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Inthis article we study a method to compare queueing systems and their fluid.limits
For a certain class of queueing systeinis shown that the expected worklogahd
certain functions of the workloads higher in the queueing system than in the fluid
approximationThis class is characterized by convexity of the value function in the
state componeli$) where external arrivals occufhe main example that we con-
sider is a tandem of multiserver queues with general service times and Markov-
modulated arrivalsThe analysis is based on dynamic programming and the use of
phase-type distributionBlumerical examples to illustrate the results are also given

1. INTRODUCTION

Queueing theory is mainly concerned with calculating the influence of randomness
in certain processes as a function of certain stationary input processes that model
arrivals and departuretndeed the variance infor example service times has a
great influence on waiting timeas is nicely illustrated for th1/G/1 queue in the

celebrated Pollaczek—Khitchine formula
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However in certain situationsve do not wish to make the stationarity assump-
tion, but to study the influence of changes far example the arrival rateln such
casesexact queueing resulteking into account nonstationarity and varianees
extremely hard to obtai\n “engineering approach®, p. 56] to this problem is to
focus on the nonstationarity and assume continuous deterministic arrival and depar-
ture flows This leads to the well-known fluid approximation for queu€kis ap-
proximation is usually easier to compute than the original queueing system and
might be of interest on its own

However often we ask ourselves how close the fluid approximation is to the
original modelIn this article we try to answer part of this question by showing that
for certain systems and performance measuhesfluid limit performs better than
the original queueing syster®ur main example is a tandem of multiserver queues
and performance measures such as tetaighted workload The method applies
equally well to other classes of modeBervice times are general but fixed for each
customerThere is an environment modulating the arrival rates and the server speeds

In Section 2our main result is formulated in detail for the tandem systEhis
result is obtained in Sections 3-5 as follow#&st, we study exponential queueing
models This queueing modgintroduced in Section,2onsists of a tandem of multi-
server queuedBoth the arrival rate and the service rates are governed by an under-
lying Markov processArrivals can occur in batches

This model is defined by its dynamic programming recursionSection 4
dynamic programming is used to compare two tandem queueing models that differ
in the workload One system has batch sizethie other possibly higher batch sizes
but less frequent arrival§Ve take the arrival rates and the number of exponential
phases per customer such that the average workload to the systems.i¥\eqgiak
conditions on the performance measures for which the system with batch arrivals
behaves worsén Section 5the fluid limit is studied By increasing service rates
arrival ratesand batch sizes in the correct w#ye queueing model without batches
converges to a fluid modeand the model with batches converges to a workload
model with arbitrary service times

In Section 6 we show how the method can be applied to other queueing sys-
tems Examples are a single queue with an admission control and a two-queue rout-
ing model

The comparisons are illustrated with the analysis of a few example systems in
Section 70ne is a single-queue model with a nonstationary arrival rtgivated
by Newell[13]. Another is the comparison of standard homogenedyid/1 and
M/D/1 queues and their fluid approximations with a large initial workldaue last
numerical example consists of atandem system with two queues with a large amount
of initial workload in the first one

2. PERFORMANCE MEASURES AND MAIN RESULT

In this sectionwe state the main result for the tandem systéfa give conditions on
the performance measures under which the fluid limit has a performance lower than
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the original queueing systerhese conditions are formulated in terms of sets of
functions We first discuss these seEor the momeniall we need to know about our
system is that it consists ofiqueues and an environment

All performance measuréer costsin dynamic programming terminologgre
functions of the whole state spaaghich is given byNy X RT. The Oth(intege)
state component represents the environment andhts¢ate componenfl <i=m)
represents the workload in thth queue Each performance measure is an element
of the setF = { f|f:Ng X RT — R}.

DeriNITION 2.1: A function £ RT — R is called directionally convexif for all
X Y,z€ RY

f(x+y)+f(x+2) =f(x)+f(x+y+ 2.

Directional convexity was introduced|ih2], where itis formulated in a slightly
different(but equivalentway.

To keep terminology simpleve call a functiorf € Falso directionally convex
(written asf € F(dc)) if f is directionally convex for each environment stafthis
assures that if € F(dc), then there is no condition on the wayepends on the
environment

Many performance measures are directionally coniote that each perfor-
mance measure that is additive and convex in the components is also directionally
convex

DEFINITION 2.2: A function £ RT — R is calleddownstream decreasirifyfor all
l=i<j=m,

f(x+g)=f(x+e)
and if
f(x) =f(x+ey).

