts. Indeed,
the most straightforward approach would be to look at
the point process intensities and choose those topics
with the highest intensities. Our approach is different:
we do not compare topics between themselves, but
rather compare the topic intensities with their max-
imum expected intensities, meaning that topics that
do not have yet large intensities can indeed become
trendy. Still, our algorithm is also able to capture the
trendiness coming from large intensities.

The remainder of this paper is organized as follows. In
section II, we present the adopted model of information
diffusion in the social network using Hawkes processes. In
section III, we define trendiness in our context, detail our trend
detection algorithm and derive the trend indices for topics of
messages broadcasted in the social network. In section IV, we
illustrate our algorithm using two different datasets. Section V
eventually concludes the paper.

II. INFORMATION DIFFUSION

We start the theoretical study of our trend detection algo-
rithm by adopting a model for information diffusion in social
networks. This model is based on point processes, or more
precisely on the so-called linear Hawkes process [17], [18].

A. A Hawkes model

Hawkes-based information diffusion models are widely
adopted to model information diffusion in social networks [9],
[10], [11], [12]. This is due to several reasons, which are
nonexhaustively listed here:

• They are point processes [22], and as such they are
designed to model discrete events in networks such as
posting, sharing, tweeting, liking, digging, etc.

• Hawkes processes are self-excited processes, i.e., the
probability of a future event increases with the occur-
rence of past events.

• They possess a simple and linear structure for their
intensity (the conditional expectation of an occurrence
of an event, at each time).

• They present simple maximum likelihood formulas
[22], [23], which facilitates a maximum likelihood
estimation of the parameters.

• A linear Hawkes process can be seen as a Poisson
cluster process [24], which permits the distinction of
two regimes: a stationary (or stable) regime in which
the intensity processes has a stationary and nonexplo-
sive version, and a nonstationary (or unstable) regime,
in which the process has an unbounded number of
events (see [17], [25] for details).

• It easily allows extensions from the basic model, such
as multiple social networks [26], dynamic/temporal
networks [27], seasonality and/or time-dependence for
the intrinsic diffusion rate of users [12], etc.

Thus, after listing the properties of Hawkes processes that
are interesting when modeling information diffusion in social
networks, we start the detailed description of the adopted
information diffusion model in this paper:

We represent our social network as a communication graph
G = (V,E), where V is the set of users with cardinality ]V =
N and E is the edge set, i.e., the set with all the possible
communication links between users, as in [11]. We assume this
graph to be directed and weighted, and coded by an inward
adjacency matrix J such that Ji,j > 0 if user j is able to
broadcast messages to user i, or Ji,j = 0 otherwise. If one
thinks about Twitter, Ji,j > 0 means that user i follows user
j and receives the news published by user j in his or her
timeline.

We assume that users in this social network broadcast
messages (post, share, comment, tweet, retweet, etc.) during
a time interval [0, τ ]. These messages represent information
about K predefined1 topics (economics, religion, culture, pol-
itics, sports, music, etc.), and at each event the broadcasted
message concerns one and only one specific topic among these
K different ones.

When broadcasting, users may influence others to broad-
cast. For example: when tweeting, the user’s followers may
find the tweet interesting and retweet it to their friends and
followers, generating then a cascade of tweets.

We assume that these influences are divided into two
categories: user-user influences and topic-topic influences. For
example, during these retweeting cascade, users may react
differently to the content of the tweet in question, which of
course may imply a different influence of this particular tweet
among users. By the same token, the followers in question
may respond differently depending on the broadcaster, since
people influence others differently in social networks.

The influences are coded by the N ×N matrix J and the
K×K matrix B, such that Ji,j ≥ 0 is the (possible) influence
of user i over user j and Bc,k ≥ 0 is the (possible) influence
of topic c over topic k.

In light of this explanation, we assume that the cumulative
number of messages broadcasted by users is a linear Hawkes
process X , where Xi,k

t represents the cumulative number of
messages of topic k broadcasted by user i until time t ∈ [0, τ ].

Let Ft = σ(Xs, s ≤ t) be the filtration generated by
the Hawkes process X . Our Hawkes process is then a RN×K

1In our work, we rely on text mining techniques only to classify the
broadcasted messages into different topics.



point process with intensity λt = limδ↘0 E[Xt+δ −Xt|Ft]/δ
defined as

λi,kt = µi,k +
∑
j

∑
c

Ji,jBc,k

∫ t−

0

φ(t− s)dXj,c
s ,

where µi,k ≥ 0 is the intrinsic (or exogenous) intensity of
the user i for broadcasting messages of topic k and φ(t) is a
nonnegative causal kernel responsible for the temporal impact
of the past interactions between users and topics, satisfying
||φ||1 =

∫∞
0
φ(u)du <∞.

Remark: Two common time-decaying functions are φ(t) =
e−ωt.I{t>0} a light-tailed exponential kernel [11] and φ(t) =
(a+ t)−b.I{t>0} a heavy-tailed power-law kernel [9].

The intensity can be seen in matrix form as

λt = µ+ J(φ ∗ dX)tB, (1)

where (φ ∗ dX)t is the N ×K convolution matrix defined as
(φ ∗ dX)i,kt =

∫ t
0
φ(t− s)dXi,k

s .

Remark: This paper is not concerned with the estimation
of the Hawkes parameters µ, J and B. Maximum likelihood
estimation and L2 contrast minimization procedures can be
used to estimate J and B, as in [11], [12], [28].

B. Stationary regime

As already mentioned in subsection II-A, one of the main
properties of linear Hawkes processes is that they have a
narrow link with branching processes with immigration [24],
which gives us the following result (whose proof is well
explained in [17], [25]):

Lemma 1. We have that the linear Hawkes process Xt admits
a version with stationary increments if and only if it satisfies
the following stability condition2

sp(J)sp(B)||φ||1 < 1. (2)

III. DISCOVERING TRENDY TOPICS

After defining in details the adopted information diffusion
framework serving as foundation for our trend detection al-
gorithm, we continue towards the real goal of this paper: to
derive a Hawkes-based trend detection algorithm.

The proposed algorithm takes into consideration the entire
history of the Hawkes process Xt for t ∈ [0, τ ] and makes a
prediction for the trendiest topics at time τ , based on trend
indices Ik, k ∈ {1, 2, · · · ,K}. It consists on the following
steps:

1) Perform a temporal rescaling of the intensity follow-
ing the theory of nearly unstable Hawkes processes
[20], which gives a Cox-Ingersoll-Ross (CIR) process
[29] as the limiting rescaled process.

2) Search the expected maxima of the rescaled inten-
sities for each topic k ∈ {1, 2, · · · ,K}, with the
aid of the limit CIR process. This task is achieved
by solving stochastic control problems Vk following
the theory developed in [21], which measure the

2Where for a squared matrix A we denote by sp(A) its spectral radius, i.e.,
sp(A) = sup{|λ| | det(A− λI) = 0}.

deviation of the rescaled intensities with respect to
their stationary mean.

3) Generate from the control problems Vk time-
dependent indices Ikt , which measure the peaks of
each topic during the whole dissemination period
[0, τ ]. We create then the trend indices Ik =

∫ τ
0
Ikt dt

for each topic k ∈ {1, 2, · · · ,K}.

A. Trendy topics and rescaling

As our algorithm is based on the assumption that a trendy
topic is one that has a rapid and significant increase in the
number of broadcasts, a major tool in the development of this
trend detection algorithm is the rescaling of nearly unstable
Hawkes processes, developed by Jaisson and Rosenbaum in
[20].

As already mentioned in section II, Hawkes processes
possess two distinct regimes: a stable regime, where the
intensity λt possesses a stationary version and the number of
broadcasts is bounded almost surely, and an unstable regime
where the number of broadcasts is unbounded almost surely.

