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In this article,we study a method to compare queueing systems and their fluid limits+
For a certain class of queueing systems, it is shown that the expected workload~and
certain functions of the workload! is higher in the queueing system than in the fluid
approximation+ This class is characterized by convexity of the value function in the
state component~s! where external arrivals occur+ The main example that we con-
sider is a tandem of multiserver queues with general service times and Markov-
modulated arrivals+ The analysis is based on dynamic programming and the use of
phase-type distributions+Numerical examples to illustrate the results are also given+

1. INTRODUCTION

Queueing theory is mainly concerned with calculating the influence of randomness
in certain processes as a function of certain stationary input processes that model
arrivals and departures+ Indeed, the variance in, for example, service times has a
great influence on waiting times, as is nicely illustrated for theM0G01 queue in the
celebrated Pollaczek–Khitchine formula+
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However, in certain situations,we do not wish to make the stationarity assump-
tion, but to study the influence of changes in, for example, the arrival rate+ In such
cases, exact queueing results, taking into account nonstationarity and variances, are
extremely hard to obtain+An “engineering approach”@6, p+ 56# to this problem is to
focus on the nonstationarity and assume continuous deterministic arrival and depar-
ture flows+ This leads to the well-known fluid approximation for queues+ This ap-
proximation is usually easier to compute than the original queueing system and
might be of interest on its own+

However, often we ask ourselves how close the fluid approximation is to the
original model+ In this article,we try to answer part of this question by showing that
for certain systems and performance measures, the fluid limit performs better than
the original queueing system+ Our main example is a tandem of multiserver queues
and performance measures such as total~weighted! workload+ The method applies
equally well to other classes of models+ Service times are general but fixed for each
customer+There is an environment modulating the arrival rates and the server speeds+

In Section 2, our main result is formulated in detail for the tandem system+ This
result is obtained in Sections 3–5 as follows+ First, we study exponential queueing
models+This queueing model, introduced in Section 3, consists of a tandem of multi-
server queues+ Both the arrival rate and the service rates are governed by an under-
lying Markov process+ Arrivals can occur in batches+

This model is defined by its dynamic programming recursion+ In Section 4,
dynamic programming is used to compare two tandem queueing models that differ
in the workload: One system has batch size 1, the other possibly higher batch sizes
but less frequent arrivals+We take the arrival rates and the number of exponential
phases per customer such that the average workload to the systems is equal+We give
conditions on the performance measures for which the system with batch arrivals
behaves worse+ In Section 5, the fluid limit is studied+ By increasing service rates,
arrival rates, and batch sizes in the correct way, the queueing model without batches
converges to a fluid model, and the model with batches converges to a workload
model with arbitrary service times+

In Section 6, we show how the method can be applied to other queueing sys-
tems+ Examples are a single queue with an admission control and a two-queue rout-
ing model+

The comparisons are illustrated with the analysis of a few example systems in
Section 7+ One is a single-queue model with a nonstationary arrival rate,motivated
by Newell @13# + Another is the comparison of standard homogeneousM0M01 and
M0D01 queues and their fluid approximations with a large initial workload+ The last
numerical example consists of a tandem system with two queues with a large amount
of initial workload in the first one+

2. PERFORMANCE MEASURES AND MAIN RESULT

In this section,we state the main result for the tandem system+We give conditions on
the performance measures under which the fluid limit has a performance lower than
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the original queueing system+ These conditions are formulated in terms of sets of
functions+We first discuss these sets+ For the moment, all we need to know about our
system is that it consists ofm queues and an environment+

All performance measures~or costs, in dynamic programming terminology! are
functions of the whole state space, which is given byN0 3 R1

m + The 0th~integer!
state component represents the environment and thei th state component~1# i # m!
represents the workload in thei th queue+ Each performance measure is an element
of the setF 5 $ f 6 f :N0 3 R1

m r R%+

Definition 2.1: A function f:R1
m r R is called directionally convexif for all

x, y, z [ R1
m

f ~x 1 y! 1 f ~x 1 z! # f ~x! 1 f ~x 1 y 1 z!+

Directional convexity was introduced in@12# ,where it is formulated in a slightly
different~but equivalent! way+

To keep terminology simple,we call a functionf [ F also directionally convex
~written asf [ F~dc!! if f is directionally convex for each environment state+ This
assures that iff [ F~dc!, then there is no condition on the wayf depends on the
environment+