Again, we call a functionf € F also downstream decreasifgritten asf €
F(dd)) if f is downstream decreasing for a fixed environment staiteeasy to show
that every downstream decreasing function is increa@emgns such asicreasing
anddecreasingare used in the nonstrict sense each of the variabledVe write
F(dc,dd) = F(do) N F(dd).

Costs that are downstream decreasing imply that it is favorable to have jobs
further down the lineThis is the case in many systenSme examples where it is
not the case is in systems where holding costs increase down thadiire some
production system&nd in systems with finite buffersnodeled by additional costs
if gueue lengths exceed buffer levels

Remark 2.3:The class of functiong(dd) establishes also an ordering between the
states F(dd) consists of all functions that are increasing in plagtial sum ordering
(se€[3, Lemma 27] and[7, Thm. C.2]).
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We describe the model in wordg¢/e consider a tandem system consisting of
m € N multiserver queues and arrivals at one or more qued@astomers have
general service timgsvith average 1that remain equal at the different stages of the
tandem systenThe speeds at which the servers at different queues work can differ
There is an independent Markovian environment governing arrival rates and server
speedsThe fluid model consists also ofi queues and the same Markovian envi-
ronment The arrival rates are now the speeds at which fluid enters the system

Note that the condition that the average service time is 1 does not constrain the
modetl By rescalingwe can get any averagehe constraint is that the queueing and
the fluid model have the same expected offered workload

Our main result now followdt will be proven in the next three sectiarfor an
initial workloadw, let W, be the workload vector of the queueing system at time
Similarly, let Z, be the workload of the fluid model at tinigalso for the initial state
w. With U;, we indicate the state of the environment,andU, = u.

THEOREM 2.4: If C € F(dc,dd) and ifinf,C(u,0) > —oo, then

IEu,WC(Ut’ Zt) = EU,WC(UUVVt)'

3. THE EXPONENTIAL MODEL

To derive Theorem 2, we first study exponential queueing models with possibly
batch arrivalsin this sectionwe introduce these systems in detdihey consist
of m € N queues and an environmeiithe environment is modeled by an arbi-
trary continuous-time Markov process 0y, with transition ratesy(u,v), with
>0y (u,v) uniformly bounded This Markov process governs the transitions at
the queueing systemt each of them queuesarrivals can occyiat a ratex! (u) at
queusd, with u the current state of the environmeWe assume that syp’ (u) < oo
for eachj. Queuej, 1 = j = m, has§ servers that serve at a rageé(u) each
Again, sup,p!(u) < co.This specifies the model without batch arrivalfie model
with batch arrivals will be introduced later in this section

Let X; € Ng' denote the number of jobs in the queues &text we develop a
dynamic programming formulation fd@t, »C(U;, X;), the expected costs &for the
initial state of the systerfu, x) € NJ''*. Note thatC: N§'""* — R in this section and
in the nextBecause all transition rates are uniformly boundegican rewrite them
for somea > 0, asy(u,v) = a¥(u,v), A(u) = adl(u), andp! (u) = e (u), with
S0y (Up) + 2, (M (u) + §pEi(u)) = 1. By adding a dummy transition to the
environmenti.e., giving ¥ (u, u) a positive valug, we can assure that,— oy (u,v) +
S (u) + §E(u)] = 1 for everyu.

Now, we can see the transitions of the system as folléwsording to a Poisson
processat ratea, jumps are generatednd at the jump timeshe system changes
state according to a discrete-time Markov chain with transition probabiiities),

M (u), andft! (u), where one or more “dummy departures” occur at qéitbe state
is such that there are less thgrjobs in queug. This representation of the system
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will help us find a dynamic programming formulation fiy, ,C(U, X;), the ex-
pected costs dt

First, howeveywe introduce a condition that assures tHat C(U, X;) is inte-
grable for allC € F(dd).

Lemma 3.1: For all C € F(dd) that satisfyinf <y, C(u,0) > —co, E, ,C(Uy, X;)
exists and is finite ore.

Proor: EveryC &€ F(dd) is increasing in all its componentherefore C(u,0) =
C(u,x) for all x andu. Thus inf,C(u,0) = inf, ,C(u,x), andE, «C(U;, X;) =
infuen, C(u,0). u

By conditioning on the number of jumps of the Poisson procef3 ir], we can
write E, ,C(Uy, X;) as

(at)"
!

Eu,xc(utaxt) = 2
n=0 N

e “V,(u, x), 1)

with V,(u, x) the expected costs aftesteps of the discrete-time modgbrV,(u, x),
we will now give a dynamic programming recursigimhe same method is also used
for different applicationsin [7, Sect 5.2] and[10, Sect 2.3].)

