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Abstract—Social networking sites pervade the World Wide
Web and have millions of users worldwide. This provides ample
opportunity for brands and organisations to reach out to a
large and diverse audience. They do so by creating content
and spreading it across the social network. Most popular social
networks follow a timeline based homepage to display such
content to the end users. Content once posted on the timeline,
remains visible for a limited time, determined by the rate of
content generation in the network. There are various ways by
which brands can become more visible on the timeline of their
followers, for instance by retransmitting/advertising their content
from time to time. Hence, with multiple content creators in the
network, there is a competition over a user’s timeline, which
we analyse in this paper. We first characterise the occupancy
distribution of a given user’s timeline and then use queueing
techniques to analyse the period of time a content is present on
a given timeline. We then study the competition between different
content creators and characterise the equilibrium rate of content
generation. We finally provide some numerical results, which
provide insights into the effect of various system parameters.

I. INTRODUCTION

Social media encompasses a wide range of online tools that
enable and enhance social interactions among its users. Some
examples include email, chat, discussion forums, blogs, social
networking sites and multiplayer gaming communities. Using
these online tools, users can work together and create, find,
share, evaluate, and make use/sense of the large amount of
information available online in varied forms. A brief descrip-
tion of some popular types of social media, their structure and
function, can be found in [1].

Most online social networks are based on real world rela-
tionships such as friendship (Facebook), professional contacts
(LinkedIn), etc. Recently, networks like Twitter and Google+
have extended beyond offline relationships and are perceived
as content-centric social networks. In general, an online social
network allows users to create their profiles, make connections
with other users, share and discover new content, etc. [1].
Over the past decade, the number of account holders in
online social networks (OSNs) has increased by orders of
magnitude [2]. With the huge success of major OSNs like
Facebook (> 1 billion users), Google+ (343 million users) and
Twitter (300 million users), social networking has become an
integral part of the Internet [3]. With the advent of low-cost
smartphones, and mobile apps available for social networking,
user engagement on these sites is bound to increase. Hence,

it comes as no surprise that, most brands and organisations
have migrated to social media from other traditional media
for their advertising campaigns. This leads to competition for
user attention on the social networks. Due to the availability of
data, several empirical studies have been carried out in the past
by organizations, but the analysis of competition dynamics on
these social networks have not been given sufficient attention
in the literature.

An interesting feature to observe is that, all three major
online social networks (Facebook, Google+, Twitter) use a
timeline based template in their homepages (see Figure (1)). In
Facebook, this is referred to as News Feed, while in Twitter
it is referred to as Timeline. In this paper, we will use the
term “Timeline” throughout. Though there are several forms
of advertising on sites like Facebook, the one that captures
most of the user attention is the main timeline. Though very
similar to the traditional e-mail inbox view, the ability to place
the content (multimedia/hyperlinks) directly on the timeline
provides a more engaging experience for the end user. Since
users are connected (subscribe/follow/friend) to other users
and brands’ accounts on these sites, content pushed out by
these accounts reach the user timeline. Facebook and Google+
employ algorithms to sort the timeline and prioritise feeds (ac-
cording to the learned preferences from past user interactions),
while Twitter still provides a reverse chronological view. In
this work, we shall assume a reverse chronological timeline.

Though technically a user can scroll through a very large
number of posts on his/her timeline, it is safe to assume that
for practical purposes that the timeline has a fixed size. Recent
research using eye-tracking technology, and studies on user
scrolling behavior have confirmed the fact that user attention
is focused mostly on the first few entries. In summary, Web
users spend 80% of their time looking at information above
the page fold. Although users do scroll, they allocate only 20%
of their attention below the fold [4] (see Figure (2)). Hence,
in this work, we restrict ourselves to fixed timeline size. It
would be an interesting future direction to treat the timeline
size for each user as a random variable, arising out of a known
distribution.

Thus a message received on the timeline of a user is only
visible for a limited period of time, until it is pushed down
by posts arriving later. Content creators would want their
posts to stay longer on the timeline, and as a result take



Fig. 1. Homepage snapshots from Facebook, Twitter, Google+. The timelines
are highlighted in bold black lines. The images have been blurred to protect
private data.