Many performance measures are directionally convex+ Note that each perfor-
mance measure that is additive and convex in the components is also directionally
convex+

Definition 2.2: A function f:R1
m r R is calleddownstream decreasingif for all

1 # i , j # m,

f ~x 1 ej ! # f ~x 1 ei !

and if

f ~x! # f ~x 1 em!+

Again, we call a functionf [ F also downstream decreasing~written asf [
F~dd!! if f is downstream decreasing for a fixed environment state+ It is easy to show
that every downstream decreasing function is increasing~terms such asincreasing
anddecreasingare used in the nonstrict sense! in each of the variables+ We write
F~dc,dd! 5 F~dc! ù F~dd!+

Costs that are downstream decreasing imply that it is favorable to have jobs
further down the line+ This is the case in many systems+ Some examples where it is
not the case is in systems where holding costs increase down the line, as in some
production systems, and in systems with finite buffers,modeled by additional costs
if queue lengths exceed buffer levels+

Remark 2.3:The class of functionsF~dd! establishes also an ordering between the
states: F~dd! consists of all functions that are increasing in thepartial sum ordering
~see@3, Lemma 2+7# and@7, Thm+ C+2# !+
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We describe the model in words+ We consider a tandem system consisting of
m [ N multiserver queues and arrivals at one or more queues+ Customers have
general service times~with average 1! that remain equal at the different stages of the
tandem system+ The speeds at which the servers at different queues work can differ+
There is an independent Markovian environment governing arrival rates and server
speeds+ The fluid model consists also ofm queues and the same Markovian envi-
ronment+ The arrival rates are now the speeds at which fluid enters the system+

Note that the condition that the average service time is 1 does not constrain the
model:By rescaling,we can get any average+The constraint is that the queueing and
the fluid model have the same expected offered workload+

Our main result now follows+ It will be proven in the next three sections+ For an
initial workloadw, let Wt be the workload vector of the queueing system at timet+
Similarly, let Zt be the workload of the fluid model at timet, also for the initial state
w+With Ut , we indicate the state of the environment att, andU0 5 u+

Theorem 2.4: If C [ F~dc,dd! and if infu C~u,0! . 2`, then

Eu,wC~Ut ,Zt ! # Eu,wC~Ut ,Wt !+

3. THE EXPONENTIAL MODEL

To derive Theorem 2+4, we first study exponential queueing models with possibly
batch arrivals+ In this section, we introduce these systems in detail+ They consist
of m [ N queues and an environment+ The environment is modeled by an arbi-
trary continuous-time Markov process onN0, with transition ratesg~u, v!, with

(v50
` g~u, v! uniformly bounded+ This Markov process governs the transitions at

the queueing system+ At each of them queues, arrivals can occur, at a ratel j ~u! at
queuej, with u the current state of the environment+We assume that supul j~u! , `
for each j+ Queuej, 1 # j # m, hasSj servers that serve at a rateµ j ~u! each+
Again, supu µ j ~u! , `+This specifies the model without batch arrivals+ The model
with batch arrivals will be introduced later in this section+

Let Xt [ N0
m denote the number of jobs in the queues att+ Next, we develop a

dynamic programming formulation forEu, xC~Ut ,Xt !, the expected costs att for the
initial state of the system~u, x! [ N0

m11+ Note thatC :N0
m11 r R in this section and

in the next+ Because all transition rates are uniformly bounded,we can rewrite them,
for somea . 0, asg~u, v! 5 a Tg~u, v!, l j ~u! 5 a Nl j ~u!, andµ j ~u! 5 a Tµ j ~u!, with

(v50
` Tg~u, v! 1 (j51

m ~ Nl j ~u! 1 Sj Tµ j ~u!! # 1+ By adding a dummy transition to the
environment@i+e+, giving Tg~u,u! a positive value# ,we can assure that(v50

` Tg~u, v!1

(j51
m @ Nl j ~u! 1 Sj Tµ j ~u!# 5 1 for everyu+

Now,we can see the transitions of the system as follows:According to a Poisson
process, at ratea, jumps are generated, and at the jump times, the system changes
state according to a discrete-time Markov chain with transition probabilitiesTg~u, v!,
Nl j ~u!, and Tµ j ~u!,where one or more “dummy departures” occur at queuej if the state

is such that there are less thanSj jobs in queuej+ This representation of the system
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will help us find a dynamic programming formulation forEu, xC~Ut ,Xt !, the ex-
pected costs att+

First, however, we introduce a condition that assures thatEu, xC~Ut ,Xt ! is inte-
grable for allC [ F~dd!+

Lemma 3.1: For all C [ F~dd! that satisfyinfu[N0
C~u,0! . 2`, Eu, xC~Ut ,Xt !

exists and is finite or̀ .