Forn =0, we have to tak&/;(u, x) = C(u, x), with C the performance measure
or costs Forn > 0, the value functionV,, can be recursively defined by

Vos1(U, X)
= env(vn’ TA(l) (Vn), see ’TA(m) (Vn), TTS(l)(Vn), ey TTS(mfl)(Vn)a TD(m)(Vn)) (U, X),

with

Tag) f(u,x) =f(u,x+ &),

X f(ux—e)+(S—x)f(ux ifx<§
Toi f(u,x) = {Sf(U,X_Q) otherwise
Xif(ux—e+e.)+(§-—x)f(ux) ifx<§
Trsa) f(U,x) = {S f(ux—e +e.,) otherwise

Tenv( fO’ ey me)(u7 X) = z 7(“7 U)fO(U’ X)

vENy

+ 2 [V W) () + () fon (U, X1
j=1

Let us interpret this definition 0¥, ,. All T's stand for possible events in the
system T, the environment operat@pecifies the type of event that occurs at this
jump. If itis a change of state of the environmetiiten the state changes frdm x)
to (v, X) and there are more jumps to gothus expected costg,(v, X). This is
reflected by the fact that by inserting the definitionTaf, in V,, 1, we findfy = V.

If, on the other handan arrival occurssay at queug, then the next eveni,;,
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occurs which is applied tov,. The same holds fofrs, the event operator corre-
sponding tdSservers moving customers from queue queud + 1 (TS stands for
“tandem servet}, andTp ), the event operator modeling the departures from queue
m. Note that the coefficients sum to 1 because the coefficients in the departure
operators sum to the number of servers

Splitting up the dynamic programming equation into smaller event operators as
we just did simplifies the proofs in the next sectidior full details of this methad
we refer to[8]; here we use it in a simplified formadapted to the comparison of
different systems

We finish this section by introducing a second systeith value functionv,2.
It differs from the system with value functiddy in the arrivals at queueUnderV,2,
arrivals occur less frequenflput in batchesTo be more specificTy of V, is
replaced by

Toai) F(U, ) = > plf(u,x+ke).
k=0

Herg we take thep), = 0 such thal i, pi = 1. Definep' = > kpl.

In the next sectioywe comparey, andV,2. However let us try to understand
why Tgai) IS an interesting operator to considiis known[2,15] that any proba-
bility distribution can be approximated arbitrarily close by a mixture of Erlang or
gamma distributionsall with the same parametadith Tgai), we can model this
approximationWhen we increase the accuracy of the approximattmmbatch sizes
increasebut the service time per exponential unit decreakethe model without
batch arrivalswe keep the expected number of exponential ug@tsios) equal
meaning an increasing arrival ra@f coursethe service time per exponential unit
decreases anthus the total expected offered workload remains the same and con-
verges to afluid procesas we will see in Section 8Ve show in the next section that
if C € F(dc,dd) andp’ =1 for alli, thenV,,(u, x) = V,2(u, x) for all n, u, andx. From
this, the comparison &tfollows.

4. COMPARISON

Let X2 denote the state of the system with batch arrivals attifiee main result of
this section is the following theorem

TueoreM 4.1: If C € F(dcdd), p' =1 for all i, andinf,cy, C(u,0) > —oo, then
EyxC(Uy, Xo) = By «C(U, X&).

Proor: In Theorem 45, we will show thatV,(u, X) = V.B(u, x) if C € F(dc,dd) for
all n. Then the result follows immediately by usin@) and observing that this
equation also holds fdt, ,C(U,, X£). |

In the proof of Theorem &, we make use of certain properties of directionally
convex functions and of the fact the itself is directionally convexThe latter is
shown for a more general model[i&, Cor. 4.6].
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We will use the following useful characterization of directionally convexity on
Ng' (e.g., se€[9]). We call a functiorf componentwise convéx component if

2f(x+¢g)=f(x)+f(x+2¢)
for all x, andsupermodulain i andj if
f(x+e)+f(x+g)=f(x)+f(x+e+g)

for all x. Lemma 32 of [9] states that a function is directionally convex if and only

ifitis componentwise convex and supermodular in all comporenith 1<i,j =m.

(Note that componentwise convexity ia fact, supermodularity with = j.)
Furthermorein Lemma 38 of [9], it is shown that every downstream decreas-

ing function is also increasing in each comporieset, f(x) = f(x+ &) for all xand

i ]. The following lemma is a special case of Corollacg 4f[9].