The intuition behind the rescaling is the following: since
we want to measure topics that have a burst in the number
of broadcasted messages, we place ourselves between the
stable and unstable regime, where the stability equation (2)
is barely satisfied, i.e., sp(J)sp(B)||φ||1 ∼ 1 - a Hawkes
process satisfying this property is called nearly unstable [20].
By placing ourselves in the stable regime, the Hawkes process
still possesses a limited number of broadcasted messages, but
as we approach the unstable regime, the number of broadcasted
messages increases (which could represent trendiness). Our
trend detection algorithm uses hence this rationale in order to
transform the Hawkes intensity λ into a Brownian diffusion,
for which stochastic control techniques exist and are easy to
implement.

The rescaling works thus in the following fashion: as the
trendy data has a large number of broadcasts, we artificially
”push” the Hawkes process X to the unstable regime when
estimating the parameters µ,B, J and φ, in order to accom-
modate this large quantity of broadcasts. Then, by rescaling
the intensity λ, it converges in law when τ → ∞ to a one-
dimensional Cox-Ingersoll-Ross (CIR) process (see theorem
1), whose deviation to the stationary mean is studied using
stochastic control techniques, or more precisely, by detecting
its expected maxima [21].

Remark: In order to find the most appropriate nearly
unstable regime for the Hawkes process X , the choice of the
time horizon τ is crucial, as it determines the timescale of
the predicted trends. It means that if ones uses τ measured in
seconds, the prediction regards what happens in the seconds
after the prediction period [0, τ ], if one uses τ measured in
days, the prediction regards what happens in the next day or
days after the prediction period [0, τ ], etc.

B. Topic trendiness

We recall the definition of trendiness in our context of
information diffusion: a trendy topic is one that has a rapid
and significant increase in the number of broadcasts.



Although this idea is fairly simple, care must be taken: the
definition must take into consideration the social network in
question, since users do not affect it on the same way. For
example: if Barack Obama tweets about climate change, one
may assume that climate change may become a trendy topic,
but if an anonymous user tweets about the same topic, one
has less argument to believe that the topic will become trendy.
By the same token, if a group composed of many people start
tweeting about the latest iPhone, one may consider it a trendy
topic, but if only a small group of friends starts tweeting about
it, again, one may not be inclined to think so.

Let us discuss it in more details: since the intensity λt is
associated with the expected increase in broadcasts at time t,
we use λ as base measure for the trendiness. Moreover, by the
previous paragraph, we must also weight the intensity λ with
a user-network measure responsible for the impact of users
on the network. In our case, this user-network measure is the
outgoing network eigenvector centrality of users [19].

Mathematically speaking, let vT be the left-eigenvector
of the user-user interaction matrix J , related to the leading3

eigenvalue ν > 0. Since v is the leading eigenvector of JT -
the outward weighted adjacency matrix of the communication
graph in our social network - it represents the outgoing
centrality of the network (also known as eigenvector centrality,
similar to the pagerank algorithm [19], [30]) and consequently
the users’ impact on the network, as desired.

Multiplying Eqn. (1) in the left by vT we have that

vTλt = vTµ+ vTJ(φ ∗ dX)tB

= vTµ+ νvT (φ ∗ dX)tB

= vTµ+ ν(φ ∗ vT dX)tB.

Define X̃t = XT
t v, λ̃t = λTt v and µ̃ = µT v, where they

all belong to RK . Transposing the above equation we have the
topics intensity

λ̃t = µ̃+ νBT (φ ∗ dX̃)t. (3)

The intensity λ̃t of the stochastic process X̃t has its kth
coordinate given by

λ̃kt =

N∑
i=1

λi,kt vi, (4)

which means that it represents a topic as a weighted sum by
users, where the weights are given by each user impact on the
social network.

By reference to the previous Obama example: since Obama
has assumedly a large v coefficient (he has a large impact
on the network), a topic broadcasted by him should be more
inclined to be trendy, and thus have a potentially large increase
in X̃t; on the other hand, if a topic is broadcasted by some
unknown person, with a small coefficient v, it will almost not
affect the topic intensity λ̃t.

3This left-eigenvector vT has all its entries nonnegative, together with
the eigenvalue ν ≥ 0, by the Perron-Frobenius theorem for matrices with
nonnegative entries, without the need of further assumptions. However, we
assume without loss of generality that ν > 0, which can be easily avoided
during the estimation.

Since X̃t is a linear combination of point processes, the
increase at time t in X̃t can be measured by its intensity λ̃t.
Consequently, we adopt λ̃k as surrogate for topic k trendiness
at time t.

C. Searching the topic peaks by rescaling

Our algorithm is concerned with the detection of trendy
topics at the final diffusion time τ , taking into consideration
all the diffusion history in [0, τ ]. This means that our goal is to
find topics that will possibly have more broadcasts after time
τ than they should have, if one looks at their broadcast history
in [0, τ ]. With that in mind, we say that topic k has a peak at
time t if its topic intensity λ̃kt achieves its maximum expected
intensity at time t.

Since the influences ν(φ ∗ dX̃)tB are always nonnegative
in Eqn. (3), we can only find peaks when λ̃k is greater than
or equal to its intrinsic mean µ̃k. Moreover, one can notice
that our definition does not take directly into consideration
comparisons between topics, i.e., our definitions of trendiness
and of peaks are relative, although there exist interactions
between topics through the topic-topic influence matrix B.

We continue to the formal derivation of the rescaling, which
is performed under the following technical assumption4:

Assumption 1. The topic interaction matrix B can be di-
agonalized into B = PDP−1 (where P is the matrix with
the eigenvectors of B and D is a diagonal matrix with the
eigenvalues of B) and B has only one maximal eigenvalue.

Moreover, we assume without loss of generality that Di,i ≥
Di+1,i+1 and that the largest eigenvalue is D1,1 > 0 (again,
by the Perron-Frobenius theorem, since B has nonnegative
entries).

Let us use, for simplicity, exponential kernels, i.e., φ(t) =
e−ωtI{t>0}, where ω > 0 is a parameter that reflects the
heaviness of the temporal tail. This means that a larger
ω implies a lighter tail, and a smaller temporal interaction
between broadcasts.

This choice of kernel function implies that our rescaling
uses only one degree of freedom - the timescale parameter
ω. It is then quite understandable that with just one degree of
freedom we can only have one nontrivial limit behavior for our
rescaled topic intensities λ̃kτt

τ . This behavior is thus dictated by
the leading eigenvector of B when rescaling. This argument
further supports assumption 1.

1) Rescaling the topic intensities: Using the decomposition
B = PDP−1, where D is a diagonal matrix with the
eigenvalues of B, we have that Eqn. (3) can be written as

λ̃t = µ̃+ ν(P−1)TDTPT (φ ∗ dX̃)t,

4The assumption that B can be diagonalized is in fact a simplifying one.
One could use the Jordan blocks of B, on the condition that there exists
only one maximal eigenvalue. This assumption is verified if, for example, the
graph associated with B is strongly connected; which means that every topic
influences the other topics, even if it is in an undirected fashion (by influencing
topics that will, in their turn, influence other topics, and so on). One can also
develop a theory in the case of multiple maximal eigenvalues for B, but it
would be much more complicated as the associated stochastic control problem
(as in [21]) has not yet been solved analytically, hence numerical methods
should be employed.



which when multiplied by PT by the left becomes

PT λ̃t = PT µ̃+ νDTPT (φ ∗ dX̃)t

= PT µ̃+ νD(φ ∗ PT dX̃)t

= PT µ̃+ νD(φ ∗ d(PT X̃))t.

Defining χt = PT X̃t, ϕt = PT λ̃t and ϑ = PT µ̃, we have
that χt is a K-dimensional stochastic process with intensity

ϕt = ϑ+ νD(φ ∗ dχ)t.

Under assumption 1, we have

ϕkt = ϑk + νDk,k(φ ∗ dχk)t, (5)

where ϕkt are uncoupled one-dimensional stochastic processes.

Now, following [20], we rescale ϕ by ”pushing” the
timescale parameter ω to the unstable regime of X̃ , so as
to obtain a nontrivial behavior (peak) for the intensity λ̃, if
any. In light of lemma 1 and assuming an exponential kernel
φ(t) = e−ωt.I{t>0}, we have that the timescale parameter ω
satisfies for some λ > 0

τ(1− νD1,1

ω
) ∼ λ

when τ → ∞, which implies (we assume without loss of
generality that τ > λ)

ω ∼ τνD1,1

(τ − λ)
. (6)

The rescaling stems from the next theorem (the one-
dimensional case is the theorem 2.2 in [20]) and is proven
in appendix B.