Fig. 2. Distribution of user fixations on webpages (not restricted to social
networks) along stripes that were 100 pixels tall. This justifies our assumption
of considering a fixed timeline size. (Figure reproduced from [4])

actions such as resending the same message, advertising the
post sent, etc. This returns the content to the top of the
timeline. Also, when users view a particular content on their
timeline, they have the option to forward it to their friends
(“Share” on Facebook, “Retweet” on Twitter), thus making
it visible on their timelines. Therefore, there is a competition
for limited timeline space by several content creators. Another
interesting notion is that the social network providers (i.e.,
Facebook, Google+, Twitter, etc.) have complete control over
the parameters like the size of the timeline, and can set policies
that roughly control the topology of the network. Hence it
would also be interesting to study, if they can choose the right
parameters to maximise their revenue (paid by the content
creators for advertising their content).

Related work: Past work in this area have focused on
the competition between contents in social networks over
popularity and over visibility space, in conjunction with
advertisement issues to promote content. Both fully dynamic
[5] models as well as semi-dynamic [6] models have been
proposed. It has been noted that these problems are similar
in nature to the problem of competition over shelf space, a
problem well studied in Operations Research (see [7]). A
fluid deterministic game approach has been proposed in [8]
to approximate the competition over followers’ timeline when
the number of players become large. In the following section,
we provide a brief overview of some terminologies associated

with Facebook, currently the most popular social networking
site.
Facebook Terminologies [9]
Timeline: In Facebook, the name “Timeline” has a special
meaning, and refers to a user’s personal profile, containing
information such as the user’s education/employment history,
relationship status, his recent posts and shared content.
Friend: One can add other users as his/her friends on mutual
consent. The links thus established are undirected.
Subscribe: Unlike friends, this feature enables users to
follow pages/accounts that are held by celebrities or brands,
thus receiving regular updates. Most brands use Facebook
to engage with, share deals and seek feedback from their
consumers. Any user can make this option active on his/her
profile and a subscriber to that profile will receive all public
updates from the user.
News Feed: In this work, when we refer to timeline, we are
actually referring to the News Feed in Facebook. All contents
published by a user’s friends and subscribed pages appear
on the News Feed. This also appears as the homepage after
login.
The Status Update: This allows users to post content to their
friends and followers. This can contain text, images, videos or
hyperlinks, and appear on the News Feed of his/her friends.
Like/Comment/Share: Almost all the types of Facebook
content have these three buttons. While “liking” a content
shows support, “commenting” allows interaction with the
content creator and “sharing” forwards the content to a user’s
friends and followers. A recent update on Facebook shows
“Like” and “Comment” activities on a Ticker tape (on the
top right of the homepage) while “Share” activities show up
in the main News Feed.

In the next section we present the social network model and
the model for the timeline of a particular user on Facebook.
We then analyse the occupancy distribution of the timeline
positions and characterise the expectation duration of j’s
content on the timeline of user i. In Section IV, we formulate a
non-cooperative game among the content creators for timeline
space of a single user, and study the equilibrium for both
the complete and the partial control case. We finally present
numerical results and some insights into the dynamics of
competition over the timeline.

II. TIMELINE MODEL

Though practically every user in the social network can
create and share content, we will restrict our attention in this
paper to the setting where we have clear delineation between
consumers and content creators (brands and organizations).
In the model discussed in this paper, we also assume there
is no sharing among users, which will be incorporated in a
future extension of the work. Thus, we characterise the content
creator-consumer interaction as a bipartite graph, with I the set
of consumers and J the set of creators. The set of followers
(or subscribers) of creator j is denoted by Mj ∈ I. Each
consumer in the social network, say i, has a set Ni ∈ J of
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Fig. 3. System model.

sources that it follows (see Figure (3)). In this work, we will
be considering only a single user’s timeline, and hence in this
work, Ni = J . Content from source j is created according to
a Poisson process with rate/intensity parameter λj and sent to
the timelines of all members in Mj . Define the total rate of
content creation in the social network which will appear on
the timeline of user i as