Lemma 4.2: If C € F(dc,dd), then \, € F(dc,dd).

The difference between the last part of Corollarg # [9] and the current
theorem is that the environment in Corollary¢4s more generalalsq a Markov
arrival process can be modeled with This is not useful in the context of fluid
gqueues

Now, we show certain properties of componentwise convexrisydefined al-
ready in Section 2We denote componentwise convexityiiby CC(i ).

For a functionf: NJ' —» R, we definef’: RT — R to be the function which
coincides withf onNg'and is the linear interpolation éflong the directiom. If f is
CC(i), then the derivatives df in directioni are clearly monotone increasirgp
that

fis CC(i) = f' is convex in direction. ()
This implies the following lemma
LemmMma 4.3: The function fis C@Q ) if and only if

f(x+ akg) = (11— a)f(x) + aof (x+ ke),
forallx € N™ and ke N anda € [0,1] such thatak € N.

Proor: The “if” part follows directly by takingk = 2 anda = 1. The “only if” part
follows from (2). u

The inequality proven in the next lemma will prove to be crucial in the proof of
Theorem 4.

LeMMA 4.4: If fis CC(i) and increasing in iX o px =1, and >y okp = 1, then

f(x+eg)= kz pef(x+ ke).
=1
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Proor: SinceX .~ kp = 1, then by Jensen’s inequalityve have

fix+e)=Ff(x+te)=2 pf'(x+ke)=2> pf(x+ke). L]
k=1 k=1
THEOREM 4.5: If C € F(dc,dd) andp' = 1, then V,(u, X) = V,8(u, x) for all n € Ny,

Proor: We prove the theorem by induction o For n = 0, we haveV,(u, x) =
VE(u,x) = C(u,x). Assume that it is proven up to = 0. ConsiderV,,,. From
Va(u,x) = Vi2(u,x), it follows directly that Tap)Va(u,x) = Tan Vit (U, ),
Trsi)Va(U, X) = Trsai) Vi2(U, X), and Tpm Va(U, X) = Tom ViE(u, X). The crucial
step is showinglag) Va(U, X) = Tgai Vit (U, X). As C € F(dc,dd), it follows from
Lemmas 4 and 44 that

Va(u, X +8) = > pVa(u, x + ke).
k=0

By induction V,(u, x) = V/2(u, x) for all (u, x), and thus

Va(u,x+ &) = > pVie(u x + ke)
k=0

holds This is exactlyTa)Va(U, X) = Tga)Vie (U, X). AS Teny Simply consists of a
convex combination of terms for which the inequality hoMs_;(u, X) = V2., (u, X)
easily follows [ ]

We worked out the comparison for a single operatmwever in the definition
of the queueing systerwe allowed for multiple arrival operatarBy repeating the
procedurewe can include other arrival operators in the compatriéerthis is straight-
forward we will not present detailed results

We saw in the proof of TheoremBithat we need that, is CCin the compo-
nents that have batch and nonbatch arrivetiere are other systems than the tandem
system studied here that ha@€ value functionsWe will discuss these models and
the results that can be obtained for them in Section 6

5. FLUID LIMITS

There are different ways to construct and interpret fluid linMis prefer to see them

as a means to study transient behaveuch as peak hour§his is the classical
interpretation(see e.g., [6,13]). The nonstationarity can be modeled effectively
with the environmentFor this reasoya construction involving scaling tinisuch as

in [4]) is not appropriateas it would mean scaling the environment as waktead

we see the fluid limit as a simultaneous increase of the arrival rate and a decrease of
the size of the workload per jolhis corresponds to the average over an infinite
number of realizations of the arrival procef&s each realization of the environment
separately
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We construct a series of comparisons between two queueing systems that is
such that one of the better system converges to the fluid limit and the worse system
to the workload vectoiThe comparison holds at each stage by Theordm 4

We assume that arrivals occur only at queuAdding arrivals to other queues
is straightforward but notationally cumbersame

Before going into the details of the comparisere define what we call a fluid
processWe say that the offered workload, is a fluid process generated by the
environmentJ, if there is a rate function : Ny — R, such thatO, = ng(US) ds
Thus a fluid is characterized by the absence of jumps éordh given realization of
the environment procesa deterministic growth

Now, add an index to the environmentgiving a serieU/}i=_,, whereUX is
equal toU, except that alh*(u) andp! (u) are multiplied by a factok. Consider the
queueing system without batch arrivalge multiplied the server speeds kyAn
alternative of looking at this system is assuming that the server speeds remained
unchangegbut that each exponential task has a service time divided bg., with
ratek). Thus the offered workload generated by up tot consists of a number of
exponential phases with ratewhere this number is Poisson distributed with mean
fé kat(Uy) ds Then from standard properties of the Erlang distributitire offered
workload convergesask — oo, to a fluid with rateA*(U,).