Theorem 1. Let assumption 1 be true, the temporal
kernel be defined as φ(t) = e−ωt.I{t>0}, let ρ =
((P−1)1,1, · · · , (P−1)1,K) be the leading left-eigenvector of
B, ṽ be the leading right-eigenvector of J , and define π =
(
∑
k(Pk,1)2ρk)(

∑
i v

2
i ṽi).

If ω ∼ τ
νD1,1(τ−λ) when τ → ∞, then the rescaled

process 1
τ ϕ

1
τt converges in law, for the Skorohod5 topology in

[0, 1], to a CIR process C1 satisfying the following stochastic
differential equation (SDE){

dC1
t = λνD1,1(ϑ

1

λ − C
1
t )dt+ νD1,1

√
π
√
C1
t dWt

C1
0 = 0,

(7)

where Wt is a standard Brownian motion.

Moreover for k > 1, the rescaled processes 1
τ ϕ

k
τt converge

in law to 0 for the Skorohod topology in [0, 1].

As a result, we are only interested in the CIR process C1,
since it is the only one that possesses a nontrivial behavior.
One can clearly see that, since a CIR process is a mean-
reverting one, C1 mean-reverts to the stationary expectation
µ = ϑ1

λ . As already discussed in subsection III-C, if one wants

5The Skorohod topology in a given space is the natural topology to study
càdlàg processes, i.e., stochastic processes that are right-continuous with finite
left limits. This topology has the goal to define convergence on cumulative
distribution functions and stochastic processes with jumps. See [31] for a
formal definition.

to capture some trend behavior one must see this process above
its stationary expectation µ, i.e., one must study the process
Ct = C1

t − µ.

By Eqn. (7), one easily has that Ct = C1
t − µ satisfies the

following SDE:

dCt = −λνD1,1Ctdt+ νD1,1

√
π
√
Ct + µdWt. (8)

Remark: A way of pushing the Hawkes process to the
instability regime, when estimating the matrices µ, J and B,
is to put the timescale parameter ω near the stability boundary
given by Eqn. (2).

2) The trend index: After rescaling the ϕt = PT λ̃t, we
effectively search for the peaks in λ̃ using the framework
developed by Espinosa and Touzi [21] dedicated to search for
the maximum of scalar mean-reverting Brownian diffusions.

For that goal, we define trend indices Ikt as the measure,
at each time instant t ∈ [0, τ ], of how far is the intensity λ̃k

from its peak. To do so, we use the fact that λ̃t = (P−1)Tϕt

to determine the limit behavior of λ̃kτt
τ , namely λ̃k,∞t , as

λ̃k,∞t =
∑
j

P−1j,k C
j
t = P−11,kC

1
t = P−11,k (Ct + µ),

where P is the eigenvector matrix of B in assumption 1 and
Ckt are the rescaled CIR processes in theorem 1.

Hence, in order to find our intensity peaks, we consider for
each topic k the following optimal stopping problem

Vk = inf
θ∈T0

E[
(P−11,k )2

2
(C∗T0

− Cθ)2], (9)

where C∗t = sups≤t Cs is the running maximum of Ct, Ty =
inf{t > 0 | Ct = y} is the first hitting time of barrier y ≥ 0
and T0 is the set of all stopping times θ (with respect to C)
such that θ ≤ T0 almost surely, i.e., all stopping times until
the process C reaches 0.

By the theory developed in [21], one has optimal barriers
γk relative to each problem Vk. A barrier represents the peaks
of the intensities, i.e., if the CIR process C touches the optimal
barrier γk, it means that we have found a peak for topic k.

The authors show that the free barriers γk have two mono-
tone parts; first a decreasing part γk↓ (x) and then an increasing
part γk↑ (x), which are found by solving the ordinary differential
equations (ODE) (5.1) and (5.15) in [21], respectively6.

We are now able to define for each time t ≤ T0, the
temporal trend indices Ikt as

Ikt =


ψ+(τ − t, Ct − γk(Ct)) if t < τ and Ct ≥ 0,
ψ−(τ − t, Ct − γk(C0)) if t < τ and Ct < 0,
Ψ+(Cτ − γk(Cτ )) if t = τ and Ct ≥ 0,
Ψ−(Cτ − γk(C0)) if t = τ and Ct < 0,

6For the CIR case we have by Eqn. (8) that the functions α, S and S′

defined in [21] are

• α(x) = 2λx
νD1,1π(x+µ)

, S′(x) = e
2λx

νD1,1π ( x
µ
+ 1)

− 2λµ
νD1,1π and

• S is a linear combination of a suitable transformation of the
confluent hypergeometric functions of first and second kind, M
and U , respectively (see [32]), since it must satisfy S(0) = 0 and
S′(0) = 1 (see [33]).



where ψ+/− are decreasing in time (the first variable), increas-
ing in space (the second variable) functions and Ψ+/− are
increasing in space functions. We impose ψ+/− as decreasing
functions of time because our trend detection algorithm is to
determine the trendy topics at time τ , the end of the estimation
time period. Thus the further we are in the past (measured by
τ − t), the less influence it must have in our decision, and
consequently in our trend index. By the same token, ψ+/− and
Ψ+/− must be increasing functions in space because we want
to distinguish topics that have higher intensities, and penalize
those that have a lower intensity, thus if the intensity is bigger
than the optimal barrier, we must give it a bigger index. If, on
the other hand, the intensity is smaller than the optimal barrier,
even negative in some cases, we must take into account the
degree of this separation. One has the liberty to choose the
functions ψ and Ψ according to some calibration dataset, which
makes the model more versatile and data-driven.

Please note that in the definition of Ikt , the following
factors have been taken into consideration:

• even if the CIR intensity Ct did not reach its expected
maximum given by γk(Ct), we must account for the
fact that it may have been close enough,

• reaching the expected maximum is good, but surpass-
ing it is even better. So we must not only define a
high trend index if Ct reaches the expected maximum
given by γk(Ct), but we must define a higher trend
index if Ct surpasses these barriers, and

• it is important to penalize all the times t ∈ [0, τ ] that
the intensity Ct becomes negative, i.e., the intensities
λ̃kt become smaller than their stationary expectation.

The trend indices Ik are thus defined as

Ik =

∫ τ

0

Ikt dt.

Remark: One could be also interested in not only tracking
the relative trendiness of each topic with respect to their
maxima, but also the absolute trendiness of topics with respect
to each other. In this case, one may define the trend indices
Ĩkt as

Ĩkt = Ikt + a(τ − t)λ̃k,∞t = Ikt + a(τ − t)P−11,k (Ct + µ),

where a(τ−t) ≥ 0 are nonincreasing functions of time (again,
in order to give a bigger influence to the present compared to
the past). The absolute trendiness of topics can be explained
as follows: Lady Gaga may be not trendy according to our
definition, if for example people do not tweet as much as
expected about her at the moment, but she will probably still be
trendier than a rising-but-still-obscure Punk-Rock band. In this
case, the relative trend index Ik of Lady Gaga is not that big
as compared to the relative trend index of the Punk-Rock band.
However, the absolute trend index Ĩk of Lady Gaga will surely
be bigger than the absolute trend index of the Punk-Rock band,
if the function a(τ − t) is large enough. The function a(τ − t)
controls which behavior one wants to detect, the relative or
the absolute trendiness.