Λi =
∑
j∈Ni

λj

Define further
Λi[−j] =

∑
k∈Ni,k 6=j

λk

We are interested in the stationary probability π(i, j) of finding
a content of source j on the timeline of a user i, i ∈ Mj .
Assume that at the beginning, i.e., at time 0, there is an arrival
of some content C from j to the set of followers Mj of user
j and therefore to i. Assume the timeline of user i has a
constant size of2 K(i). Each future arrival to i from Ni, will
push the content C further down, and after K(i) such shifts
the content will no longer be visible on the timeline of user
i. In the meantime, if another post arrives from j to i when
C is pushed away from the timeline, there is still a presence
of content from j on the timeline of user i. We call an ij-
busy period the time period that starts when a content from j
first arrives to the timeline of user i until the instant at which
there is no more content from j on the timeline of user i. We
denote this by T̂ij . Before characterising the ij-busy period,
we introduce the following notation. When C arrives, it is said
to be on the top of the timeline, i.e., at position K(i), and at
each new arrival, its position gets decremented/shifted by 1.
Let Tij(k) be the time from the instant when C (the content
from j on the timeline of i) enters position k on the timeline
until the instant when the timeline of user i does not have any
content from j. Then T̂ij = Tij(K(i)).

III. ANALYSIS OF OCCUPANCY OF THE TIMELINE

A. Occupancy distribution

In this section we obtain the occupancy distribution of the
timeline positions. In order to do that, we2 represent the
timeline as a continuous time Markov chain (CTMC) C(t)
taking values in C := JK(i). C(t) denotes the vector of
contents that occupy the K(i) locations in the timeline of i at
time t. Then we can state the following theorem.
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Fig. 4. Schematic of the model for the timeline of user i.

Theorem 1. The stationary probability distribution for the
CTMC C(t) is given by,

πc = Π
K(i)
k=1 νck (1)

where νj :=
λj

Λi and ck is the content at the kth position on
the timeline.

Proof: Let Q denote the transition rate matrix for the
CTMC C(t). We wish to show that the proposed πc satisfies
∀c′ ∈ C ∑

c∈C
πcqc,c′ = 0

or equivalently,
πc′ac′ =

∑
c∈C
c6=c′

πcqc,c′ (2)

where ac is the rate of exiting state c.
The argument that follows holds for the case where not all

the elements of c′ are the same.
Observe from Figure (4) that there is a possible transition

from state c to c′ if and only if the first (K(i)− 1) entries of
c coincide with the last (K(i)− 1) entries of c′. If a given c′

satifies this condition then we say c′ ∈ s(c). Let l := c′K(i),
then the rate qc,c′ = λl if c′ ∈ s(c) and 0 otherwise. The right
hand side of Equation (2) then becomes∑

c∈C,c6=c′

πcqc,c′ =
∑

c∈C,c6=c′

c′∈s(c)

(
Π
K(i)
k=1 νck

)
λl

= λl
[
ν1 + · · ·+ ν|J |

] (
Π
K(i)−1
k=1 νck

)
= νlΛ

iΠ
K(i)−1
k=1 νck

= πc′ac′

The first equality arises since there are exactly |J | possible
terms in the summation, and subsequently we use the fact that
νl = λl

Λi and
∑|J |
l=1 νl = 1.



If all the elements of c′ are the same, say `, then the
following happens:

πc′ac′
?
=

∑
c∈C
c 6=c′

πcqc,c′

ν
K(i)
l

∑
j 6=l

λj
?
=

 |J |∑
j=1

j 6=l

ν
(K(i)−1)
l νj

λl

which is true since νl = λl

Λi . In the above equation, there are
only (|J | − 1) entries on the right hand side, since c 6= c′,
i.e., the last position in c cannot be l .

B. Expected ij-busy period

In this section, we characterise the expected ij-busy period
by using a recursion argument. It is also to be noted that, the
occupancy distribution derived in the preceding section can
also be used to arrive at the same result.

Theorem 2. The expected ij-busy period, the duration for
which content from creator j stays on user i’s timeline of size
K(i), is given by

2E[Tij(K(i))] =
1

Λi[−j]

(
1− α−K(i)

1− α−1

)
(3)

where

α =
Λi[−j]

Λi
.

Proof: We have the following recursion for E[Tij(k)]:

E[Tij(0)] = 0,

E[Tij(k + 1)] =
1

Λi
+
λj
Λi
E[Tij(K(i))] +

Λi[−j]

Λi
E[Tij(k)]

By taking k = (K(i)− 1) we obtain after some algebra,

E[Tij(K(i))]− E[Tij(K(i)− 1)] =
1

Λi[−j]
(4)

To solve the recursion, let us introduce for k = 1, ...,K(i)

Sij(k) := E[Tij(k)]− E[Tij(k − 1)]

This satisfies the simpler recursion

Sij(k + 1) = αSij(k)

Hence,
Sij(k + 1) = αkSij(1).