Proof: EveryC [ F~dd! is increasing in all its components; therefore, C~u,0! #
C~u, x! for all x and u+ Thus, infu C~u,0! 5 infu, x C~u, x!, andEu, xC~Ut ,Xt ! $
infu[N0

C~u,0!+ n

By conditioning on the number of jumps of the Poisson process in@0, t # ,we can
write Eu, xC~Ut ,Xt ! as

Eu, x C~Ut ,Xt ! 5 (
n50

` ~at !n

n!
e2atVn~u, x!, (1)

with Vn~u, x! the expected costs afternsteps of the discrete-time model+ ForVn~u, x!,
we will now give a dynamic programming recursion+ ~The same method is also used,
for different applications, in @7, Sect+ 5+2# and@10, Sect+ 2+3# +!

Forn5 0, we have to takeV0~u, x! 5 C~u, x!, with C the performance measure
or costs+ For n . 0, the value functionVn can be recursively defined by

Vn11~u, x!

5 Tenv~Vn,TA~1!~Vn!, + + + ,TA~m!~Vn!,TTS~1!~Vn!, + + + ,TTS~m21!~Vn!,TD~m!~Vn!!~u, x!,

with

TA~i ! f ~u, x! 5 f ~u, x 1 ei !,

TD~i ! f ~u, x! 5 Hxi f ~u, x 2 ei ! 1 ~Si 2 xi ! f ~u, x! if xi , Si

Si f ~u, x 2 ei ! otherwise,

TTS~i ! f ~u, x! 5 Hxi f ~u, x 2 ei 1 ei11! 1 ~Si 2 xi ! f ~u, x! if xi , Si

Si f ~u, x 2 ei 1 ei11! otherwise,

Tenv~ f0, + + + , f2m!~u, x! 5 (
v[N0

Tg~u, v! f0~v, x!

1 (
j51

m

@ Nl j ~u! fj ~u, x! 1 Tµ j ~u! fm1j ~u, x!# +

Let us interpret this definition ofVn11+ All T ’s stand for possible events in the
system+ Tenv, the environment operator, specifies the type of event that occurs at this
jump+ If it is a change of state of the environment, then the state changes from~u, x!
to ~v, x! and there aren more jumps to go, thus expected costsVn~v, x!+ This is
reflected by the fact that by inserting the definition ofTenv in Vn11, we find f0 5 Vn+
If , on the other hand, an arrival occurs, say at queuej, then the next eventTA~ j !
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occurs, which is applied toVn+ The same holds forTTS~i !, the event operator corre-
sponding toSservers moving customers from queuei to queuei 11 ~TS stands for
“tandem server”!, andTD~m!, the event operator modeling the departures from queue
m+ Note that the coefficients sum to 1 because the coefficients in the departure
operators sum to the number of servers+

Splitting up the dynamic programming equation into smaller event operators as
we just did simplifies the proofs in the next section+ For full details of this method,
we refer to@8#; here, we use it in a simplified form, adapted to the comparison of
different systems+

We finish this section by introducing a second system, with value functionVn
B+

It differs from the system with value functionVn in the arrivals at queuei+UnderVn
B,

arrivals occur less frequently, but in batches+ To be more specific, TA~i ! of Vn is
replaced by