Remark: This algorithm is fast, despite the use of numerical
discretization schemes for the ODEs. By using the eigenvector

Algorithm 1 Trend detection algorithm
Input: Hawkes process Xt, t ∈ [0, τ ], matrices J , B and µ
1: Compute the leading left-eigenvector vT and eigenvalue
ν of J , and the topic intensities λ̃t following Eqn. (3)
2: Compute the leading right-eigenvector (P11, · · · , PK1),
left-eigenvector (P−111 , · · · , P

−1
1K ) and eigenvalue D1,1 of B,

and the leading right-eigenvector ṽ of J
3: ”Push” λ̃t to the instability regime following Eqn. (6)
and calculate the CIR intensity Ct following Eqn. (8)
4: Discretize [0, τ ] into T bins of size δ � 1
for k = 1 to K do

5: Get the optimal barrier γk in {0, δ, 2δ, · · · , (T − 1)δ},
following [21]
for t = 1 to T do

5: Calculate the trend index Ik(t−1)δ using the optimal
barrier γk of the optimal stopping problem (9)

end for
6: Calculate the topic trend index Ik =

∫ τ
0
Ikt dt =

δ
∑T
t=1 Ik(t−1)δ

end for
Output: Trend indices Ik

centrality of the underlying social network as tool to create
our trend indices, we not only use the topological properties
of the social network in question but we reduce considerably
the dimension of the problem: we only have a one-dimensional
CIR process to study. Moreover, the complexity of the algo-
rithm breaks down to three parts: 1) the resolution of the K
optimal barrier ODEs, which is of order O(Kδ ) where δ is
the time-discretization step, 2) the calculation of the left and
right leading eigenvectors of J and B, which can be achieved
fairly fast with iterative methods such as the power method,
and 3) the matrix product in the calculation of µ, which has
complexity O(NK).

IV. NUMERICAL EXAMPLES

We provide in this section two numerical examples of
our trend detection algorithm. The first example (which we
term SIM) is a synthetic near unstable Hawkes processes in
a social network using Ogata’s thinning algorithm7 [23] in a
time horizon τ = 50. We used 10 topics for the simulation, the
last 5 topics not possessing any topic influence, i.e., Bc,k = 0
for all c and k ∈ {6, 7, 8, 9, 10}, corresponding to figures 1, 2
and 3. The second example is a MemeTracker dataset (MT),
with different topics and world news for the 5, 000 most active
sites from 4 million sites from March 2011 to February 20128.
We used the 5 most and 5 least broadcasted memes and a
maximum likelihood estimation procedure for the parameters,
leading to figures 4, 5 and 6.

For both datasets, Figures 1 and 4 plot the scaled topic
intensities λ̃τt

τ , Figures 2 and 5 plot the cumulative number of
broadcasts of each topic, i.e., X

k

t =
∑
iX

i,k
t , and Figures 3

7The thinning algorithm simulates a standard Poisson process Pt with
intensity M >

∑
i,k λ

i,k
t for all t ∈ [0, τ ] and selects from each jump

of Pt the Hawkes jumps of Xi,k
t with probability λ

i,k
t
M

, or no jump at all

with probability
M−

∑
i,k λ

i,k
t

M
.

8Data available at http://snap.stanford.edu/netinf.



and 6 plot the optimal free barriers γk(Ct) at time t, for each
topic k, against the current maximum of Ct.

We observe that in figures 3 and 6 the CIR processes
touch the barriers, which means that the topic intensities indeed
reached their peaks.

We compute in table I the trend indices Ĩk for both
datasets. We used for the trend indices calculation the fol-
lowing functions ψ+/−(t, x) = e2x

t+1 , Ψ+/−(x) = 2x and
a(t) = 1

t+1 , as explained in subsubsection III-C2.

In reference to table 1, one can see that the trend index for
topic 5 is the highest in both datasets, however for different
reasons: in the synthetic dataset, this is due to the fact that
topic 5 has the largest topic intensity. But for the MemeTracker
dataset, topic 5 shows higher trendiness than the other topics
because it has a peak in intensity later in time, even though
it does not have the highest topic intensity. This phenomenon
illustrates the difference between our algorithm and one that
looks solely to the largest topic intensities.

In addition, one can see in figures 2 and 5 that topic 5
does not have the largest number of jumps in both datasets,
even though it is the trendiest by table I. This result shows
that the number of messages is not the only factor in our
algorithm, it takes equally into account the social ties and
influences between users and topics in the social network.
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Fig. 1. Topic intensities λ̃t =
∑
i λ
i,k
t vi for the synthetic dataset.
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Fig. 2. Cumulative sum of jumps of topics Xt =
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t for the synthetic
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V. CONCLUSION

We have developed in this paper a trend detection al-
gorithm, designed to find trendy topics being disseminated
in a social network. We have assumed that broadcasts of
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Fig. 3. Maximum of CIR process, C∗t , plotted against the optimal barriers
γk(Ct) for each topic k for the synthetic dataset
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Fig. 4. Topic intensities λ̃t =
∑
i λ
i,k
t vi for the meme tracker dataset.
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Fig. 6. Maximum of CIR process, C∗t , plotted against the optimal barriers
γk(Ct) for each topic k in the meme tracker dataset.

messages in the social network can be modeled by a self-



TABLE I. TREND INDICES FOR EACH DATASET.

DATASET Ĩ1 Ĩ2 Ĩ3 Ĩ4 Ĩ5 Ĩ6 Ĩ7 Ĩ8 Ĩ9 Ĩ10

SIM 0.0481 0.0414 0.0407 0.0433 0.0507 0.0148 0.0148 0.0148 0.0148 0.0148
MT 0.1175 0.1090 0.1199 0.1229 0.1404 0.1035 0.1035 0.1035 0.1035 0.1035

exciting point process, namely a Hawkes process, which takes
into consideration the real broadcasting times of messages and
the interaction between users and topics.

We defined our idea of trendiness and derived trend indices
for each topic being disseminated. These indices take into
consideration the time between the actual trend detection and
the message broadcasts, the distance between the intensity of
broadcasting and the maximum expected intensity of broad-
casting, and the social network topology. This result is, to
the best of our knowledge, the first definition of relative
trendiness, i.e., a topic may not be very trendy in absolute
number of broadcasts when compared to other topics, but has
still rapid and significant number of broadcasts as compared to
its expected behavior. Still, one can easily create an absolute
trend index for each topic in our trend detection algorithm,
where all one needs to do is use the broadcasting intensities
of each topic as surrogates for their trendiness. It is worthy
mentioning that these broadcast intensities also take into
consideration the social network topology, or more precisely,
the outgoing eigenvector centrality of each user, i.e., their
respective influences on the social network.

The proposed trend detection algorithm is simple and uses
stochastic control techniques in order to derive a free barrier
for the maximum expected broadcast intensity of each topic.
This method is fast and aggregates all the information of the
point process into a simple one-dimensional diffusion, thus
reducing its complexity and the quantity of data necessary to
the detection - indispensable features if one is concerned with
the detection of trends in real-life social networks.

APPENDIX A
ASSUMPTIONS AND MAIN THEOREM

We now proceed to the proof of theorem 1, following the
ideas in [20]. According to section II, we have a multivariate
linear Hawkes process Xi,k

t with intensity of the form

λi,kt = µi,k +
∑
c

∑
j

Bc,kJi,j

∫ t−

0

φ(t− s)dXj,c
s , (10)

which in matrix form can be seen as

λt = µ+ J(φ ∗ dX)tB,

where µ is the intrinsic rate of dissemination, J is the user-
user interaction matrix, B is the topic-topic interaction matrix
and (φ ∗ dX)t is the N × K convolution matrix defined as
(φ ∗ dX)i,kt =

∫ t
0
φ(t− s)dXi,k

s .

In order to prove our main rescaling convergence result,
we make the following assumptions:

Assumption 2. The temporal kernel φ(t) is an exponential
function with timescale parameter ωτ

φ(t) = e−ωτ t.I{t>0}.

Remark: Assumption 2 is in fact a simplifying one, and
one may use any temporal kernel satisfying the hypothesis in
[20].

Assumption 3. The interaction matrices J and B can be
diagonalized into J = v−1νv and B = ρDρ−1 and BT ⊗ J
has only one maximal eigenvalue. Thus, in light of the decom-
position for J and B, we have that J has left-eigenvectors the
rows of v, denoted by vTi , with associated eigenvalues νi; and
B has right-eigenvectors the columns of ρ, denoted by ρk, with
associated eigenvalues Dk,k, i.e., vT is the N ×N matrix and
ρ is the K ×K matrix

vT =

 . . .
vT1 . . . vTN

. . .

 and ρ =

(
. . .