Next we consider the system with batch arrivalge want to have the same
batch arrival processndependent of the environmerithis is achieved by taking
ps = 1 — 1/k for the kth approximationThus on averageTga) Selects 1 out ok
points from the process with raka*(U,). This results in an arrival process with rate
AL(U,). The service time distributignwith distribution functionG, is approximated
by a series of mixtures of Erlang distributigneth distribution functionG* of the
kth approximate defined by

GX(0) = 3 BEK(X.

wheregsk = G(n/k) — G((n — 1)/k) and EX(x) is the distribution function of the
Erlang distribution with raté& and n phasesThe decrease in service time of the
exponential phases is already incorporated in the server spdegleperatoiga )
generates the right number of phases if we tagke 8X/k for alln > 0. It is impor-
tantto note thad* = X o npt = 2o /K(G(n/k) — G((n—1)/k)) = [° dG(x). As
the average service time equalsik find p* = 1. In other wordsfor suitableC, we
are allowed to apply Theorem¥for everyU* and Tz defined earliefThis means
that the comparison holds for the limit as walle have already shown that the
queueing model without batch arrivals converges to the fluid mdduals it re-
mains to show that the batch arrival model converges to the original queueing model
As the workload atis a continuous function of the input suffices to show thaB*
converges td. This resulf howeveyis well known and can be found [15] (see
also[7, App. A]). It looks as if we have finished proving Theoremd2there is one
complication left however
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In X8, the tasks of which a batch consists are treated separalttiigugh they
should be treated as a whola the current system®ne task of a batch can be
processed at one stage while another task is already processed at the neXhstage
same holds for multiserver queudssks of the same customer can be processed in
parallel Thus the correct system is yet another that delays certain tasks until all
tasks of a customer have finished processing

The solution is as followsWe introduce yet another system that incorporates
the delaysTo show that the real system is even worse than the one we already
studied withTg,, we have to show that it is better to have tasks further down the line
For performance measurestdd), it can easily be shown using a coupling argu-
ment that the delayed system has a worse performdinégcompletes the proof of
Theorem 4.

6. EXTENSIONS TO OTHER MODELS

In[8], a unifying approach and an overview is given of monotonicity results for one-
and two-dimensionalqueueing systemsFor models with more than two dimen-
sions there are few results in addition to the ones already citétth the exception

of the cycle of queues dfL6] and the fork-join queue dfL]. Many of the mono-
tonicity results for these models are obtained by proving properties that are stronger
thanCC, thereby allowing one to obtain similar results as for the tandem system of
the previous sectionyVe give a few examples

6.1. One-Dimensional Models

The main class of one-dimensional models consists of models with operators that
propagate convexity and increasingnéSh) in the single-state componetitcon-
tains operators that model admission contmaliltiple serversa single server with
acontrollable rateand so forthAs long as the arrival process is modeled byThe
operatori.e., uncontrolled no finite buffers etc), we find by a completely analo-
gous argument as earlier that the performance is better in the fluid approximation
than in the original queueing systeassuming that the costs are Bere we should
note thatlg ;) propagates the Cl propertyhis is easily seerasTga) can be seen
as a random number of convolutionsTaf;, operators

The same does not hold for the well-known admission control operBier
batch arrival operatofzac defined by

Teac F(X) = min{c+ f(x), f P f(x+ k)},
k=0

does not propagate the CI properBor the same reaspwe have no results for
models with other arrival operators such as the one modeling a finite buffer

6.2. Two-Dimensional Models

What holds for the one-dimensional models holds also for the two-dimensional mod-
els We can only deal with models that haVg;,-type arrival operatotsA model
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from the literature that has this property is the moddHdf. It consists of a single-
server queue with an additional server that can be used if necelisamg event-
based dynamic programming techniguésan be shown that the optimal policy is
of athreshold type and that the value functio®{S (se€ 8]). Thus the comparison
result holds also in this case

6.3. Higher Dimensional Models

The prime example of monotonicity of a multidimensional queueing m@deld-
dition to the model of 9] utilized in this articlg is the tandem of queues with con-
trolled service rates dfl6]. The set of functions that they ugthe multimodular
functiong is contained inF(dc,dd); therefore the comparison result holds as well
for the model of 16]. They allow only for uncontrolled arrivals at the first queue of
the tandem system