TBA~i ! f ~u, x! 5 (
k50

`

pk
i f ~u, x 1 kei !+

Here, we take thepk
i $ 0 such that(k50

` pk
i 5 1+ Define Spi 5 (k50

` kpk
i +

In the next section, we compareVn andVn
B+ However, let us try to understand

why TBA~i ! is an interesting operator to consider+ It is known @2,15# that any proba-
bility distribution can be approximated arbitrarily close by a mixture of Erlang or
gamma distributions, all with the same parameter+ With TBA~i !, we can model this
approximation+When we increase the accuracy of the approximation, the batch sizes
increase, but the service time per exponential unit decreases+ In the model without
batch arrivals, we keep the expected number of exponential units~almost! equal,
meaning an increasing arrival rate+ Of course, the service time per exponential unit
decreases and, thus, the total expected offered workload remains the same and con-
verges to a fluid process, as we will see in Section 5+We show in the next section that
if C [ F~dc,dd! and Spi $1 for all i, thenVn~u, x! # Vn

B~u, x! for all n, u, andx+ From
this, the comparison att follows+

4. COMPARISON

Let Xt
B denote the state of the system with batch arrivals at timet+ The main result of

this section is the following theorem+

Theorem 4.1: If C [ F~dc,dd!, Spi $ 1 for all i , and infu[N0
C~u,0! . 2`, then

Eu, x C~Ut ,Xt ! # Eu, x C~Ut ,Xt
B!+

Proof: In Theorem 4+5, we will show thatVn~u, x! # Vn
B~u, x! if C [ F~dc,dd! for

all n+ Then, the result follows immediately by using~1! and observing that this
equation also holds forEu, x C~Ut ,Xt

B!+ n

In the proof of Theorem 4+5, we make use of certain properties of directionally
convex functions and of the fact thatVn itself is directionally convex+ The latter is
shown for a more general model in@9, Cor+ 4+6# +
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We will use the following useful characterization of directionally convexity on
N0

m ~e+g+, see@9# !+We call a functionf componentwise convexin componenti if

2f ~x 1 ei ! # f ~x! 1 f ~x 1 2ei !

for all x, andsupermodularin i andj if

f ~x 1 ei ! 1 f ~x 1 ej ! # f ~x! 1 f ~x 1 ei 1 ej !

for all x+ Lemma 3+2 of @9# states that a function is directionally convex if and only
if it is componentwise convex and supermodular in all componentsi with 1# i, j # m+
~Note that componentwise convexity is, in fact, supermodularity withi 5 j+!

Furthermore, in Lemma 3+8 of @9# , it is shown that every downstream decreas-
ing function is also increasing in each component@i+e+, f ~x! # f ~x1 ei ! for all x and
i # + The following lemma is a special case of Corollary 4+6 of @9# +

Lemma 4.2: If C [ F~dc,dd!, then Vn [ F~dc,dd!+

The difference between the last part of Corollary 4+6 in @9# and the current
theorem is that the environment in Corollary 4+6 is more general; also, a Markov
arrival process can be modeled with it+ This is not useful in the context of fluid
queues+

Now, we show certain properties of componentwise convexity, as defined al-
ready in Section 2+We denote componentwise convexity ini by CC~i !+

For a functionf :N0
m r R, we define Nf i :R1

m r R to be the function which
coincides withf onN0

m and is the linear interpolation off along the directioni+ If f is
CC~i !, then the derivatives ofNf i in directioni are clearly monotone increasing, so
that

f is CC~i ! n Nf i is convex in directioni + (2)

This implies the following lemma+

Lemma 4.3: The function f is CC~i ! if and only if

f ~x 1 akei ! # ~12 a! f ~x! 1 af ~x 1 kei !,

for all x [ Nm, and k[ N anda [ @0,1# such thatak [ N+

Proof: The “if” part follows directly by takingk5 2 anda 5 1
2
_ + The “only if” part

follows from ~2!+ n

The inequality proven in the next lemma will prove to be crucial in the proof of
Theorem 4+5+

Lemma 4.4: If f is CC~i ! and increasing in i,(k50
` pk 5 1, and(k50

` kpk $ 1, then

f ~x 1 ei ! # (
k51

`

pk f ~x 1 kei !+
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Proof: Since(k50
` kpk $ 1, then, by Jensen’s inequality, we have

f ~x 1 ei ! 5 Nf i ~x 1 ei ! # (
k51

`

pk Nf i ~x 1 kei ! 5 (
k51

`

pk f ~x 1 kei !+ n

Theorem 4.5: If C [ F~dc,dd! and Spi $ 1, then Vn~u, x! # Vn
B~u, x! for all n [ N0+