ρ1 . . . ρK
. . .

)
.

Since the eigenvalues of BT ⊗ J are of the form
viDk,k, (i, k), we assume without loss of generality that
ν1 ≥ ν2 ≥ · · · ≥ νN and D1,1 > D2,2 ≥ D3,3 ≥ · · · ≥ DK,K ,
and that the largest eigenvalues of J and B satisfy ν1 > 0 and
D1,1 > 0.

Moreover, we also have that vT1 and ρ1 have nonnegative
entries by the Perron-Frobenius theorem, since J and B have
nonnegative entries (this result remains true for the leading
right-eigenvector of J and the leading left-eigenvector of B
as well).

Remark: The assumption that J and B can be diagonalized
is in fact a simplifying one. One could use the Jordan blocks of
J and B, on the condition that there exists only one maximal
eigenvalue for BT ⊗ J . This assumption is verified if, for
example, the graph associated with B is strongly connected;
which means that every topic influences the other topics, even
if it is in an undirected fashion (by influencing topics that
will, in their turn, influence other topics, and so on). One
can also develop a theory in the case of multiple maximal
eigenvalues, but it will be much more complicated and the
associated stochastic control problem has not yet be solved
analytically, hence numerical methods must be employed.

Assumption 4. We have that the timescale parameter ωτ
satisfies, for some λ > 0,

τ(1− ν1D1,1

ωτ
)→ λ

when τ →∞, which implies

ωτ ↘ ν1D1,1.

Appendix B is thus responsible for the proof of the
following theorem:

Theorem 2. Let X be the multivariate Hawkes process in
[0, τ ] with intensity given by Eqn. (10), and let ϕi,kt =
vTi

λτt
τ ρk, where vTi and ρk are defined in assumption 3.



Under assumptions 2, 3 and 4 we have that

• If (i, k) 6= (1, 1) then ϕi,kt converges in law to 0 for
the Skorokhod topology in [0, 1] when τ →∞.

• Let vT1 and ṽ1 be the leading left and right eigenvec-
tors of J associated with the eigenvalue ν1 > 0, let
ρ1 and ρ̃T1 be the leading right and left eigenvectors
of B associated with the eigenvalue D1,1 > 0, and
define π = (

∑
i v

2
1,iṽi,1)(

∑
k ρ

2
k,1ρ̃1,k).

Thus, ϕ1,1
t converges in law to the CIR process Ct

for the Skorokhod topology in [0, 1] when τ → ∞,
where Ct, t ∈ [0, 1] satisfies the following stochastic
differential equation{
dCt = λν1D1,1(µλ − Ct)dt+ ν1D1,1

√
π
√
CtdWt,

C0 = 0,

where Wt is a standard Brownian motion.

APPENDIX B
PROOF OF THEOREM 2

A. Sketch of proof

We provide here a sketch of the proof:

1) We start by writing the equations satisfied by the
rescaled intensities ϕi,kt = vTi

λτt
τ ρk and study their

first-order properties.
2) Secondly, we define the new martingales Bi,kt and

show that they converge to a standard Brownian
motion.

3) Thirdly, we rewrite ϕ1,1
t in a more suitable form, with

remainder terms Ut and Vt, and we show that they
converge to 0.

4) Finally, we apply the convergence theorem 5.4 of
[34] for limits of stochastic integrals with semimartin-
gales.

B. Rescaling the Hawkes intensity

Let us begin by defining the one-dimensional stochastic
processes

λ̃i,kt = vTi λtρk,

which satisfy the one-dimensional equations

λ̃i,kt = vTi µρk + vTi J(φ ∗ dX)tBρk

= µ̃i,k + νiDk,k(φ ∗ λ̃i,k)t + νiDk,k(φ ∗ vTi dMρk)t,
(11)

with Mt = Xt −
∫ t
0
λsds the compensated martingale asso-

ciated with the Hawkes process X and µ̃i,k = vTi µρk. Using
lemma 2.1 of [20], we have that

λ̃i,kt = µ̃i,k+µ̃i,k
∫ t

0

Ψi,k(t−s)ds+

∫ t

0

Ψi,k(t−s)vTi dMsρk,

(12)
where

Ψi,k(t) =
∑
n≥1

(νiDk,kφ(t))∗n,

with the nth convolution operator defined as

(νiDk,kφ(t))∗1 = νiDk,kφ(t), and

(νiDk,kφ(t))∗n = ((νiDk,kφ)∗(n−1) ∗ νiDk,kφ)t.

We have the following lemma for the convolutions Ψi,k:

Lemma 2. Let Ψi,k(t) =
∑
n≥1(νiDk,kφ(t))∗n, then under

assumption 2 we have that

Ψi,k(t) = νiDk,ke
−ωτ (1−

νiDk,k
ωτ

)t.

Moreover, under assumptions 3 and 4 we have that

Ψ1,1(τt)→ ν1D1,1e
−ν1D1,1λt

uniformly in [0, 1] when τ → ∞, and that there exists a
constant L > 0 such that for (i, k) 6= (1, 1) we have∫ t

0

Ψi,k(τ(t− s))ds ≤ L

τ
. (13)

Proof: Under assumption 2, we have that

(νiDk,kφ(t))∗2 = (νiDk,k)2
∫ t

0

e−ωτ (t−s)e−ωτsds

= (νiDk,k)2te−ωτ t

⇒ (νiDk,kφ(t))∗n = (νiDk,k)n
tn−1

(n− 1)!
e−ωτ t,

hence

Ψi,k(t) = e−ωτ t
∑
n≥1

νni D
n
k,k

tn−1

(n− 1)!
= νiDk,ke

−(1−
νiDk,k
ωτ

)ωτ t.

Now, under assumptions 3 and 4, we have that τ(1 −
ν1D1,1

ωτ
) → λ and ωτ → ν1D1,1, which implies that there

exists a constant λ > 0 such that for every (i, k) 6= (1, 1)

ωτ (1− νiDk,k

ωτ
) ≥ λ > 0 and τ(1− νiDk,k

ωτ
)→∞.

Firstly, for t ∈ [0, 1], using the Lipschitz continuity of e−t
we have that

|Ψ1,1(τt)− ν1D1,1e
−ν1D1,1λt|

≤ (ν1D1,1)2λ( sup
s∈[0,1]

e−ν1D1,1λs)t|ωττ(1− ν1D1,1

ωτ
)− ν1D1,1λ|

≤ (ν1D1,1)2λ|ωττ(1− ν1D1,1

ωτ
)− ν1D1,1λ| → 0

when τ → ∞, which implies that Ψ1,1(τt) →
ν1D1,1e

−ν1D1,1λt uniformly in [0, 1].

At last, for (i, k) 6= (1, 1), we have that∫ t

0

Ψi,k(τ(t− s))ds = νiDk,k
1− e−tτωτ (1−

νiDk,k
ωτ

)

τωτ (1− νiDk,k
ωτ

)
≤ L

τ

where L > 0 is a large enough positive constant.

Let us now define the one-dimensional rescaled stochastic
processes, for t ∈ [0, 1],

ϕi,kt =
vTi λτtρk

τ
,



which clearly satisfies

ϕt = v
λτt
τ
ρ. (14)

We have the following lemma concerning the first order
properties of ϕt:

Lemma 3. Let us define the 1×N row vector v�2i such that
(v�2i )j = v2i,j and the K × 1 vector ρ�2k such that (ρ�2k )c =
ρ2c,k. We have

1) ϕi,kt satisfies the following equation

ϕi,kt = µ̃i,k(
1

τ
+

∫ t

0

Ψi,k(τ(t− s))ds)

+

∫ t

0

Ψi,k(τ(t− s))
√

(v�2i )T
λτs
τ
ρ�2k dBi,ks , (15)

where

Bi,kt =
√
τ

∫ t

0

vTi dMτsρk√
(v�2i )Tλτsρ

�2
k

=

∫ t

0

vTi dMτsρk√
(v�2i )T v−1ϕsρ−1ρ

�2
k

is a L2 martingale.
2) If (i, k) 6= (1, 1), then

E[ϕi,kt ] ≤ L

τ
,

where L > 0 is a large enough positive constant.
Moreover, we also have that

E[ϕ1,1
t ] ≤ L.