From Equation (4) we have the condition,

Sij(K(i)) =
1

Λi[−j]
.

Combining last two equations, we get

Sij(1) =
1

Λi[−j]
α−K(i)+1.

We combine this with the relation:

E[Tij(k + 1)] = Sij(1)

k∑
n=0

αn,

and thus we get,

E[Tij(K(i))] =
1

Λi[−j]

K(i)−1∑
n=0

α−n

=
1

Λi[−j]

(
1− α−K(i)

1− α−1

)
.2 (5)

Note that the expected time during which there is no content
from j on the timeline of user i is simply 1/λj . Hence the
fraction of time that there is content from j on the timeline
of user i is given as

pij =
E[Tij(K(i))]

E[Tij(K(i))] + 1/λj

= 1− 1

λjE[Tij(K(i))] + 1

= 1− 1

qj
∑K(i)−1
n=0 (1 + qj)n + 1

= 1− 1

(1 + qj)K(i)
(6)

where qj :=
λj

Λi
[−j]

.

Note that by definition, 1 + qj = 1/α, and thus we have

pij = 1− αK(i) (7)

Note that for K(i) = 1, pij = λj/Λ.

IV. SOCIAL NETWORK TIMELINE GAME: COMPUTING THE
BEST RESPONSE

The fraction of time during which content from creator j
is present on the timeline of user i, is shown in Equation (7),
which depends on the rate/intensity parameters λj , j ∈ Ni,
with which the content is created. Therefore, we assume that
for each content creator j, the λj are decision variables,
satisfying λj ≥ φj , where φj is the minimum value of the rate
of the content created by source j. Player j can put some effort
in order to increase the basic arrival rate φj of its content to λj
at some cost. This together with the rates of the competitors
of j will determine the duration of presence of content from
j on i’s timeline. We shall seek for the equilibrium values of
the variables λj , j ∈ Ni. λj at equilibrium is characterised by
the fact that it maximises W i

j over λj ≥ φj where

2W i
j := pij − γi (λj − φj) (8)

The Lagrange relaxation gives the minimization of the La-
grangian, substituting for pij from Equation (7) gives us

Lij = 1− αK(i) − γj (λj − φj) + βj (λj − φj) , (9)



where the Lagrange multipliers βj are non-negative. For the
best response, we solve

∂Lij
∂λj

= −K(i)α(K(i)−1)

(
−

Λi[−j]

(Λi)2

)
− (γj − βj) = 0 (10)

This yields:

K(i)

Λi

(
1− λj

Λi

)K(i)

− (γj − βj) = 0

Assume that the minimum is not attained at λj = φj , then
by the complementary slackness conditions, βj = 0.

Thus, the solution of the best response problem is given as

λj = Λi

[
1−

(
γjΛ

i

K(i)

) 1
K(i)

]
(11)

if it is larger than and equal to φj , otherwise λj = φj .

V. CHARACTERISING THE EQUILIBRIUM

Consider the game in which the set of sources Ni compete
over the timeline of user i. Each source is a player and we
aim to obtain the Nash equilibrium.

A. Symmetric game

Consider the symmetric game where the cost parameters
are the same for all players, i.e., γj = γ. Then we have the
following theorem.

Theorem 3. At equilibrium each player sends either

λj =
K(i)

γ

(|Ni| − 1)K(i)

|Ni|(K(i)+1)
(12)

or φ, whichever is larger. 2

Proof: The condition of symmetry gives us Λi = |Ni|λj .
Thus

λj = |Ni|λj
[

1−
(
γ|Ni|λj
K(i)

) 1
K(i)

]
which leads to Equation (12).

Also observe that at equilibrium by symmetry, we have α =
|Ni|−1
|Ni| , thus ∀ j,

p∗ij = 1−
(

1− 1

|Ni|

)K(i)

(13)

B. Partial control

In the case of partial control, we assume that only a subset
of creators Ni(1) ⊂ Ni try to optimise their respective rates
while the remaining Ni(2) = Ni\Ni(1) send content at the
default minimum rate of φ2. The minimum rate for j ∈ Ni(1)
is φ1. The objective is to find the equilibrium rates λj for
j ∈ Ni(1). We will then have,

Λi =
∑

j∈Ni(1)

λj + |Ni(2)|φ

and for j ∈ Ni(1),

Λi[−j] =
∑

k∈Ni(1),k 6=j

λk + |Ni(2)|φ2.