Proof: We prove the theorem by induction ton+ For n 5 0, we haveV0~u, x! 5
V0

B~u, x! 5 C~u, x!+ Assume that it is proven up ton $ 0+ ConsiderVn11+ From
Vn~u, x! # Vn

B~u, x!, it follows directly that TA~i !Vn~u, x! # TA~i !Vn
B~u, x!,

TTS~i !Vn~u, x! # TTS~i !Vn
B~u, x!, and TD~m!Vn~u, x! # TD~m!Vn

B~u, x!+ The crucial
step is showingTA~i !Vn~u, x! # TBA~i !Vn

B~u, x!+ As C [ F~dc,dd!, it follows from
Lemmas 4+2 and 4+4 that

Vn~u, x 1 ei ! # (
k50

`

pkVn~u, x 1 kei !+

By induction, Vn~u, x! # Vn
B~u, x! for all ~u, x!, and thus

Vn~u, x 1 ei ! # (
k50

`

pkVn
B~u, x 1 kei !

holds+ This is exactlyTA~i !Vn~u, x! # TBA~i !Vn
B~u, x!+ As Tenv simply consists of a

convex combination of terms for which the inequality holds,Vn11~u, x! # Vn11
B ~u, x!

easily follows+ n

We worked out the comparison for a single operator+ However, in the definition
of the queueing system, we allowed for multiple arrival operators+ By repeating the
procedure,we can include other arrival operators in the comparison+As this is straight-
forward, we will not present detailed results+

We saw in the proof of Theorem 4+5 that we need thatVn is CC in the compo-
nents that have batch and nonbatch arrivals+There are other systems than the tandem
system studied here that haveCCvalue functions+We will discuss these models and
the results that can be obtained for them in Section 6+

5. FLUID LIMITS

There are different ways to construct and interpret fluid limits+We prefer to see them
as a means to study transient behavior, such as peak hours+ This is the classical
interpretation~see, e+g+, @6,13# !+ The nonstationarity can be modeled effectively
with the environment+ For this reason, a construction involving scaling time~such as
in @4# ! is not appropriate, as it would mean scaling the environment as well+ Instead,
we see the fluid limit as a simultaneous increase of the arrival rate and a decrease of
the size of the workload per job+ This corresponds to the average over an infinite
number of realizations of the arrival process, for each realization of the environment
separately+
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We construct a series of comparisons between two queueing systems that is
such that one of the better system converges to the fluid limit and the worse system
to the workload vector+ The comparison holds at each stage by Theorem 4+1+

We assume that arrivals occur only at queue 1+Adding arrivals to other queues
is straightforward but notationally cumbersome+

Before going into the details of the comparison, we define what we call a fluid
process+ We say that the offered workloadOt is a fluid process generated by the
environmentUt if there is a rate functionl :N0 r R1 such thatOt 5 *0

t l~Us! ds+
Thus, a fluid is characterized by the absence of jumps and, for a given realization of
the environment process, a deterministic growth+

Now, add an indexk to the environment, giving a series$Ut
k%k51
` , whereUt

k is
equal toUt except that alll1~u! andµ j ~u! are multiplied by a factork+ Consider the
queueing system without batch arrivals+We multiplied the server speeds byk+ An
alternative of looking at this system is assuming that the server speeds remained
unchanged, but that each exponential task has a service time divided byk ~ i+e+, with
ratek!+ Thus, the offered workload generated byUt

k up to t consists of a number of
exponential phases with ratek, where this number is Poisson distributed with mean
*0

t kl1~Us! ds+ Then, from standard properties of the Erlang distribution, the offered
workload converges, ask r `, to a fluid with ratel1~Ut !+

Next, we consider the system with batch arrivals+ We want to have the same
batch arrival process, independent of the environment+ This is achieved by taking
p0

1 5 1 2 10k for thekth approximation+ Thus, on average, TBA~1! selects 1 out ofk
points from the process with ratekl1~Ut !+ This results in an arrival process with rate
l1~Ut !+ The service time distribution, with distribution functionG, is approximated
by a series of mixtures of Erlang distributions, with distribution functionGk of the
kth approximate defined by

Gk~x! 5 (
n51

`

bn
kEn

k~x!,

wherebn
k 5 G~n0k! 2 G~~n 2 1!0k! andEn

k~x! is the distribution function of the
Erlang distribution with ratek andn phases+ The decrease in service time of the
exponential phases is already incorporated in the server speeds+ The operatorTBA~1!