Proof:

1) We have that

ϕi,kt =
1

τ
µ̃i,k +

1

τ
µ̃i,k

∫ τt

0

Ψi,k(τt− s)ds

+
1

τ

∫ τt

0

Ψi,k(τt− s)vTi dMsρk

=
1

τ
µ̃i,k + µ̃i,k

∫ t

0

Ψi,k(τ(t− s))ds

+

∫ t

0

Ψi,k(τ(t− s))vTi dMτsρk

=
1

τ
µ̃i,k + µ̃i,k

∫ t

0

Ψi,k(τ(t− s))ds

+

∫ t

0

Ψi,k(τ(t− s))
√

(v�2i )T
λτs
τ s

ρ�2k
vTi
√
τdMτsρk√

(v�2i )Tλτsρ
�2
k

=
1

τ
µ̃i,k + µ̃i,k

∫ t

0

Ψi,k(τ(t− s))ds

+

∫ t

0

Ψi,k(τ(t− s))
√

(v�2i )T
λτs
τ s

ρ�2k dBi,ks .

As λτs
τ = v−1ϕsρ

−1 by Eqn. (14), we have the result.

2) Since Bi,kt is a martingale, we have that

E[ϕi,kt ] =
1

τ
µ̃i,k +

1

τ
µ̃i,k

∫ τt

0

Ψi,k(τt− s)ds

=
1

τ
µ̃i,k + µ̃i,k

∫ t

0

Ψi,k(τ(t− s))ds,

which together with lemma 2 gives us the result.

Remark: We can assume, without loss of generality,
that there exists a c > 0 such that min(i,k) v

T
i µρk =

min(i,k) µ̃
i,k ≥ c, since vTi µρk = µ̃i,k = 0 ⇒ E[ϕi,kt ] = 0

by lemma 3, which implies ϕi,kt = 0 almost surely for all
t ≥ 0 by the fact that ϕi,kt ≥ 0 for all t ≥ 0.

C. Second order properties

Regarding the second order properties of Bi,kt and ϕi,kt ,
we have the following lemma:

Lemma 4. For each (i, k) let [Bi,k]t be the quadratic varia-
tion of the martingale Bi,kt . We have that

1)

[Bi,k]t = t+
1

τ

∫ τt

0

(v�2i )T dMsρ
�2
k

(v�2i )Tλsρ
�2
k

. (16)

2)
E[(ϕi,kt )2] ≤ L (17)

for a constant L > 0.
3) Moreover, if (i, k) 6= (1, 1), then

E[(ϕi,kt )2] ≤ L

τ2

for a constant L > 0.

Proof:

1) Since the Hawkes process X does not have more than
one jump at each time, we have that

[M i,k,M j,c]t = Xi,k
t I{(i,k)=(j,c)},

which by its turn implies

[vTi Mρk]t = (v�2i )TXtρ
�2
k .

We have by lemma 3 that

Bi,kt =
√
τ

∫ t

0

vTi dMτsρk√
(v�2i )Tλτsρ

�2
k

=
1√
τ

∫ τt

0

vTi dMsρk√
(v�2i )Tλsρ

�2
k

,

hence

[Bi,k]t =
1

τ

∫ τt

0

(v�2i )T dXsρ
�2
k

(v�2i )Tλsρ
�2
k

=
1

τ

∫ τt

0

(v�2i )Tλsρ
�2
k

(v�2i )Tλsρ
�2
k

ds+
1

τ

∫ τt

0

(v�2i )T dMsρ
�2
k

(v�2i )Tλsρ
�2
k

= t+
1

τ

∫ τt

0

(v�2i )T dMsρ
�2
k

(v�2i )Tλsρ
�2
k

.



2) Using the fact that (a + b + c)2 ≤ 3(a2 + b2 + c2),
we have by Eqn. (15) and lemma 2 that

(ϕi,kt )2 ≤ 3

(
(µ̃i,k)2

τ2
+ (µ̃i,k)2(

∫ t

0

Ψi,k(τ(t− s))ds)2

+ (

∫ t

0

Ψi,k(τ(t− s))
√

(v�2i )T v−1ϕsρ−1ρ
�2
k dBi,ks )2

)
≤ L′ + 3(

∫ t

0

Ψi,k(τ(t− s))√
(v�2i )T v−1ϕsρ−1ρ

�2
k dBi,ks )2.

Since Ψi,k(τ(t− s)) = Ψi,k(τt)Ψi,k(−τs), we have
then

(ϕi,kt )2 ≤ L′ + 3(

∫ t

0

Ψi,k(τ(t− s))√
(v�2i )T v−1ϕsρ−1ρ

�2
k dBi,ks )2

= L′ + 3Ψ2
i,k(τt)(Zi,kt )2,

with Zi,kt =
∫ t
0

Ψi,k(−τs)
√

(v�2i )T v−1ϕsρ−1ρ
�2
k dBi,ks

a martingale. By lemmas 8 and 3 we have that

E[(ϕi,kt )2] ≤ L′ + 3Ψ2
i,k(τt)

∫ t

0

Ψ2
i,k(−τs)

(v�2i )T v−1E[ϕs]ρ
−1ρ�2k ds

= L′ + 3

∫ t

0

Ψ2
i,k(τ(t− s))

(v�2i )T v−1E[ϕs]ρ
−1ρ�2k ds ≤ L.

3) For (i, k) 6= (1, 1), we have from Eqn. (12), lemma
2 and the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2)
that

(λ̃i,kt )2 ≤ L′ + 3(

∫ t

0

Ψi,k(t− s)vTi dMsρk)2.

One can promptly see by lemma 3 that E[λi,kt ] =
(v−1E[λ̃t]ρ

−1)i,k ≤ L′′′. Hence using lemma 8 and
the same calculation of the previous item gives

E[(λ̃i,kt )2] ≤ L′ + 3

∫ t

0

Ψ2
i,k(t− s)(v�2i )TE[λs]ρ

�2
k ds

≤ L′′(1 +

∫ t

0

Ψ2
i,k(t− s)ds) ≤ L

for a constant L > 0. Thus E[(ϕi,kt )2] =
E[(λ̃i,kτt )

2]
τ2 ≤

L
τ2 , as desired.

We derive next the convergence properties of the martin-
gales Bi,kt and the rescaled process ϕi,kt , (i, k) 6= (1, 1).

Lemma 5. We have that

1) For every (i, k), Bi,kt converges in law to a standard
Brownian motion for the Skorohod topology in [0, 1]
when τ →∞.

2) If (i, k) 6= (1, 1), then ϕi,kt converges in law to 0 for
the Skorohod topology in [0, 1] when τ →∞.

Proof:

1) By Eqn. (16) we have for t ∈ [0, 1]

E[([Bi,k]t − t)2] = E[(
1

τ

∫ τt

0

(v�2i )T dMsρ
�2
k

(v�2i )Tλsρ
�2
k

)2]

≤ 1

τ2
E[

∫ τt

0

d[(v�2i )TMρ�2k ]s(
(v�2i )Tλsρ

�2
k

)2 ]

=
1

τ2
E[

∫ τt

0

(v�4i )Tλsρ
�4
k ds(

(v�2i )Tλsρ
�2
k

)2 ]

≤ ||v�2i ||.||ρ
�2
k ||.

1

τ2
E[

∫ τt

0

ds

(v�2i )Tλsρ
�2
k

]

≤ L 1

τ2

∫ τt

0

dt ≤ L

τ

for some L > 0 by lemma 9.
Thus, by Markov’s inequality we have that for all
ε > 0 and for all t ∈ [0, 1]

P(|[Bi,k]t − t| ≥ ε) ≤
L

τε2
→ 0 when τ →∞,

which shows that, for every t ∈ [0, 1], [Bi,k]t con-
verges in probability towards t when τ →∞.
Since Bi,k has uniformly bounded jumps because X
and λ have uniformly bounded jumps, we have by
theorem V III.3.11 of [35] that Bi,kt converges in
law to a standard Brownian motion for the Skorohod
topology in [0, 1] when τ →∞.