Proceeding similar to the previous case, we have the best
response function λj for the player who participate in the
partial control, identical to Equation (11)

2λj = Λi

[
1−

(
γjΛ

i

K(i)

) 1
K(i)

]
(14)

When we consider a symmetric game, i.e. γj = γ,∀j ∈
Ni(1), by symmetry argument we have

Λi = |Ni(1)|λ+ |Ni(2)|φ2

Thus ∀j ∈ Ni(1),

λj = (|Ni(1)|λj + |Ni(2)|φ2) ·[
1−

(
γ(|Ni(1)|λj + |Ni(2)|φ2)

K(i)

) 1
K(i)

]
(15)

We do not have a closed form solution, and must compute the
fixed point numerically. The players play λj or φ1 whichever
is larger.

VI. NUMERICAL EXAMPLES

A. Symmetric complete game

In this section we study the effect of various system param-
eters on the equilibrium rate λ. We will consider the timeline
size K(i), number of players Ni and the cost parameter γ. .
Note that λ is a measure of how aggressive the players are,
and in real world, the rate of sharing content on the social
networks can be measured in units like posts/hour, posts/day,
etc. which will depend on the duration for which the user is
active on the social network.

The tradeoff parameter γ is indicative of the cost paid by
the competitors to operate at higher rates than the system
minimum φ (we set φ = 0 for the simulations). With
respect to the tradeoff parameter, it is straightforward from
the expression that λ ∝ 1

γ , which implies as the cost per unit
rate increases, the nodes become less aggressive.

The variations with respect to K(i) and Ni show interesting
behavior. Figure (5) shows the effect of number of players Ni
at the equilibrium rate λ. We observe that for fixed K(i),
the players are initially less aggressive for small Ni (less
competition) and accelerate their aggression as Ni increases
to a critical value. Beyond the critical Ni, players become less
aggressive since at large Ni, there are too many competitors
for the timeline, that the payoffs (pij) become considerably
smaller. The acceleration and deceleration of aggressive be-
havior on either side of the critical Ni are more pronounced
for smaller K(i).

Figure (6) shows the effect of timeline size K(i) at the
equilibrium rate λ. For fixed Ni, we see that the players are
less aggressive for smaller Ki since there are fewer slots on the
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timeline to compete for and the payoffs are lesser compared
to the cost. As the number of slots on the timeline increase,
the players become more aggressive until a critical K(i).
Beyond the critical K(i), since there are enough slots on the
timeline (for fixed number of players Ni), players become
less aggressive. As earlier, the acceleration and deceleration
of aggressive behavior on either side of the critical K(i) are
more pronounced for smaller Ni.
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Observe from the plots that there are critical values of
Ni and K(i) for which the players’ aggression is maximum.
Hence, if a social planner has control over Ni (by dictating
the number of players in the system) and K(i) (by varying
the number of posts visible to a consumer in a session), then
the social planner can also aim to maximise the total revenue
(which is Niγ(λ− φ)). We aim to study this phenomenon in
greater detail in our future work.

B. Partial Control

Since we do not have closed form expression for the equi-
librium rates in the partial control case, we will numerically
evaluate the fixed point and compare it with the complete
game scenario. We study the effect Ni(1)

Ni
(the fraction of

participating players) at the equilibrium rate. We set φ1 = 0,
and φ2 = 0.1, and study the system for Ni = 200,K(i) =
50, γ = 0.5. We observe from Figure (7) that the increase in
equilibrium rate with increasing Ni(1)

Ni
is linear and approaches

the λ of the complete game solution as the fraction of
participating players approach 1.
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VII. CONCLUSION

In this work, we have proposed a tractable model to study
the competition dynamics that arise in online social networks,
between content creators on a user’s timeline. The work can
be taken forward in several directions. Although we describe
the content on the timelines as Markov chains, we do not
formulate the problem as a Markov game but reduce it to a
standard convex game. We do not assume knowledge of the
state and hence the game becomes simply that of determining
the rates λj by the players. In our future work, we also intend
to study timelines with variable size, effect of sharing among
users and the role of a social planner (the social network
provider).
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