generates the right number of phases if we takepn
1 5 bn

k0k for all n . 0+ It is impor-
tant to note thatSp1 5(n50

` npn
15(n50

` n0k~G~n0k!2G~~n21!0k!! $ *0
` dG~x!+As

the average service time equals 1, we find Sp1 $ 1+ In other words, for suitableC, we
are allowed to apply Theorem 4+1 for everyUt

k andTBA~1! defined earlier+This means
that the comparison holds for the limit as well+ We have already shown that the
queueing model without batch arrivals converges to the fluid model+ Thus, it re-
mains to show that the batch arrival model converges to the original queueing model+
As the workload att is a continuous function of the input, it suffices to show thatGk

converges toG+ This result, however, is well known and can be found in@15# ~see
also@7,App+A# !+ It looks as if we have finished proving Theorem 2+4; there is one
complication left however+
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In Xt
B, the tasks of which a batch consists are treated separately, although they

should be treated as a whole+ In the current systems, one task of a batch can be
processed at one stage while another task is already processed at the next stage+ The
same holds for multiserver queues: Tasks of the same customer can be processed in
parallel+ Thus, the correct system is yet another that delays certain tasks until all
tasks of a customer have finished processing+

The solution is as follows+ We introduce yet another system that incorporates
the delays+ To show that the real system is even worse than the one we already
studied withTBA,we have to show that it is better to have tasks further down the line+
For performance measures inF~dd!, it can easily be shown using a coupling argu-
ment that the delayed system has a worse performance+ This completes the proof of
Theorem 2+4+

6. EXTENSIONS TO OTHER MODELS

In @8# , a unifying approach and an overview is given of monotonicity results for one-
and two-dimensional~queueing! systems+ For models with more than two dimen-
sions, there are few results in addition to the ones already cited, with the exception
of the cycle of queues of@16# and the fork-join queue of@1# + Many of the mono-
tonicity results for these models are obtained by proving properties that are stronger
thanCC, thereby allowing one to obtain similar results as for the tandem system of
the previous sections+We give a few examples+

6.1. One-Dimensional Models

The main class of one-dimensional models consists of models with operators that
propagate convexity and increasingness~CI! in the single-state component+ It con-
tains operators that model admission control, multiple servers, a single server with
a controllable rate, and so forth+As long as the arrival process is modeled by theTA~1!

operator~i+e+, uncontrolled, no finite buffers, etc+!, we find by a completely analo-
gous argument as earlier that the performance is better in the fluid approximation
than in the original queueing system, assuming that the costs are CI+Here,we should
note thatTBA~1! propagates the CI property+ This is easily seen, asTBA~1! can be seen
as a random number of convolutions ofTA~1! operators+

The same does not hold for the well-known admission control operator+ The
batch arrival operatorTBAC defined by

TBAC f ~x! 5 minHc 1 f ~x!,(
k50

`

pk f ~x 1 k!J ,
does not propagate the CI property+ For the same reason, we have no results for
models with other arrival operators such as the one modeling a finite buffer+

6.2. Two-Dimensional Models

What holds for the one-dimensional models holds also for the two-dimensional mod-
els: We can only deal with models that haveTA~i !-type arrival operators+ A model
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from the literature that has this property is the model of@11# + It consists of a single-
server queue with an additional server that can be used if necessary+ Using event-
based dynamic programming techniques, it can be shown that the optimal policy is
of a threshold type and that the value function isCC~see@8# !+ Thus, the comparison
result holds also in this case+

6.3. Higher Dimensional Models

The prime example of monotonicity of a multidimensional queueing model~in ad-
dition to the model of@9# utilized in this article! is the tandem of queues with con-
trolled service rates of@16# + The set of functions that they use~the multimodular
functions! is contained inF~dc,dd!; therefore, the comparison result holds as well
for the model of@16# + They allow only for uncontrolled arrivals at the first queue of
the tandem system+

It is shown in@1# ~based on ideas from@5# ! that the value function of the fork-
join queue is also multimodular+ However, arrivals generate, here, an arrival in each
queue: TFJA f ~x! 5 f ~x 1 e!, with e5 ~1, + + + ,1!+ Thus, to showVn~x! # Vn