2) Since supt∈[0,1] E[ϕi,kt ] → 0 when τ → ∞
by lemma 3, we have by Eqn. (15) that we
only need to prove the convergence of Zi,kt =∫ t
0

Ψi,k(τ(t − s))g(ϕs)dB
i,k
s , where g(ϕs) =√

(v�2i )T v−1ϕsρ−1ρ
�2
k satisfies |g(ϕs)| ≤ C(1 +

||ϕs||) for some C > 0.
Since Ψi,k(τ(t − s)) is an exponential function by
lemma 2, we have that assumption 4 implies that
Ψi,k(τ(t − s)) satisfies all hypothesis of lemma 10,
and as consequence we have that Zi,kt converges in
law to 0 for the Skorohod topology in [0, 1] when
τ →∞, which concludes the proof.

D. Convergence of ϕ1,1
t

After studying the asymptotic behavior of the martingale
Bt and the rescaled processes ϕi,kt for (i, k) 6= (1, 1), we study
the asymptotic behavior of ϕ1,1

t . We start by rewriting it in a
more convenient form, using Eqn. (15):

ϕ1,1
t = µ̃1,1(

1

τ
+

∫ t

0

Ψ1,1(τ(t− s))ds) (18)

+

∫ t

0

ν1D1,1e
−ν1D1,1λ(t−s)

√
πϕ1,1

s dB1,1
s

+ Ut + Vt, (19)

where π = (
∑
i v

2
1,i(v

−1)i,1)(
∑
k ρ

2
k,1(ρ−1)1,k),

Ut =

∫ t

0

Ψ1,1(τ(t−s))(
√

(v�21 )T v−1ϕsρ−1ρ
�2
1 −

√
πϕ1,1

s )dB1,1
s .

(20)



and

Vt =

∫ t

0

(
Ψ1,1(τ(t−s))−ν1D1,1e

−ν1D1,1λ(t−s)
)√

πϕ1,1
s dB1,1

s

(21)

We begin by studying the asymptotic behavior of Ut in
Eqn. (20) and Vt in (21).

Lemma 6. We have that Ut defined in Eqn. (20) converges in
law to 0 for the Skorohod topology in [0, 1] when τ →∞.

Proof: Let us define the martingale Zt =∫ t
0

Ψ1,1(−τs)(
√

(v�21 )T v−1ϕsρ−1ρ
�2
1 −

√
πϕ1,1

s )dB1,1
s ,

such that Ut = Ψ1,1(τt)Zt. Using the product formula for
semimartingales and the fact that Ψ1,1 has bounded variation,
we have that

Ut =

∫ t

0

∂tΨ1,1(τs)Zsds+

∫ t

0

Ψ1,1(τs)dZs = Vt +Wt,

where Vt =
∫ t
0
∂tΨ1,1(τs)Zsds has bounded variation and

Wt =
∫ t
0

Ψ1,1(τs)dZs is a martingale with quadratic variation
[W ]t satisfying by lemma 8

[W ]t =

∫ t

0

Ψ2
1,1(τs)d[Z]s

=

∫ t

0

Ψ2
1,1(τs)Ψ2

1,1(−τs)

(

√
(v�21 )T v−1ϕsρ−1ρ

�2
1 −

√
πϕ1,1

s )2d[B1,1]s

=

∫ t

0

(

√
(v�21 )T v−1ϕsρ−1ρ

�2
1 −

√
πϕ1,1

s )2d[B1,1]s.

Thus, using the fact that
√
a+ b−

√
b ≤ a

2
√
b

for a, b > 0,
we have by lemma 4

E[[W ]t] = E[

∫ t

0

(

√
(v�21 )T v−1ϕsρ−1ρ

�2
1 −

√
πϕ1,1

s )2ds]

≤ E[

∫ t

0

((v�21 )T v−1ϕsρ
−1ρ�21 − πϕ1,1

s )2

4πϕ1,1
s

ds]

≤ L2E[

∫ t

0

(
∑

(i,k)6=(1,1) ϕ
i,k
s )2

4πϕ1,1
s

ds]

for some constant L > 0 by lemma 11. Since ϕ1,1
s ≥ µ̃1,1

τ ≥
c
τ > 0, we have by lemma 4 that for t ∈ [0, 1]

E[[W ]t] ≤
τL2

4πc
E[

∫ t

0

(
∑

(i,k)6=(1,1)

ϕi,ks )2ds]

≤ τL(NK − 1)

4πc
E[

∫ t

0

∑
(i,k)6=(1,1)

(ϕi,ks )2ds]

=
τL(NK − 1)

4πc

∫ t

0

∑
(i,k)6=(1,1)

E[(ϕi,ks )2]ds

≤ τL2(NK − 1)2

4πc

∫ t

0

1

τ2
ds =

L′t

τ
≤ L′

τ

for L′ = L2(NK−1)2
4πc .

Thus, by Markov’s inequality we have that for all ε > 0
and for all t ∈ [0, 1]

P([W ]t ≥ ε) ≤
L′

ε
(

1

τ2
+

1

τ
)→ 0 when τ →∞,

which proves that [W ]t converges in probability to 0 for all
t ≥ 0.

Since W has uniformly bounded jumps, we have by
theorem V III.3.11 of [35] that Wt converges in law to 0
for the Skorohod topology in [0, 1] when τ →∞.

Now, regarding Vt, we have that since |∂tΨ1,1(τt)| ≤ C
for some constant C > 0,

E[(Vt − Vs)2] = E[(

∫ t

s

∂tΨ1,1(τu)Zudu)2]

≤ C2(t− s)2E[( sup
u∈[s,t]

Zu)2] ≤ C ′(t− s)2E[[Z]t]

by the Burkholder-Davis-Gundy inequality. Since by lemma 8

[Z]t =

∫ t

0

Ψ2
1,1(−τs)(

√
(v�21 )T v−1ϕsρ−1ρ

�2
1 −

√
πϕ1,1

s )2d[B1,1]s

and Ψ1,1(−τs) ≤ C for some constant C > 0, we have using
the same calculations as before and choosing s = 0 that for
t ∈ [0, 1]

E[V 2
t ] ≤ C ′t2E[[Z]t] ≤

C ′′

τ2
,

which easily implies that (Vt1 , · · · , Vtn) → 0 in distribution
for every (t1, · · · , tn) ∈ [0, 1]n when τ → ∞, i.e., we have
the convergence of the finite-dimensional distribution of Vt to
0 when τ →∞.

Moreover, since E[(Vt − Vs)2] ≤ C ′′′(t− s)2, we have by
the Kolmogorov criterion for tightness that Vt is tight for the
Skorohod topology in [0, 1], which implies that Vt converges
in law to 0 for the Skorohod topology in [0, 1] when τ →∞.

Hence, we clearly have that Ut = Vt + Wt converges in
law to 0 for the Skorohod topology in [0, 1] when τ →∞.

Lemma 7. We have that Vt defined in Eqn. (21) converges in
law to 0 for the Skorohod topology in [0, 1] when τ →∞.

Proof: Define the function

fτ (t) = Ψ1,1(τt)− ν1D1,1e
−ν1D1,1λt

= ν1D1,1

(
e−ωττ(1−

ν1D1,1
ωτ

)t − e−ν1D1,1λt

)
.

By assumption 4, that there exists a C > 0 such that

1) supτ supt |fτ (t)| ≤ C,
2) Since fτ is a difference of exponential functions, we

can assume without loss of generality that |f̂τ (z)| ≤
C(| 1z | ∧ 1),

3) Applying lemma 4.7 of [20] we have that for any
0 < ε < 1, there exists Cε > 0 such that for every
t, s

sup
τ

∫
R

(fτ (t− u)− fτ (s− u))2du ≤ Cε|t− s|1−ε,



4) Since

f2τ (t) = ν21D
2
1,1

(
Ψ2

1,1(τt) + e−2ν1D1,1λt

− 2Ψ1,1(τt)e−ν1D1,1λt

)
,

we have that∫
R+

f2τ (t)dt = ν21D
2
1,1

(
1

2ωττ(1− ν1D1,1

ωτ
)

+
1

2ν1D1,1λ
− 2

1

ωττ(1− ν1D1,1

ωτ
) + ν1D1,1λ

)
→ 0.