It is shown in[1] (based on ideas frofib]) that the value function of the fork-
join queue is also multimoduladowever arrivals generatéiere an arrival in each
queue Teaf(x) = f(x + €), with e = (1,...,1). Thus to showV,(x) = V.B(x), we
need that the value function is convex in #h@irection[i.e., that the value function
satisfies 2(x+ e) =f(x) + f(x+ 2¢)]. This follows from the multimodularity of the
value function Therefore the comparison result holds for the fork-join queue

7. NUMERICAL EXAMPLES

In Section 1 we stated that in queueingie can distinguish two types of variation
changes in the system parameters such as arrival and serviceratéke random
changes in interarrival and service timé&ge first type of variation is modeled by
the environmentand thereforeit already shows up in the fluid approximatidrhe
gueueing system also captures the second type of variation

In this sectiopwe compare queueing systems and their fluid approximations for
several configurationgrirst, note that a standard stabM/G/1 queue has fluid
approximation O for an initially empty systefifithere is some initial workloadhen
the system will reach and stay at 0 after some point in tifthés shows that it is only
interesting to consider fluid approximations if there is a large initial workload or if
there are time intervals at which the offered workload is higher than the service
capacity in one or more of the queuésthe configurations that we consigene of
the two situations will always be the cada all caseswe take a deterministic
environment Of course this cannot be modeled immediately by the Markovian
environment that we studied in previous sectidiswever using arguments com-
parable to those if2], we see that any deterministic environment can be approxi-
mated arbitrarily close by a Markovian environment

The first example is in the same spirit as that 8, Fig. 2.2] and[6, Fig. 2.7].
It consists of a singl&/M/1 queue with a constant service rate of,@nd arrival
rate 08 up to time 100 and arrival rateDafter 100 The initial workload is equal to
0. For this systemitis trivial to calculate the fluid approximatioksing simulation
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we calculated the expected workload at each time up toB®®results can be found
in Figure 1 The queueing system is the average over 600 trablessee that the
average workload in the queueing system is always higher than the workload in the
fluid system as predicted by Theorem4& We also see that the behavior is similar
for large queue length¥Ve also see that the fluid is equal to 0 from 300 and the
expected workload in thil/M/1 system converges to3 the stationary workload
of theM/M/1 queue with rates.Q and 04. The fluid approximation is independent
of the service time distributigrit depends only on the expectation of the service
time. However the workload in theM/G/1 queue depends strongly on the form of
the service time distributigras we know from the Pollaczek—Khitchine formuiia
is interesting to considgas well theM/D/1 queueHere the influence of variations
in service time are eliminatednd by[14, Thm. 8.6.2], we know that the workload
intheM/D/1 queue is smaller than in th&/M/1 queue(This result can also easily
be established using the ideas of SdgtAll three systemghe fluid approximation
theM/M/1 queueand theM/D/1 queuecan be found in Figure.1

In Figure 2 standard homogeneoi/M/1 andM/D/1 queues and their fluid
approximation are plotted for the arrival ratdbs@nd mean service time& The
nontrivial factor here is the presence of a large initial workloAd seeas in Fig-
ure 1, that the fluid model captures well the behavior of the queueing sysiesns
long as the stationary situation has not yet been reached

Finally, in Figure 3 we consider a situation with two queues in tandérns a
homogeneous systenmwhere we assume a high initial load at the first queue and a
service rate at the second queue equal®lOwer than the service rate at the first
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FiGURE 1. Asingle queue with a varying arrival rate
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FiGURE 2. A single queue with a high initial workload

queue(0.8) (the inverse would give fluid limit O for the second queue all the jime
In Figure 3 the workloads at queues 1 and 2 are platbexdh for the fluid model and
the exponential modghs well as the sum of the two queues for each mdee
reasons of claritywe did not add results for deterministic service times to the figure
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FiGuUre 3. Tandem system with an initial workload and queue 1 faster than queue 2
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Of course queue 1 haon averagga higher workload than the corresponding
fluid queue Itis interesting to note that this does not hold for quepgsive can see
from Figure 3 This was to be expectedsf (x) = x, is not downstream decreasing
The functionf(x) = x; + X, is downstream decreasing and directionally convex
and indeed we observe in Figure 3 that the total workload in the fluid system is
majorized by the average total workload in the queueing system
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