B~x!, we
need that the value function is convex in theedirection@i+e+, that the value function
satisfies 2f ~x1e! # f ~x!1 f ~x12e!# + This follows from the multimodularity of the
value function+ Therefore, the comparison result holds for the fork-join queue+

7. NUMERICAL EXAMPLES

In Section 1, we stated that in queueing, we can distinguish two types of variation:
changes in the system parameters such as arrival and service rates, and the random
changes in interarrival and service times+ The first type of variation is modeled by
the environment, and, therefore, it already shows up in the fluid approximation+ The
queueing system also captures the second type of variation+

In this section,we compare queueing systems and their fluid approximations for
several configurations+ First, note that a standard stableM0G01 queue has fluid
approximation 0 for an initially empty system+ If there is some initial workload, then
the system will reach and stay at 0 after some point in time+ This shows that it is only
interesting to consider fluid approximations if there is a large initial workload or if
there are time intervals at which the offered workload is higher than the service
capacity in one or more of the queues+ In the configurations that we consider, one of
the two situations will always be the case+ In all cases, we take a deterministic
environment+ Of course, this cannot be modeled immediately by the Markovian
environment that we studied in previous sections+ However, using arguments com-
parable to those in@2# , we see that any deterministic environment can be approxi-
mated arbitrarily close by a Markovian environment+

The first example is in the same spirit as that of@13, Fig+ 2+2# and@6, Fig+ 2+7# +
It consists of a singleM0M01 queue with a constant service rate of 0+4, and arrival
rate 0+8 up to time 100 and arrival rate 0+2 after 100+ The initial workload is equal to
0+ For this system, it is trivial to calculate the fluid approximation+Using simulation,
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we calculated the expected workload at each time up to 600+The results can be found
in Figure 1+ The queueing system is the average over 600 traces+ We see that the
average workload in the queueing system is always higher than the workload in the
fluid system, as predicted by Theorem 2+4+We also see that the behavior is similar
for large queue lengths+We also see that the fluid is equal to 0 from 300 on, and the
expected workload in theM0M01 system converges to 2+5, the stationary workload
of theM0M01 queue with rates 0+2 and 0+4+ The fluid approximation is independent
of the service time distribution; it depends only on the expectation of the service
time+ However, the workload in theM0G01 queue depends strongly on the form of
the service time distribution, as we know from the Pollaczek–Khitchine formula+ It
is interesting to consider, as well, theM0D01 queue+Here, the influence of variations
in service time are eliminated, and by@14, Thm+ 8+6+2# , we know that the workload
in theM0D01 queue is smaller than in theM0M01 queue+ ~This result can also easily
be established using the ideas of Sect+ 4+! All three systems, the fluid approximation,
theM0M01 queue, and theM0D01 queue, can be found in Figure 1+

In Figure 2, standard homogeneousM0M01 andM0D01 queues and their fluid
approximation are plotted for the arrival rate 0+5 and mean service time 0+8+ The
nontrivial factor here is the presence of a large initial workload+We see, as in Fig-
ure 1, that the fluid model captures well the behavior of the queueing systems, as
long as the stationary situation has not yet been reached+

Finally, in Figure 3, we consider a situation with two queues in tandem+ It is a
homogeneous system, where we assume a high initial load at the first queue and a
service rate at the second queue equal to 0+6, lower than the service rate at the first

Figure 1. A single queue with a varying arrival rate+
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queue~0+8! ~the inverse would give fluid limit 0 for the second queue all the time!+
In Figure 3, the workloads at queues 1 and 2 are plotted, both for the fluid model and
the exponential model, as well as the sum of the two queues for each model+ For
reasons of clarity,we did not add results for deterministic service times to the figure+

Figure 2. A single queue with a high initial workload+

Figure 3. Tandem system with an initial workload and queue 1 faster than queue 2+
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Of course, queue 1 has, on average, a higher workload than the corresponding
fluid queue+ It is interesting to note that this does not hold for queue 2, as we can see
from Figure 3+ This was to be expected, asf ~x! 5 x2 is not downstream decreasing+
The functionf ~x! 5 x1 1 x2 is downstream decreasing and directionally convex,
and, indeed, we observe in Figure 3 that the total workload in the fluid system is
majorized by the average total workload in the queueing system+
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