5) Since, for α > 0, e−αt satisfies |e−αt − e−αs| ≤
α|t − s|, we easily have that there exists a constant
C > 0 such that

|fτ (t)− fτ (s)| ≤ Cτ |t− s|.

Hence, fτ satisfies all hypothesis of lemma 10. Moreover,

g(ϕs) =

√
πϕ1,1

s easily satisfies

|g(ϕt)| ≤ C(1 + ||ϕt||).

We can thus apply lemma 10 to conclude the proof.

We have arrived to the final step of the proof: by
lemma 2, we have that µ̃1,1

∫ t
0

Ψ1,1(τ(t − s))ds converges
uniformly in [0, 1] to µ̃1,1

∫ t
0
ν1D1,1e

−ν1D1,1λ(t−s)ds =

µ̃1,1( 1−e−ν1D1,1λt

λ ), when τ →∞.

Moreover, by lemma 5 we have that B1,1
t converges in law

to a standard Brownian motion for the Skorohod topology in
[0, 1] when τ → ∞, and by lemmas 6 and 7 we have that
Ut and Vt converge in law to 0 for the Skorohod topology in
[0, 1] when τ →∞.

As in [20], since Ut and Vt converge to a deterministic
limit, we get the convergence in law, for the product topology,
of the triple (Ut, Vt, B

1,1
t ) to (0, 0,Wt) with W a standard

Brownian motion. The components of (0, 0,Wt) being contin-
uous, the last convergence also takes place for the Skorohod
topology on the product space.

Thus, we have by theorem 5.4 of [34] that ϕ1,1
t converges

in law to the limit process Ct for the Skorohod topology in
[0, 1] when τ →∞, where Ct is the unique solution of

Ct = µ̃1,1(
1− e−ν1D1,1λt

λ
)

+ ν1D1,1

∫ t

0

e−ν1D1,1λ(t−s)
√
πCsdWs,

where Wt is a standard Brownian motion.

By a simple calculation, we have that Ct satisfies the

following stochastic differential equation

dCt = ν1D1,1µ̃
1,1e−ν1D1,1λtdt

+ ν1D1,1

(
− ν1D1,1λ

∫ t

0

e−ν1D1,1λ(t−s)
√
πCsdWsdt

+
√
πCtdWt

)
= ν1D1,1µ̃

1,1e−ν1D1,1λtdt

+ ν1D1,1

(
(µ̃1,1(1− e−ν1D1,1λt)− λCt)dt+

√
πCtdWt

)
= ν1D1,1λ(

µ̃1,1

λ
− Ct)dt+ ν1D1,1

√
πCtdWt.

Remark: One promptly has that the columns of v−1 are
the right-eigenvectors of J and that the rows of ρ−1 are the
left-eigenvectors of B, thus π > 0 can be rewritten as

π = (
∑
i

v21,iṽi,1)(
∑
k

ρ2k,1ρ̃1,k),

where vT1 is the leading left-eigenvector of J , ṽ1 is the right-
eigenvector of J , ρ1 is the leading right-eigenvector of B
and ρ̃T1 is the leading left-eigenvector of B. Moreover, by the
Perron-Frobenius theorem we have that v, ṽ, ρ and ρ̃ have
nonnegative entries.

Remark: In the one-dimensional case, we clearly have that
π = 1, retrieving thus the same result as in [20].

APPENDIX C
ADDITIONAL LEMMAS

Lemma 8. Let f : MN×K(R+) → R+ and g :
MN×K(R+)→ R+ be functions satisfying for some constant
C > 0

|f(ϕt)| ≤ C(1 + ||ϕt||) and |g(ϕt)| ≤ C(1 + ||ϕt||),

let h : R→ R and r : R→ R be continuous functions and let
Z1
t and Z2

t be L2 martingales such that [Z1, Z2]t = t+Mt,
where Mt is a martingale.

Defining z1t =
∫ t
0
h(s)f(ϕs)dZ

1
s and z2t =∫ t

0
r(s)g(ϕs)dZ

2
s we have that

E[z1t z
2
t ] =

∫ t

0

h(s)r(s)E[f(ϕs)g(ϕs)]ds.

Moreover, if Zt is a L2 semimartingale, we have that the
stochastic process Yt =

∫ t
0
h(s)f(ϕs)dZs satisfies

[Y ]t =

∫ t

0

h2(s)f2(ϕs)d[Z]s and E[Y 2
t ] ≤ E[[Y ]t].

Lemma 9. Let X be a N×K matrix with nonnegative entries,
vT 6= 0 be a 1 ×N row vector with nonnegative entries and
ρ 6= 0 be a K × 1 vector with nonnegative entries. Then

(v�2)TXρ�2 ≤ ||v||.||ρ||.vTXρ.



Proof: Define the row vector ṽT = vT

||v|| and the vector
ρ̃ = ρ

||ρ|| , such that ṽTi ≤ 1 and ρ̃k ≤ 1, which implies (ṽi)
2 ≤

ṽi and (ρ̃k)2 ≤ ρ̃k. Then

(v�2)TXρ�2 = ||v||2.||ρ||2
∑
i,k

ṽ2iXi,kρ̃
2
k

≤ ||v||2.||ρ||2.
∑
i,k

ṽiXi,kρ̃k

= ||v||.||ρ||.
∑
i,k

viXi,kρk = ||v||.||ρ||vTXρ.

This lemma can be proven using the ideas in [20] (see the
proof of the convergence for the rescaled process (Y Tt )t∈[0,1]
at the beginning of page 18, corollaries 4.1, 4.2, 4.3, 4.4 and
lemma 4.7).

Lemma 10. Let fτ : R+ → R be a sequence of functions such
that

1) There exists a constant C > 0 such that
supτ supt∈R |fτ (t)| ≤ C,

2) There exists a constant C > 0 such that for all τ

|fτ (t)− fτ (s)| ≤ Cτ |t− s|,

3) For any 0 < ε < 1, there exists Cε > 0 such that for
every t, s

sup
τ

∫
R

(fτ (t− u)− fτ (s− u))2du ≤ Cε|t− s|1−ε,

4)
∫
R+ f

2
τ (s)ds→ 0 when τ →∞, and

5) There exists a constant C > 0 such that
supτ |f̂τ (z)| ≤ C(| 1z | ∧ 1).

Let g : MN×K(R+) → R be a function satisfying for
some constant C > 0

|g(ϕt)| ≤ C(1 + ||ϕt||),

and define Y i,k,τt =
∫ t
0
fτ (t− s)g(ϕs)dB

i,k
s .

We have that Y i,k,τt converges in law to 0 for the Skorohod
topology in [0, 1] when τ →∞.

Lemma 11. Let π = (
∑
i v

2
1,i(v

−1)i,1)(
∑
k ρ

2
k,1(ρ−1)1,k). We

have that

(v�21 )T v−1ϕtρ
−1ρ�21 ≤ πϕ1,1

t + L
∑

(i,k)6=(1,1)

ϕi,kt

for some constant L > 0.

Proof: Let us define the 1 × N row vector V T =
(v�21 )T v−1 and the K × 1 vector R = ρ−1ρ�21 , such that

V Tj =
∑
i

v21,iv
−1
i,j and Rc =

∑
k

ρ−1c,kρ
2
k,1.

Thus

(v�21 )T v−1ϕtρ
−1ρ�21 =

∑
j,c

V Tj ϕ
j,c
t Rc

= πϕ1,1
t +

∑
(j,c)6=(1,1)

V Tj ϕ
j,c
t Rc

≤ πϕ1,1
t + L

∑
(i,k) 6=(1,1)

ϕi,kt

for a constant L > 0.
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